This commit was manufactured by cvs2svn to create tag
[linux-2.6.git] / kernel / sched.c
index 1493acf..501a90b 100644 (file)
@@ -15,8 +15,8 @@
  *             and per-CPU runqueues.  Cleanups and useful suggestions
  *             by Davide Libenzi, preemptible kernel bits by Robert Love.
  *  2003-09-03 Interactivity tuning by Con Kolivas.
+ *  2004-04-02 Scheduler domains code by Nick Piggin
  */
-
 #include <linux/mm.h>
 #include <linux/module.h>
 #include <linux/nmi.h>
@@ -30,6 +30,7 @@
 #include <linux/kernel_stat.h>
 #include <linux/security.h>
 #include <linux/notifier.h>
+#include <linux/profile.h>
 #include <linux/suspend.h>
 #include <linux/blkdev.h>
 #include <linux/delay.h>
 #include <linux/cpu.h>
 #include <linux/percpu.h>
 #include <linux/kthread.h>
+#include <linux/seq_file.h>
+#include <linux/times.h>
+#include <linux/vserver/sched.h>
+#include <linux/vs_base.h>
+#include <linux/vs_context.h>
+#include <linux/vs_cvirt.h>
+#include <asm/tlb.h>
+
+#include <asm/unistd.h>
 
 #ifdef CONFIG_NUMA
 #define cpu_to_node_mask(cpu) node_to_cpumask(cpu_to_node(cpu))
 #define cpu_to_node_mask(cpu) (cpu_online_map)
 #endif
 
+/* used to soft spin in sched while dump is in progress */
+unsigned long dump_oncpu;
+EXPORT_SYMBOL(dump_oncpu);
+
 /*
  * Convert user-nice values [ -20 ... 0 ... 19 ]
  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
@@ -63,8 +77,6 @@
 #define USER_PRIO(p)           ((p)-MAX_RT_PRIO)
 #define TASK_USER_PRIO(p)      USER_PRIO((p)->static_prio)
 #define MAX_USER_PRIO          (USER_PRIO(MAX_PRIO))
-#define AVG_TIMESLICE  (MIN_TIMESLICE + ((MAX_TIMESLICE - MIN_TIMESLICE) *\
-                       (MAX_PRIO-1-NICE_TO_PRIO(0))/(MAX_USER_PRIO - 1)))
 
 /*
  * Some helpers for converting nanosecond timing to jiffy resolution
 /*
  * These are the 'tuning knobs' of the scheduler:
  *
- * Minimum timeslice is 10 msecs, default timeslice is 100 msecs,
- * maximum timeslice is 200 msecs. Timeslices get refilled after
- * they expire.
+ * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
+ * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
+ * Timeslices get refilled after they expire.
  */
-#define MIN_TIMESLICE          ( 10 * HZ / 1000)
-#define MAX_TIMESLICE          (200 * HZ / 1000)
+#define MIN_TIMESLICE          max(5 * HZ / 1000, 1)
+#define DEF_TIMESLICE          (100 * HZ / 1000)
 #define ON_RUNQUEUE_WEIGHT      30
 #define CHILD_PENALTY           95
 #define PARENT_PENALTY         100
 #define PRIO_BONUS_RATIO        25
 #define MAX_BONUS              (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
 #define INTERACTIVE_DELTA        2
-#define MAX_SLEEP_AVG          (AVG_TIMESLICE * MAX_BONUS)
+#define MAX_SLEEP_AVG          (DEF_TIMESLICE * MAX_BONUS)
 #define STARVATION_LIMIT       (MAX_SLEEP_AVG)
 #define NS_MAX_SLEEP_AVG       (JIFFIES_TO_NS(MAX_SLEEP_AVG))
-#define NODE_THRESHOLD         125
 #define CREDIT_LIMIT           100
 
 /*
        (v1) * (v2_max) / (v1_max)
 
 #define DELTA(p) \
-       (SCALE(TASK_NICE(p), 40, MAX_USER_PRIO*PRIO_BONUS_RATIO/100) + \
-               INTERACTIVE_DELTA)
+       (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
 
 #define TASK_INTERACTIVE(p) \
        ((p)->prio <= (p)->static_prio - DELTA(p))
 #define LOW_CREDIT(p) \
        ((p)->interactive_credit < -CREDIT_LIMIT)
 
+#ifdef CONFIG_CKRM_CPU_SCHEDULE
+/*
+ *  if belong to different class, compare class priority
+ *  otherwise compare task priority 
+ */
+#define TASK_PREEMPTS_CURR(p, rq) \
+       ( ((p)->cpu_class != (rq)->curr->cpu_class) \
+         && ((rq)->curr != (rq)->idle) && ((p) != (rq)->idle )) \
+         ? class_preempts_curr((p),(rq)->curr)  \
+         : ((p)->prio < (rq)->curr->prio)
+#else
 #define TASK_PREEMPTS_CURR(p, rq) \
        ((p)->prio < (rq)->curr->prio)
+#endif
 
 /*
- * BASE_TIMESLICE scales user-nice values [ -20 ... 19 ]
- * to time slice values.
+ * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
+ * to time slice values: [800ms ... 100ms ... 5ms]
  *
  * The higher a thread's priority, the bigger timeslices
  * it gets during one round of execution. But even the lowest
  * priority thread gets MIN_TIMESLICE worth of execution time.
- *
- * task_timeslice() is the interface that is used by the scheduler.
  */
 
-#define BASE_TIMESLICE(p) (MIN_TIMESLICE + \
-               ((MAX_TIMESLICE - MIN_TIMESLICE) * \
-                       (MAX_PRIO-1 - (p)->static_prio) / (MAX_USER_PRIO-1)))
+#define SCALE_PRIO(x, prio) \
+       max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
 
-static inline unsigned int task_timeslice(task_t *p)
+unsigned int task_timeslice(task_t *p)
 {
-       return BASE_TIMESLICE(p);
+       if (p->static_prio < NICE_TO_PRIO(0))
+               return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
+       else
+               return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
 }
+#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)      \
+                               < (long long) (sd)->cache_hot_time)
+
+enum idle_type
+{
+       IDLE,
+       NOT_IDLE,
+       NEWLY_IDLE,
+       MAX_IDLE_TYPES
+};
+
+struct sched_domain;
 
 /*
  * These are the runqueue data structures:
  */
 
-#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
-
 typedef struct runqueue runqueue_t;
-
-struct prio_array {
-       int nr_active;
-       unsigned long bitmap[BITMAP_SIZE];
-       struct list_head queue[MAX_PRIO];
-};
+#include <linux/ckrm_classqueue.h>
+#include <linux/ckrm_sched.h>
 
 /*
  * This is the main, per-CPU runqueue data structure.
@@ -201,97 +229,245 @@ struct prio_array {
  */
 struct runqueue {
        spinlock_t lock;
+
+       /*
+        * nr_running and cpu_load should be in the same cacheline because
+        * remote CPUs use both these fields when doing load calculation.
+        */
+       unsigned long nr_running;
+#ifdef CONFIG_SMP
+       unsigned long cpu_load;
+#endif
        unsigned long long nr_switches;
-       unsigned long nr_running, expired_timestamp, nr_uninterruptible,
-               timestamp_last_tick;
+       unsigned long expired_timestamp, nr_uninterruptible;
+       unsigned long long timestamp_last_tick;
        task_t *curr, *idle;
        struct mm_struct *prev_mm;
-       prio_array_t *active, *expired, arrays[2];
-       int best_expired_prio, prev_cpu_load[NR_CPUS];
-#ifdef CONFIG_NUMA
-       atomic_t *node_nr_running;
-       int prev_node_load[MAX_NUMNODES];
+#ifdef CONFIG_CKRM_CPU_SCHEDULE
+       struct classqueue_struct classqueue;   
+       ckrm_load_t ckrm_load;
+#else
+        prio_array_t *active, *expired, arrays[2];
 #endif
+       int best_expired_prio;
+       atomic_t nr_iowait;
+
+#ifdef CONFIG_SMP
+       struct sched_domain *sd;
+
+       /* For active balancing */
+       int active_balance;
+       int push_cpu;
+
        task_t *migration_thread;
        struct list_head migration_queue;
+#endif
 
-       atomic_t nr_iowait;
+#ifdef CONFIG_VSERVER_HARDCPU
+       struct list_head hold_queue;
+       int idle_tokens;
+#endif
+
+#ifdef CONFIG_SCHEDSTATS
+       /* latency stats */
+       struct sched_info rq_sched_info;
+
+       /* sys_sched_yield() stats */
+       unsigned long yld_exp_empty;
+       unsigned long yld_act_empty;
+       unsigned long yld_both_empty;
+       unsigned long yld_cnt;
+
+       /* schedule() stats */
+       unsigned long sched_noswitch;
+       unsigned long sched_switch;
+       unsigned long sched_cnt;
+       unsigned long sched_goidle;
+
+       /* pull_task() stats */
+       unsigned long pt_gained[MAX_IDLE_TYPES];
+       unsigned long pt_lost[MAX_IDLE_TYPES];
+
+       /* active_load_balance() stats */
+       unsigned long alb_cnt;
+       unsigned long alb_lost;
+       unsigned long alb_gained;
+       unsigned long alb_failed;
+
+       /* try_to_wake_up() stats */
+       unsigned long ttwu_cnt;
+       unsigned long ttwu_attempts;
+       unsigned long ttwu_moved;
+
+       /* wake_up_new_task() stats */
+       unsigned long wunt_cnt;
+       unsigned long wunt_moved;
+
+       /* sched_migrate_task() stats */
+       unsigned long smt_cnt;
+
+       /* sched_balance_exec() stats */
+       unsigned long sbe_cnt;
+#endif
 };
 
 static DEFINE_PER_CPU(struct runqueue, runqueues);
 
-#define cpu_rq(cpu)            (&per_cpu(runqueues, (cpu)))
-#define this_rq()              (&__get_cpu_var(runqueues))
-#define task_rq(p)             cpu_rq(task_cpu(p))
-#define cpu_curr(cpu)          (cpu_rq(cpu)->curr)
-
-extern unsigned long __scheduling_functions_start_here;
-extern unsigned long __scheduling_functions_end_here;
-const unsigned long scheduling_functions_start_here =
-                       (unsigned long)&__scheduling_functions_start_here;
-const unsigned long scheduling_functions_end_here =
-                       (unsigned long)&__scheduling_functions_end_here;
-
 /*
- * Default context-switch locking:
+ * sched-domains (multiprocessor balancing) declarations:
  */
-#ifndef prepare_arch_switch
-# define prepare_arch_switch(rq, next) do { } while (0)
-# define finish_arch_switch(rq, next)  spin_unlock_irq(&(rq)->lock)
-# define task_running(rq, p)           ((rq)->curr == (p))
-#endif
+#ifdef CONFIG_SMP
+#define SCHED_LOAD_SCALE       128UL   /* increase resolution of load */
 
-#ifdef CONFIG_NUMA
+#define SD_BALANCE_NEWIDLE     1       /* Balance when about to become idle */
+#define SD_BALANCE_EXEC                2       /* Balance on exec */
+#define SD_WAKE_IDLE           4       /* Wake to idle CPU on task wakeup */
+#define SD_WAKE_AFFINE         8       /* Wake task to waking CPU */
+#define SD_WAKE_BALANCE                16      /* Perform balancing at task wakeup */
+#define SD_SHARE_CPUPOWER      32      /* Domain members share cpu power */
 
-/*
- * Keep track of running tasks.
- */
+struct sched_group {
+       struct sched_group *next;       /* Must be a circular list */
+       cpumask_t cpumask;
 
-static atomic_t node_nr_running[MAX_NUMNODES] ____cacheline_maxaligned_in_smp =
-       {[0 ...MAX_NUMNODES-1] = ATOMIC_INIT(0)};
+       /*
+        * CPU power of this group, SCHED_LOAD_SCALE being max power for a
+        * single CPU. This is read only (except for setup, hotplug CPU).
+        */
+       unsigned long cpu_power;
+};
 
-static inline void nr_running_init(struct runqueue *rq)
-{
-       rq->node_nr_running = &node_nr_running[0];
-}
+struct sched_domain {
+       /* These fields must be setup */
+       struct sched_domain *parent;    /* top domain must be null terminated */
+       struct sched_group *groups;     /* the balancing groups of the domain */
+       cpumask_t span;                 /* span of all CPUs in this domain */
+       unsigned long min_interval;     /* Minimum balance interval ms */
+       unsigned long max_interval;     /* Maximum balance interval ms */
+       unsigned int busy_factor;       /* less balancing by factor if busy */
+       unsigned int imbalance_pct;     /* No balance until over watermark */
+       unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
+       unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
+       unsigned int per_cpu_gain;      /* CPU % gained by adding domain cpus */
+       int flags;                      /* See SD_* */
+
+       /* Runtime fields. */
+       unsigned long last_balance;     /* init to jiffies. units in jiffies */
+       unsigned int balance_interval;  /* initialise to 1. units in ms. */
+       unsigned int nr_balance_failed; /* initialise to 0 */
+
+#ifdef CONFIG_SCHEDSTATS
+       /* load_balance() stats */
+       unsigned long lb_cnt[MAX_IDLE_TYPES];
+       unsigned long lb_failed[MAX_IDLE_TYPES];
+       unsigned long lb_imbalance[MAX_IDLE_TYPES];
+       unsigned long lb_nobusyg[MAX_IDLE_TYPES];
+       unsigned long lb_nobusyq[MAX_IDLE_TYPES];
+
+       /* sched_balance_exec() stats */
+       unsigned long sbe_attempts;
+       unsigned long sbe_pushed;
+
+       /* try_to_wake_up() stats */
+       unsigned long ttwu_wake_affine;
+       unsigned long ttwu_wake_balance;
+#endif
+};
 
-static inline void nr_running_inc(runqueue_t *rq)
-{
-       atomic_inc(rq->node_nr_running);
-       rq->nr_running++;
+#ifndef ARCH_HAS_SCHED_TUNE
+#ifdef CONFIG_SCHED_SMT
+#define ARCH_HAS_SCHED_WAKE_IDLE
+/* Common values for SMT siblings */
+#define SD_SIBLING_INIT (struct sched_domain) {                \
+       .span                   = CPU_MASK_NONE,        \
+       .parent                 = NULL,                 \
+       .groups                 = NULL,                 \
+       .min_interval           = 1,                    \
+       .max_interval           = 2,                    \
+       .busy_factor            = 8,                    \
+       .imbalance_pct          = 110,                  \
+       .cache_hot_time         = 0,                    \
+       .cache_nice_tries       = 0,                    \
+       .per_cpu_gain           = 25,                   \
+       .flags                  = SD_BALANCE_NEWIDLE    \
+                               | SD_BALANCE_EXEC       \
+                               | SD_WAKE_AFFINE        \
+                               | SD_WAKE_IDLE          \
+                               | SD_SHARE_CPUPOWER,    \
+       .last_balance           = jiffies,              \
+       .balance_interval       = 1,                    \
+       .nr_balance_failed      = 0,                    \
 }
+#endif
 
-static inline void nr_running_dec(runqueue_t *rq)
-{
-       atomic_dec(rq->node_nr_running);
-       rq->nr_running--;
+/* Common values for CPUs */
+#define SD_CPU_INIT (struct sched_domain) {            \
+       .span                   = CPU_MASK_NONE,        \
+       .parent                 = NULL,                 \
+       .groups                 = NULL,                 \
+       .min_interval           = 1,                    \
+       .max_interval           = 4,                    \
+       .busy_factor            = 64,                   \
+       .imbalance_pct          = 125,                  \
+       .cache_hot_time         = cache_decay_ticks*1000000 ? : (5*1000000/2),\
+       .cache_nice_tries       = 1,                    \
+       .per_cpu_gain           = 100,                  \
+       .flags                  = SD_BALANCE_NEWIDLE    \
+                               | SD_BALANCE_EXEC       \
+                               | SD_WAKE_AFFINE        \
+                               | SD_WAKE_BALANCE,      \
+       .last_balance           = jiffies,              \
+       .balance_interval       = 1,                    \
+       .nr_balance_failed      = 0,                    \
 }
 
-__init void node_nr_running_init(void)
-{
-       int i;
-
-       for (i = 0; i < NR_CPUS; i++) {
-               if (cpu_possible(i))
-                       cpu_rq(i)->node_nr_running =
-                               &node_nr_running[cpu_to_node(i)];
-       }
+/* Arch can override this macro in processor.h */
+#if defined(CONFIG_NUMA) && !defined(SD_NODE_INIT)
+#define SD_NODE_INIT (struct sched_domain) {           \
+       .span                   = CPU_MASK_NONE,        \
+       .parent                 = NULL,                 \
+       .groups                 = NULL,                 \
+       .min_interval           = 8,                    \
+       .max_interval           = 32,                   \
+       .busy_factor            = 32,                   \
+       .imbalance_pct          = 125,                  \
+       .cache_hot_time         = (10*1000000),         \
+       .cache_nice_tries       = 1,                    \
+       .per_cpu_gain           = 100,                  \
+       .flags                  = SD_BALANCE_EXEC       \
+                               | SD_WAKE_BALANCE,      \
+       .last_balance           = jiffies,              \
+       .balance_interval       = 1,                    \
+       .nr_balance_failed      = 0,                    \
 }
+#endif
+#endif /* ARCH_HAS_SCHED_TUNE */
+#endif
 
-#else /* !CONFIG_NUMA */
 
-# define nr_running_init(rq)   do { } while (0)
-# define nr_running_inc(rq)    do { (rq)->nr_running++; } while (0)
-# define nr_running_dec(rq)    do { (rq)->nr_running--; } while (0)
+#define for_each_domain(cpu, domain) \
+       for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
 
-#endif /* CONFIG_NUMA */
+#define cpu_rq(cpu)            (&per_cpu(runqueues, (cpu)))
+#define this_rq()              (&__get_cpu_var(runqueues))
+#define task_rq(p)             cpu_rq(task_cpu(p))
+#define cpu_curr(cpu)          (cpu_rq(cpu)->curr)
+
+/*
+ * Default context-switch locking:
+ */
+#ifndef prepare_arch_switch
+# define prepare_arch_switch(rq, next) do { } while (0)
+# define finish_arch_switch(rq, next)  spin_unlock_irq(&(rq)->lock)
+# define task_running(rq, p)           ((rq)->curr == (p))
+#endif
 
 /*
  * task_rq_lock - lock the runqueue a given task resides on and disable
  * interrupts.  Note the ordering: we can safely lookup the task_rq without
  * explicitly disabling preemption.
  */
-static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
+static runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
 {
        struct runqueue *rq;
 
@@ -311,10 +487,108 @@ static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
        spin_unlock_irqrestore(&rq->lock, *flags);
 }
 
+#ifdef CONFIG_SCHEDSTATS
+/*
+ * bump this up when changing the output format or the meaning of an existing
+ * format, so that tools can adapt (or abort)
+ */
+#define SCHEDSTAT_VERSION 10
+
+static int show_schedstat(struct seq_file *seq, void *v)
+{
+       int cpu;
+       enum idle_type itype;
+
+       seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
+       seq_printf(seq, "timestamp %lu\n", jiffies);
+       for_each_online_cpu(cpu) {
+               runqueue_t *rq = cpu_rq(cpu);
+#ifdef CONFIG_SMP
+               struct sched_domain *sd;
+               int dcnt = 0;
+#endif
+
+               /* runqueue-specific stats */
+               seq_printf(seq,
+                   "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu "
+                   "%lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
+                   cpu, rq->yld_both_empty,
+                   rq->yld_act_empty, rq->yld_exp_empty,
+                   rq->yld_cnt, rq->sched_noswitch,
+                   rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
+                   rq->alb_cnt, rq->alb_gained, rq->alb_lost,
+                   rq->alb_failed,
+                   rq->ttwu_cnt, rq->ttwu_moved, rq->ttwu_attempts,
+                   rq->wunt_cnt, rq->wunt_moved,
+                   rq->smt_cnt, rq->sbe_cnt, rq->rq_sched_info.cpu_time,
+                   rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
+
+               for (itype = IDLE; itype < MAX_IDLE_TYPES; itype++)
+                       seq_printf(seq, " %lu %lu", rq->pt_gained[itype],
+                                                   rq->pt_lost[itype]);
+               seq_printf(seq, "\n");
+
+#ifdef CONFIG_SMP
+               /* domain-specific stats */
+               for_each_domain(cpu, sd) {
+                       char mask_str[NR_CPUS];
+
+                       cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
+                       seq_printf(seq, "domain%d %s", dcnt++, mask_str);
+                       for (itype = IDLE; itype < MAX_IDLE_TYPES; itype++) {
+                               seq_printf(seq, " %lu %lu %lu %lu %lu",
+                                   sd->lb_cnt[itype],
+                                   sd->lb_failed[itype],
+                                   sd->lb_imbalance[itype],
+                                   sd->lb_nobusyq[itype],
+                                   sd->lb_nobusyg[itype]);
+                       }
+                       seq_printf(seq, " %lu %lu %lu %lu\n",
+                           sd->sbe_pushed, sd->sbe_attempts,
+                           sd->ttwu_wake_affine, sd->ttwu_wake_balance);
+               }
+#endif
+       }
+       return 0;
+}
+
+static int schedstat_open(struct inode *inode, struct file *file)
+{
+       unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
+       char *buf = kmalloc(size, GFP_KERNEL);
+       struct seq_file *m;
+       int res;
+
+       if (!buf)
+               return -ENOMEM;
+       res = single_open(file, show_schedstat, NULL);
+       if (!res) {
+               m = file->private_data;
+               m->buf = buf;
+               m->size = size;
+       } else
+               kfree(buf);
+       return res;
+}
+
+struct file_operations proc_schedstat_operations = {
+       .open    = schedstat_open,
+       .read    = seq_read,
+       .llseek  = seq_lseek,
+       .release = single_release,
+};
+
+# define schedstat_inc(rq, field)      rq->field++;
+# define schedstat_add(rq, field, amt) rq->field += amt;
+#else /* !CONFIG_SCHEDSTATS */
+# define schedstat_inc(rq, field)      do { } while (0);
+# define schedstat_add(rq, field, amt) do { } while (0);
+#endif
+
 /*
  * rq_lock - lock a given runqueue and disable interrupts.
  */
-static inline runqueue_t *this_rq_lock(void)
+static runqueue_t *this_rq_lock(void)
 {
        runqueue_t *rq;
 
@@ -330,23 +604,241 @@ static inline void rq_unlock(runqueue_t *rq)
        spin_unlock_irq(&rq->lock);
 }
 
+#ifdef CONFIG_SCHEDSTATS
+/*
+ * Called when a process is dequeued from the active array and given
+ * the cpu.  We should note that with the exception of interactive
+ * tasks, the expired queue will become the active queue after the active
+ * queue is empty, without explicitly dequeuing and requeuing tasks in the
+ * expired queue.  (Interactive tasks may be requeued directly to the
+ * active queue, thus delaying tasks in the expired queue from running;
+ * see scheduler_tick()).
+ *
+ * This function is only called from sched_info_arrive(), rather than
+ * dequeue_task(). Even though a task may be queued and dequeued multiple
+ * times as it is shuffled about, we're really interested in knowing how
+ * long it was from the *first* time it was queued to the time that it
+ * finally hit a cpu.
+ */
+static inline void sched_info_dequeued(task_t *t)
+{
+       t->sched_info.last_queued = 0;
+}
+
+/*
+ * Called when a task finally hits the cpu.  We can now calculate how
+ * long it was waiting to run.  We also note when it began so that we
+ * can keep stats on how long its timeslice is.
+ */
+static inline void sched_info_arrive(task_t *t)
+{
+       unsigned long now = jiffies, diff = 0;
+       struct runqueue *rq = task_rq(t);
+
+       if (t->sched_info.last_queued)
+               diff = now - t->sched_info.last_queued;
+       sched_info_dequeued(t);
+       t->sched_info.run_delay += diff;
+       t->sched_info.last_arrival = now;
+       t->sched_info.pcnt++;
+
+       if (!rq)
+               return;
+
+       rq->rq_sched_info.run_delay += diff;
+       rq->rq_sched_info.pcnt++;
+}
+
+/*
+ * Called when a process is queued into either the active or expired
+ * array.  The time is noted and later used to determine how long we
+ * had to wait for us to reach the cpu.  Since the expired queue will
+ * become the active queue after active queue is empty, without dequeuing
+ * and requeuing any tasks, we are interested in queuing to either. It
+ * is unusual but not impossible for tasks to be dequeued and immediately
+ * requeued in the same or another array: this can happen in sched_yield(),
+ * set_user_nice(), and even load_balance() as it moves tasks from runqueue
+ * to runqueue.
+ *
+ * This function is only called from enqueue_task(), but also only updates
+ * the timestamp if it is already not set.  It's assumed that
+ * sched_info_dequeued() will clear that stamp when appropriate.
+ */
+static inline void sched_info_queued(task_t *t)
+{
+       if (!t->sched_info.last_queued)
+               t->sched_info.last_queued = jiffies;
+}
+
+/*
+ * Called when a process ceases being the active-running process, either
+ * voluntarily or involuntarily.  Now we can calculate how long we ran.
+ */
+static inline void sched_info_depart(task_t *t)
+{
+       struct runqueue *rq = task_rq(t);
+       unsigned long diff = jiffies - t->sched_info.last_arrival;
+
+       t->sched_info.cpu_time += diff;
+
+       if (rq)
+               rq->rq_sched_info.cpu_time += diff;
+}
+
+/*
+ * Called when tasks are switched involuntarily due, typically, to expiring
+ * their time slice.  (This may also be called when switching to or from
+ * the idle task.)  We are only called when prev != next.
+ */
+static inline void sched_info_switch(task_t *prev, task_t *next)
+{
+       struct runqueue *rq = task_rq(prev);
+
+       /*
+        * prev now departs the cpu.  It's not interesting to record
+        * stats about how efficient we were at scheduling the idle
+        * process, however.
+        */
+       if (prev != rq->idle)
+               sched_info_depart(prev);
+
+       if (next != rq->idle)
+               sched_info_arrive(next);
+}
+#else
+#define sched_info_queued(t)           do { } while (0)
+#define sched_info_switch(t, next)     do { } while (0)
+#endif /* CONFIG_SCHEDSTATS */
+
+#ifdef CONFIG_CKRM_CPU_SCHEDULE
+static inline ckrm_lrq_t *rq_get_next_class(struct runqueue *rq)
+{
+       cq_node_t *node = classqueue_get_head(&rq->classqueue);
+       return ((node) ? class_list_entry(node) : NULL);
+}
+
+/*
+ * return the cvt of the current running class
+ * if no current running class, return 0
+ * assume cpu is valid (cpu_online(cpu) == 1)
+ */
+CVT_t get_local_cur_cvt(int cpu)
+{
+       ckrm_lrq_t * lrq = rq_get_next_class(cpu_rq(cpu));
+
+       if (lrq)
+               return lrq->local_cvt;
+       else    
+               return 0;
+}
+
+static inline struct task_struct * rq_get_next_task(struct runqueue* rq) 
+{
+       prio_array_t               *array;
+       struct task_struct         *next;
+       ckrm_lrq_t *queue;
+       int idx;
+       int cpu = smp_processor_id();
+
+       // it is guaranteed be the ( rq->nr_running > 0 ) check in 
+       // schedule that a task will be found.
+
+ retry_next_class:
+       queue = rq_get_next_class(rq);
+       // BUG_ON( !queue );
+
+       array = queue->active;
+       if (unlikely(!array->nr_active)) {
+               queue->active = queue->expired;
+               queue->expired = array;
+               queue->expired_timestamp = 0;
+
+               schedstat_inc(rq, sched_switch);
+               if (queue->active->nr_active)
+                       set_top_priority(queue,
+                                        find_first_bit(queue->active->bitmap, MAX_PRIO));
+               else {
+                       classqueue_dequeue(queue->classqueue,
+                                          &queue->classqueue_linkobj);
+                       cpu_demand_event(get_rq_local_stat(queue,cpu),CPU_DEMAND_DEQUEUE,0);
+               }
+               goto retry_next_class;                          
+       } else
+               schedstat_inc(rq, sched_noswitch);
+       // BUG_ON(!array->nr_active);
+
+       idx = queue->top_priority;
+       // BUG_ON (idx == MAX_PRIO);
+       next = task_list_entry(array->queue[idx].next);
+       return next;
+}
+#else /*! CONFIG_CKRM_CPU_SCHEDULE*/
+static inline struct task_struct * rq_get_next_task(struct runqueue* rq) 
+{
+       prio_array_t *array;
+        struct list_head *queue;
+       int idx;
+
+       array = rq->active;
+       if (unlikely(!array->nr_active)) {
+               /*
+                * Switch the active and expired arrays.
+                */
+               schedstat_inc(rq, sched_switch);
+               rq->active = rq->expired;
+               rq->expired = array;
+               array = rq->active;
+               rq->expired_timestamp = 0;
+               rq->best_expired_prio = MAX_PRIO;
+       } else 
+               schedstat_inc(rq, sched_noswitch);
+
+       idx = sched_find_first_bit(array->bitmap);
+       queue = array->queue + idx;
+       return list_entry(queue->next, task_t, run_list);
+}
+
+static inline void class_enqueue_task(struct task_struct* p, prio_array_t *array) { }
+static inline void class_dequeue_task(struct task_struct* p, prio_array_t *array) { }
+static inline void init_cpu_classes(void) { }
+#define rq_ckrm_load(rq) NULL
+static inline void ckrm_sched_tick(int j,int this_cpu,void* name) {}
+#endif  /* CONFIG_CKRM_CPU_SCHEDULE */
+
 /*
  * Adding/removing a task to/from a priority array:
  */
-static inline void dequeue_task(struct task_struct *p, prio_array_t *array)
+static void dequeue_task(struct task_struct *p, prio_array_t *array)
 {
        array->nr_active--;
        list_del(&p->run_list);
        if (list_empty(array->queue + p->prio))
                __clear_bit(p->prio, array->bitmap);
+       class_dequeue_task(p,array);
 }
 
-static inline void enqueue_task(struct task_struct *p, prio_array_t *array)
+static void enqueue_task(struct task_struct *p, prio_array_t *array)
 {
+       sched_info_queued(p);
        list_add_tail(&p->run_list, array->queue + p->prio);
        __set_bit(p->prio, array->bitmap);
        array->nr_active++;
        p->array = array;
+       class_enqueue_task(p,array);
+}
+
+/*
+ * Used by the migration code - we pull tasks from the head of the
+ * remote queue so we want these tasks to show up at the head of the
+ * local queue:
+ */
+static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
+{
+       list_add(&p->run_list, array->queue + p->prio);
+       __set_bit(p->prio, array->bitmap);
+       array->nr_active++;
+       p->array = array;
+       class_enqueue_task(p,array);
 }
 
 /*
@@ -373,6 +865,12 @@ static int effective_prio(task_t *p)
        bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
 
        prio = p->static_prio - bonus;
+
+#ifdef CONFIG_VSERVER_HARDCPU
+       if (task_vx_flags(p, VXF_SCHED_PRIO, 0))
+               prio += effective_vavavoom(p, MAX_USER_PRIO);
+#endif
+
        if (prio < MAX_RT_PRIO)
                prio = MAX_RT_PRIO;
        if (prio > MAX_PRIO-1)
@@ -385,8 +883,17 @@ static int effective_prio(task_t *p)
  */
 static inline void __activate_task(task_t *p, runqueue_t *rq)
 {
-       enqueue_task(p, rq->active);
-       nr_running_inc(rq);
+       enqueue_task(p, rq_active(p,rq));
+       rq->nr_running++;
+}
+
+/*
+ * __activate_idle_task - move idle task to the _front_ of runqueue.
+ */
+static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
+{
+       enqueue_task_head(p, rq_active(p,rq));
+       rq->nr_running++;
 }
 
 static void recalc_task_prio(task_t *p, unsigned long long now)
@@ -409,7 +916,7 @@ static void recalc_task_prio(task_t *p, unsigned long long now)
                if (p->mm && p->activated != -1 &&
                        sleep_time > INTERACTIVE_SLEEP(p)) {
                                p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
-                                               AVG_TIMESLICE);
+                                               DEF_TIMESLICE);
                                if (!HIGH_CREDIT(p))
                                        p->interactive_credit++;
                } else {
@@ -469,9 +976,19 @@ static void recalc_task_prio(task_t *p, unsigned long long now)
  * Update all the scheduling statistics stuff. (sleep average
  * calculation, priority modifiers, etc.)
  */
-static inline void activate_task(task_t *p, runqueue_t *rq)
+static void activate_task(task_t *p, runqueue_t *rq, int local)
 {
-       unsigned long long now = sched_clock();
+       unsigned long long now;
+
+       now = sched_clock();
+#ifdef CONFIG_SMP
+       if (!local) {
+               /* Compensate for drifting sched_clock */
+               runqueue_t *this_rq = this_rq();
+               now = (now - this_rq->timestamp_last_tick)
+                       + rq->timestamp_last_tick;
+       }
+#endif
 
        recalc_task_prio(p, now);
 
@@ -499,21 +1016,29 @@ static inline void activate_task(task_t *p, runqueue_t *rq)
        }
        p->timestamp = now;
 
+       vx_activate_task(p);
        __activate_task(p, rq);
 }
 
 /*
  * deactivate_task - remove a task from the runqueue.
  */
-static inline void deactivate_task(struct task_struct *p, runqueue_t *rq)
+static void __deactivate_task(struct task_struct *p, runqueue_t *rq)
 {
-       nr_running_dec(rq);
+       rq->nr_running--;
        if (p->state == TASK_UNINTERRUPTIBLE)
                rq->nr_uninterruptible++;
        dequeue_task(p, p->array);
+
        p->array = NULL;
 }
 
+static void deactivate_task(struct task_struct *p, runqueue_t *rq)
+{
+       __deactivate_task(p, rq);
+       vx_deactivate_task(p);
+}
+
 /*
  * resched_task - mark a task 'to be rescheduled now'.
  *
@@ -521,12 +1046,13 @@ static inline void deactivate_task(struct task_struct *p, runqueue_t *rq)
  * might also involve a cross-CPU call to trigger the scheduler on
  * the target CPU.
  */
-static inline void resched_task(task_t *p)
-{
 #ifdef CONFIG_SMP
+static void resched_task(task_t *p)
+{
        int need_resched, nrpolling;
 
-       preempt_disable();
+       BUG_ON(!spin_is_locked(&task_rq(p)->lock));
+
        /* minimise the chance of sending an interrupt to poll_idle() */
        nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
        need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
@@ -534,56 +1060,64 @@ static inline void resched_task(task_t *p)
 
        if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
                smp_send_reschedule(task_cpu(p));
-       preempt_enable();
+}
 #else
+static inline void resched_task(task_t *p)
+{
        set_tsk_need_resched(p);
-#endif
 }
+#endif
 
 /**
  * task_curr - is this task currently executing on a CPU?
  * @p: the task in question.
  */
-inline int task_curr(task_t *p)
+inline int task_curr(const task_t *p)
 {
        return cpu_curr(task_cpu(p)) == p;
 }
 
 #ifdef CONFIG_SMP
+enum request_type {
+       REQ_MOVE_TASK,
+       REQ_SET_DOMAIN,
+};
+
 typedef struct {
        struct list_head list;
+       enum request_type type;
+
+       /* For REQ_MOVE_TASK */
        task_t *task;
+       int dest_cpu;
+
+       /* For REQ_SET_DOMAIN */
+       struct sched_domain *sd;
+
        struct completion done;
 } migration_req_t;
 
 /*
- * The task's runqueue lock must be held, and the new mask must be valid.
+ * The task's runqueue lock must be held.
  * Returns true if you have to wait for migration thread.
  */
-static int __set_cpus_allowed(task_t *p, cpumask_t new_mask,
-                               migration_req_t *req)
+static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
 {
        runqueue_t *rq = task_rq(p);
 
-       p->cpus_allowed = new_mask;
-       /*
-        * Can the task run on the task's current CPU? If not then
-        * migrate the thread off to a proper CPU.
-        */
-       if (cpu_isset(task_cpu(p), new_mask))
-               return 0;
-
        /*
         * If the task is not on a runqueue (and not running), then
         * it is sufficient to simply update the task's cpu field.
         */
        if (!p->array && !task_running(rq, p)) {
-               set_task_cpu(p, any_online_cpu(p->cpus_allowed));
+               set_task_cpu(p, dest_cpu);
                return 0;
        }
 
        init_completion(&req->done);
+       req->type = REQ_MOVE_TASK;
        req->task = p;
+       req->dest_cpu = dest_cpu;
        list_add(&req->list, &rq->migration_queue);
        return 1;
 }
@@ -636,13 +1170,74 @@ void kick_process(task_t *p)
        preempt_enable();
 }
 
-EXPORT_SYMBOL_GPL(kick_process);
+/*
+ * Return a low guess at the load of a migration-source cpu.
+ *
+ * We want to under-estimate the load of migration sources, to
+ * balance conservatively.
+ */
+static inline unsigned long source_load(int cpu)
+{
+       runqueue_t *rq = cpu_rq(cpu);
+       unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
+
+       return min(rq->cpu_load, load_now);
+}
+
+/*
+ * Return a high guess at the load of a migration-target cpu
+ */
+static inline unsigned long target_load(int cpu)
+{
+       runqueue_t *rq = cpu_rq(cpu);
+       unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
+
+       return max(rq->cpu_load, load_now);
+}
 
 #endif
 
-/***
- * try_to_wake_up - wake up a thread
- * @p: the to-be-woken-up thread
+/*
+ * wake_idle() is useful especially on SMT architectures to wake a
+ * task onto an idle sibling if we would otherwise wake it onto a
+ * busy sibling.
+ *
+ * Returns the CPU we should wake onto.
+ */
+#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
+static int wake_idle(int cpu, task_t *p)
+{
+       cpumask_t tmp;
+       runqueue_t *rq = cpu_rq(cpu);
+       struct sched_domain *sd;
+       int i;
+
+       if (idle_cpu(cpu))
+               return cpu;
+
+       sd = rq->sd;
+       if (!(sd->flags & SD_WAKE_IDLE))
+               return cpu;
+
+       cpus_and(tmp, sd->span, p->cpus_allowed);
+
+       for_each_cpu_mask(i, tmp) {
+               if (idle_cpu(i))
+                       return i;
+       }
+
+       return cpu;
+}
+#else
+static inline int wake_idle(int cpu, task_t *p)
+{
+       return cpu;
+}
+#endif
+
+/***
+ * try_to_wake_up - wake up a thread
+ * @p: the to-be-woken-up thread
  * @state: the mask of task states that can be woken
  * @sync: do a synchronous wakeup?
  *
@@ -656,55 +1251,145 @@ EXPORT_SYMBOL_GPL(kick_process);
  */
 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
 {
+       int cpu, this_cpu, success = 0;
        unsigned long flags;
-       int success = 0;
        long old_state;
        runqueue_t *rq;
+#ifdef CONFIG_SMP
+       unsigned long load, this_load;
+       struct sched_domain *sd;
+       int new_cpu;
+#endif
 
-repeat_lock_task:
        rq = task_rq_lock(p, &flags);
+       schedstat_inc(rq, ttwu_cnt);
        old_state = p->state;
-       if (old_state & state) {
-               if (!p->array) {
+       if (!(old_state & state))
+               goto out;
+
+       if (p->array)
+               goto out_running;
+
+       cpu = task_cpu(p);
+       this_cpu = smp_processor_id();
+
+#ifdef CONFIG_SMP
+       if (unlikely(task_running(rq, p)))
+               goto out_activate;
+
+       new_cpu = cpu;
+
+       if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
+               goto out_set_cpu;
+
+       load = source_load(cpu);
+       this_load = target_load(this_cpu);
+
+       /*
+        * If sync wakeup then subtract the (maximum possible) effect of
+        * the currently running task from the load of the current CPU:
+        */
+       if (sync)
+               this_load -= SCHED_LOAD_SCALE;
+
+       /* Don't pull the task off an idle CPU to a busy one */
+       if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2)
+               goto out_set_cpu;
+
+       new_cpu = this_cpu; /* Wake to this CPU if we can */
+
+       /*
+        * Scan domains for affine wakeup and passive balancing
+        * possibilities.
+        */
+       for_each_domain(this_cpu, sd) {
+               unsigned int imbalance;
+               /*
+                * Start passive balancing when half the imbalance_pct
+                * limit is reached.
+                */
+               imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2;
+
+               if ((sd->flags & SD_WAKE_AFFINE) &&
+                               !task_hot(p, rq->timestamp_last_tick, sd)) {
                        /*
-                        * Fast-migrate the task if it's not running or runnable
-                        * currently. Do not violate hard affinity.
+                        * This domain has SD_WAKE_AFFINE and p is cache cold
+                        * in this domain.
                         */
-                       if (unlikely(sync && !task_running(rq, p) &&
-                               (task_cpu(p) != smp_processor_id()) &&
-                                       cpu_isset(smp_processor_id(),
-                                                       p->cpus_allowed) &&
-                                       !cpu_is_offline(smp_processor_id()))) {
-                               set_task_cpu(p, smp_processor_id());
-                               task_rq_unlock(rq, &flags);
-                               goto repeat_lock_task;
+                       if (cpu_isset(cpu, sd->span)) {
+                               schedstat_inc(sd, ttwu_wake_affine);
+                               goto out_set_cpu;
                        }
-                       if (old_state == TASK_UNINTERRUPTIBLE) {
-                               rq->nr_uninterruptible--;
-                               /*
-                                * Tasks on involuntary sleep don't earn
-                                * sleep_avg beyond just interactive state.
-                                */
-                               p->activated = -1;
-                       }
-                       if (sync && (task_cpu(p) == smp_processor_id()))
-                               __activate_task(p, rq);
-                       else {
-                               activate_task(p, rq);
-                               if (TASK_PREEMPTS_CURR(p, rq))
-                                       resched_task(rq->curr);
+               } else if ((sd->flags & SD_WAKE_BALANCE) &&
+                               imbalance*this_load <= 100*load) {
+                       /*
+                        * This domain has SD_WAKE_BALANCE and there is
+                        * an imbalance.
+                        */
+                       if (cpu_isset(cpu, sd->span)) {
+                               schedstat_inc(sd, ttwu_wake_balance);
+                               goto out_set_cpu;
                        }
-                       success = 1;
                }
-               p->state = TASK_RUNNING;
        }
+
+       new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
+out_set_cpu:
+       schedstat_inc(rq, ttwu_attempts);
+       new_cpu = wake_idle(new_cpu, p);
+       if (new_cpu != cpu && cpu_isset(new_cpu, p->cpus_allowed)) {
+               schedstat_inc(rq, ttwu_moved);
+               set_task_cpu(p, new_cpu);
+               task_rq_unlock(rq, &flags);
+               /* might preempt at this point */
+               rq = task_rq_lock(p, &flags);
+               old_state = p->state;
+               if (!(old_state & state))
+                       goto out;
+               if (p->array)
+                       goto out_running;
+
+               this_cpu = smp_processor_id();
+               cpu = task_cpu(p);
+       }
+
+out_activate:
+#endif /* CONFIG_SMP */
+       if (old_state == TASK_UNINTERRUPTIBLE) {
+               rq->nr_uninterruptible--;
+               /*
+                * Tasks on involuntary sleep don't earn
+                * sleep_avg beyond just interactive state.
+                */
+               p->activated = -1;
+       }
+
+       /*
+        * Sync wakeups (i.e. those types of wakeups where the waker
+        * has indicated that it will leave the CPU in short order)
+        * don't trigger a preemption, if the woken up task will run on
+        * this cpu. (in this case the 'I will reschedule' promise of
+        * the waker guarantees that the freshly woken up task is going
+        * to be considered on this CPU.)
+        */
+       activate_task(p, rq, cpu == this_cpu);
+       if (!sync || cpu != this_cpu) {
+               if (TASK_PREEMPTS_CURR(p, rq))
+                       resched_task(rq->curr);
+       }
+       success = 1;
+
+out_running:
+       p->state = TASK_RUNNING;
+out:
        task_rq_unlock(rq, &flags);
 
        return success;
 }
+
 int fastcall wake_up_process(task_t * p)
 {
-       return try_to_wake_up(p, TASK_STOPPED |
+       return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
                                 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
 }
 
@@ -715,6 +1400,11 @@ int fastcall wake_up_state(task_t *p, unsigned int state)
        return try_to_wake_up(p, state, 0);
 }
 
+#ifdef CONFIG_SMP
+static int find_idlest_cpu(struct task_struct *p, int this_cpu,
+                          struct sched_domain *sd);
+#endif
+
 /*
  * Perform scheduler related setup for a newly forked process p.
  * p is forked by current.
@@ -731,6 +1421,12 @@ void fastcall sched_fork(task_t *p)
        INIT_LIST_HEAD(&p->run_list);
        p->array = NULL;
        spin_lock_init(&p->switch_lock);
+#ifdef CONFIG_SCHEDSTATS
+       memset(&p->sched_info, 0, sizeof(p->sched_info));
+#endif
+#ifdef CONFIG_CKRM_CPU_SCHEDULE
+       cpu_demand_event(&p->demand_stat,CPU_DEMAND_INIT,0);
+#endif
 #ifdef CONFIG_PREEMPT
        /*
         * During context-switch we hold precisely one spinlock, which
@@ -754,10 +1450,10 @@ void fastcall sched_fork(task_t *p)
        p->first_time_slice = 1;
        current->time_slice >>= 1;
        p->timestamp = sched_clock();
-       if (!current->time_slice) {
+       if (unlikely(!current->time_slice)) {
                /*
-                * This case is rare, it happens when the parent has only
-                * a single jiffy left from its timeslice. Taking the
+                * This case is rare, it happens when the parent has only
+                * a single jiffy left from its timeslice. Taking the
                 * runqueue lock is not a problem.
                 */
                current->time_slice = 1;
@@ -770,44 +1466,91 @@ void fastcall sched_fork(task_t *p)
 }
 
 /*
- * wake_up_forked_process - wake up a freshly forked process.
+ * wake_up_new_task - wake up a newly created task for the first time.
  *
  * This function will do some initial scheduler statistics housekeeping
- * that must be done for every newly created process.
+ * that must be done for every newly created context, then puts the task
+ * on the runqueue and wakes it.
  */
-void fastcall wake_up_forked_process(task_t * p)
+void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
 {
        unsigned long flags;
-       runqueue_t *rq = task_rq_lock(current, &flags);
+       int this_cpu, cpu;
+       runqueue_t *rq, *this_rq;
+
+       rq = task_rq_lock(p, &flags);
+       cpu = task_cpu(p);
+       this_cpu = smp_processor_id();
 
        BUG_ON(p->state != TASK_RUNNING);
 
+       schedstat_inc(rq, wunt_cnt);
        /*
         * We decrease the sleep average of forking parents
         * and children as well, to keep max-interactive tasks
-        * from forking tasks that are max-interactive.
+        * from forking tasks that are max-interactive. The parent
+        * (current) is done further down, under its lock.
         */
-       current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
-               PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
-
        p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
                CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
 
        p->interactive_credit = 0;
 
        p->prio = effective_prio(p);
-       set_task_cpu(p, smp_processor_id());
 
-       if (unlikely(!current->array))
+       vx_activate_task(p);
+       if (likely(cpu == this_cpu)) {
+               if (!(clone_flags & CLONE_VM)) {
+                       /*
+                        * The VM isn't cloned, so we're in a good position to
+                        * do child-runs-first in anticipation of an exec. This
+                        * usually avoids a lot of COW overhead.
+                        */
+                       if (unlikely(!current->array))
+                               __activate_task(p, rq);
+                       else {
+                               p->prio = current->prio;
+                               list_add_tail(&p->run_list, &current->run_list);
+                               p->array = current->array;
+                               p->array->nr_active++;
+                               rq->nr_running++;
+                               class_enqueue_task(p,p->array);
+                       }
+                       set_need_resched();
+               } else
+                       /* Run child last */
+                       __activate_task(p, rq);
+               /*
+                * We skip the following code due to cpu == this_cpu
+                *
+                *   task_rq_unlock(rq, &flags);
+                *   this_rq = task_rq_lock(current, &flags);
+                */
+               this_rq = rq;
+       } else {
+               this_rq = cpu_rq(this_cpu);
+
+               /*
+                * Not the local CPU - must adjust timestamp. This should
+                * get optimised away in the !CONFIG_SMP case.
+                */
+               p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
+                                       + rq->timestamp_last_tick;
                __activate_task(p, rq);
-       else {
-               p->prio = current->prio;
-               list_add_tail(&p->run_list, &current->run_list);
-               p->array = current->array;
-               p->array->nr_active++;
-               nr_running_inc(rq);
+               if (TASK_PREEMPTS_CURR(p, rq))
+                       resched_task(rq->curr);
+
+               schedstat_inc(rq, wunt_moved);
+               /*
+                * Parent and child are on different CPUs, now get the
+                * parent runqueue to update the parent's ->sleep_avg:
+                */
+               task_rq_unlock(rq, &flags);
+               this_rq = task_rq_lock(current, &flags);
        }
-       task_rq_unlock(rq, &flags);
+       current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
+               PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
+       task_rq_unlock(this_rq, &flags);
 }
 
 /*
@@ -824,18 +1567,16 @@ void fastcall sched_exit(task_t * p)
        unsigned long flags;
        runqueue_t *rq;
 
-       local_irq_save(flags);
-       if (p->first_time_slice) {
-               p->parent->time_slice += p->time_slice;
-               if (unlikely(p->parent->time_slice > MAX_TIMESLICE))
-                       p->parent->time_slice = MAX_TIMESLICE;
-       }
-       local_irq_restore(flags);
        /*
         * If the child was a (relative-) CPU hog then decrease
         * the sleep_avg of the parent as well.
         */
        rq = task_rq_lock(p->parent, &flags);
+       if (p->first_time_slice) {
+               p->parent->time_slice += p->time_slice;
+               if (unlikely(p->parent->time_slice > task_timeslice(p)))
+                       p->parent->time_slice = task_timeslice(p);
+       }
        if (p->sleep_avg < p->parent->sleep_avg)
                p->parent->sleep_avg = p->parent->sleep_avg /
                (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
@@ -856,7 +1597,7 @@ void fastcall sched_exit(task_t * p)
  * with the lock held can cause deadlocks; see schedule() for
  * details.)
  */
-static inline void finish_task_switch(task_t *prev)
+static void finish_task_switch(task_t *prev)
 {
        runqueue_t *rq = this_rq();
        struct mm_struct *mm = rq->prev_mm;
@@ -866,14 +1607,14 @@ static inline void finish_task_switch(task_t *prev)
 
        /*
         * A task struct has one reference for the use as "current".
-        * If a task dies, then it sets TASK_ZOMBIE in tsk->state and calls
-        * schedule one last time. The schedule call will never return,
+        * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
+        * calls schedule one last time. The schedule call will never return,
         * and the scheduled task must drop that reference.
-        * The test for TASK_ZOMBIE must occur while the runqueue locks are
+        * The test for EXIT_ZOMBIE must occur while the runqueue locks are
         * still held, otherwise prev could be scheduled on another cpu, die
         * there before we look at prev->state, and then the reference would
         * be dropped twice.
-        *              Manfred Spraul <manfred@colorfullife.com>
+        *              Manfred Spraul <manfred@colorfullife.com>
         */
        prev_task_flags = prev->flags;
        finish_arch_switch(rq, prev);
@@ -935,7 +1676,7 @@ unsigned long nr_running(void)
 {
        unsigned long i, sum = 0;
 
-       for (i = 0; i < NR_CPUS; i++)
+       for_each_online_cpu(i)
                sum += cpu_rq(i)->nr_running;
 
        return sum;
@@ -971,13 +1712,15 @@ unsigned long nr_iowait(void)
        return sum;
 }
 
+#ifdef CONFIG_SMP
+
 /*
  * double_rq_lock - safely lock two runqueues
  *
  * Note this does not disable interrupts like task_rq_lock,
  * you need to do so manually before calling.
  */
-static inline void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
+static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
 {
        if (rq1 == rq2)
                spin_lock(&rq1->lock);
@@ -998,252 +1741,139 @@ static inline void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
  * Note this does not restore interrupts like task_rq_unlock,
  * you need to do so manually after calling.
  */
-static inline void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
+static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
 {
        spin_unlock(&rq1->lock);
        if (rq1 != rq2)
                spin_unlock(&rq2->lock);
 }
 
-#ifdef CONFIG_NUMA
 /*
- * If dest_cpu is allowed for this process, migrate the task to it.
- * This is accomplished by forcing the cpu_allowed mask to only
- * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
- * the cpu_allowed mask is restored.
+ * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  */
-static void sched_migrate_task(task_t *p, int dest_cpu)
+static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
 {
-       runqueue_t *rq;
-       migration_req_t req;
-       unsigned long flags;
-       cpumask_t old_mask, new_mask = cpumask_of_cpu(dest_cpu);
-
-       lock_cpu_hotplug();
-       rq = task_rq_lock(p, &flags);
-       old_mask = p->cpus_allowed;
-       if (!cpu_isset(dest_cpu, old_mask) || !cpu_online(dest_cpu))
-               goto out;
-
-       /* force the process onto the specified CPU */
-       if (__set_cpus_allowed(p, new_mask, &req)) {
-               /* Need to wait for migration thread. */
-               task_rq_unlock(rq, &flags);
-               wake_up_process(rq->migration_thread);
-               wait_for_completion(&req.done);
-
-               /* If we raced with sys_sched_setaffinity, don't
-                * restore mask. */
-               rq = task_rq_lock(p, &flags);
-               if (likely(cpus_equal(p->cpus_allowed, new_mask))) {
-                       /* Restore old mask: won't need migration
-                        * thread, since current cpu is allowed. */
-                       BUG_ON(__set_cpus_allowed(p, old_mask, NULL));
-               }
+       if (unlikely(!spin_trylock(&busiest->lock))) {
+               if (busiest < this_rq) {
+                       spin_unlock(&this_rq->lock);
+                       spin_lock(&busiest->lock);
+                       spin_lock(&this_rq->lock);
+               } else
+                       spin_lock(&busiest->lock);
        }
-out:
-       task_rq_unlock(rq, &flags);
-       unlock_cpu_hotplug();
 }
 
 /*
- * Find the least loaded CPU.  Slightly favor the current CPU by
- * setting its runqueue length as the minimum to start.
+ * find_idlest_cpu - find the least busy runqueue.
  */
-static int sched_best_cpu(struct task_struct *p)
+static int find_idlest_cpu(struct task_struct *p, int this_cpu,
+                          struct sched_domain *sd)
 {
-       int i, minload, load, best_cpu, node = 0;
-       cpumask_t cpumask;
+       unsigned long load, min_load, this_load;
+       int i, min_cpu;
+       cpumask_t mask;
 
-       best_cpu = task_cpu(p);
-       if (cpu_rq(best_cpu)->nr_running <= 2)
-               return best_cpu;
+       min_cpu = UINT_MAX;
+       min_load = ULONG_MAX;
 
-       minload = 10000000;
-       for_each_node_with_cpus(i) {
-               /*
-                * Node load is always divided by nr_cpus_node to normalise
-                * load values in case cpu count differs from node to node.
-                * We first multiply node_nr_running by 10 to get a little
-                * better resolution.
-                */
-               load = 10 * atomic_read(&node_nr_running[i]) / nr_cpus_node(i);
-               if (load < minload) {
-                       minload = load;
-                       node = i;
-               }
-       }
+       cpus_and(mask, sd->span, p->cpus_allowed);
 
-       minload = 10000000;
-       cpumask = node_to_cpumask(node);
-       for (i = 0; i < NR_CPUS; ++i) {
-               if (!cpu_isset(i, cpumask))
-                       continue;
-               if (cpu_rq(i)->nr_running < minload) {
-                       best_cpu = i;
-                       minload = cpu_rq(i)->nr_running;
+       for_each_cpu_mask(i, mask) {
+               load = target_load(i);
+
+               if (load < min_load) {
+                       min_cpu = i;
+                       min_load = load;
+
+                       /* break out early on an idle CPU: */
+                       if (!min_load)
+                               break;
                }
        }
-       return best_cpu;
-}
 
-void sched_balance_exec(void)
-{
-       int new_cpu;
+       /* add +1 to account for the new task */
+       this_load = source_load(this_cpu) + SCHED_LOAD_SCALE;
 
-       if (numnodes > 1) {
-               new_cpu = sched_best_cpu(current);
-               if (new_cpu != smp_processor_id())
-                       sched_migrate_task(current, new_cpu);
-       }
+       /*
+        * Would with the addition of the new task to the
+        * current CPU there be an imbalance between this
+        * CPU and the idlest CPU?
+        *
+        * Use half of the balancing threshold - new-context is
+        * a good opportunity to balance.
+        */
+       if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
+               return min_cpu;
+
+       return this_cpu;
 }
 
 /*
- * Find the busiest node. All previous node loads contribute with a
- * geometrically deccaying weight to the load measure:
- *      load_{t} = load_{t-1}/2 + nr_node_running_{t}
- * This way sudden load peaks are flattened out a bit.
- * Node load is divided by nr_cpus_node() in order to compare nodes
- * of different cpu count but also [first] multiplied by 10 to
- * provide better resolution.
+ * If dest_cpu is allowed for this process, migrate the task to it.
+ * This is accomplished by forcing the cpu_allowed mask to only
+ * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
+ * the cpu_allowed mask is restored.
  */
-static int find_busiest_node(int this_node)
+static void sched_migrate_task(task_t *p, int dest_cpu)
 {
-       int i, node = -1, load, this_load, maxload;
-
-       if (!nr_cpus_node(this_node))
-               return node;
-       this_load = maxload = (this_rq()->prev_node_load[this_node] >> 1)
-               + (10 * atomic_read(&node_nr_running[this_node])
-               / nr_cpus_node(this_node));
-       this_rq()->prev_node_load[this_node] = this_load;
-       for_each_node_with_cpus(i) {
-               if (i == this_node)
-                       continue;
-               load = (this_rq()->prev_node_load[i] >> 1)
-                       + (10 * atomic_read(&node_nr_running[i])
-                       / nr_cpus_node(i));
-               this_rq()->prev_node_load[i] = load;
-               if (load > maxload && (100*load > NODE_THRESHOLD*this_load)) {
-                       maxload = load;
-                       node = i;
-               }
-       }
-       return node;
-}
-
-#endif /* CONFIG_NUMA */
+       migration_req_t req;
+       runqueue_t *rq;
+       unsigned long flags;
 
-#ifdef CONFIG_SMP
+       rq = task_rq_lock(p, &flags);
+       if (!cpu_isset(dest_cpu, p->cpus_allowed)
+           || unlikely(cpu_is_offline(dest_cpu)))
+               goto out;
 
-/*
- * double_lock_balance - lock the busiest runqueue
- *
- * this_rq is locked already. Recalculate nr_running if we have to
- * drop the runqueue lock.
- */
-static inline
-unsigned int double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest,
-                                int this_cpu, int idle,
-                                unsigned int nr_running)
-{
-       if (unlikely(!spin_trylock(&busiest->lock))) {
-               if (busiest < this_rq) {
-                       spin_unlock(&this_rq->lock);
-                       spin_lock(&busiest->lock);
-                       spin_lock(&this_rq->lock);
-                       /* Need to recalculate nr_running */
-                       if (idle || (this_rq->nr_running >
-                                       this_rq->prev_cpu_load[this_cpu]))
-                               nr_running = this_rq->nr_running;
-                       else
-                               nr_running = this_rq->prev_cpu_load[this_cpu];
-               } else
-                       spin_lock(&busiest->lock);
+       schedstat_inc(rq, smt_cnt);
+       /* force the process onto the specified CPU */
+       if (migrate_task(p, dest_cpu, &req)) {
+               /* Need to wait for migration thread (might exit: take ref). */
+               struct task_struct *mt = rq->migration_thread;
+               get_task_struct(mt);
+               task_rq_unlock(rq, &flags);
+               wake_up_process(mt);
+               put_task_struct(mt);
+               wait_for_completion(&req.done);
+               return;
        }
-       return nr_running;
+out:
+       task_rq_unlock(rq, &flags);
 }
 
 /*
- * find_busiest_queue - find the busiest runqueue among the cpus in cpumask.
+ * sched_exec(): find the highest-level, exec-balance-capable
+ * domain and try to migrate the task to the least loaded CPU.
+ *
+ * execve() is a valuable balancing opportunity, because at this point
+ * the task has the smallest effective memory and cache footprint.
  */
-static inline
-runqueue_t *find_busiest_queue(runqueue_t *this_rq, int this_cpu, int idle,
-                              int *imbalance, cpumask_t cpumask)
+void sched_exec(void)
 {
-       int nr_running, load, max_load, i;
-       runqueue_t *busiest, *rq_src;
-
-       /*
-        * We search all runqueues to find the most busy one.
-        * We do this lockless to reduce cache-bouncing overhead,
-        * we re-check the 'best' source CPU later on again, with
-        * the lock held.
-        *
-        * We fend off statistical fluctuations in runqueue lengths by
-        * saving the runqueue length (as seen by the balancing CPU) during
-        * the previous load-balancing operation and using the smaller one
-        * of the current and saved lengths. If a runqueue is long enough
-        * for a longer amount of time then we recognize it and pull tasks
-        * from it.
-        *
-        * The 'current runqueue length' is a statistical maximum variable,
-        * for that one we take the longer one - to avoid fluctuations in
-        * the other direction. So for a load-balance to happen it needs
-        * stable long runqueue on the target CPU and stable short runqueue
-        * on the local runqueue.
-        *
-        * We make an exception if this CPU is about to become idle - in
-        * that case we are less picky about moving a task across CPUs and
-        * take what can be taken.
-        */
-       if (idle || (this_rq->nr_running > this_rq->prev_cpu_load[this_cpu]))
-               nr_running = this_rq->nr_running;
-       else
-               nr_running = this_rq->prev_cpu_load[this_cpu];
-
-       busiest = NULL;
-       max_load = 1;
-       for (i = 0; i < NR_CPUS; i++) {
-               if (!cpu_isset(i, cpumask))
-                       continue;
-
-               rq_src = cpu_rq(i);
-               if (idle || (rq_src->nr_running < this_rq->prev_cpu_load[i]))
-                       load = rq_src->nr_running;
-               else
-                       load = this_rq->prev_cpu_load[i];
-               this_rq->prev_cpu_load[i] = rq_src->nr_running;
-
-               if ((load > max_load) && (rq_src != this_rq)) {
-                       busiest = rq_src;
-                       max_load = load;
-               }
-       }
+       struct sched_domain *tmp, *sd = NULL;
+       int new_cpu, this_cpu = get_cpu();
 
-       if (likely(!busiest))
+       schedstat_inc(this_rq(), sbe_cnt);
+       /* Prefer the current CPU if there's only this task running */
+       if (this_rq()->nr_running <= 1)
                goto out;
 
-       *imbalance = max_load - nr_running;
-
-       /* It needs an at least ~25% imbalance to trigger balancing. */
-       if (!idle && ((*imbalance)*4 < max_load)) {
-               busiest = NULL;
-               goto out;
-       }
+       for_each_domain(this_cpu, tmp)
+               if (tmp->flags & SD_BALANCE_EXEC)
+                       sd = tmp;
 
-       nr_running = double_lock_balance(this_rq, busiest, this_cpu,
-                                        idle, nr_running);
-       /*
-        * Make sure nothing changed since we checked the
-        * runqueue length.
-        */
-       if (busiest->nr_running <= nr_running) {
-               spin_unlock(&busiest->lock);
-               busiest = NULL;
+       if (sd) {
+               schedstat_inc(sd, sbe_attempts);
+               new_cpu = find_idlest_cpu(current, this_cpu, sd);
+               if (new_cpu != this_cpu) {
+                       schedstat_inc(sd, sbe_pushed);
+                       put_cpu();
+                       sched_migrate_task(current, new_cpu);
+                       return;
+               }
        }
 out:
-       return busiest;
+       put_cpu();
 }
 
 /*
@@ -1252,995 +1882,2502 @@ out:
  */
 static inline
 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
-              runqueue_t *this_rq, int this_cpu)
+              runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
 {
        dequeue_task(p, src_array);
-       nr_running_dec(src_rq);
+       src_rq->nr_running--;
        set_task_cpu(p, this_cpu);
-       nr_running_inc(this_rq);
-       enqueue_task(p, this_rq->active);
-       p->timestamp = sched_clock() -
-                               (src_rq->timestamp_last_tick - p->timestamp);
+       this_rq->nr_running++;
+       enqueue_task(p, this_array);
+       p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
+                               + this_rq->timestamp_last_tick;
        /*
         * Note that idle threads have a prio of MAX_PRIO, for this test
         * to be always true for them.
         */
        if (TASK_PREEMPTS_CURR(p, this_rq))
-               set_need_resched();
+               resched_task(this_rq->curr);
 }
 
 /*
  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  */
 static inline
-int can_migrate_task(task_t *tsk, runqueue_t *rq, int this_cpu, int idle)
+int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
+                    struct sched_domain *sd, enum idle_type idle)
 {
-       unsigned long delta = rq->timestamp_last_tick - tsk->timestamp;
-
        /*
         * We do not migrate tasks that are:
         * 1) running (obviously), or
         * 2) cannot be migrated to this CPU due to cpus_allowed, or
         * 3) are cache-hot on their current CPU.
         */
-       if (task_running(rq, tsk))
+       if (task_running(rq, p))
+               return 0;
+       if (!cpu_isset(this_cpu, p->cpus_allowed))
                return 0;
-       if (!cpu_isset(this_cpu, tsk->cpus_allowed))
+
+       /* Aggressive migration if we've failed balancing */
+       if (idle == NEWLY_IDLE ||
+                       sd->nr_balance_failed < sd->cache_nice_tries) {
+               if (task_hot(p, rq->timestamp_last_tick, sd))
+                       return 0;
+       }
+
+       return 1;
+}
+
+#ifdef CONFIG_CKRM_CPU_SCHEDULE
+static inline int ckrm_preferred_task(task_t *tmp,long min, long max, 
+                                     int phase, enum idle_type idle)
+{
+       long pressure = task_load(tmp);
+       
+       if (pressure > max) 
                return 0;
-       if (!idle && (delta <= JIFFIES_TO_NS(cache_decay_ticks)))
+
+       if ((idle == NOT_IDLE) && ! phase && (pressure <= min))
                return 0;
        return 1;
 }
 
 /*
- * Current runqueue is empty, or rebalance tick: if there is an
- * inbalance (current runqueue is too short) then pull from
- * busiest runqueue(s).
- *
- * We call this with the current runqueue locked,
- * irqs disabled.
+ * move tasks for a specic local class
+ * return number of tasks pulled
  */
-static void load_balance(runqueue_t *this_rq, int idle, cpumask_t cpumask)
+static inline int ckrm_cls_move_tasks(ckrm_lrq_t* src_lrq,ckrm_lrq_t*dst_lrq,
+                                     runqueue_t *this_rq,
+                                     runqueue_t *busiest,
+                                     struct sched_domain *sd,
+                                     int this_cpu,
+                                     enum idle_type idle,
+                                     long* pressure_imbalance) 
 {
-       int imbalance, idx, this_cpu = smp_processor_id();
-       runqueue_t *busiest;
-       prio_array_t *array;
+       prio_array_t *array, *dst_array;
        struct list_head *head, *curr;
        task_t *tmp;
-
-       if (cpu_is_offline(this_cpu))
-               goto out;
-
-       busiest = find_busiest_queue(this_rq, this_cpu, idle,
-                                    &imbalance, cpumask);
-       if (!busiest)
-               goto out;
-
-       /*
-        * We only want to steal a number of tasks equal to 1/2 the imbalance,
-        * otherwise we'll just shift the imbalance to the new queue:
-        */
-       imbalance /= 2;
-
+       int idx;
+       int pulled = 0;
+       int phase = -1;
+       long pressure_min, pressure_max;
+       /*hzheng: magic : 90% balance is enough*/
+       long balance_min = *pressure_imbalance / 10; 
+/*
+ * we don't want to migrate tasks that will reverse the balance
+ *     or the tasks that make too small difference
+ */
+#define CKRM_BALANCE_MAX_RATIO 100
+#define CKRM_BALANCE_MIN_RATIO 1
+ start:
+       phase ++;
        /*
         * We first consider expired tasks. Those will likely not be
         * executed in the near future, and they are most likely to
         * be cache-cold, thus switching CPUs has the least effect
         * on them.
         */
-       if (busiest->expired->nr_active)
-               array = busiest->expired;
-       else
-               array = busiest->active;
-
-new_array:
+       if (src_lrq->expired->nr_active) {
+               array = src_lrq->expired;
+               dst_array = dst_lrq->expired;
+       } else {
+               array = src_lrq->active;
+               dst_array = dst_lrq->active;
+       }
+       
+ new_array:
        /* Start searching at priority 0: */
        idx = 0;
-skip_bitmap:
+ skip_bitmap:
        if (!idx)
                idx = sched_find_first_bit(array->bitmap);
        else
                idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
        if (idx >= MAX_PRIO) {
-               if (array == busiest->expired) {
-                       array = busiest->active;
+               if (array == src_lrq->expired && src_lrq->active->nr_active) {
+                       array = src_lrq->active;
+                       dst_array = dst_lrq->active;
                        goto new_array;
                }
-               goto out_unlock;
+               if ((! phase) && (! pulled) && (idle != IDLE))
+                       goto start; //try again
+               else 
+                       goto out; //finished search for this lrq
        }
-
+       
        head = array->queue + idx;
        curr = head->prev;
-skip_queue:
+ skip_queue:
        tmp = list_entry(curr, task_t, run_list);
-
+       
        curr = curr->prev;
-
-       if (!can_migrate_task(tmp, busiest, this_cpu, idle)) {
+       
+       if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle)) {
                if (curr != head)
                        goto skip_queue;
                idx++;
                goto skip_bitmap;
        }
-       pull_task(busiest, array, tmp, this_rq, this_cpu);
 
-       /* Only migrate one task if we are idle */
-       if (!idle && --imbalance) {
-               if (curr != head)
-                       goto skip_queue;
-               idx++;
-               goto skip_bitmap;
+       pressure_min = *pressure_imbalance * CKRM_BALANCE_MIN_RATIO/100;
+       pressure_max = *pressure_imbalance * CKRM_BALANCE_MAX_RATIO/100;
+       /*
+        * skip the tasks that will reverse the balance too much
+        */
+       if (ckrm_preferred_task(tmp,pressure_min,pressure_max,phase,idle)) {
+               *pressure_imbalance -= task_load(tmp);
+               pull_task(busiest, array, tmp, 
+                         this_rq, dst_array, this_cpu);
+               pulled++;
+
+               if (*pressure_imbalance <= balance_min)
+                       goto out;
        }
-out_unlock:
-       spin_unlock(&busiest->lock);
-out:
-       ;
+               
+       if (curr != head)
+               goto skip_queue;
+       idx++;
+       goto skip_bitmap;
+ out:         
+       return pulled;
+}
+
+static inline long ckrm_rq_imbalance(runqueue_t *this_rq,runqueue_t *dst_rq)
+{
+       long imbalance;
+       /*
+        * make sure after balance, imbalance' > - imbalance/2
+        * we don't want the imbalance be reversed too much
+        */
+       imbalance = pid_get_pressure(rq_ckrm_load(dst_rq),0) 
+               - pid_get_pressure(rq_ckrm_load(this_rq),1);
+       imbalance /= 2;
+       return imbalance;
 }
 
 /*
- * One of the idle_cpu_tick() and busy_cpu_tick() functions will
- * get called every timer tick, on every CPU. Our balancing action
- * frequency and balancing agressivity depends on whether the CPU is
- * idle or not.
+ * try to balance the two runqueues
  *
- * busy-rebalance every 200 msecs. idle-rebalance every 1 msec. (or on
- * systems with HZ=100, every 10 msecs.)
+ * Called with both runqueues locked.
+ * if move_tasks is called, it will try to move at least one task over
+ */
+static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
+                     unsigned long max_nr_move, struct sched_domain *sd,
+                     enum idle_type idle)
+{
+       struct ckrm_cpu_class *clsptr,*vip_cls = NULL;
+       ckrm_lrq_t* src_lrq,*dst_lrq;
+       long pressure_imbalance, pressure_imbalance_old;
+       int src_cpu = task_cpu(busiest->curr);
+       struct list_head *list;
+       int pulled = 0;
+       long imbalance;
+
+       imbalance =  ckrm_rq_imbalance(this_rq,busiest);
+
+       if ((idle == NOT_IDLE && imbalance <= 0) || busiest->nr_running <= 1)
+               goto out;
+
+       //try to find the vip class
+        list_for_each_entry(clsptr,&active_cpu_classes,links) {
+               src_lrq = get_ckrm_lrq(clsptr,src_cpu);
+
+               if (! lrq_nr_running(src_lrq))
+                       continue;
+
+               if (! vip_cls || cpu_class_weight(vip_cls) < cpu_class_weight(clsptr) )  
+                       {
+                               vip_cls = clsptr;
+                       }
+       }
+
+       /*
+        * do search from the most significant class
+        * hopefully, less tasks will be migrated this way
+        */
+       clsptr = vip_cls;
+
+ move_class:
+       if (! clsptr)
+               goto out;
+       
+
+       src_lrq = get_ckrm_lrq(clsptr,src_cpu);
+       if (! lrq_nr_running(src_lrq))
+               goto other_class;
+       
+       dst_lrq = get_ckrm_lrq(clsptr,this_cpu);
+
+       //how much pressure for this class should be transferred
+       pressure_imbalance = src_lrq->lrq_load * imbalance/src_lrq->local_weight;
+       if (pulled && ! pressure_imbalance) 
+               goto other_class;
+       
+       pressure_imbalance_old = pressure_imbalance;
+       
+       //move tasks
+       pulled += 
+               ckrm_cls_move_tasks(src_lrq,dst_lrq,
+                                   this_rq,
+                                   busiest,
+                                   sd,this_cpu,idle,
+                                   &pressure_imbalance);
+
+       /* 
+        * hzheng: 2 is another magic number
+        * stop balancing if the imbalance is less than 25% of the orig
+        */
+       if (pressure_imbalance <= (pressure_imbalance_old >> 2))
+               goto out;
+               
+       //update imbalance
+       imbalance *= pressure_imbalance / pressure_imbalance_old;
+ other_class:
+       //who is next?
+       list = clsptr->links.next;
+       if (list == &active_cpu_classes)
+               list = list->next;
+       clsptr = list_entry(list, typeof(*clsptr), links);
+       if (clsptr != vip_cls)
+               goto move_class;
+ out:
+       return pulled;
+}
+
+/**
+ * ckrm_check_balance - is load balancing necessary?
+ * return 0 if load balancing is not necessary
+ * otherwise return the average load of the system
+ * also, update nr_group
  *
- * On NUMA, do a node-rebalance every 400 msecs.
+ * heuristics: 
+ *   no load balancing if it's load is over average
+ *   no load balancing if it's load is far more than the min
+ * task:
+ *   read the status of all the runqueues
  */
-#define IDLE_REBALANCE_TICK (HZ/1000 ?: 1)
-#define BUSY_REBALANCE_TICK (HZ/5 ?: 1)
-#define IDLE_NODE_REBALANCE_TICK (IDLE_REBALANCE_TICK * 5)
-#define BUSY_NODE_REBALANCE_TICK (BUSY_REBALANCE_TICK * 2)
+static unsigned long ckrm_check_balance(struct sched_domain *sd, int this_cpu,
+                                            enum idle_type idle, int* nr_group)
+{
+       struct sched_group *group = sd->groups;
+       unsigned long min_load, max_load, avg_load;
+       unsigned long total_load, this_load, total_pwr;
 
-#ifdef CONFIG_NUMA
-static void balance_node(runqueue_t *this_rq, int idle, int this_cpu)
+       max_load = this_load = total_load = total_pwr = 0;
+       min_load = 0xFFFFFFFF;
+       *nr_group = 0;
+
+       do {
+               cpumask_t tmp;
+               unsigned long load;
+               int local_group;
+               int i, nr_cpus = 0;
+
+               /* Tally up the load of all CPUs in the group */
+               cpus_and(tmp, group->cpumask, cpu_online_map);
+               if (unlikely(cpus_empty(tmp)))
+                       goto nextgroup;
+
+               avg_load = 0;
+               local_group = cpu_isset(this_cpu, group->cpumask);
+
+               for_each_cpu_mask(i, tmp) {
+                       load = pid_get_pressure(rq_ckrm_load(cpu_rq(i)),local_group);
+                       nr_cpus++;
+                       avg_load += load;
+               }
+
+               if (!nr_cpus)
+                       goto nextgroup;
+
+               total_load += avg_load;
+               total_pwr += group->cpu_power;
+
+               /* Adjust by relative CPU power of the group */
+               avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
+
+               if (local_group) {
+                       this_load = avg_load;
+                       goto nextgroup;
+               } else if (avg_load > max_load) {
+                       max_load = avg_load;
+               }      
+               if (avg_load < min_load) {
+                       min_load = avg_load;
+               }
+nextgroup:
+               group = group->next;
+               *nr_group = *nr_group + 1;
+       } while (group != sd->groups);
+
+       if (!max_load || this_load >= max_load)
+               goto out_balanced;
+
+       avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
+
+       /* hzheng: debugging: 105 is a magic number
+        * 100*max_load <= sd->imbalance_pct*this_load)
+        * should use imbalance_pct instead
+        */
+       if (this_load > avg_load 
+           || 100*max_load < 105*this_load
+           || 100*min_load < 70*this_load
+           )
+               goto out_balanced;
+
+       return avg_load;
+ out_balanced:
+       return 0;
+}
+
+/**
+ * any group that has above average load is considered busy
+ * find the busiest queue from any of busy group
+ */
+static runqueue_t *
+ckrm_find_busy_queue(struct sched_domain *sd, int this_cpu,
+                    unsigned long avg_load, enum idle_type idle,
+                    int nr_group)
 {
-       int node = find_busiest_node(cpu_to_node(this_cpu));
+       struct sched_group *group;
+       runqueue_t * busiest=NULL;
+       unsigned long rand;
+       
+       group = sd->groups;
+       rand = get_ckrm_rand(nr_group);
+       nr_group = 0;
 
-       if (node >= 0) {
-               cpumask_t cpumask = node_to_cpumask(node);
-               cpu_set(this_cpu, cpumask);
-               spin_lock(&this_rq->lock);
-               load_balance(this_rq, idle, cpumask);
-               spin_unlock(&this_rq->lock);
-       }
+       do {
+               unsigned long load,total_load,max_load;
+               cpumask_t tmp;
+               int i;
+               runqueue_t * grp_busiest;
+
+               cpus_and(tmp, group->cpumask, cpu_online_map);
+               if (unlikely(cpus_empty(tmp)))
+                       goto find_nextgroup;
+
+               total_load = 0;
+               max_load = 0;
+               grp_busiest = NULL;
+               for_each_cpu_mask(i, tmp) {
+                       load = pid_get_pressure(rq_ckrm_load(cpu_rq(i)),0);
+                       total_load += load;
+                       if (load > max_load) {
+                               max_load = load;
+                               grp_busiest = cpu_rq(i);
+                       }                               
+               }
+
+               total_load = (total_load * SCHED_LOAD_SCALE) / group->cpu_power;
+               if (total_load > avg_load) {
+                       busiest = grp_busiest;
+                       if (nr_group >= rand)
+                               break;
+               }
+       find_nextgroup:         
+               group = group->next;
+               nr_group ++;
+       } while (group != sd->groups);
+
+       return busiest;
 }
-#endif
 
-static void rebalance_tick(runqueue_t *this_rq, int idle)
+/**
+ * load_balance - pressure based load balancing algorithm used by ckrm
+ */
+static int ckrm_load_balance(int this_cpu, runqueue_t *this_rq,
+                       struct sched_domain *sd, enum idle_type idle)
 {
-#ifdef CONFIG_NUMA
-       int this_cpu = smp_processor_id();
-#endif
-       unsigned long j = jiffies;
+       runqueue_t *busiest;
+       unsigned long avg_load;
+       int nr_moved,nr_group;
+
+       avg_load = ckrm_check_balance(sd, this_cpu, idle, &nr_group);
+       if (! avg_load)
+               goto out_balanced;
 
+       busiest = ckrm_find_busy_queue(sd,this_cpu,avg_load,idle,nr_group);
+       if (! busiest)
+               goto out_balanced;
        /*
-        * First do inter-node rebalancing, then intra-node rebalancing,
-        * if both events happen in the same tick. The inter-node
-        * rebalancing does not necessarily have to create a perfect
-        * balance within the node, since we load-balance the most loaded
-        * node with the current CPU. (ie. other CPUs in the local node
-        * are not balanced.)
+        * This should be "impossible", but since load
+        * balancing is inherently racy and statistical,
+        * it could happen in theory.
         */
-       if (idle) {
-#ifdef CONFIG_NUMA
-               if (!(j % IDLE_NODE_REBALANCE_TICK))
-                       balance_node(this_rq, idle, this_cpu);
-#endif
-               if (!(j % IDLE_REBALANCE_TICK)) {
-                       spin_lock(&this_rq->lock);
-                       load_balance(this_rq, idle, cpu_to_node_mask(this_cpu));
-                       spin_unlock(&this_rq->lock);
-               }
-               return;
+       if (unlikely(busiest == this_rq)) {
+               WARN_ON(1);
+               goto out_balanced;
        }
-#ifdef CONFIG_NUMA
-       if (!(j % BUSY_NODE_REBALANCE_TICK))
-               balance_node(this_rq, idle, this_cpu);
-#endif
-       if (!(j % BUSY_REBALANCE_TICK)) {
-               spin_lock(&this_rq->lock);
-               load_balance(this_rq, idle, cpu_to_node_mask(this_cpu));
-               spin_unlock(&this_rq->lock);
+
+       nr_moved = 0;
+       if (busiest->nr_running > 1) {
+               /*
+                * Attempt to move tasks. If find_busiest_group has found
+                * an imbalance but busiest->nr_running <= 1, the group is
+                * still unbalanced. nr_moved simply stays zero, so it is
+                * correctly treated as an imbalance.
+                */
+               double_lock_balance(this_rq, busiest);
+               nr_moved = move_tasks(this_rq, this_cpu, busiest,
+                                     0,sd, idle);              
+               spin_unlock(&busiest->lock);
+               if (nr_moved) {
+                       adjust_local_weight();
+               }
        }
+
+       if (!nr_moved) 
+               sd->nr_balance_failed ++;
+       else
+               sd->nr_balance_failed  = 0;             
+
+       /* We were unbalanced, so reset the balancing interval */
+       sd->balance_interval = sd->min_interval;
+
+       return nr_moved;
+
+out_balanced:
+       /* tune up the balancing interval */
+       if (sd->balance_interval < sd->max_interval)
+               sd->balance_interval *= 2;
+
+       return 0;
 }
-#else
+
 /*
- * on UP we do not need to balance between CPUs:
+ * this_rq->lock is already held
  */
-static inline void rebalance_tick(runqueue_t *this_rq, int idle)
+static inline int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
+                                      struct sched_domain *sd)
 {
+       int ret;
+       read_lock(&class_list_lock);
+       ret = ckrm_load_balance(this_cpu,this_rq,sd,NEWLY_IDLE);
+       read_unlock(&class_list_lock);
+       return ret;
 }
-#endif
-
-DEFINE_PER_CPU(struct kernel_stat, kstat);
-
-EXPORT_PER_CPU_SYMBOL(kstat);
 
-/*
- * We place interactive tasks back into the active array, if possible.
- *
- * To guarantee that this does not starve expired tasks we ignore the
- * interactivity of a task if the first expired task had to wait more
- * than a 'reasonable' amount of time. This deadline timeout is
- * load-dependent, as the frequency of array switched decreases with
- * increasing number of running tasks. We also ignore the interactivity
- * if a better static_prio task has expired:
- */
-#define EXPIRED_STARVING(rq) \
-       ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
-               (jiffies - (rq)->expired_timestamp >= \
-                       STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
-                       ((rq)->curr->static_prio > (rq)->best_expired_prio))
+static inline int load_balance(int this_cpu, runqueue_t *this_rq,
+                       struct sched_domain *sd, enum idle_type idle)
+{
+       int ret;
 
+       spin_lock(&this_rq->lock);
+       read_lock(&class_list_lock);
+       ret= ckrm_load_balance(this_cpu,this_rq,sd,NEWLY_IDLE);
+       read_unlock(&class_list_lock);
+       spin_unlock(&this_rq->lock);
+       return ret;
+}
+#else /*! CONFIG_CKRM_CPU_SCHEDULE */
 /*
- * This function gets called by the timer code, with HZ frequency.
- * We call it with interrupts disabled.
+ * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
+ * as part of a balancing operation within "domain". Returns the number of
+ * tasks moved.
  *
- * It also gets called by the fork code, when changing the parent's
- * timeslices.
+ * Called with both runqueues locked.
  */
-void scheduler_tick(int user_ticks, int sys_ticks)
+static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
+                     unsigned long max_nr_move, struct sched_domain *sd,
+                     enum idle_type idle)
 {
-       int cpu = smp_processor_id();
-       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-       runqueue_t *rq = this_rq();
-       task_t *p = current;
-
-       rq->timestamp_last_tick = sched_clock();
+       prio_array_t *array, *dst_array;
+       struct list_head *head, *curr;
+       int idx, pulled = 0;
+       task_t *tmp;
 
-       if (rcu_pending(cpu))
-               rcu_check_callbacks(cpu, user_ticks);
+       if (max_nr_move <= 0 || busiest->nr_running <= 1)
+               goto out;
 
-       /* note: this timer irq context must be accounted for as well */
-       if (hardirq_count() - HARDIRQ_OFFSET) {
-               cpustat->irq += sys_ticks;
-               sys_ticks = 0;
-       } else if (softirq_count()) {
-               cpustat->softirq += sys_ticks;
-               sys_ticks = 0;
+       /*
+        * We first consider expired tasks. Those will likely not be
+        * executed in the near future, and they are most likely to
+        * be cache-cold, thus switching CPUs has the least effect
+        * on them.
+        */
+       if (busiest->expired->nr_active) {
+               array = busiest->expired;
+               dst_array = this_rq->expired;
+       } else {
+               array = busiest->active;
+               dst_array = this_rq->active;
        }
 
-       if (p == rq->idle) {
-               if (atomic_read(&rq->nr_iowait) > 0)
-                       cpustat->iowait += sys_ticks;
-               else
-                       cpustat->idle += sys_ticks;
-               rebalance_tick(rq, 1);
-               return;
-       }
-       if (TASK_NICE(p) > 0)
-               cpustat->nice += user_ticks;
+new_array:
+       /* Start searching at priority 0: */
+       idx = 0;
+skip_bitmap:
+       if (!idx)
+               idx = sched_find_first_bit(array->bitmap);
        else
-               cpustat->user += user_ticks;
-       cpustat->system += sys_ticks;
-
-       /* Task might have expired already, but not scheduled off yet */
-       if (p->array != rq->active) {
-               set_tsk_need_resched(p);
+               idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
+       if (idx >= MAX_PRIO) {
+               if (array == busiest->expired && busiest->active->nr_active) {
+                       array = busiest->active;
+                       dst_array = this_rq->active;
+                       goto new_array;
+               }
                goto out;
        }
-       spin_lock(&rq->lock);
-       /*
-        * The task was running during this tick - update the
-        * time slice counter. Note: we do not update a thread's
-        * priority until it either goes to sleep or uses up its
-        * timeslice. This makes it possible for interactive tasks
-        * to use up their timeslices at their highest priority levels.
-        */
-       if (unlikely(rt_task(p))) {
-               /*
-                * RR tasks need a special form of timeslice management.
-                * FIFO tasks have no timeslices.
-                */
-               if ((p->policy == SCHED_RR) && !--p->time_slice) {
-                       p->time_slice = task_timeslice(p);
-                       p->first_time_slice = 0;
-                       set_tsk_need_resched(p);
 
-                       /* put it at the end of the queue: */
-                       dequeue_task(p, rq->active);
-                       enqueue_task(p, rq->active);
-               }
-               goto out_unlock;
+       head = array->queue + idx;
+       curr = head->prev;
+skip_queue:
+       tmp = list_entry(curr, task_t, run_list);
+
+       curr = curr->prev;
+
+       if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle)) {
+               if (curr != head)
+                       goto skip_queue;
+               idx++;
+               goto skip_bitmap;
        }
-       if (!--p->time_slice) {
-               dequeue_task(p, rq->active);
-               set_tsk_need_resched(p);
-               p->prio = effective_prio(p);
-               p->time_slice = task_timeslice(p);
-               p->first_time_slice = 0;
 
-               if (!rq->expired_timestamp)
-                       rq->expired_timestamp = jiffies;
-               if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
-                       enqueue_task(p, rq->expired);
-                       if (p->static_prio < rq->best_expired_prio)
-                               rq->best_expired_prio = p->static_prio;
-               } else
-                       enqueue_task(p, rq->active);
-       } else {
-               /*
-                * Prevent a too long timeslice allowing a task to monopolize
-                * the CPU. We do this by splitting up the timeslice into
-                * smaller pieces.
-                *
-                * Note: this does not mean the task's timeslices expire or
-                * get lost in any way, they just might be preempted by
-                * another task of equal priority. (one with higher
-                * priority would have preempted this task already.) We
-                * requeue this task to the end of the list on this priority
-                * level, which is in essence a round-robin of tasks with
-                * equal priority.
-                *
-                * This only applies to tasks in the interactive
-                * delta range with at least TIMESLICE_GRANULARITY to requeue.
-                */
-               if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
-                       p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
-                       (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
-                       (p->array == rq->active)) {
+       /*
+        * Right now, this is the only place pull_task() is called,
+        * so we can safely collect pull_task() stats here rather than
+        * inside pull_task().
+        */
+       schedstat_inc(this_rq, pt_gained[idle]);
+       schedstat_inc(busiest, pt_lost[idle]);
 
-                       dequeue_task(p, rq->active);
-                       set_tsk_need_resched(p);
-                       p->prio = effective_prio(p);
-                       enqueue_task(p, rq->active);
-               }
+       pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
+       pulled++;
+
+       /* We only want to steal up to the prescribed number of tasks. */
+       if (pulled < max_nr_move) {
+               if (curr != head)
+                       goto skip_queue;
+               idx++;
+               goto skip_bitmap;
        }
-out_unlock:
-       spin_unlock(&rq->lock);
 out:
-       rebalance_tick(rq, 0);
+       return pulled;
 }
 
 /*
- * schedule() is the main scheduler function.
+ * find_busiest_group finds and returns the busiest CPU group within the
+ * domain. It calculates and returns the number of tasks which should be
+ * moved to restore balance via the imbalance parameter.
  */
-asmlinkage void __sched schedule(void)
+static struct sched_group *
+find_busiest_group(struct sched_domain *sd, int this_cpu,
+                  unsigned long *imbalance, enum idle_type idle)
 {
-       long *switch_count;
-       task_t *prev, *next;
-       runqueue_t *rq;
-       prio_array_t *array;
-       struct list_head *queue;
-       unsigned long long now;
-       unsigned long run_time;
-       int idx;
+       struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
+       unsigned long max_load, avg_load, total_load, this_load, total_pwr;
 
-       /*
-        * Test if we are atomic.  Since do_exit() needs to call into
-        * schedule() atomically, we ignore that path for now.
-        * Otherwise, whine if we are scheduling when we should not be.
-        */
-       if (likely(!(current->state & (TASK_DEAD | TASK_ZOMBIE)))) {
-               if (unlikely(in_atomic())) {
-                       printk(KERN_ERR "bad: scheduling while atomic!\n");
-                       dump_stack();
+       max_load = this_load = total_load = total_pwr = 0;
+
+       do {
+               unsigned long load;
+               int local_group;
+               int i, nr_cpus = 0;
+
+               local_group = cpu_isset(this_cpu, group->cpumask);
+
+               /* Tally up the load of all CPUs in the group */
+               avg_load = 0;
+
+               for_each_cpu_mask(i, group->cpumask) {
+                       /* Bias balancing toward cpus of our domain */
+                       if (local_group)
+                               load = target_load(i);
+                       else
+                               load = source_load(i);
+
+                       nr_cpus++;
+                       avg_load += load;
                }
-       }
 
-need_resched:
-       preempt_disable();
-       prev = current;
-       rq = this_rq();
+               if (!nr_cpus)
+                       goto nextgroup;
 
-       release_kernel_lock(prev);
-       now = sched_clock();
-       if (likely(now - prev->timestamp < NS_MAX_SLEEP_AVG))
-               run_time = now - prev->timestamp;
-       else
-               run_time = NS_MAX_SLEEP_AVG;
+               total_load += avg_load;
+               total_pwr += group->cpu_power;
 
-       /*
-        * Tasks with interactive credits get charged less run_time
-        * at high sleep_avg to delay them losing their interactive
-        * status
-        */
-       if (HIGH_CREDIT(prev))
-               run_time /= (CURRENT_BONUS(prev) ? : 1);
+               /* Adjust by relative CPU power of the group */
+               avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
 
-       spin_lock_irq(&rq->lock);
+               if (local_group) {
+                       this_load = avg_load;
+                       this = group;
+                       goto nextgroup;
+               } else if (avg_load > max_load) {
+                       max_load = avg_load;
+                       busiest = group;
+               }
+nextgroup:
+               group = group->next;
+       } while (group != sd->groups);
+
+       if (!busiest || this_load >= max_load)
+               goto out_balanced;
+
+       avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
+
+       if (this_load >= avg_load ||
+                       100*max_load <= sd->imbalance_pct*this_load)
+               goto out_balanced;
 
        /*
-        * if entering off of a kernel preemption go straight
-        * to picking the next task.
+        * We're trying to get all the cpus to the average_load, so we don't
+        * want to push ourselves above the average load, nor do we wish to
+        * reduce the max loaded cpu below the average load, as either of these
+        * actions would just result in more rebalancing later, and ping-pong
+        * tasks around. Thus we look for the minimum possible imbalance.
+        * Negative imbalances (*we* are more loaded than anyone else) will
+        * be counted as no imbalance for these purposes -- we can't fix that
+        * by pulling tasks to us.  Be careful of negative numbers as they'll
+        * appear as very large values with unsigned longs.
         */
-       switch_count = &prev->nivcsw;
-       if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
-               switch_count = &prev->nvcsw;
-               if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
-                               unlikely(signal_pending(prev))))
-                       prev->state = TASK_RUNNING;
-               else
-                       deactivate_task(prev, rq);
-       }
+       *imbalance = min(max_load - avg_load, avg_load - this_load);
 
-       if (unlikely(!rq->nr_running)) {
-#ifdef CONFIG_SMP
-               load_balance(rq, 1, cpu_to_node_mask(smp_processor_id()));
-#endif
-               if (!rq->nr_running) {
-                       next = rq->idle;
-                       rq->expired_timestamp = 0;
-                       goto switch_tasks;
+       /* How much load to actually move to equalise the imbalance */
+       *imbalance = (*imbalance * min(busiest->cpu_power, this->cpu_power))
+                               / SCHED_LOAD_SCALE;
+
+       if (*imbalance < SCHED_LOAD_SCALE - 1) {
+               unsigned long pwr_now = 0, pwr_move = 0;
+               unsigned long tmp;
+
+               if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
+                       *imbalance = 1;
+                       return busiest;
                }
-       }
 
-       array = rq->active;
-       if (unlikely(!array->nr_active)) {
                /*
-                * Switch the active and expired arrays.
+                * OK, we don't have enough imbalance to justify moving tasks,
+                * however we may be able to increase total CPU power used by
+                * moving them.
                 */
-               rq->active = rq->expired;
-               rq->expired = array;
-               array = rq->active;
-               rq->expired_timestamp = 0;
-               rq->best_expired_prio = MAX_PRIO;
-       }
 
-       idx = sched_find_first_bit(array->bitmap);
-       queue = array->queue + idx;
-       next = list_entry(queue->next, task_t, run_list);
+               pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
+               pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
+               pwr_now /= SCHED_LOAD_SCALE;
+
+               /* Amount of load we'd subtract */
+               tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
+               if (max_load > tmp)
+                       pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
+                                                       max_load - tmp);
+
+               /* Amount of load we'd add */
+               tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
+               if (max_load < tmp)
+                       tmp = max_load;
+               pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
+               pwr_move /= SCHED_LOAD_SCALE;
+
+               /* Move if we gain another 8th of a CPU worth of throughput */
+               if (pwr_move < pwr_now + SCHED_LOAD_SCALE / 8)
+                       goto out_balanced;
+
+               *imbalance = 1;
+               return busiest;
+       }
 
-       if (!rt_task(next) && next->activated > 0) {
-               unsigned long long delta = now - next->timestamp;
+       /* Get rid of the scaling factor, rounding down as we divide */
+       *imbalance = (*imbalance + 1) / SCHED_LOAD_SCALE;
 
-               if (next->activated == 1)
-                       delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
+       return busiest;
 
-               array = next->array;
-               dequeue_task(next, array);
-               recalc_task_prio(next, next->timestamp + delta);
-               enqueue_task(next, array);
+out_balanced:
+       if (busiest && (idle == NEWLY_IDLE ||
+                       (idle == IDLE && max_load > SCHED_LOAD_SCALE)) ) {
+               *imbalance = 1;
+               return busiest;
        }
-       next->activated = 0;
-switch_tasks:
-       prefetch(next);
-       clear_tsk_need_resched(prev);
-       RCU_qsctr(task_cpu(prev))++;
 
-       prev->sleep_avg -= run_time;
-       if ((long)prev->sleep_avg <= 0) {
-               prev->sleep_avg = 0;
-               if (!(HIGH_CREDIT(prev) || LOW_CREDIT(prev)))
-                       prev->interactive_credit--;
-       }
-       prev->timestamp = now;
+       *imbalance = 0;
+       return NULL;
+}
 
-       if (likely(prev != next)) {
-               next->timestamp = now;
-               rq->nr_switches++;
-               rq->curr = next;
-               ++*switch_count;
+/*
+ * find_busiest_queue - find the busiest runqueue among the cpus in group.
+ */
+static runqueue_t *find_busiest_queue(struct sched_group *group)
+{
+       unsigned long load, max_load = 0;
+       runqueue_t *busiest = NULL;
+       int i;
 
-               prepare_arch_switch(rq, next);
-               prev = context_switch(rq, prev, next);
-               barrier();
+       for_each_cpu_mask(i, group->cpumask) {
+               load = source_load(i);
 
-               finish_task_switch(prev);
-       } else
-               spin_unlock_irq(&rq->lock);
+               if (load > max_load) {
+                       max_load = load;
+                       busiest = cpu_rq(i);
+               }
+       }
 
-       reacquire_kernel_lock(current);
-       preempt_enable_no_resched();
-       if (test_thread_flag(TIF_NEED_RESCHED))
-               goto need_resched;
+       return busiest;
 }
 
-EXPORT_SYMBOL(schedule);
-
-#ifdef CONFIG_PREEMPT
 /*
- * this is is the entry point to schedule() from in-kernel preemption
- * off of preempt_enable.  Kernel preemptions off return from interrupt
- * occur there and call schedule directly.
+ * Check this_cpu to ensure it is balanced within domain. Attempt to move
+ * tasks if there is an imbalance.
+ *
+ * Called with this_rq unlocked.
  */
-asmlinkage void __sched preempt_schedule(void)
+static int load_balance(int this_cpu, runqueue_t *this_rq,
+                       struct sched_domain *sd, enum idle_type idle)
 {
-       struct thread_info *ti = current_thread_info();
+       struct sched_group *group;
+       runqueue_t *busiest;
+       unsigned long imbalance;
+       int nr_moved;
+
+       spin_lock(&this_rq->lock);
+       schedstat_inc(sd, lb_cnt[idle]);
+
+       group = find_busiest_group(sd, this_cpu, &imbalance, idle);
+       if (!group) {
+               schedstat_inc(sd, lb_nobusyg[idle]);
+               goto out_balanced;
+       }
+
+       busiest = find_busiest_queue(group);
+       if (!busiest) {
+               schedstat_inc(sd, lb_nobusyq[idle]);
+               goto out_balanced;
+       }
 
        /*
-        * If there is a non-zero preempt_count or interrupts are disabled,
-        * we do not want to preempt the current task.  Just return..
+        * This should be "impossible", but since load
+        * balancing is inherently racy and statistical,
+        * it could happen in theory.
         */
-       if (unlikely(ti->preempt_count || irqs_disabled()))
-               return;
+       if (unlikely(busiest == this_rq)) {
+               WARN_ON(1);
+               goto out_balanced;
+       }
 
-need_resched:
-       ti->preempt_count = PREEMPT_ACTIVE;
-       schedule();
-       ti->preempt_count = 0;
+       schedstat_add(sd, lb_imbalance[idle], imbalance);
 
-       /* we could miss a preemption opportunity between schedule and now */
-       barrier();
-       if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
-               goto need_resched;
-}
+       nr_moved = 0;
+       if (busiest->nr_running > 1) {
+               /*
+                * Attempt to move tasks. If find_busiest_group has found
+                * an imbalance but busiest->nr_running <= 1, the group is
+                * still unbalanced. nr_moved simply stays zero, so it is
+                * correctly treated as an imbalance.
+                */
+               double_lock_balance(this_rq, busiest);
+               nr_moved = move_tasks(this_rq, this_cpu, busiest,
+                                               imbalance, sd, idle);
+               spin_unlock(&busiest->lock);
+       }
+       spin_unlock(&this_rq->lock);
 
-EXPORT_SYMBOL(preempt_schedule);
-#endif /* CONFIG_PREEMPT */
+       if (!nr_moved) {
+               schedstat_inc(sd, lb_failed[idle]);
+               sd->nr_balance_failed++;
 
-int default_wake_function(wait_queue_t *curr, unsigned mode, int sync)
-{
-       task_t *p = curr->task;
-       return try_to_wake_up(p, mode, sync);
-}
+               if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
+                       int wake = 0;
 
-EXPORT_SYMBOL(default_wake_function);
+                       spin_lock(&busiest->lock);
+                       if (!busiest->active_balance) {
+                               busiest->active_balance = 1;
+                               busiest->push_cpu = this_cpu;
+                               wake = 1;
+                       }
+                       spin_unlock(&busiest->lock);
+                       if (wake)
+                               wake_up_process(busiest->migration_thread);
+
+                       /*
+                        * We've kicked active balancing, reset the failure
+                        * counter.
+                        */
+                       sd->nr_balance_failed = sd->cache_nice_tries;
+               }
+       } else
+               sd->nr_balance_failed = 0;
+
+       /* We were unbalanced, so reset the balancing interval */
+       sd->balance_interval = sd->min_interval;
+
+       return nr_moved;
+
+out_balanced:
+       spin_unlock(&this_rq->lock);
+
+       /* tune up the balancing interval */
+       if (sd->balance_interval < sd->max_interval)
+               sd->balance_interval *= 2;
+
+       return 0;
+}
 
 /*
- * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
- * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
- * number) then we wake all the non-exclusive tasks and one exclusive task.
+ * Check this_cpu to ensure it is balanced within domain. Attempt to move
+ * tasks if there is an imbalance.
  *
- * There are circumstances in which we can try to wake a task which has already
- * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
- * zero in this (rare) case, and we handle it by continuing to scan the queue.
+ * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
+ * this_rq is locked.
  */
-static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
-                            int nr_exclusive, int sync)
+static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
+                               struct sched_domain *sd)
 {
-       struct list_head *tmp, *next;
+       struct sched_group *group;
+       runqueue_t *busiest = NULL;
+       unsigned long imbalance;
+       int nr_moved = 0;
+
+       schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
+       group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
+       if (!group) {
+               schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
+               goto out;
+       }
 
-       list_for_each_safe(tmp, next, &q->task_list) {
-               wait_queue_t *curr;
-               unsigned flags;
-               curr = list_entry(tmp, wait_queue_t, task_list);
-               flags = curr->flags;
-               if (curr->func(curr, mode, sync) &&
-                   (flags & WQ_FLAG_EXCLUSIVE) &&
-                   !--nr_exclusive)
-                       break;
+       busiest = find_busiest_queue(group);
+       if (!busiest || busiest == this_rq) {
+               schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
+               goto out;
        }
-}
 
-/**
- * __wake_up - wake up threads blocked on a waitqueue.
- * @q: the waitqueue
- * @mode: which threads
- * @nr_exclusive: how many wake-one or wake-many threads to wake up
- */
-void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
-{
-       unsigned long flags;
+       /* Attempt to move tasks */
+       double_lock_balance(this_rq, busiest);
 
-       spin_lock_irqsave(&q->lock, flags);
-       __wake_up_common(q, mode, nr_exclusive, 0);
-       spin_unlock_irqrestore(&q->lock, flags);
+       schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
+       nr_moved = move_tasks(this_rq, this_cpu, busiest,
+                                       imbalance, sd, NEWLY_IDLE);
+       if (!nr_moved)
+               schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
+
+       spin_unlock(&busiest->lock);
+
+out:
+       return nr_moved;
 }
+#endif /* CONFIG_CKRM_CPU_SCHEDULE*/
 
-EXPORT_SYMBOL(__wake_up);
 
 /*
- * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
+ * idle_balance is called by schedule() if this_cpu is about to become
+ * idle. Attempts to pull tasks from other CPUs.
  */
-void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
+static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
 {
-       __wake_up_common(q, mode, 1, 0);
+       struct sched_domain *sd;
+
+       for_each_domain(this_cpu, sd) {
+               if (sd->flags & SD_BALANCE_NEWIDLE) {
+                       if (load_balance_newidle(this_cpu, this_rq, sd)) {
+                               /* We've pulled tasks over so stop searching */
+                               break;
+                       }
+               }
+       }
 }
 
-/**
- * __wake_up - sync- wake up threads blocked on a waitqueue.
- * @q: the waitqueue
- * @mode: which threads
- * @nr_exclusive: how many wake-one or wake-many threads to wake up
- *
- * The sync wakeup differs that the waker knows that it will schedule
- * away soon, so while the target thread will be woken up, it will not
- * be migrated to another CPU - ie. the two threads are 'synchronized'
- * with each other. This can prevent needless bouncing between CPUs.
+/*
+ * active_load_balance is run by migration threads. It pushes a running
+ * task off the cpu. It can be required to correctly have at least 1 task
+ * running on each physical CPU where possible, and not have a physical /
+ * logical imbalance.
  *
- * On UP it can prevent extra preemption.
+ * Called with busiest locked.
  */
-void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
+static void active_load_balance(runqueue_t *busiest, int busiest_cpu)
 {
-       unsigned long flags;
+       struct sched_domain *sd;
+       struct sched_group *group, *busy_group;
+       int i;
 
-       if (unlikely(!q))
+       schedstat_inc(busiest, alb_cnt);
+       if (busiest->nr_running <= 1)
                return;
 
-       spin_lock_irqsave(&q->lock, flags);
-       if (likely(nr_exclusive))
-               __wake_up_common(q, mode, nr_exclusive, 1);
-       else
-               __wake_up_common(q, mode, nr_exclusive, 0);
-       spin_unlock_irqrestore(&q->lock, flags);
-}
-EXPORT_SYMBOL_GPL(__wake_up_sync);     /* For internal use only */
+       for_each_domain(busiest_cpu, sd)
+               if (cpu_isset(busiest->push_cpu, sd->span))
+                       break;
+       if (!sd)
+               return;
 
-void fastcall complete(struct completion *x)
-{
-       unsigned long flags;
+       group = sd->groups;
+       while (!cpu_isset(busiest_cpu, group->cpumask))
+               group = group->next;
+       busy_group = group;
 
-       spin_lock_irqsave(&x->wait.lock, flags);
-       x->done++;
-       __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
-                        1, 0);
-       spin_unlock_irqrestore(&x->wait.lock, flags);
-}
-EXPORT_SYMBOL(complete);
+       group = sd->groups;
+       do {
+               runqueue_t *rq;
+               int push_cpu = 0;
 
-void fastcall complete_all(struct completion *x)
-{
-       unsigned long flags;
+               if (group == busy_group)
+                       goto next_group;
 
-       spin_lock_irqsave(&x->wait.lock, flags);
-       x->done += UINT_MAX/2;
-       __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
-                        0, 0);
-       spin_unlock_irqrestore(&x->wait.lock, flags);
-}
-EXPORT_SYMBOL(complete_all);
+               for_each_cpu_mask(i, group->cpumask) {
+                       if (!idle_cpu(i))
+                               goto next_group;
+                       push_cpu = i;
+               }
 
-void fastcall __sched wait_for_completion(struct completion *x)
-{
-       might_sleep();
-       spin_lock_irq(&x->wait.lock);
-       if (!x->done) {
-               DECLARE_WAITQUEUE(wait, current);
+               rq = cpu_rq(push_cpu);
 
-               wait.flags |= WQ_FLAG_EXCLUSIVE;
-               __add_wait_queue_tail(&x->wait, &wait);
-               do {
-                       __set_current_state(TASK_UNINTERRUPTIBLE);
-                       spin_unlock_irq(&x->wait.lock);
-                       schedule();
-                       spin_lock_irq(&x->wait.lock);
-               } while (!x->done);
-               __remove_wait_queue(&x->wait, &wait);
-       }
-       x->done--;
-       spin_unlock_irq(&x->wait.lock);
+               /*
+                * This condition is "impossible", but since load
+                * balancing is inherently a bit racy and statistical,
+                * it can trigger.. Reported by Bjorn Helgaas on a
+                * 128-cpu setup.
+                */
+               if (unlikely(busiest == rq))
+                       goto next_group;
+               double_lock_balance(busiest, rq);
+               if (move_tasks(rq, push_cpu, busiest, 1, sd, IDLE)) {
+                       schedstat_inc(busiest, alb_lost);
+                       schedstat_inc(rq, alb_gained);
+               } else {
+                       schedstat_inc(busiest, alb_failed);
+               }
+               spin_unlock(&rq->lock);
+next_group:
+               group = group->next;
+       } while (group != sd->groups);
 }
-EXPORT_SYMBOL(wait_for_completion);
-
-#define        SLEEP_ON_VAR                                    \
-       unsigned long flags;                            \
-       wait_queue_t wait;                              \
-       init_waitqueue_entry(&wait, current);
 
-#define SLEEP_ON_HEAD                                  \
-       spin_lock_irqsave(&q->lock,flags);              \
-       __add_wait_queue(q, &wait);                     \
-       spin_unlock(&q->lock);
+/*
+ * rebalance_tick will get called every timer tick, on every CPU.
+ *
+ * It checks each scheduling domain to see if it is due to be balanced,
+ * and initiates a balancing operation if so.
+ *
+ * Balancing parameters are set up in arch_init_sched_domains.
+ */
 
-#define        SLEEP_ON_TAIL                                   \
-       spin_lock_irq(&q->lock);                        \
-       __remove_wait_queue(q, &wait);                  \
-       spin_unlock_irqrestore(&q->lock, flags);
+/* Don't have all balancing operations going off at once */
+#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
 
-void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
+static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
+                          enum idle_type idle)
 {
-       SLEEP_ON_VAR
+       unsigned long old_load, this_load;
+       unsigned long j = jiffies + CPU_OFFSET(this_cpu);
+       struct sched_domain *sd;
 
-       current->state = TASK_INTERRUPTIBLE;
+       /* Update our load */
+       old_load = this_rq->cpu_load;
+       this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
+       /*
+        * Round up the averaging division if load is increasing. This
+        * prevents us from getting stuck on 9 if the load is 10, for
+        * example.
+        */
+       if (this_load > old_load)
+               old_load++;
+       this_rq->cpu_load = (old_load + this_load) / 2;
 
-       SLEEP_ON_HEAD
-       schedule();
-       SLEEP_ON_TAIL
-}
+       for_each_domain(this_cpu, sd) {
+               unsigned long interval = sd->balance_interval;
 
-EXPORT_SYMBOL(interruptible_sleep_on);
+               if (idle != IDLE)
+                       interval *= sd->busy_factor;
 
-long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
+               /* scale ms to jiffies */
+               interval = msecs_to_jiffies(interval);
+               if (unlikely(!interval))
+                       interval = 1;
+
+               if (j - sd->last_balance >= interval) {
+                       if (load_balance(this_cpu, this_rq, sd, idle)) {
+                               /* We've pulled tasks over so no longer idle */
+                               idle = NOT_IDLE;
+                       }
+                       sd->last_balance += interval;
+               }
+       }
+}
+#else /* SMP*/
+/*
+ * on UP we do not need to balance between CPUs:
+ */
+static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
 {
-       SLEEP_ON_VAR
+}
+static inline void idle_balance(int cpu, runqueue_t *rq)
+{
+}
+#endif
 
-       current->state = TASK_INTERRUPTIBLE;
+static inline int wake_priority_sleeper(runqueue_t *rq)
+{
+       int ret = 0;
+#ifdef CONFIG_SCHED_SMT
+       spin_lock(&rq->lock);
+       /*
+        * If an SMT sibling task has been put to sleep for priority
+        * reasons reschedule the idle task to see if it can now run.
+        */
+       if (rq->nr_running) {
+               resched_task(rq->idle);
+               ret = 1;
+       }
+       spin_unlock(&rq->lock);
+#endif
+       return ret;
+}
 
-       SLEEP_ON_HEAD
-       timeout = schedule_timeout(timeout);
-       SLEEP_ON_TAIL
+DEFINE_PER_CPU(struct kernel_stat, kstat);
+EXPORT_PER_CPU_SYMBOL(kstat);
 
-       return timeout;
-}
+/*
+ * We place interactive tasks back into the active array, if possible.
+ *
+ * To guarantee that this does not starve expired tasks we ignore the
+ * interactivity of a task if the first expired task had to wait more
+ * than a 'reasonable' amount of time. This deadline timeout is
+ * load-dependent, as the frequency of array switched decreases with
+ * increasing number of running tasks. We also ignore the interactivity
+ * if a better static_prio task has expired:
+ */
 
-EXPORT_SYMBOL(interruptible_sleep_on_timeout);
+#ifndef CONFIG_CKRM_CPU_SCHEDULE
+#define EXPIRED_STARVING(rq) \
+       ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
+               (jiffies - (rq)->expired_timestamp >= \
+                       STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
+                       ((rq)->curr->static_prio > (rq)->best_expired_prio))
+#else
+#define EXPIRED_STARVING(rq) \
+               (STARVATION_LIMIT && ((rq)->expired_timestamp && \
+               (jiffies - (rq)->expired_timestamp >= \
+                       STARVATION_LIMIT * (lrq_nr_running(rq)) + 1)))
+#endif
 
-void fastcall __sched sleep_on(wait_queue_head_t *q)
+/*
+ * This function gets called by the timer code, with HZ frequency.
+ * We call it with interrupts disabled.
+ *
+ * It also gets called by the fork code, when changing the parent's
+ * timeslices.
+ */
+void scheduler_tick(int user_ticks, int sys_ticks)
 {
-       SLEEP_ON_VAR
-
-       current->state = TASK_UNINTERRUPTIBLE;
+       int cpu = smp_processor_id();
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+       runqueue_t *rq = this_rq();
+       task_t *p = current;
+       struct vx_info *vxi = p->vx_info;
 
-       SLEEP_ON_HEAD
-       schedule();
-       SLEEP_ON_TAIL
-}
+       rq->timestamp_last_tick = sched_clock();
 
-EXPORT_SYMBOL(sleep_on);
+       if (rcu_pending(cpu))
+               rcu_check_callbacks(cpu, user_ticks);
 
-long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
-{
-       SLEEP_ON_VAR
 
-       current->state = TASK_UNINTERRUPTIBLE;
+       if (vxi) {
+               vxi->sched.cpu[cpu].user_ticks += user_ticks;
+               vxi->sched.cpu[cpu].sys_ticks += sys_ticks;
+       }
 
-       SLEEP_ON_HEAD
-       timeout = schedule_timeout(timeout);
-       SLEEP_ON_TAIL
+       /* note: this timer irq context must be accounted for as well */
+       if (hardirq_count() - HARDIRQ_OFFSET) {
+               cpustat->irq += sys_ticks;
+               sys_ticks = 0;
+       } else if (softirq_count()) {
+               cpustat->softirq += sys_ticks;
+               sys_ticks = 0;
+       }
 
-       return timeout;
-}
+       if (p == rq->idle) {
+               if (atomic_read(&rq->nr_iowait) > 0)
+                       cpustat->iowait += sys_ticks;
+                       // vx_cpustat_acc(vxi, iowait, cpu, cpustat, sys_ticks);
+               else
+                       cpustat->idle += sys_ticks;
+                       // vx_cpustat_acc(vxi, idle, cpu, cpustat, sys_ticks);
 
-EXPORT_SYMBOL(sleep_on_timeout);
+               if (wake_priority_sleeper(rq))
+                       goto out;
 
-void set_user_nice(task_t *p, long nice)
-{
-       unsigned long flags;
-       prio_array_t *array;
-       runqueue_t *rq;
-       int old_prio, new_prio, delta;
+               ckrm_sched_tick(jiffies,cpu,rq_ckrm_load(rq));
 
-       if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
+#ifdef CONFIG_VSERVER_HARDCPU_IDLE
+               if (!--rq->idle_tokens && !list_empty(&rq->hold_queue))
+                       set_need_resched();
+#endif
+               rebalance_tick(cpu, rq, IDLE);
                return;
+       }
+       if (TASK_NICE(p) > 0)
+               cpustat->nice += user_ticks;
+       else
+               cpustat->user += user_ticks;
+       cpustat->system += sys_ticks;
+
+       /* Task might have expired already, but not scheduled off yet */
+       if (p->array != rq_active(p,rq)) {
+               set_tsk_need_resched(p);
+               goto out;
+       }
+       spin_lock(&rq->lock);
        /*
-        * We have to be careful, if called from sys_setpriority(),
-        * the task might be in the middle of scheduling on another CPU.
-        */
-       rq = task_rq_lock(p, &flags);
-       /*
-        * The RT priorities are set via setscheduler(), but we still
-        * allow the 'normal' nice value to be set - but as expected
-        * it wont have any effect on scheduling until the task is
-        * not SCHED_NORMAL:
+        * The task was running during this tick - update the
+        * time slice counter. Note: we do not update a thread's
+        * priority until it either goes to sleep or uses up its
+        * timeslice. This makes it possible for interactive tasks
+        * to use up their timeslices at their highest priority levels.
         */
        if (rt_task(p)) {
-               p->static_prio = NICE_TO_PRIO(nice);
+               /*
+                * RR tasks need a special form of timeslice management.
+                * FIFO tasks have no timeslices.
+                */
+               if ((p->policy == SCHED_RR) && !--p->time_slice) {
+                       p->time_slice = task_timeslice(p);
+                       p->first_time_slice = 0;
+                       set_tsk_need_resched(p);
+
+                       /* put it at the end of the queue: */
+                       dequeue_task(p, rq_active(p,rq));
+                       enqueue_task(p, rq_active(p,rq));
+               }
                goto out_unlock;
        }
-       array = p->array;
-       if (array)
-               dequeue_task(p, array);
-
-       old_prio = p->prio;
-       new_prio = NICE_TO_PRIO(nice);
-       delta = new_prio - old_prio;
-       p->static_prio = NICE_TO_PRIO(nice);
-       p->prio += delta;
+       if (vx_need_resched(p)) {
+#ifdef CONFIG_CKRM_CPU_SCHEDULE
+               /* Hubertus ... we can abstract this out */
+               ckrm_lrq_t* rq = get_task_lrq(p);
+#endif
+               dequeue_task(p, rq->active);
+               set_tsk_need_resched(p);
+               p->prio = effective_prio(p);
+               p->time_slice = task_timeslice(p);
+               p->first_time_slice = 0;
 
-       if (array) {
-               enqueue_task(p, array);
+               if (!rq->expired_timestamp)
+                       rq->expired_timestamp = jiffies;
+               if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
+                       enqueue_task(p, rq->expired);
+                       if (p->static_prio < this_rq()->best_expired_prio)
+                               this_rq()->best_expired_prio = p->static_prio;
+               } else
+                       enqueue_task(p, rq->active);
+       } else {
                /*
-                * If the task increased its priority or is running and
-                * lowered its priority, then reschedule its CPU:
+                * Prevent a too long timeslice allowing a task to monopolize
+                * the CPU. We do this by splitting up the timeslice into
+                * smaller pieces.
+                *
+                * Note: this does not mean the task's timeslices expire or
+                * get lost in any way, they just might be preempted by
+                * another task of equal priority. (one with higher
+                * priority would have preempted this task already.) We
+                * requeue this task to the end of the list on this priority
+                * level, which is in essence a round-robin of tasks with
+                * equal priority.
+                *
+                * This only applies to tasks in the interactive
+                * delta range with at least TIMESLICE_GRANULARITY to requeue.
                 */
-               if (delta < 0 || (delta > 0 && task_running(rq, p)))
-                       resched_task(rq->curr);
+               if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
+                       p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
+                       (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
+                       (p->array == rq_active(p,rq))) {
+
+                       dequeue_task(p, rq_active(p,rq));
+                       set_tsk_need_resched(p);
+                       p->prio = effective_prio(p);
+                       enqueue_task(p, rq_active(p,rq));
+               }
        }
 out_unlock:
-       task_rq_unlock(rq, &flags);
+       spin_unlock(&rq->lock);
+out:
+       ckrm_sched_tick(jiffies,cpu,rq_ckrm_load(rq));
+       rebalance_tick(cpu, rq, NOT_IDLE);
 }
 
-EXPORT_SYMBOL(set_user_nice);
+#ifdef CONFIG_SCHED_SMT
+static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
+{
+       struct sched_domain *sd = this_rq->sd;
+       cpumask_t sibling_map;
+       int i;
 
-#ifndef __alpha__
+       if (!(sd->flags & SD_SHARE_CPUPOWER))
+               return;
 
-/*
- * sys_nice - change the priority of the current process.
- * @increment: priority increment
- *
- * sys_setpriority is a more generic, but much slower function that
- * does similar things.
- */
-asmlinkage long sys_nice(int increment)
-{
-       int retval;
-       long nice;
+#ifdef CONFIG_CKRM_CPU_SCHEDULE
+       if (prev != rq->idle) {
+               unsigned long long run = now - prev->timestamp;
+               ckrm_lrq_t * lrq = get_task_lrq(prev);
+
+               lrq->lrq_load -= task_load(prev);
+               cpu_demand_event(&prev->demand_stat,CPU_DEMAND_DESCHEDULE,run);
+               lrq->lrq_load += task_load(prev);
 
+               cpu_demand_event(get_task_lrq_stat(prev),CPU_DEMAND_DESCHEDULE,run);
+               update_local_cvt(prev, run);
+       }
+#endif
        /*
-        * Setpriority might change our priority at the same moment.
-        * We don't have to worry. Conceptually one call occurs first
-        * and we have a single winner.
+        * Unlock the current runqueue because we have to lock in
+        * CPU order to avoid deadlocks. Caller knows that we might
+        * unlock. We keep IRQs disabled.
         */
-       if (increment < 0) {
-               if (!capable(CAP_SYS_NICE))
-                       return -EPERM;
-               if (increment < -40)
-                       increment = -40;
-       }
-       if (increment > 40)
-               increment = 40;
+       spin_unlock(&this_rq->lock);
 
-       nice = PRIO_TO_NICE(current->static_prio) + increment;
-       if (nice < -20)
-               nice = -20;
-       if (nice > 19)
-               nice = 19;
+       sibling_map = sd->span;
 
-       retval = security_task_setnice(current, nice);
-       if (retval)
-               return retval;
+       for_each_cpu_mask(i, sibling_map)
+               spin_lock(&cpu_rq(i)->lock);
+       /*
+        * We clear this CPU from the mask. This both simplifies the
+        * inner loop and keps this_rq locked when we exit:
+        */
+       cpu_clear(this_cpu, sibling_map);
 
-       set_user_nice(current, nice);
-       return 0;
-}
+       for_each_cpu_mask(i, sibling_map) {
+               runqueue_t *smt_rq = cpu_rq(i);
 
-#endif
+               /*
+                * If an SMT sibling task is sleeping due to priority
+                * reasons wake it up now.
+                */
+               if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
+                       resched_task(smt_rq->idle);
+       }
 
-/**
- * task_prio - return the priority value of a given task.
- * @p: the task in question.
- *
- * This is the priority value as seen by users in /proc.
- * RT tasks are offset by -200. Normal tasks are centered
- * around 0, value goes from -16 to +15.
- */
-int task_prio(task_t *p)
-{
-       return p->prio - MAX_RT_PRIO;
+       for_each_cpu_mask(i, sibling_map)
+               spin_unlock(&cpu_rq(i)->lock);
+       /*
+        * We exit with this_cpu's rq still held and IRQs
+        * still disabled:
+        */
 }
 
-/**
- * task_nice - return the nice value of a given task.
- * @p: the task in question.
- */
-int task_nice(task_t *p)
+static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
 {
-       return TASK_NICE(p);
-}
+       struct sched_domain *sd = this_rq->sd;
+       cpumask_t sibling_map;
+       prio_array_t *array;
+       int ret = 0, i;
+       task_t *p;
 
-EXPORT_SYMBOL(task_nice);
+       if (!(sd->flags & SD_SHARE_CPUPOWER))
+               return 0;
 
-/**
- * idle_cpu - is a given cpu idle currently?
- * @cpu: the processor in question.
- */
-int idle_cpu(int cpu)
-{
-       return cpu_curr(cpu) == cpu_rq(cpu)->idle;
-}
+       /*
+        * The same locking rules and details apply as for
+        * wake_sleeping_dependent():
+        */
+       spin_unlock(&this_rq->lock);
+       sibling_map = sd->span;
+       for_each_cpu_mask(i, sibling_map)
+               spin_lock(&cpu_rq(i)->lock);
+       cpu_clear(this_cpu, sibling_map);
 
-EXPORT_SYMBOL_GPL(idle_cpu);
+       /*
+        * Establish next task to be run - it might have gone away because
+        * we released the runqueue lock above:
+        */
+       if (!this_rq->nr_running)
+               goto out_unlock;
+       array = this_rq->active;
+       if (!array->nr_active)
+               array = this_rq->expired;
+       BUG_ON(!array->nr_active);
 
-/**
- * find_process_by_pid - find a process with a matching PID value.
- * @pid: the pid in question.
- */
-static inline task_t *find_process_by_pid(pid_t pid)
+       p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
+               task_t, run_list);
+
+       for_each_cpu_mask(i, sibling_map) {
+               runqueue_t *smt_rq = cpu_rq(i);
+               task_t *smt_curr = smt_rq->curr;
+
+               /*
+                * If a user task with lower static priority than the
+                * running task on the SMT sibling is trying to schedule,
+                * delay it till there is proportionately less timeslice
+                * left of the sibling task to prevent a lower priority
+                * task from using an unfair proportion of the
+                * physical cpu's resources. -ck
+                */
+               if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
+                       task_timeslice(p) || rt_task(smt_curr)) &&
+                       p->mm && smt_curr->mm && !rt_task(p))
+                               ret = 1;
+
+               /*
+                * Reschedule a lower priority task on the SMT sibling,
+                * or wake it up if it has been put to sleep for priority
+                * reasons.
+                */
+               if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
+                       task_timeslice(smt_curr) || rt_task(p)) &&
+                       smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
+                       (smt_curr == smt_rq->idle && smt_rq->nr_running))
+                               resched_task(smt_curr);
+       }
+out_unlock:
+       for_each_cpu_mask(i, sibling_map)
+               spin_unlock(&cpu_rq(i)->lock);
+       return ret;
+}
+#else
+static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
 {
-       return pid ? find_task_by_pid(pid) : current;
 }
 
-/* Actually do priority change: must hold rq lock. */
-static void __setscheduler(struct task_struct *p, int policy, int prio)
+static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
 {
-       BUG_ON(p->array);
-       p->policy = policy;
-       p->rt_priority = prio;
-       if (policy != SCHED_NORMAL)
-               p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
-       else
-               p->prio = p->static_prio;
+       return 0;
 }
+#endif
 
 /*
- * setscheduler - change the scheduling policy and/or RT priority of a thread.
+ * schedule() is the main scheduler function.
  */
-static int setscheduler(pid_t pid, int policy, struct sched_param __user *param)
+asmlinkage void __sched schedule(void)
 {
-       struct sched_param lp;
-       int retval = -EINVAL;
-       int oldprio;
-       prio_array_t *array;
-       unsigned long flags;
+       long *switch_count;
+       task_t *prev, *next;
        runqueue_t *rq;
-       task_t *p;
+       prio_array_t *array;
+       unsigned long long now;
+       unsigned long run_time;
+       int cpu;
+#ifdef CONFIG_VSERVER_HARDCPU
+       struct vx_info *vxi;
+       int maxidle = -HZ;
+#endif
 
-       if (!param || pid < 0)
-               goto out_nounlock;
+       /*
+        * If crash dump is in progress, this other cpu's
+        * need to wait until it completes.
+        * NB: this code is optimized away for kernels without
+        * dumping enabled.
+        */
+        if (unlikely(dump_oncpu))
+                goto dump_scheduling_disabled;
 
-       retval = -EFAULT;
-       if (copy_from_user(&lp, param, sizeof(struct sched_param)))
-               goto out_nounlock;
 
+       //WARN_ON(system_state == SYSTEM_BOOTING);
        /*
-        * We play safe to avoid deadlocks.
+        * Test if we are atomic.  Since do_exit() needs to call into
+        * schedule() atomically, we ignore that path for now.
+        * Otherwise, whine if we are scheduling when we should not be.
         */
-       read_lock_irq(&tasklist_lock);
+       if (likely(!(current->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)))) {
+               if (unlikely(in_atomic())) {
+                       printk(KERN_ERR "bad: scheduling while atomic!\n");
+                       dump_stack();
+               }
+       }
 
-       p = find_process_by_pid(pid);
+need_resched:
+       preempt_disable();
+       prev = current;
+       rq = this_rq();
 
-       retval = -ESRCH;
-       if (!p)
-               goto out_unlock_tasklist;
+       /*
+        * The idle thread is not allowed to schedule!
+        * Remove this check after it has been exercised a bit.
+        */
+       if (unlikely(current == rq->idle) && current->state != TASK_RUNNING) {
+               printk(KERN_ERR "bad: scheduling from the idle thread!\n");
+               dump_stack();
+       }
+
+       release_kernel_lock(prev);
+       schedstat_inc(rq, sched_cnt);
+       now = sched_clock();
+       if (likely(now - prev->timestamp < NS_MAX_SLEEP_AVG))
+               run_time = now - prev->timestamp;
+       else
+               run_time = NS_MAX_SLEEP_AVG;
 
        /*
-        * To be able to change p->policy safely, the apropriate
-        * runqueue lock must be held.
+        * Tasks with interactive credits get charged less run_time
+        * at high sleep_avg to delay them losing their interactive
+        * status
         */
-       rq = task_rq_lock(p, &flags);
+       if (HIGH_CREDIT(prev))
+               run_time /= (CURRENT_BONUS(prev) ? : 1);
 
-       if (policy < 0)
-               policy = p->policy;
-       else {
-               retval = -EINVAL;
-               if (policy != SCHED_FIFO && policy != SCHED_RR &&
-                               policy != SCHED_NORMAL)
-                       goto out_unlock;
+       spin_lock_irq(&rq->lock);
+
+#ifdef CONFIG_CKRM_CPU_SCHEDULE
+       if (prev != rq->idle) {
+               unsigned long long run = now - prev->timestamp;
+               ckrm_lrq_t * lrq = get_task_lrq(prev);
+
+               lrq->lrq_load -= task_load(prev);
+               cpu_demand_event(&prev->demand_stat,CPU_DEMAND_DESCHEDULE,run);
+               lrq->lrq_load += task_load(prev);
+
+               cpu_demand_event(get_task_lrq_stat(prev),CPU_DEMAND_DESCHEDULE,run);
+               update_local_cvt(prev, run);
        }
+#endif
 
+       if (unlikely(current->flags & PF_DEAD))
+               current->state = EXIT_DEAD;
        /*
-        * Valid priorities for SCHED_FIFO and SCHED_RR are
-        * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
+        * if entering off of a kernel preemption go straight
+        * to picking the next task.
         */
-       retval = -EINVAL;
-       if (lp.sched_priority < 0 || lp.sched_priority > MAX_USER_RT_PRIO-1)
-               goto out_unlock;
-       if ((policy == SCHED_NORMAL) != (lp.sched_priority == 0))
-               goto out_unlock;
+       switch_count = &prev->nivcsw;
+       if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
+               switch_count = &prev->nvcsw;
+               if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
+                               unlikely(signal_pending(prev))))
+                       prev->state = TASK_RUNNING;
+               else
+                       deactivate_task(prev, rq);
+       }
 
-       retval = -EPERM;
-       if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
-           !capable(CAP_SYS_NICE))
-               goto out_unlock;
-       if ((current->euid != p->euid) && (current->euid != p->uid) &&
-           !capable(CAP_SYS_NICE))
-               goto out_unlock;
+#ifdef CONFIG_VSERVER_HARDCPU
+       if (!list_empty(&rq->hold_queue)) {
+               struct list_head *l, *n;
+               int ret;
+
+               vxi = NULL;
+               list_for_each_safe(l, n, &rq->hold_queue) {
+                       next = list_entry(l, task_t, run_list);
+                       if (vxi == next->vx_info)
+                               continue;
+
+                       vxi = next->vx_info;
+                       ret = vx_tokens_recalc(vxi);
+                       // tokens = vx_tokens_avail(next);
+
+                       if (ret > 0) {
+                               list_del(&next->run_list);
+                               next->state &= ~TASK_ONHOLD;
+                               // one less waiting
+                               vx_onhold_dec(vxi);
+                               array = rq->expired;
+                               next->prio = MAX_PRIO-1;
+                               enqueue_task(next, array);
+                               rq->nr_running++;
+                               if (next->static_prio < rq->best_expired_prio)
+                                       rq->best_expired_prio = next->static_prio;
+
+                               // printk("··· %8lu unhold %p [%d]\n", jiffies, next, next->prio);
+                               break;
+                       }
+                       if ((ret < 0) && (maxidle < ret))
+                               maxidle = ret;
+               }
+       }
+       rq->idle_tokens = -maxidle;
 
-       retval = security_task_setscheduler(p, policy, &lp);
-       if (retval)
-               goto out_unlock;
+pick_next:
+#endif
 
-       array = p->array;
-       if (array)
-               deactivate_task(p, task_rq(p));
-       retval = 0;
-       oldprio = p->prio;
-       __setscheduler(p, policy, lp.sched_priority);
-       if (array) {
-               __activate_task(p, task_rq(p));
+       cpu = smp_processor_id();
+       if (unlikely(!rq->nr_running)) {
+go_idle:
+               idle_balance(cpu, rq);
+               if (!rq->nr_running) {
+                       next = rq->idle;
+                       rq->expired_timestamp = 0;
+                       wake_sleeping_dependent(cpu, rq);
+                       /*
+                        * wake_sleeping_dependent() might have released
+                        * the runqueue, so break out if we got new
+                        * tasks meanwhile:
+                        */
+                       if (!rq->nr_running)
+                               goto switch_tasks;
+               }
+       } else {
+               if (dependent_sleeper(cpu, rq)) {
+                       schedstat_inc(rq, sched_goidle);
+                       next = rq->idle;
+                       goto switch_tasks;
+               }
                /*
-                * Reschedule if we are currently running on this runqueue and
-                * our priority decreased, or if we are not currently running on
-                * this runqueue and our priority is higher than the current's
+                * dependent_sleeper() releases and reacquires the runqueue
+                * lock, hence go into the idle loop if the rq went
+                * empty meanwhile:
                 */
-               if (task_running(rq, p)) {
-                       if (p->prio > oldprio)
-                               resched_task(rq->curr);
-               } else if (p->prio < rq->curr->prio)
-                       resched_task(rq->curr);
+               if (unlikely(!rq->nr_running))
+                       goto go_idle;
        }
 
-out_unlock:
-       task_rq_unlock(rq, &flags);
-out_unlock_tasklist:
-       read_unlock_irq(&tasklist_lock);
+       /* MEF: CKRM refactored code into rq_get_next_task(); make
+        * sure that when upgrading changes are reflected into both
+        * versions of the code.
+        */
+       next = rq_get_next_task(rq);
+
+#ifdef CONFIG_VSERVER_HARDCPU
+       vxi = next->vx_info;
+       if (vx_info_flags(vxi, VXF_SCHED_PAUSE|VXF_SCHED_HARD, 0)) {
+               int ret = vx_tokens_recalc(vxi);
+
+               if (unlikely(ret <= 0)) {
+                       if (ret && (rq->idle_tokens > -ret))
+                               rq->idle_tokens = -ret;
+                       __deactivate_task(next, rq);
+                       recalc_task_prio(next, now);
+                       // a new one on hold
+                       vx_onhold_inc(vxi);
+                       next->state |= TASK_ONHOLD;
+                       list_add_tail(&next->run_list, &rq->hold_queue);
+                       //printk("··· %8lu hold   %p [%d]\n", jiffies, next, next->prio);
+                       goto pick_next;
+               }
+       }
+#endif
 
-out_nounlock:
-       return retval;
-}
+       if (!rt_task(next) && next->activated > 0) {
+               unsigned long long delta = now - next->timestamp;
 
-/**
- * sys_sched_setscheduler - set/change the scheduler policy and RT priority
- * @pid: the pid in question.
- * @policy: new policy
- * @param: structure containing the new RT priority.
- */
-asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
-                                      struct sched_param __user *param)
-{
-       return setscheduler(pid, policy, param);
-}
+               if (next->activated == 1)
+                       delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
 
-/**
- * sys_sched_setparam - set/change the RT priority of a thread
- * @pid: the pid in question.
+               array = next->array;
+               dequeue_task(next, array);
+               recalc_task_prio(next, next->timestamp + delta);
+               enqueue_task(next, array);
+       }
+       next->activated = 0;
+switch_tasks:
+       prefetch(next);
+       clear_tsk_need_resched(prev);
+       rcu_qsctr_inc(task_cpu(prev));
+
+       prev->sleep_avg -= run_time;
+       if ((long)prev->sleep_avg <= 0) {
+               prev->sleep_avg = 0;
+               if (!(HIGH_CREDIT(prev) || LOW_CREDIT(prev)))
+                       prev->interactive_credit--;
+       }
+       prev->timestamp = prev->last_ran = now;
+
+       sched_info_switch(prev, next);
+       if (likely(prev != next)) {
+               next->timestamp = now;
+               rq->nr_switches++;
+               rq->curr = next;
+               ++*switch_count;
+
+               prepare_arch_switch(rq, next);
+               prev = context_switch(rq, prev, next);
+               barrier();
+
+               finish_task_switch(prev);
+       } else
+               spin_unlock_irq(&rq->lock);
+
+       reacquire_kernel_lock(current);
+       preempt_enable_no_resched();
+       if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
+               goto need_resched;
+
+       return;
+
+ dump_scheduling_disabled:
+       /* allow scheduling only if this is the dumping cpu */
+       if (dump_oncpu != smp_processor_id()+1) {
+               while (dump_oncpu)
+                       cpu_relax();
+       }
+       return;
+}
+
+EXPORT_SYMBOL(schedule);
+#ifdef CONFIG_PREEMPT
+/*
+ * this is is the entry point to schedule() from in-kernel preemption
+ * off of preempt_enable.  Kernel preemptions off return from interrupt
+ * occur there and call schedule directly.
+ */
+asmlinkage void __sched preempt_schedule(void)
+{
+       struct thread_info *ti = current_thread_info();
+
+       /*
+        * If there is a non-zero preempt_count or interrupts are disabled,
+        * we do not want to preempt the current task.  Just return..
+        */
+       if (unlikely(ti->preempt_count || irqs_disabled()))
+               return;
+
+need_resched:
+       ti->preempt_count = PREEMPT_ACTIVE;
+       schedule();
+       ti->preempt_count = 0;
+
+       /* we could miss a preemption opportunity between schedule and now */
+       barrier();
+       if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
+               goto need_resched;
+}
+
+EXPORT_SYMBOL(preempt_schedule);
+#endif /* CONFIG_PREEMPT */
+
+int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
+{
+       task_t *p = curr->task;
+       return try_to_wake_up(p, mode, sync);
+}
+
+EXPORT_SYMBOL(default_wake_function);
+
+/*
+ * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
+ * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
+ * number) then we wake all the non-exclusive tasks and one exclusive task.
+ *
+ * There are circumstances in which we can try to wake a task which has already
+ * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
+ * zero in this (rare) case, and we handle it by continuing to scan the queue.
+ */
+static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
+                            int nr_exclusive, int sync, void *key)
+{
+       struct list_head *tmp, *next;
+
+       list_for_each_safe(tmp, next, &q->task_list) {
+               wait_queue_t *curr;
+               unsigned flags;
+               curr = list_entry(tmp, wait_queue_t, task_list);
+               flags = curr->flags;
+               if (curr->func(curr, mode, sync, key) &&
+                   (flags & WQ_FLAG_EXCLUSIVE) &&
+                   !--nr_exclusive)
+                       break;
+       }
+}
+
+/**
+ * __wake_up - wake up threads blocked on a waitqueue.
+ * @q: the waitqueue
+ * @mode: which threads
+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
+ */
+void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
+                               int nr_exclusive, void *key)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(&q->lock, flags);
+       __wake_up_common(q, mode, nr_exclusive, 0, key);
+       spin_unlock_irqrestore(&q->lock, flags);
+}
+
+EXPORT_SYMBOL(__wake_up);
+
+/*
+ * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
+ */
+void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
+{
+       __wake_up_common(q, mode, 1, 0, NULL);
+}
+
+/**
+ * __wake_up - sync- wake up threads blocked on a waitqueue.
+ * @q: the waitqueue
+ * @mode: which threads
+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
+ *
+ * The sync wakeup differs that the waker knows that it will schedule
+ * away soon, so while the target thread will be woken up, it will not
+ * be migrated to another CPU - ie. the two threads are 'synchronized'
+ * with each other. This can prevent needless bouncing between CPUs.
+ *
+ * On UP it can prevent extra preemption.
+ */
+void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
+{
+       unsigned long flags;
+       int sync = 1;
+
+       if (unlikely(!q))
+               return;
+
+       if (unlikely(!nr_exclusive))
+               sync = 0;
+
+       spin_lock_irqsave(&q->lock, flags);
+       __wake_up_common(q, mode, nr_exclusive, sync, NULL);
+       spin_unlock_irqrestore(&q->lock, flags);
+}
+EXPORT_SYMBOL_GPL(__wake_up_sync);     /* For internal use only */
+
+void fastcall complete(struct completion *x)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(&x->wait.lock, flags);
+       x->done++;
+       __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
+                        1, 0, NULL);
+       spin_unlock_irqrestore(&x->wait.lock, flags);
+}
+EXPORT_SYMBOL(complete);
+
+void fastcall complete_all(struct completion *x)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(&x->wait.lock, flags);
+       x->done += UINT_MAX/2;
+       __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
+                        0, 0, NULL);
+       spin_unlock_irqrestore(&x->wait.lock, flags);
+}
+EXPORT_SYMBOL(complete_all);
+
+void fastcall __sched wait_for_completion(struct completion *x)
+{
+       might_sleep();
+       spin_lock_irq(&x->wait.lock);
+       if (!x->done) {
+               DECLARE_WAITQUEUE(wait, current);
+
+               wait.flags |= WQ_FLAG_EXCLUSIVE;
+               __add_wait_queue_tail(&x->wait, &wait);
+               do {
+                       __set_current_state(TASK_UNINTERRUPTIBLE);
+                       spin_unlock_irq(&x->wait.lock);
+                       schedule();
+                       spin_lock_irq(&x->wait.lock);
+               } while (!x->done);
+               __remove_wait_queue(&x->wait, &wait);
+       }
+       x->done--;
+       spin_unlock_irq(&x->wait.lock);
+}
+EXPORT_SYMBOL(wait_for_completion);
+
+#define        SLEEP_ON_VAR                                    \
+       unsigned long flags;                            \
+       wait_queue_t wait;                              \
+       init_waitqueue_entry(&wait, current);
+
+#define SLEEP_ON_HEAD                                  \
+       spin_lock_irqsave(&q->lock,flags);              \
+       __add_wait_queue(q, &wait);                     \
+       spin_unlock(&q->lock);
+
+#define        SLEEP_ON_TAIL                                   \
+       spin_lock_irq(&q->lock);                        \
+       __remove_wait_queue(q, &wait);                  \
+       spin_unlock_irqrestore(&q->lock, flags);
+
+#define SLEEP_ON_BKLCHECK                              \
+       if (unlikely(!kernel_locked()) &&               \
+           sleep_on_bkl_warnings < 10) {               \
+               sleep_on_bkl_warnings++;                \
+               WARN_ON(1);                             \
+       }
+
+static int sleep_on_bkl_warnings;
+
+void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
+{
+       SLEEP_ON_VAR
+
+       SLEEP_ON_BKLCHECK
+
+       current->state = TASK_INTERRUPTIBLE;
+
+       SLEEP_ON_HEAD
+       schedule();
+       SLEEP_ON_TAIL
+}
+
+EXPORT_SYMBOL(interruptible_sleep_on);
+
+long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
+{
+       SLEEP_ON_VAR
+
+       SLEEP_ON_BKLCHECK
+
+       current->state = TASK_INTERRUPTIBLE;
+
+       SLEEP_ON_HEAD
+       timeout = schedule_timeout(timeout);
+       SLEEP_ON_TAIL
+
+       return timeout;
+}
+
+EXPORT_SYMBOL(interruptible_sleep_on_timeout);
+
+long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
+{
+       SLEEP_ON_VAR
+
+       SLEEP_ON_BKLCHECK
+
+       current->state = TASK_UNINTERRUPTIBLE;
+
+       SLEEP_ON_HEAD
+       timeout = schedule_timeout(timeout);
+       SLEEP_ON_TAIL
+
+       return timeout;
+}
+
+EXPORT_SYMBOL(sleep_on_timeout);
+
+void set_user_nice(task_t *p, long nice)
+{
+       unsigned long flags;
+       prio_array_t *array;
+       runqueue_t *rq;
+       int old_prio, new_prio, delta;
+
+       if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
+               return;
+       /*
+        * We have to be careful, if called from sys_setpriority(),
+        * the task might be in the middle of scheduling on another CPU.
+        */
+       rq = task_rq_lock(p, &flags);
+       /*
+        * The RT priorities are set via setscheduler(), but we still
+        * allow the 'normal' nice value to be set - but as expected
+        * it wont have any effect on scheduling until the task is
+        * not SCHED_NORMAL:
+        */
+       if (rt_task(p)) {
+               p->static_prio = NICE_TO_PRIO(nice);
+               goto out_unlock;
+       }
+       array = p->array;
+       if (array)
+               dequeue_task(p, array);
+
+       old_prio = p->prio;
+       new_prio = NICE_TO_PRIO(nice);
+       delta = new_prio - old_prio;
+       p->static_prio = NICE_TO_PRIO(nice);
+       p->prio += delta;
+
+       if (array) {
+               enqueue_task(p, array);
+               /*
+                * If the task increased its priority or is running and
+                * lowered its priority, then reschedule its CPU:
+                */
+               if (delta < 0 || (delta > 0 && task_running(rq, p)))
+                       resched_task(rq->curr);
+       }
+out_unlock:
+       task_rq_unlock(rq, &flags);
+}
+
+EXPORT_SYMBOL(set_user_nice);
+
+#ifdef __ARCH_WANT_SYS_NICE
+
+/*
+ * sys_nice - change the priority of the current process.
+ * @increment: priority increment
+ *
+ * sys_setpriority is a more generic, but much slower function that
+ * does similar things.
+ */
+asmlinkage long sys_nice(int increment)
+{
+       int retval;
+       long nice;
+
+       /*
+        * Setpriority might change our priority at the same moment.
+        * We don't have to worry. Conceptually one call occurs first
+        * and we have a single winner.
+        */
+       if (increment < 0) {
+               if (vx_flags(VXF_IGNEG_NICE, 0))
+                       return 0;
+               if (!capable(CAP_SYS_NICE))
+                       return -EPERM;
+               if (increment < -40)
+                       increment = -40;
+       }
+       if (increment > 40)
+               increment = 40;
+
+       nice = PRIO_TO_NICE(current->static_prio) + increment;
+       if (nice < -20)
+               nice = -20;
+       if (nice > 19)
+               nice = 19;
+
+       retval = security_task_setnice(current, nice);
+       if (retval)
+               return retval;
+
+       set_user_nice(current, nice);
+       return 0;
+}
+
+#endif
+
+/**
+ * task_prio - return the priority value of a given task.
+ * @p: the task in question.
+ *
+ * This is the priority value as seen by users in /proc.
+ * RT tasks are offset by -200. Normal tasks are centered
+ * around 0, value goes from -16 to +15.
+ */
+int task_prio(const task_t *p)
+{
+       return p->prio - MAX_RT_PRIO;
+}
+
+/**
+ * task_nice - return the nice value of a given task.
+ * @p: the task in question.
+ */
+int task_nice(const task_t *p)
+{
+       return TASK_NICE(p);
+}
+
+/**
+ * idle_cpu - is a given cpu idle currently?
+ * @cpu: the processor in question.
+ */
+int idle_cpu(int cpu)
+{
+       return cpu_curr(cpu) == cpu_rq(cpu)->idle;
+}
+
+EXPORT_SYMBOL_GPL(idle_cpu);
+
+/**
+ * find_process_by_pid - find a process with a matching PID value.
+ * @pid: the pid in question.
+ */
+static inline task_t *find_process_by_pid(pid_t pid)
+{
+       return pid ? find_task_by_pid(pid) : current;
+}
+
+/* Actually do priority change: must hold rq lock. */
+static void __setscheduler(struct task_struct *p, int policy, int prio)
+{
+       BUG_ON(p->array);
+       p->policy = policy;
+       p->rt_priority = prio;
+       if (policy != SCHED_NORMAL)
+               p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
+       else
+               p->prio = p->static_prio;
+}
+
+/*
+ * setscheduler - change the scheduling policy and/or RT priority of a thread.
+ */
+static int setscheduler(pid_t pid, int policy, struct sched_param __user *param)
+{
+       struct sched_param lp;
+       int retval = -EINVAL;
+       int oldprio, oldpolicy = -1;
+       prio_array_t *array;
+       unsigned long flags;
+       runqueue_t *rq;
+       task_t *p;
+
+       if (!param || pid < 0)
+               goto out_nounlock;
+
+       retval = -EFAULT;
+       if (copy_from_user(&lp, param, sizeof(struct sched_param)))
+               goto out_nounlock;
+
+       /*
+        * We play safe to avoid deadlocks.
+        */
+       read_lock_irq(&tasklist_lock);
+
+       p = find_process_by_pid(pid);
+
+       retval = -ESRCH;
+       if (!p)
+               goto out_unlock;
+recheck:
+       /* double check policy once rq lock held */
+       if (policy < 0)
+               policy = oldpolicy = p->policy;
+       else {
+               retval = -EINVAL;
+               if (policy != SCHED_FIFO && policy != SCHED_RR &&
+                               policy != SCHED_NORMAL)
+                       goto out_unlock;
+       }
+       profile_hit(SCHED_PROFILING, __builtin_return_address(0));
+
+       /*
+        * Valid priorities for SCHED_FIFO and SCHED_RR are
+        * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
+        */
+       retval = -EINVAL;
+       if (lp.sched_priority < 0 || lp.sched_priority > MAX_USER_RT_PRIO-1)
+               goto out_unlock;
+       if ((policy == SCHED_NORMAL) != (lp.sched_priority == 0))
+               goto out_unlock;
+
+       retval = -EPERM;
+       if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
+           !capable(CAP_SYS_NICE))
+               goto out_unlock;
+       if ((current->euid != p->euid) && (current->euid != p->uid) &&
+           !capable(CAP_SYS_NICE))
+               goto out_unlock;
+
+       retval = security_task_setscheduler(p, policy, &lp);
+       if (retval)
+               goto out_unlock;
+
+       /*
+        * To be able to change p->policy safely, the apropriate
+        * runqueue lock must be held.
+        */
+       rq = task_rq_lock(p, &flags);
+       /* recheck policy now with rq lock held */
+       if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
+               policy = oldpolicy = -1;
+               task_rq_unlock(rq, &flags);
+               goto recheck;
+       }
+       array = p->array;
+       if (array)
+               deactivate_task(p, task_rq(p));
+       retval = 0;
+       oldprio = p->prio;
+       __setscheduler(p, policy, lp.sched_priority);
+       if (array) {
+               vx_activate_task(p);
+               __activate_task(p, task_rq(p));
+               /*
+                * Reschedule if we are currently running on this runqueue and
+                * our priority decreased, or if we are not currently running on
+                * this runqueue and our priority is higher than the current's
+                */
+               if (task_running(rq, p)) {
+                       if (p->prio > oldprio)
+                               resched_task(rq->curr);
+               } else if (TASK_PREEMPTS_CURR(p, rq))
+                       resched_task(rq->curr);
+       }
+       task_rq_unlock(rq, &flags);
+out_unlock:
+       read_unlock_irq(&tasklist_lock);
+out_nounlock:
+       return retval;
+}
+
+/**
+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
+ * @pid: the pid in question.
+ * @policy: new policy
+ * @param: structure containing the new RT priority.
+ */
+asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
+                                      struct sched_param __user *param)
+{
+       return setscheduler(pid, policy, param);
+}
+
+/**
+ * sys_sched_setparam - set/change the RT priority of a thread
+ * @pid: the pid in question.
  * @param: structure containing the new RT priority.
  */
-asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
+asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
+{
+       return setscheduler(pid, -1, param);
+}
+
+/**
+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
+ * @pid: the pid in question.
+ */
+asmlinkage long sys_sched_getscheduler(pid_t pid)
+{
+       int retval = -EINVAL;
+       task_t *p;
+
+       if (pid < 0)
+               goto out_nounlock;
+
+       retval = -ESRCH;
+       read_lock(&tasklist_lock);
+       p = find_process_by_pid(pid);
+       if (p) {
+               retval = security_task_getscheduler(p);
+               if (!retval)
+                       retval = p->policy;
+       }
+       read_unlock(&tasklist_lock);
+
+out_nounlock:
+       return retval;
+}
+
+/**
+ * sys_sched_getscheduler - get the RT priority of a thread
+ * @pid: the pid in question.
+ * @param: structure containing the RT priority.
+ */
+asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
+{
+       struct sched_param lp;
+       int retval = -EINVAL;
+       task_t *p;
+
+       if (!param || pid < 0)
+               goto out_nounlock;
+
+       read_lock(&tasklist_lock);
+       p = find_process_by_pid(pid);
+       retval = -ESRCH;
+       if (!p)
+               goto out_unlock;
+
+       retval = security_task_getscheduler(p);
+       if (retval)
+               goto out_unlock;
+
+       lp.sched_priority = p->rt_priority;
+       read_unlock(&tasklist_lock);
+
+       /*
+        * This one might sleep, we cannot do it with a spinlock held ...
+        */
+       retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
+
+out_nounlock:
+       return retval;
+
+out_unlock:
+       read_unlock(&tasklist_lock);
+       return retval;
+}
+
+long sched_setaffinity(pid_t pid, cpumask_t new_mask)
+{
+       task_t *p;
+       int retval;
+
+       lock_cpu_hotplug();
+       read_lock(&tasklist_lock);
+
+       p = find_process_by_pid(pid);
+       if (!p) {
+               read_unlock(&tasklist_lock);
+               unlock_cpu_hotplug();
+               return -ESRCH;
+       }
+
+       /*
+        * It is not safe to call set_cpus_allowed with the
+        * tasklist_lock held.  We will bump the task_struct's
+        * usage count and then drop tasklist_lock.
+        */
+       get_task_struct(p);
+       read_unlock(&tasklist_lock);
+
+       retval = -EPERM;
+       if ((current->euid != p->euid) && (current->euid != p->uid) &&
+                       !capable(CAP_SYS_NICE))
+               goto out_unlock;
+
+       retval = set_cpus_allowed(p, new_mask);
+
+out_unlock:
+       put_task_struct(p);
+       unlock_cpu_hotplug();
+       return retval;
+}
+
+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
+                            cpumask_t *new_mask)
+{
+       if (len < sizeof(cpumask_t)) {
+               memset(new_mask, 0, sizeof(cpumask_t));
+       } else if (len > sizeof(cpumask_t)) {
+               len = sizeof(cpumask_t);
+       }
+       return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
+}
+
+/**
+ * sys_sched_setaffinity - set the cpu affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to the new cpu mask
+ */
+asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
+                                     unsigned long __user *user_mask_ptr)
+{
+       cpumask_t new_mask;
+       int retval;
+
+       retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
+       if (retval)
+               return retval;
+
+       return sched_setaffinity(pid, new_mask);
+}
+
+/*
+ * Represents all cpu's present in the system
+ * In systems capable of hotplug, this map could dynamically grow
+ * as new cpu's are detected in the system via any platform specific
+ * method, such as ACPI for e.g.
+ */
+
+cpumask_t cpu_present_map;
+EXPORT_SYMBOL(cpu_present_map);
+
+#ifndef CONFIG_SMP
+cpumask_t cpu_online_map = CPU_MASK_ALL;
+cpumask_t cpu_possible_map = CPU_MASK_ALL;
+#endif
+
+long sched_getaffinity(pid_t pid, cpumask_t *mask)
+{
+       int retval;
+       task_t *p;
+
+       lock_cpu_hotplug();
+       read_lock(&tasklist_lock);
+
+       retval = -ESRCH;
+       p = find_process_by_pid(pid);
+       if (!p)
+               goto out_unlock;
+
+       retval = 0;
+       cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
+
+out_unlock:
+       read_unlock(&tasklist_lock);
+       unlock_cpu_hotplug();
+       if (retval)
+               return retval;
+
+       return 0;
+}
+
+/**
+ * sys_sched_getaffinity - get the cpu affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to hold the current cpu mask
+ */
+asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
+                                     unsigned long __user *user_mask_ptr)
+{
+       int ret;
+       cpumask_t mask;
+
+       if (len < sizeof(cpumask_t))
+               return -EINVAL;
+
+       ret = sched_getaffinity(pid, &mask);
+       if (ret < 0)
+               return ret;
+
+       if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
+               return -EFAULT;
+
+       return sizeof(cpumask_t);
+}
+
+/**
+ * sys_sched_yield - yield the current processor to other threads.
+ *
+ * this function yields the current CPU by moving the calling thread
+ * to the expired array. If there are no other threads running on this
+ * CPU then this function will return.
+ */
+asmlinkage long sys_sched_yield(void)
+{
+       runqueue_t *rq = this_rq_lock();
+       prio_array_t *array = current->array;
+       prio_array_t *target = rq_expired(current,rq);
+
+       schedstat_inc(rq, yld_cnt);
+       /*
+        * We implement yielding by moving the task into the expired
+        * queue.
+        *
+        * (special rule: RT tasks will just roundrobin in the active
+        *  array.)
+        */
+       if (rt_task(current))
+               target = rq_active(current,rq);
+
+#warning MEF need to fix up SCHEDSTATS code, but I hope this is fixed by the 2.6.10 CKRM patch
+#ifdef CONFIG_SCHEDSTATS
+       if (current->array->nr_active == 1) {
+               schedstat_inc(rq, yld_act_empty);
+               if (!rq->expired->nr_active)
+                       schedstat_inc(rq, yld_both_empty);
+       } else if (!rq->expired->nr_active)
+               schedstat_inc(rq, yld_exp_empty);
+#endif
+
+       dequeue_task(current, array);
+       enqueue_task(current, target);
+
+       /*
+        * Since we are going to call schedule() anyway, there's
+        * no need to preempt or enable interrupts:
+        */
+       _raw_spin_unlock(&rq->lock);
+       preempt_enable_no_resched();
+
+       schedule();
+
+       return 0;
+}
+
+void __sched __cond_resched(void)
+{
+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
+       __might_sleep(__FILE__, __LINE__, 0);
+#endif
+       /*
+         * The system_state check is somewhat ugly but we might be
+         * called during early boot when we are not yet ready to reschedule.
+         */
+         if (need_resched() && system_state >= SYSTEM_BOOTING_SCHEDULER_OK) {
+               set_current_state(TASK_RUNNING);
+               schedule();
+       }
+
+}
+
+EXPORT_SYMBOL(__cond_resched);
+
+void __sched __cond_resched_lock(spinlock_t * lock)
+{
+        if (need_resched()) {
+                _raw_spin_unlock(lock);
+                preempt_enable_no_resched();
+                set_current_state(TASK_RUNNING);
+                schedule();
+                spin_lock(lock);
+        }
+}
+
+EXPORT_SYMBOL(__cond_resched_lock);
+
+
+/**
+ * yield - yield the current processor to other threads.
+ *
+ * this is a shortcut for kernel-space yielding - it marks the
+ * thread runnable and calls sys_sched_yield().
+ */
+void __sched yield(void)
+{
+       set_current_state(TASK_RUNNING);
+       sys_sched_yield();
+}
+
+EXPORT_SYMBOL(yield);
+
+/*
+ * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
+ * that process accounting knows that this is a task in IO wait state.
+ *
+ * But don't do that if it is a deliberate, throttling IO wait (this task
+ * has set its backing_dev_info: the queue against which it should throttle)
+ */
+void __sched io_schedule(void)
+{
+       struct runqueue *rq = this_rq();
+
+       atomic_inc(&rq->nr_iowait);
+       schedule();
+       atomic_dec(&rq->nr_iowait);
+}
+
+EXPORT_SYMBOL(io_schedule);
+
+long __sched io_schedule_timeout(long timeout)
+{
+       struct runqueue *rq = this_rq();
+       long ret;
+
+       atomic_inc(&rq->nr_iowait);
+       ret = schedule_timeout(timeout);
+       atomic_dec(&rq->nr_iowait);
+       return ret;
+}
+
+/**
+ * sys_sched_get_priority_max - return maximum RT priority.
+ * @policy: scheduling class.
+ *
+ * this syscall returns the maximum rt_priority that can be used
+ * by a given scheduling class.
+ */
+asmlinkage long sys_sched_get_priority_max(int policy)
+{
+       int ret = -EINVAL;
+
+       switch (policy) {
+       case SCHED_FIFO:
+       case SCHED_RR:
+               ret = MAX_USER_RT_PRIO-1;
+               break;
+       case SCHED_NORMAL:
+               ret = 0;
+               break;
+       }
+       return ret;
+}
+
+/**
+ * sys_sched_get_priority_min - return minimum RT priority.
+ * @policy: scheduling class.
+ *
+ * this syscall returns the minimum rt_priority that can be used
+ * by a given scheduling class.
+ */
+asmlinkage long sys_sched_get_priority_min(int policy)
 {
-       return setscheduler(pid, -1, param);
+       int ret = -EINVAL;
+
+       switch (policy) {
+       case SCHED_FIFO:
+       case SCHED_RR:
+               ret = 1;
+               break;
+       case SCHED_NORMAL:
+               ret = 0;
+       }
+       return ret;
 }
 
 /**
- * sys_sched_getscheduler - get the policy (scheduling class) of a thread
- * @pid: the pid in question.
+ * sys_sched_rr_get_interval - return the default timeslice of a process.
+ * @pid: pid of the process.
+ * @interval: userspace pointer to the timeslice value.
+ *
+ * this syscall writes the default timeslice value of a given process
+ * into the user-space timespec buffer. A value of '0' means infinity.
  */
-asmlinkage long sys_sched_getscheduler(pid_t pid)
+asmlinkage
+long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
 {
        int retval = -EINVAL;
+       struct timespec t;
        task_t *p;
 
        if (pid < 0)
@@ -2249,713 +4386,1121 @@ asmlinkage long sys_sched_getscheduler(pid_t pid)
        retval = -ESRCH;
        read_lock(&tasklist_lock);
        p = find_process_by_pid(pid);
-       if (p) {
-               retval = security_task_getscheduler(p);
-               if (!retval)
-                       retval = p->policy;
+       if (!p)
+               goto out_unlock;
+
+       retval = security_task_getscheduler(p);
+       if (retval)
+               goto out_unlock;
+
+       jiffies_to_timespec(p->policy & SCHED_FIFO ?
+                               0 : task_timeslice(p), &t);
+       read_unlock(&tasklist_lock);
+       retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
+out_nounlock:
+       return retval;
+out_unlock:
+       read_unlock(&tasklist_lock);
+       return retval;
+}
+
+static inline struct task_struct *eldest_child(struct task_struct *p)
+{
+       if (list_empty(&p->children)) return NULL;
+       return list_entry(p->children.next,struct task_struct,sibling);
+}
+
+static inline struct task_struct *older_sibling(struct task_struct *p)
+{
+       if (p->sibling.prev==&p->parent->children) return NULL;
+       return list_entry(p->sibling.prev,struct task_struct,sibling);
+}
+
+static inline struct task_struct *younger_sibling(struct task_struct *p)
+{
+       if (p->sibling.next==&p->parent->children) return NULL;
+       return list_entry(p->sibling.next,struct task_struct,sibling);
+}
+
+static void show_task(task_t * p)
+{
+       task_t *relative;
+       unsigned state;
+       unsigned long free = 0;
+       static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
+
+       printk("%-13.13s ", p->comm);
+       state = p->state ? __ffs(p->state) + 1 : 0;
+       if (state < ARRAY_SIZE(stat_nam))
+               printk(stat_nam[state]);
+       else
+               printk("?");
+#if (BITS_PER_LONG == 32)
+       if (state == TASK_RUNNING)
+               printk(" running ");
+       else
+               printk(" %08lX ", thread_saved_pc(p));
+#else
+       if (state == TASK_RUNNING)
+               printk("  running task   ");
+       else
+               printk(" %016lx ", thread_saved_pc(p));
+#endif
+#ifdef CONFIG_DEBUG_STACK_USAGE
+       {
+               unsigned long * n = (unsigned long *) (p->thread_info+1);
+               while (!*n)
+                       n++;
+               free = (unsigned long) n - (unsigned long)(p->thread_info+1);
        }
+#endif
+       printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
+       if ((relative = eldest_child(p)))
+               printk("%5d ", relative->pid);
+       else
+               printk("      ");
+       if ((relative = younger_sibling(p)))
+               printk("%7d", relative->pid);
+       else
+               printk("       ");
+       if ((relative = older_sibling(p)))
+               printk(" %5d", relative->pid);
+       else
+               printk("      ");
+       if (!p->mm)
+               printk(" (L-TLB)\n");
+       else
+               printk(" (NOTLB)\n");
+
+       if (state != TASK_RUNNING)
+               show_stack(p, NULL);
+}
+
+void show_state(void)
+{
+       task_t *g, *p;
+
+#if (BITS_PER_LONG == 32)
+       printk("\n"
+              "                                               sibling\n");
+       printk("  task             PC      pid father child younger older\n");
+#else
+       printk("\n"
+              "                                                       sibling\n");
+       printk("  task                 PC          pid father child younger older\n");
+#endif
+       read_lock(&tasklist_lock);
+       do_each_thread(g, p) {
+               /*
+                * reset the NMI-timeout, listing all files on a slow
+                * console might take alot of time:
+                */
+               touch_nmi_watchdog();
+               show_task(p);
+       } while_each_thread(g, p);
+
        read_unlock(&tasklist_lock);
+}
+
+void __devinit init_idle(task_t *idle, int cpu)
+{
+       runqueue_t *rq = cpu_rq(cpu);
+       unsigned long flags;
+
+       idle->sleep_avg = 0;
+       idle->interactive_credit = 0;
+       idle->array = NULL;
+       idle->prio = MAX_PRIO;
+       idle->state = TASK_RUNNING;
+       set_task_cpu(idle, cpu);
+
+#ifdef CONFIG_CKRM_CPU_SCHEDULE
+       cpu_demand_event(&(idle->demand_stat),CPU_DEMAND_INIT,0);
+       idle->cpu_class = get_default_cpu_class();
+       idle->array = NULL;
+#endif
+
+       spin_lock_irqsave(&rq->lock, flags);
+       rq->curr = rq->idle = idle;
+       set_tsk_need_resched(idle);
+       spin_unlock_irqrestore(&rq->lock, flags);
+
+       /* Set the preempt count _outside_ the spinlocks! */
+#ifdef CONFIG_PREEMPT
+       idle->thread_info->preempt_count = (idle->lock_depth >= 0);
+#else
+       idle->thread_info->preempt_count = 0;
+#endif
+}
+
+/*
+ * In a system that switches off the HZ timer nohz_cpu_mask
+ * indicates which cpus entered this state. This is used
+ * in the rcu update to wait only for active cpus. For system
+ * which do not switch off the HZ timer nohz_cpu_mask should
+ * always be CPU_MASK_NONE.
+ */
+cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
+
+#ifdef CONFIG_SMP
+/*
+ * This is how migration works:
+ *
+ * 1) we queue a migration_req_t structure in the source CPU's
+ *    runqueue and wake up that CPU's migration thread.
+ * 2) we down() the locked semaphore => thread blocks.
+ * 3) migration thread wakes up (implicitly it forces the migrated
+ *    thread off the CPU)
+ * 4) it gets the migration request and checks whether the migrated
+ *    task is still in the wrong runqueue.
+ * 5) if it's in the wrong runqueue then the migration thread removes
+ *    it and puts it into the right queue.
+ * 6) migration thread up()s the semaphore.
+ * 7) we wake up and the migration is done.
+ */
+
+/*
+ * Change a given task's CPU affinity. Migrate the thread to a
+ * proper CPU and schedule it away if the CPU it's executing on
+ * is removed from the allowed bitmask.
+ *
+ * NOTE: the caller must have a valid reference to the task, the
+ * task must not exit() & deallocate itself prematurely.  The
+ * call is not atomic; no spinlocks may be held.
+ */
+int set_cpus_allowed(task_t *p, cpumask_t new_mask)
+{
+       unsigned long flags;
+       int ret = 0;
+       migration_req_t req;
+       runqueue_t *rq;
+
+       rq = task_rq_lock(p, &flags);
+       if (!cpus_intersects(new_mask, cpu_online_map)) {
+               ret = -EINVAL;
+               goto out;
+       }
+
+       p->cpus_allowed = new_mask;
+       /* Can the task run on the task's current CPU? If so, we're done */
+       if (cpu_isset(task_cpu(p), new_mask))
+               goto out;
+
+       if (migrate_task(p, any_online_cpu(new_mask), &req)) {
+               /* Need help from migration thread: drop lock and wait. */
+               task_rq_unlock(rq, &flags);
+               wake_up_process(rq->migration_thread);
+               wait_for_completion(&req.done);
+               tlb_migrate_finish(p->mm);
+               return 0;
+       }
+out:
+       task_rq_unlock(rq, &flags);
+       return ret;
+}
+
+EXPORT_SYMBOL_GPL(set_cpus_allowed);
+
+/*
+ * Move (not current) task off this cpu, onto dest cpu.  We're doing
+ * this because either it can't run here any more (set_cpus_allowed()
+ * away from this CPU, or CPU going down), or because we're
+ * attempting to rebalance this task on exec (sched_exec).
+ *
+ * So we race with normal scheduler movements, but that's OK, as long
+ * as the task is no longer on this CPU.
+ */
+static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
+{
+       runqueue_t *rq_dest, *rq_src;
+
+       if (unlikely(cpu_is_offline(dest_cpu)))
+               return;
+
+       rq_src = cpu_rq(src_cpu);
+       rq_dest = cpu_rq(dest_cpu);
+
+       double_rq_lock(rq_src, rq_dest);
+       /* Already moved. */
+       if (task_cpu(p) != src_cpu)
+               goto out;
+       /* Affinity changed (again). */
+       if (!cpu_isset(dest_cpu, p->cpus_allowed))
+               goto out;
+
+       if (p->array) {
+               /*
+                * Sync timestamp with rq_dest's before activating.
+                * The same thing could be achieved by doing this step
+                * afterwards, and pretending it was a local activate.
+                * This way is cleaner and logically correct.
+                */
+               p->timestamp = p->timestamp - rq_src->timestamp_last_tick
+                               + rq_dest->timestamp_last_tick;
+               deactivate_task(p, rq_src);
+               set_task_cpu(p, dest_cpu);
+               activate_task(p, rq_dest, 0);
+               if (TASK_PREEMPTS_CURR(p, rq_dest))
+                       resched_task(rq_dest->curr);
+       } else
+               set_task_cpu(p, dest_cpu);
 
-out_nounlock:
-       return retval;
+out:
+       double_rq_unlock(rq_src, rq_dest);
 }
 
-/**
- * sys_sched_getscheduler - get the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the RT priority.
+/*
+ * migration_thread - this is a highprio system thread that performs
+ * thread migration by bumping thread off CPU then 'pushing' onto
+ * another runqueue.
  */
-asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
+static int migration_thread(void * data)
 {
-       struct sched_param lp;
-       int retval = -EINVAL;
-       task_t *p;
+       runqueue_t *rq;
+       int cpu = (long)data;
 
-       if (!param || pid < 0)
-               goto out_nounlock;
+       rq = cpu_rq(cpu);
+       BUG_ON(rq->migration_thread != current);
 
-       read_lock(&tasklist_lock);
-       p = find_process_by_pid(pid);
-       retval = -ESRCH;
-       if (!p)
-               goto out_unlock;
+       set_current_state(TASK_INTERRUPTIBLE);
+       while (!kthread_should_stop()) {
+               struct list_head *head;
+               migration_req_t *req;
 
-       retval = security_task_getscheduler(p);
-       if (retval)
-               goto out_unlock;
+               if (current->flags & PF_FREEZE)
+                       refrigerator(PF_FREEZE);
 
-       lp.sched_priority = p->rt_priority;
-       read_unlock(&tasklist_lock);
+               spin_lock_irq(&rq->lock);
 
-       /*
-        * This one might sleep, we cannot do it with a spinlock held ...
-        */
-       retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
+               if (cpu_is_offline(cpu)) {
+                       spin_unlock_irq(&rq->lock);
+                       goto wait_to_die;
+               }
 
-out_nounlock:
-       return retval;
+               if (rq->active_balance) {
+                       active_load_balance(rq, cpu);
+                       rq->active_balance = 0;
+               }
 
-out_unlock:
-       read_unlock(&tasklist_lock);
-       return retval;
+               head = &rq->migration_queue;
+
+               if (list_empty(head)) {
+                       spin_unlock_irq(&rq->lock);
+                       schedule();
+                       set_current_state(TASK_INTERRUPTIBLE);
+                       continue;
+               }
+               req = list_entry(head->next, migration_req_t, list);
+               list_del_init(head->next);
+
+               if (req->type == REQ_MOVE_TASK) {
+                       spin_unlock(&rq->lock);
+                       __migrate_task(req->task, smp_processor_id(),
+                                       req->dest_cpu);
+                       local_irq_enable();
+               } else if (req->type == REQ_SET_DOMAIN) {
+                       rq->sd = req->sd;
+                       spin_unlock_irq(&rq->lock);
+               } else {
+                       spin_unlock_irq(&rq->lock);
+                       WARN_ON(1);
+               }
+
+               complete(&req->done);
+       }
+       __set_current_state(TASK_RUNNING);
+       return 0;
+
+wait_to_die:
+       /* Wait for kthread_stop */
+       set_current_state(TASK_INTERRUPTIBLE);
+       while (!kthread_should_stop()) {
+               schedule();
+               set_current_state(TASK_INTERRUPTIBLE);
+       }
+       __set_current_state(TASK_RUNNING);
+       return 0;
 }
 
-/**
- * sys_sched_setaffinity - set the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to the new cpu mask
- */
-asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
-                                     unsigned long __user *user_mask_ptr)
+#ifdef CONFIG_HOTPLUG_CPU
+/* Figure out where task on dead CPU should go, use force if neccessary. */
+static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
 {
-       cpumask_t new_mask;
-       int retval;
-       task_t *p;
+       int dest_cpu;
+       cpumask_t mask;
 
-       if (len < sizeof(new_mask))
-               return -EINVAL;
+       /* On same node? */
+       mask = node_to_cpumask(cpu_to_node(dead_cpu));
+       cpus_and(mask, mask, tsk->cpus_allowed);
+       dest_cpu = any_online_cpu(mask);
 
-       if (copy_from_user(&new_mask, user_mask_ptr, sizeof(new_mask)))
-               return -EFAULT;
+       /* On any allowed CPU? */
+       if (dest_cpu == NR_CPUS)
+               dest_cpu = any_online_cpu(tsk->cpus_allowed);
 
-       lock_cpu_hotplug();
-       read_lock(&tasklist_lock);
+       /* No more Mr. Nice Guy. */
+       if (dest_cpu == NR_CPUS) {
+               cpus_setall(tsk->cpus_allowed);
+               dest_cpu = any_online_cpu(tsk->cpus_allowed);
 
-       p = find_process_by_pid(pid);
-       if (!p) {
-               read_unlock(&tasklist_lock);
-               unlock_cpu_hotplug();
-               return -ESRCH;
+               /*
+                * Don't tell them about moving exiting tasks or
+                * kernel threads (both mm NULL), since they never
+                * leave kernel.
+                */
+               if (tsk->mm && printk_ratelimit())
+                       printk(KERN_INFO "process %d (%s) no "
+                              "longer affine to cpu%d\n",
+                              tsk->pid, tsk->comm, dead_cpu);
        }
+       __migrate_task(tsk, dead_cpu, dest_cpu);
+}
 
-       /*
-        * It is not safe to call set_cpus_allowed with the
-        * tasklist_lock held.  We will bump the task_struct's
-        * usage count and then drop tasklist_lock.
-        */
-       get_task_struct(p);
-       read_unlock(&tasklist_lock);
+/* Run through task list and migrate tasks from the dead cpu. */
+static void migrate_live_tasks(int src_cpu)
+{
+       struct task_struct *tsk, *t;
 
-       retval = -EPERM;
-       if ((current->euid != p->euid) && (current->euid != p->uid) &&
-                       !capable(CAP_SYS_NICE))
-               goto out_unlock;
+       write_lock_irq(&tasklist_lock);
 
-       retval = set_cpus_allowed(p, new_mask);
+       do_each_thread(t, tsk) {
+               if (tsk == current)
+                       continue;
 
-out_unlock:
-       put_task_struct(p);
-       unlock_cpu_hotplug();
-       return retval;
+               if (task_cpu(tsk) == src_cpu)
+                       move_task_off_dead_cpu(src_cpu, tsk);
+       } while_each_thread(t, tsk);
+
+       write_unlock_irq(&tasklist_lock);
 }
 
-/**
- * sys_sched_getaffinity - get the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to hold the current cpu mask
+/* Schedules idle task to be the next runnable task on current CPU.
+ * It does so by boosting its priority to highest possible and adding it to
+ * the _front_ of runqueue. Used by CPU offline code.
  */
-asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
-                                     unsigned long __user *user_mask_ptr)
+void sched_idle_next(void)
 {
-       unsigned int real_len;
-       cpumask_t mask;
-       int retval;
-       task_t *p;
-
-       real_len = sizeof(mask);
-       if (len < real_len)
-               return -EINVAL;
+       int cpu = smp_processor_id();
+       runqueue_t *rq = this_rq();
+       struct task_struct *p = rq->idle;
+       unsigned long flags;
 
-       read_lock(&tasklist_lock);
+       /* cpu has to be offline */
+       BUG_ON(cpu_online(cpu));
 
-       retval = -ESRCH;
-       p = find_process_by_pid(pid);
-       if (!p)
-               goto out_unlock;
+       /* Strictly not necessary since rest of the CPUs are stopped by now
+        * and interrupts disabled on current cpu.
+        */
+       spin_lock_irqsave(&rq->lock, flags);
 
-       retval = 0;
-       cpus_and(mask, p->cpus_allowed, cpu_possible_map);
+       __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
+       /* Add idle task to _front_ of it's priority queue */
+       __activate_idle_task(p, rq);
 
-out_unlock:
-       read_unlock(&tasklist_lock);
-       if (retval)
-               return retval;
-       if (copy_to_user(user_mask_ptr, &mask, real_len))
-               return -EFAULT;
-       return real_len;
+       spin_unlock_irqrestore(&rq->lock, flags);
 }
 
-/**
- * sys_sched_yield - yield the current processor to other threads.
- *
- * this function yields the current CPU by moving the calling thread
- * to the expired array. If there are no other threads running on this
- * CPU then this function will return.
- */
-asmlinkage long sys_sched_yield(void)
+static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
 {
-       runqueue_t *rq = this_rq_lock();
-       prio_array_t *array = current->array;
+       struct runqueue *rq = cpu_rq(dead_cpu);
+
+       /* Must be exiting, otherwise would be on tasklist. */
+       BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
+
+       /* Cannot have done final schedule yet: would have vanished. */
+       BUG_ON(tsk->flags & PF_DEAD);
+
+       get_task_struct(tsk);
 
        /*
-        * We implement yielding by moving the task into the expired
-        * queue.
-        *
-        * (special rule: RT tasks will just roundrobin in the active
-        *  array.)
-        */
-       if (likely(!rt_task(current))) {
-               dequeue_task(current, array);
-               enqueue_task(current, rq->expired);
-       } else {
-               list_del(&current->run_list);
-               list_add_tail(&current->run_list, array->queue + current->prio);
-       }
-       /*
-        * Since we are going to call schedule() anyway, there's
-        * no need to preempt:
+        * Drop lock around migration; if someone else moves it,
+        * that's OK.  No task can be added to this CPU, so iteration is
+        * fine.
         */
-       _raw_spin_unlock(&rq->lock);
-       preempt_enable_no_resched();
+       spin_unlock_irq(&rq->lock);
+       move_task_off_dead_cpu(dead_cpu, tsk);
+       spin_lock_irq(&rq->lock);
 
-       schedule();
+       put_task_struct(tsk);
+}
 
-       return 0;
+/* release_task() removes task from tasklist, so we won't find dead tasks. */
+static void migrate_dead_tasks(unsigned int dead_cpu)
+{
+       unsigned arr, i;
+       struct runqueue *rq = cpu_rq(dead_cpu);
+
+       for (arr = 0; arr < 2; arr++) {
+               for (i = 0; i < MAX_PRIO; i++) {
+                       struct list_head *list = &rq->arrays[arr].queue[i];
+                       while (!list_empty(list))
+                               migrate_dead(dead_cpu,
+                                            list_entry(list->next, task_t,
+                                                       run_list));
+               }
+       }
 }
+#endif /* CONFIG_HOTPLUG_CPU */
 
-void __sched __cond_resched(void)
+/*
+ * migration_call - callback that gets triggered when a CPU is added.
+ * Here we can start up the necessary migration thread for the new CPU.
+ */
+static int migration_call(struct notifier_block *nfb, unsigned long action,
+                         void *hcpu)
 {
-       set_current_state(TASK_RUNNING);
-       schedule();
+       int cpu = (long)hcpu;
+       struct task_struct *p;
+       struct runqueue *rq;
+       unsigned long flags;
+
+       switch (action) {
+       case CPU_UP_PREPARE:
+               p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
+               if (IS_ERR(p))
+                       return NOTIFY_BAD;
+               p->flags |= PF_NOFREEZE;
+               kthread_bind(p, cpu);
+               /* Must be high prio: stop_machine expects to yield to it. */
+               rq = task_rq_lock(p, &flags);
+               __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
+               task_rq_unlock(rq, &flags);
+               cpu_rq(cpu)->migration_thread = p;
+               break;
+       case CPU_ONLINE:
+               /* Strictly unneccessary, as first user will wake it. */
+               wake_up_process(cpu_rq(cpu)->migration_thread);
+               break;
+#ifdef CONFIG_HOTPLUG_CPU
+       case CPU_UP_CANCELED:
+               /* Unbind it from offline cpu so it can run.  Fall thru. */
+               kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
+               kthread_stop(cpu_rq(cpu)->migration_thread);
+               cpu_rq(cpu)->migration_thread = NULL;
+               break;
+       case CPU_DEAD:
+               migrate_live_tasks(cpu);
+               rq = cpu_rq(cpu);
+               kthread_stop(rq->migration_thread);
+               rq->migration_thread = NULL;
+               /* Idle task back to normal (off runqueue, low prio) */
+               rq = task_rq_lock(rq->idle, &flags);
+               deactivate_task(rq->idle, rq);
+               rq->idle->static_prio = MAX_PRIO;
+               __setscheduler(rq->idle, SCHED_NORMAL, 0);
+               migrate_dead_tasks(cpu);
+               task_rq_unlock(rq, &flags);
+               BUG_ON(rq->nr_running != 0);
+
+               /* No need to migrate the tasks: it was best-effort if
+                * they didn't do lock_cpu_hotplug().  Just wake up
+                * the requestors. */
+               spin_lock_irq(&rq->lock);
+               while (!list_empty(&rq->migration_queue)) {
+                       migration_req_t *req;
+                       req = list_entry(rq->migration_queue.next,
+                                        migration_req_t, list);
+                       BUG_ON(req->type != REQ_MOVE_TASK);
+                       list_del_init(&req->list);
+                       complete(&req->done);
+               }
+               spin_unlock_irq(&rq->lock);
+               break;
+#endif
+       }
+       return NOTIFY_OK;
 }
 
-EXPORT_SYMBOL(__cond_resched);
+/* Register at highest priority so that task migration (migrate_all_tasks)
+ * happens before everything else.
+ */
+static struct notifier_block __devinitdata migration_notifier = {
+       .notifier_call = migration_call,
+       .priority = 10
+};
 
-/**
- * yield - yield the current processor to other threads.
+int __init migration_init(void)
+{
+       void *cpu = (void *)(long)smp_processor_id();
+       /* Start one for boot CPU. */
+       migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
+       migration_call(&migration_notifier, CPU_ONLINE, cpu);
+       register_cpu_notifier(&migration_notifier);
+       return 0;
+}
+#endif
+
+/*
+ * The 'big kernel lock'
+ *
+ * This spinlock is taken and released recursively by lock_kernel()
+ * and unlock_kernel().  It is transparently dropped and reaquired
+ * over schedule().  It is used to protect legacy code that hasn't
+ * been migrated to a proper locking design yet.
+ *
+ * Don't use in new code.
  *
- * this is a shortcut for kernel-space yielding - it marks the
- * thread runnable and calls sys_sched_yield().
+ * Note: spinlock debugging needs this even on !CONFIG_SMP.
  */
-void __sched yield(void)
-{
-       set_current_state(TASK_RUNNING);
-       sys_sched_yield();
-}
-
-EXPORT_SYMBOL(yield);
+spinlock_t kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
+EXPORT_SYMBOL(kernel_flag);
 
+#ifdef CONFIG_SMP
 /*
- * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
- * that process accounting knows that this is a task in IO wait state.
- *
- * But don't do that if it is a deliberate, throttling IO wait (this task
- * has set its backing_dev_info: the queue against which it should throttle)
+ * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
+ * hold the hotplug lock.
  */
-void __sched io_schedule(void)
+static void cpu_attach_domain(struct sched_domain *sd, int cpu)
 {
-       struct runqueue *rq = this_rq();
+       migration_req_t req;
+       unsigned long flags;
+       runqueue_t *rq = cpu_rq(cpu);
+       int local = 1;
 
-       atomic_inc(&rq->nr_iowait);
-       schedule();
-       atomic_dec(&rq->nr_iowait);
-}
+       spin_lock_irqsave(&rq->lock, flags);
 
-EXPORT_SYMBOL(io_schedule);
+       if (cpu == smp_processor_id() || !cpu_online(cpu)) {
+               rq->sd = sd;
+       } else {
+               init_completion(&req.done);
+               req.type = REQ_SET_DOMAIN;
+               req.sd = sd;
+               list_add(&req.list, &rq->migration_queue);
+               local = 0;
+       }
 
-long __sched io_schedule_timeout(long timeout)
-{
-       struct runqueue *rq = this_rq();
-       long ret;
+       spin_unlock_irqrestore(&rq->lock, flags);
 
-       atomic_inc(&rq->nr_iowait);
-       ret = schedule_timeout(timeout);
-       atomic_dec(&rq->nr_iowait);
-       return ret;
+       if (!local) {
+               wake_up_process(rq->migration_thread);
+               wait_for_completion(&req.done);
+       }
 }
 
+/*
+ * To enable disjoint top-level NUMA domains, define SD_NODES_PER_DOMAIN
+ * in arch code. That defines the number of nearby nodes in a node's top
+ * level scheduling domain.
+ */
+#ifdef CONFIG_NUMA
+#ifdef SD_NODES_PER_DOMAIN
 /**
- * sys_sched_get_priority_max - return maximum RT priority.
- * @policy: scheduling class.
+ * find_next_best_node - find the next node to include in a sched_domain
+ * @node: node whose sched_domain we're building
+ * @used_nodes: nodes already in the sched_domain
  *
- * this syscall returns the maximum rt_priority that can be used
- * by a given scheduling class.
+ * Find the next node to include in a given scheduling domain.  Simply
+ * finds the closest node not already in the @used_nodes map.
+ *
+ * Should use nodemask_t.
  */
-asmlinkage long sys_sched_get_priority_max(int policy)
+static int __devinit find_next_best_node(int node, unsigned long *used_nodes)
 {
-       int ret = -EINVAL;
+       int i, n, val, min_val, best_node = 0;
 
-       switch (policy) {
-       case SCHED_FIFO:
-       case SCHED_RR:
-               ret = MAX_USER_RT_PRIO-1;
-               break;
-       case SCHED_NORMAL:
-               ret = 0;
-               break;
-       }
-       return ret;
-}
+       min_val = INT_MAX;
 
-/**
- * sys_sched_get_priority_min - return minimum RT priority.
- * @policy: scheduling class.
- *
- * this syscall returns the minimum rt_priority that can be used
- * by a given scheduling class.
- */
-asmlinkage long sys_sched_get_priority_min(int policy)
-{
-       int ret = -EINVAL;
+       for (i = 0; i < numnodes; i++) {
+               /* Start at @node */
+               n = (node + i) % numnodes;
 
-       switch (policy) {
-       case SCHED_FIFO:
-       case SCHED_RR:
-               ret = 1;
-               break;
-       case SCHED_NORMAL:
-               ret = 0;
+               /* Skip already used nodes */
+               if (test_bit(n, used_nodes))
+                       continue;
+
+               /* Simple min distance search */
+               val = node_distance(node, i);
+
+               if (val < min_val) {
+                       min_val = val;
+                       best_node = n;
+               }
        }
-       return ret;
+
+       set_bit(best_node, used_nodes);
+       return best_node;
 }
 
 /**
- * sys_sched_rr_get_interval - return the default timeslice of a process.
- * @pid: pid of the process.
- * @interval: userspace pointer to the timeslice value.
+ * sched_domain_node_span - get a cpumask for a node's sched_domain
+ * @node: node whose cpumask we're constructing
+ * @size: number of nodes to include in this span
  *
- * this syscall writes the default timeslice value of a given process
- * into the user-space timespec buffer. A value of '0' means infinity.
+ * Given a node, construct a good cpumask for its sched_domain to span.  It
+ * should be one that prevents unnecessary balancing, but also spreads tasks
+ * out optimally.
  */
-asmlinkage
-long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
+static cpumask_t __devinit sched_domain_node_span(int node)
 {
-       int retval = -EINVAL;
-       struct timespec t;
-       task_t *p;
-
-       if (pid < 0)
-               goto out_nounlock;
+       int i;
+       cpumask_t span;
+       DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
 
-       retval = -ESRCH;
-       read_lock(&tasklist_lock);
-       p = find_process_by_pid(pid);
-       if (!p)
-               goto out_unlock;
+       cpus_clear(span);
+       bitmap_zero(used_nodes, MAX_NUMNODES);
 
-       retval = security_task_getscheduler(p);
-       if (retval)
-               goto out_unlock;
+       for (i = 0; i < SD_NODES_PER_DOMAIN; i++) {
+               int next_node = find_next_best_node(node, used_nodes);
+               cpumask_t  nodemask;
 
-       jiffies_to_timespec(p->policy & SCHED_FIFO ?
-                               0 : task_timeslice(p), &t);
-       read_unlock(&tasklist_lock);
-       retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
-out_nounlock:
-       return retval;
-out_unlock:
-       read_unlock(&tasklist_lock);
-       return retval;
-}
+               nodemask = node_to_cpumask(next_node);
+               cpus_or(span, span, nodemask);
+       }
 
-static inline struct task_struct *eldest_child(struct task_struct *p)
-{
-       if (list_empty(&p->children)) return NULL;
-       return list_entry(p->children.next,struct task_struct,sibling);
+       return span;
 }
-
-static inline struct task_struct *older_sibling(struct task_struct *p)
+#else /* SD_NODES_PER_DOMAIN */
+static cpumask_t __devinit sched_domain_node_span(int node)
 {
-       if (p->sibling.prev==&p->parent->children) return NULL;
-       return list_entry(p->sibling.prev,struct task_struct,sibling);
+       return cpu_possible_map;
 }
+#endif /* SD_NODES_PER_DOMAIN */
+#endif /* CONFIG_NUMA */
 
-static inline struct task_struct *younger_sibling(struct task_struct *p)
+#ifdef CONFIG_SCHED_SMT
+static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
+static struct sched_group sched_group_cpus[NR_CPUS];
+static int __devinit cpu_to_cpu_group(int cpu)
 {
-       if (p->sibling.next==&p->parent->children) return NULL;
-       return list_entry(p->sibling.next,struct task_struct,sibling);
+       return cpu;
 }
-
-static void show_task(task_t * p)
-{
-       task_t *relative;
-       unsigned state;
-       unsigned long free = 0;
-       static const char *stat_nam[] = { "R", "S", "D", "T", "Z", "W" };
-
-       printk("%-13.13s ", p->comm);
-       state = p->state ? __ffs(p->state) + 1 : 0;
-       if (state < ARRAY_SIZE(stat_nam))
-               printk(stat_nam[state]);
-       else
-               printk("?");
-#if (BITS_PER_LONG == 32)
-       if (state == TASK_RUNNING)
-               printk(" running ");
-       else
-               printk(" %08lX ", thread_saved_pc(p));
-#else
-       if (state == TASK_RUNNING)
-               printk("  running task   ");
-       else
-               printk(" %016lx ", thread_saved_pc(p));
-#endif
-#ifdef CONFIG_DEBUG_STACK_USAGE
-       {
-               unsigned long * n = (unsigned long *) (p->thread_info+1);
-               while (!*n)
-                       n++;
-               free = (unsigned long) n - (unsigned long)(p->thread_info+1);
-       }
 #endif
-       printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
-       if ((relative = eldest_child(p)))
-               printk("%5d ", relative->pid);
-       else
-               printk("      ");
-       if ((relative = younger_sibling(p)))
-               printk("%7d", relative->pid);
-       else
-               printk("       ");
-       if ((relative = older_sibling(p)))
-               printk(" %5d", relative->pid);
-       else
-               printk("      ");
-       if (!p->mm)
-               printk(" (L-TLB)\n");
-       else
-               printk(" (NOTLB)\n");
-
-       if (state != TASK_RUNNING)
-               show_stack(p, NULL);
-}
 
-void show_state(void)
+static DEFINE_PER_CPU(struct sched_domain, phys_domains);
+static struct sched_group sched_group_phys[NR_CPUS];
+static int __devinit cpu_to_phys_group(int cpu)
 {
-       task_t *g, *p;
-
-#if (BITS_PER_LONG == 32)
-       printk("\n"
-              "                                               sibling\n");
-       printk("  task             PC      pid father child younger older\n");
+#ifdef CONFIG_SCHED_SMT
+       return first_cpu(cpu_sibling_map[cpu]);
 #else
-       printk("\n"
-              "                                                       sibling\n");
-       printk("  task                 PC          pid father child younger older\n");
+       return cpu;
 #endif
-       read_lock(&tasklist_lock);
-       do_each_thread(g, p) {
-               /*
-                * reset the NMI-timeout, listing all files on a slow
-                * console might take alot of time:
-                */
-               touch_nmi_watchdog();
-               show_task(p);
-       } while_each_thread(g, p);
-
-       read_unlock(&tasklist_lock);
 }
 
-void __init init_idle(task_t *idle, int cpu)
-{
-       runqueue_t *idle_rq = cpu_rq(cpu), *rq = cpu_rq(task_cpu(idle));
-       unsigned long flags;
-
-       local_irq_save(flags);
-       double_rq_lock(idle_rq, rq);
-
-       idle_rq->curr = idle_rq->idle = idle;
-       deactivate_task(idle, rq);
-       idle->array = NULL;
-       idle->prio = MAX_PRIO;
-       idle->state = TASK_RUNNING;
-       set_task_cpu(idle, cpu);
-       double_rq_unlock(idle_rq, rq);
-       set_tsk_need_resched(idle);
-       local_irq_restore(flags);
+#ifdef CONFIG_NUMA
 
-       /* Set the preempt count _outside_ the spinlocks! */
-#ifdef CONFIG_PREEMPT
-       idle->thread_info->preempt_count = (idle->lock_depth >= 0);
-#else
-       idle->thread_info->preempt_count = 0;
-#endif
+static DEFINE_PER_CPU(struct sched_domain, node_domains);
+static struct sched_group sched_group_nodes[MAX_NUMNODES];
+static int __devinit cpu_to_node_group(int cpu)
+{
+       return cpu_to_node(cpu);
 }
+#endif
 
-/*
- * In a system that switches off the HZ timer idle_cpu_mask
- * indicates which cpus entered this state. This is used
- * in the rcu update to wait only for active cpus. For system
- * which do not switch off the HZ timer idle_cpu_mask should
- * always be CPU_MASK_NONE.
- */
-cpumask_t idle_cpu_mask = CPU_MASK_NONE;
+/* Groups for isolated scheduling domains */
+static struct sched_group sched_group_isolated[NR_CPUS];
 
-#ifdef CONFIG_SMP
-/*
- * This is how migration works:
- *
- * 1) we queue a migration_req_t structure in the source CPU's
- *    runqueue and wake up that CPU's migration thread.
- * 2) we down() the locked semaphore => thread blocks.
- * 3) migration thread wakes up (implicitly it forces the migrated
- *    thread off the CPU)
- * 4) it gets the migration request and checks whether the migrated
- *    task is still in the wrong runqueue.
- * 5) if it's in the wrong runqueue then the migration thread removes
- *    it and puts it into the right queue.
- * 6) migration thread up()s the semaphore.
- * 7) we wake up and the migration is done.
- */
+/* cpus with isolated domains */
+cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
 
-/*
- * Change a given task's CPU affinity. Migrate the thread to a
- * proper CPU and schedule it away if the CPU it's executing on
- * is removed from the allowed bitmask.
- *
- * NOTE: the caller must have a valid reference to the task, the
- * task must not exit() & deallocate itself prematurely.  The
- * call is not atomic; no spinlocks may be held.
- */
-int set_cpus_allowed(task_t *p, cpumask_t new_mask)
+static int __devinit cpu_to_isolated_group(int cpu)
 {
-       unsigned long flags;
-       int ret = 0;
-       migration_req_t req;
-       runqueue_t *rq;
+       return cpu;
+}
 
-       rq = task_rq_lock(p, &flags);
-       if (any_online_cpu(new_mask) == NR_CPUS) {
-               ret = -EINVAL;
-               goto out;
-       }
+/* Setup the mask of cpus configured for isolated domains */
+static int __init isolated_cpu_setup(char *str)
+{
+       int ints[NR_CPUS], i;
 
-       if (__set_cpus_allowed(p, new_mask, &req)) {
-               /* Need help from migration thread: drop lock and wait. */
-               task_rq_unlock(rq, &flags);
-               wake_up_process(rq->migration_thread);
-               wait_for_completion(&req.done);
-               return 0;
-       }
-out:
-       task_rq_unlock(rq, &flags);
-       return ret;
+       str = get_options(str, ARRAY_SIZE(ints), ints);
+       cpus_clear(cpu_isolated_map);
+       for (i = 1; i <= ints[0]; i++)
+               cpu_set(ints[i], cpu_isolated_map);
+       return 1;
 }
 
-EXPORT_SYMBOL_GPL(set_cpus_allowed);
+__setup ("isolcpus=", isolated_cpu_setup);
 
-/* Move (not current) task off this cpu, onto dest cpu. */
-static void move_task_away(struct task_struct *p, int dest_cpu)
+/*
+ * init_sched_build_groups takes an array of groups, the cpumask we wish
+ * to span, and a pointer to a function which identifies what group a CPU
+ * belongs to. The return value of group_fn must be a valid index into the
+ * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
+ * keep track of groups covered with a cpumask_t).
+ *
+ * init_sched_build_groups will build a circular linked list of the groups
+ * covered by the given span, and will set each group's ->cpumask correctly,
+ * and ->cpu_power to 0.
+ */
+static void __devinit init_sched_build_groups(struct sched_group groups[],
+                       cpumask_t span, int (*group_fn)(int cpu))
 {
-       runqueue_t *rq_dest;
+       struct sched_group *first = NULL, *last = NULL;
+       cpumask_t covered = CPU_MASK_NONE;
+       int i;
 
-       rq_dest = cpu_rq(dest_cpu);
+       for_each_cpu_mask(i, span) {
+               int group = group_fn(i);
+               struct sched_group *sg = &groups[group];
+               int j;
 
-       double_rq_lock(this_rq(), rq_dest);
-       if (task_cpu(p) != smp_processor_id())
-               goto out; /* Already moved */
+               if (cpu_isset(i, covered))
+                       continue;
 
-       set_task_cpu(p, dest_cpu);
-       if (p->array) {
-               deactivate_task(p, this_rq());
-               activate_task(p, rq_dest);
-               if (p->prio < rq_dest->curr->prio)
-                       resched_task(rq_dest->curr);
-       }
-       p->timestamp = rq_dest->timestamp_last_tick;
+               sg->cpumask = CPU_MASK_NONE;
+               sg->cpu_power = 0;
 
-out:
-       double_rq_unlock(this_rq(), rq_dest);
+               for_each_cpu_mask(j, span) {
+                       if (group_fn(j) != group)
+                               continue;
+
+                       cpu_set(j, covered);
+                       cpu_set(j, sg->cpumask);
+               }
+               if (!first)
+                       first = sg;
+               if (last)
+                       last->next = sg;
+               last = sg;
+       }
+       last->next = first;
 }
 
 /*
- * migration_thread - this is a highprio system thread that performs
- * thread migration by bumping thread off CPU then 'pushing' onto
- * another runqueue.
+ * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
  */
-static int migration_thread(void * data)
+static void __devinit arch_init_sched_domains(void)
 {
-       runqueue_t *rq;
-       int cpu = (long)data;
+       int i;
+       cpumask_t cpu_default_map;
+       cpumask_t cpu_isolated_online_map;
 
-       rq = cpu_rq(cpu);
-       BUG_ON(rq->migration_thread != current);
+       cpus_and(cpu_isolated_online_map, cpu_isolated_map, cpu_online_map);
 
-       while (!kthread_should_stop()) {
-               struct list_head *head;
-               migration_req_t *req;
+       /*
+        * Setup mask for cpus without special case scheduling requirements.
+        * For now this just excludes isolated cpus, but could be used to
+        * exclude other special cases in the future.
+        */
+       cpus_complement(cpu_default_map, cpu_isolated_map);
+       cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
 
-               if (current->flags & PF_FREEZE)
-                       refrigerator(PF_FREEZE);
+       /* Set up domains */
+       for_each_online_cpu(i) {
+               int group;
+               struct sched_domain *sd = NULL, *p;
+               cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
 
-               spin_lock_irq(&rq->lock);
-               head = &rq->migration_queue;
-               current->state = TASK_INTERRUPTIBLE;
-               if (list_empty(head)) {
-                       spin_unlock_irq(&rq->lock);
-                       schedule();
+               cpus_and(nodemask, nodemask, cpu_default_map);
+
+               /*
+                * Set up isolated domains.
+                * Unlike those of other cpus, the domains and groups are
+                * single level, and span a single cpu.
+                */
+               if (cpu_isset(i, cpu_isolated_online_map)) {
+#ifdef CONFIG_SCHED_SMT
+                       sd = &per_cpu(cpu_domains, i);
+#else
+                       sd = &per_cpu(phys_domains, i);
+#endif
+                       group = cpu_to_isolated_group(i);
+                       *sd = SD_CPU_INIT;
+                       cpu_set(i, sd->span);
+                       sd->balance_interval = INT_MAX; /* Don't balance */
+                       sd->flags = 0;                  /* Avoid WAKE_ */
+                       sd->groups = &sched_group_isolated[group];
+                       printk(KERN_INFO "Setting up cpu %d isolated.\n", i);
+                       /* Single level, so continue with next cpu */
                        continue;
                }
-               req = list_entry(head->next, migration_req_t, list);
-               list_del_init(head->next);
-               spin_unlock(&rq->lock);
 
-               move_task_away(req->task,
-                              any_online_cpu(req->task->cpus_allowed));
-               local_irq_enable();
-               complete(&req->done);
+#ifdef CONFIG_NUMA
+               sd = &per_cpu(node_domains, i);
+               group = cpu_to_node_group(i);
+               *sd = SD_NODE_INIT;
+               /* FIXME: should be multilevel, in arch code */
+               sd->span = sched_domain_node_span(i);
+               cpus_and(sd->span, sd->span, cpu_default_map);
+               sd->groups = &sched_group_nodes[group];
+#endif
+
+               p = sd;
+               sd = &per_cpu(phys_domains, i);
+               group = cpu_to_phys_group(i);
+               *sd = SD_CPU_INIT;
+               sd->span = nodemask;
+               sd->parent = p;
+               sd->groups = &sched_group_phys[group];
+
+#ifdef CONFIG_SCHED_SMT
+               p = sd;
+               sd = &per_cpu(cpu_domains, i);
+               group = cpu_to_cpu_group(i);
+               *sd = SD_SIBLING_INIT;
+               sd->span = cpu_sibling_map[i];
+               cpus_and(sd->span, sd->span, cpu_default_map);
+               sd->parent = p;
+               sd->groups = &sched_group_cpus[group];
+#endif
        }
-       return 0;
+
+#ifdef CONFIG_SCHED_SMT
+       /* Set up CPU (sibling) groups */
+       for_each_online_cpu(i) {
+               cpumask_t this_sibling_map = cpu_sibling_map[i];
+               cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
+               if (i != first_cpu(this_sibling_map))
+                       continue;
+
+               init_sched_build_groups(sched_group_cpus, this_sibling_map,
+                                               &cpu_to_cpu_group);
+       }
+#endif
+
+       /* Set up isolated groups */
+       for_each_cpu_mask(i, cpu_isolated_online_map) {
+               cpumask_t mask = cpumask_of_cpu(i);
+               init_sched_build_groups(sched_group_isolated, mask,
+                                               &cpu_to_isolated_group);
+       }
+
+       /* Set up physical groups */
+       for (i = 0; i < MAX_NUMNODES; i++) {
+               cpumask_t nodemask = node_to_cpumask(i);
+
+               cpus_and(nodemask, nodemask, cpu_default_map);
+               if (cpus_empty(nodemask))
+                       continue;
+
+               init_sched_build_groups(sched_group_phys, nodemask,
+                                               &cpu_to_phys_group);
+       }
+
+
+#ifdef CONFIG_NUMA
+       /* Set up node groups */
+       init_sched_build_groups(sched_group_nodes, cpu_default_map,
+                                       &cpu_to_node_group);
+#endif
+
+
+       /* Calculate CPU power for physical packages and nodes */
+       for_each_cpu_mask(i, cpu_default_map) {
+               int power;
+               struct sched_domain *sd;
+#ifdef CONFIG_SCHED_SMT
+               sd = &per_cpu(cpu_domains, i);
+               power = SCHED_LOAD_SCALE;
+               sd->groups->cpu_power = power;
+#endif
+
+               sd = &per_cpu(phys_domains, i);
+               power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
+                               (cpus_weight(sd->groups->cpumask)-1) / 10;
+               sd->groups->cpu_power = power;
+
+
+#ifdef CONFIG_NUMA
+               if (i == first_cpu(sd->groups->cpumask)) {
+                       /* Only add "power" once for each physical package. */
+                       sd = &per_cpu(node_domains, i);
+                       sd->groups->cpu_power += power;
+               }
+#endif
+       }
+
+       /* Attach the domains */
+       for_each_online_cpu(i) {
+               struct sched_domain *sd;
+#ifdef CONFIG_SCHED_SMT
+               sd = &per_cpu(cpu_domains, i);
+#else
+               sd = &per_cpu(phys_domains, i);
+#endif
+               cpu_attach_domain(sd, i);
+       }
+       last->next = first;
 }
 
 #ifdef CONFIG_HOTPLUG_CPU
-/* migrate_all_tasks - function to migrate all the tasks from the
- * current cpu caller must have already scheduled this to the target
- * cpu via set_cpus_allowed.  Machine is stopped.  */
-void migrate_all_tasks(void)
+static void __devinit arch_destroy_sched_domains(void)
 {
-       struct task_struct *tsk, *t;
-       int dest_cpu, src_cpu;
-       unsigned int node;
+       /* Do nothing: everything is statically allocated. */
+}
+#endif
 
-       /* We're nailed to this CPU. */
-       src_cpu = smp_processor_id();
+#undef SCHED_DOMAIN_DEBUG
+#ifdef SCHED_DOMAIN_DEBUG
+void sched_domain_debug(void)
+{
+       int i;
 
-       /* Not required, but here for neatness. */
-       write_lock(&tasklist_lock);
+       for_each_online_cpu(i) {
+               runqueue_t *rq = cpu_rq(i);
+               struct sched_domain *sd;
+               int level = 0;
 
-       /* watch out for per node tasks, let's stay on this node */
-       node = cpu_to_node(src_cpu);
+               sd = rq->sd;
 
-       do_each_thread(t, tsk) {
-               cpumask_t mask;
-               if (tsk == current)
-                       continue;
+               printk(KERN_DEBUG "CPU%d:\n", i);
 
-               if (task_cpu(tsk) != src_cpu)
-                       continue;
+               do {
+                       int j;
+                       char str[NR_CPUS];
+                       struct sched_group *group = sd->groups;
+                       cpumask_t groupmask;
+
+                       cpumask_scnprintf(str, NR_CPUS, sd->span);
+                       cpus_clear(groupmask);
+
+                       printk(KERN_DEBUG);
+                       for (j = 0; j < level + 1; j++)
+                               printk(" ");
+                       printk("domain %d: span %s\n", level, str);
+
+                       if (!cpu_isset(i, sd->span))
+                               printk(KERN_DEBUG "ERROR domain->span does not contain CPU%d\n", i);
+                       if (!cpu_isset(i, group->cpumask))
+                               printk(KERN_DEBUG "ERROR domain->groups does not contain CPU%d\n", i);
+                       if (!group->cpu_power)
+                               printk(KERN_DEBUG "ERROR domain->cpu_power not set\n");
+
+                       printk(KERN_DEBUG);
+                       for (j = 0; j < level + 2; j++)
+                               printk(" ");
+                       printk("groups:");
+                       do {
+                               if (!group) {
+                                       printk(" ERROR: NULL");
+                                       break;
+                               }
 
-               /* Figure out where this task should go (attempting to
-                * keep it on-node), and check if it can be migrated
-                * as-is.  NOTE that kernel threads bound to more than
-                * one online cpu will be migrated. */
-               mask = node_to_cpumask(node);
-               cpus_and(mask, mask, tsk->cpus_allowed);
-               dest_cpu = any_online_cpu(mask);
-               if (dest_cpu == NR_CPUS)
-                       dest_cpu = any_online_cpu(tsk->cpus_allowed);
-               if (dest_cpu == NR_CPUS) {
-                       cpus_clear(tsk->cpus_allowed);
-                       cpus_complement(tsk->cpus_allowed);
-                       dest_cpu = any_online_cpu(tsk->cpus_allowed);
-
-                       /* Don't tell them about moving exiting tasks
-                          or kernel threads (both mm NULL), since
-                          they never leave kernel. */
-                       if (tsk->mm && printk_ratelimit())
-                               printk(KERN_INFO "process %d (%s) no "
-                                      "longer affine to cpu%d\n",
-                                      tsk->pid, tsk->comm, src_cpu);
-               }
+                               if (!cpus_weight(group->cpumask))
+                                       printk(" ERROR empty group:");
 
-               move_task_away(tsk, dest_cpu);
-       } while_each_thread(t, tsk);
+                               if (cpus_intersects(groupmask, group->cpumask))
+                                       printk(" ERROR repeated CPUs:");
+
+                               cpus_or(groupmask, groupmask, group->cpumask);
+
+                               cpumask_scnprintf(str, NR_CPUS, group->cpumask);
+                               printk(" %s", str);
+
+                               group = group->next;
+                       } while (group != sd->groups);
+                       printk("\n");
 
-       write_unlock(&tasklist_lock);
+                       if (!cpus_equal(sd->span, groupmask))
+                               printk(KERN_DEBUG "ERROR groups don't span domain->span\n");
+
+                       level++;
+                       sd = sd->parent;
+
+                       if (sd) {
+                               if (!cpus_subset(groupmask, sd->span))
+                                       printk(KERN_DEBUG "ERROR parent span is not a superset of domain->span\n");
+                       }
+
+               } while (sd);
+       }
 }
-#endif /* CONFIG_HOTPLUG_CPU */
+#else
+#define sched_domain_debug() {}
+#endif
 
+#ifdef CONFIG_SMP
+/* Initial dummy domain for early boot and for hotplug cpu */
+static __devinitdata struct sched_domain sched_domain_dummy;
+static __devinitdata struct sched_group sched_group_dummy;
+#endif
+
+#ifdef CONFIG_HOTPLUG_CPU
 /*
- * migration_call - callback that gets triggered when a CPU is added.
- * Here we can start up the necessary migration thread for the new CPU.
+ * Force a reinitialization of the sched domains hierarchy.  The domains
+ * and groups cannot be updated in place without racing with the balancing
+ * code, so we temporarily attach all running cpus to a "dummy" domain
+ * which will prevent rebalancing while the sched domains are recalculated.
  */
-static int migration_call(struct notifier_block *nfb, unsigned long action,
-                         void *hcpu)
+static int update_sched_domains(struct notifier_block *nfb,
+                               unsigned long action, void *hcpu)
 {
-       int cpu = (long)hcpu;
-       struct task_struct *p;
-       struct runqueue *rq;
-       unsigned long flags;
+       int i;
 
        switch (action) {
        case CPU_UP_PREPARE:
-               p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
-               if (IS_ERR(p))
-                       return NOTIFY_BAD;
-               kthread_bind(p, cpu);
-               /* Must be high prio: stop_machine expects to yield to it. */
-               rq = task_rq_lock(p, &flags);
-               __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
-               task_rq_unlock(rq, &flags);
-               cpu_rq(cpu)->migration_thread = p;
-               break;
-       case CPU_ONLINE:
-               /* Strictly unneccessary, as first user will wake it. */
-               wake_up_process(cpu_rq(cpu)->migration_thread);
-               break;
-#ifdef CONFIG_HOTPLUG_CPU
+       case CPU_DOWN_PREPARE:
+               for_each_online_cpu(i)
+                       cpu_attach_domain(&sched_domain_dummy, i);
+               arch_destroy_sched_domains();
+               return NOTIFY_OK;
+
        case CPU_UP_CANCELED:
-               /* Unbind it from offline cpu so it can run.  Fall thru. */
-               kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
+       case CPU_DOWN_FAILED:
+       case CPU_ONLINE:
        case CPU_DEAD:
-               kthread_stop(cpu_rq(cpu)->migration_thread);
-               cpu_rq(cpu)->migration_thread = NULL;
-               BUG_ON(cpu_rq(cpu)->nr_running != 0);
-               break;
-#endif
+               /*
+                * Fall through and re-initialise the domains.
+                */
+               break;
+       default:
+               return NOTIFY_DONE;
        }
+
+       /* The hotplug lock is already held by cpu_up/cpu_down */
+       arch_init_sched_domains();
+
+       sched_domain_debug();
+
        return NOTIFY_OK;
 }
+#endif
 
-static struct notifier_block __devinitdata migration_notifier = {
-       .notifier_call = migration_call,
-};
-
-int __init migration_init(void)
+void __init sched_init_smp(void)
 {
-       void *cpu = (void *)(long)smp_processor_id();
-       /* Start one for boot CPU. */
-       migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
-       migration_call(&migration_notifier, CPU_ONLINE, cpu);
-       register_cpu_notifier(&migration_notifier);
-       return 0;
+       lock_cpu_hotplug();
+       arch_init_sched_domains();
+       sched_domain_debug();
+       unlock_cpu_hotplug();
+       /* XXX: Theoretical race here - CPU may be hotplugged now */
+       hotcpu_notifier(update_sched_domains, 0);
 }
-#endif
+#else
+void __init sched_init_smp(void)
+{
+}
+#endif /* CONFIG_SMP */
 
-/*
- * The 'big kernel lock'
- *
- * This spinlock is taken and released recursively by lock_kernel()
- * and unlock_kernel().  It is transparently dropped and reaquired
- * over schedule().  It is used to protect legacy code that hasn't
- * been migrated to a proper locking design yet.
- *
- * Don't use in new code.
- *
- * Note: spinlock debugging needs this even on !CONFIG_SMP.
- */
-spinlock_t kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
-EXPORT_SYMBOL(kernel_flag);
+int in_sched_functions(unsigned long addr)
+{
+       /* Linker adds these: start and end of __sched functions */
+       extern char __sched_text_start[], __sched_text_end[];
+       return in_lock_functions(addr) ||
+               (addr >= (unsigned long)__sched_text_start
+               && addr < (unsigned long)__sched_text_end);
+}
 
 void __init sched_init(void)
 {
        runqueue_t *rq;
-       int i, j, k;
+       int i;
+
+#ifdef CONFIG_SMP
+       /* Set up an initial dummy domain for early boot */
+
+       memset(&sched_domain_dummy, 0, sizeof(struct sched_domain));
+       sched_domain_dummy.span = CPU_MASK_ALL;
+       sched_domain_dummy.groups = &sched_group_dummy;
+       sched_domain_dummy.last_balance = jiffies;
+       sched_domain_dummy.balance_interval = INT_MAX; /* Don't balance */
+       sched_domain_dummy.busy_factor = 1;
+
+       memset(&sched_group_dummy, 0, sizeof(struct sched_group));
+       sched_group_dummy.cpumask = CPU_MASK_ALL;
+       sched_group_dummy.next = &sched_group_dummy;
+       sched_group_dummy.cpu_power = SCHED_LOAD_SCALE;
+#endif
+
+       init_cpu_classes();
 
        for (i = 0; i < NR_CPUS; i++) {
+#ifndef CONFIG_CKRM_CPU_SCHEDULE
+               int j, k;
                prio_array_t *array;
 
                rq = cpu_rq(i);
-               rq->active = rq->arrays;
-               rq->expired = rq->arrays + 1;
-               rq->best_expired_prio = MAX_PRIO;
-
                spin_lock_init(&rq->lock);
-               INIT_LIST_HEAD(&rq->migration_queue);
-               atomic_set(&rq->nr_iowait, 0);
-               nr_running_init(rq);
 
                for (j = 0; j < 2; j++) {
                        array = rq->arrays + j;
@@ -2966,41 +5511,67 @@ void __init sched_init(void)
                        // delimiter for bitsearch
                        __set_bit(MAX_PRIO, array->bitmap);
                }
-       }
-       /*
-        * We have to do a little magic to get the first
-        * thread right in SMP mode.
-        */
-       rq = this_rq();
-       rq->curr = current;
-       rq->idle = current;
-       set_task_cpu(current, smp_processor_id());
-       wake_up_forked_process(current);
 
-       init_timers();
+               rq->active = rq->arrays;
+               rq->expired = rq->arrays + 1;
+               rq->best_expired_prio = MAX_PRIO;
+
+#else
+               rq = cpu_rq(i);
+               spin_lock_init(&rq->lock);
+#endif
+
+#ifdef CONFIG_SMP
+               rq->sd = &sched_domain_dummy;
+               rq->cpu_load = 0;
+#ifdef CONFIG_CKRM_CPU_SCHEDULE
+               ckrm_load_init(rq_ckrm_load(rq));
+#endif
+               rq->active_balance = 0;
+               rq->push_cpu = 0;
+               rq->migration_thread = NULL;
+               INIT_LIST_HEAD(&rq->migration_queue);
+#endif
+#ifdef CONFIG_VSERVER_HARDCPU
+               INIT_LIST_HEAD(&rq->hold_queue);
+#endif
+               atomic_set(&rq->nr_iowait, 0);
+
+       }
 
        /*
         * The boot idle thread does lazy MMU switching as well:
         */
        atomic_inc(&init_mm.mm_count);
        enter_lazy_tlb(&init_mm, current);
+
+       /*
+        * Make us the idle thread. Technically, schedule() should not be
+        * called from this thread, however somewhere below it might be,
+        * but because we are the idle thread, we just pick up running again
+        * when this runqueue becomes "idle".
+        */
+       init_idle(current, smp_processor_id());
 }
 
 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
-void __might_sleep(char *file, int line)
+void __might_sleep(char *file, int line, int atomic_depth)
 {
 #if defined(in_atomic)
        static unsigned long prev_jiffy;        /* ratelimiting */
 
-       if ((in_atomic() || irqs_disabled()) &&
+#ifndef CONFIG_PREEMPT
+       atomic_depth = 0;
+#endif
+       if (((in_atomic() != atomic_depth) || irqs_disabled()) &&
            system_state == SYSTEM_RUNNING) {
                if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
                        return;
                prev_jiffy = jiffies;
                printk(KERN_ERR "Debug: sleeping function called from invalid"
                                " context at %s:%d\n", file, line);
-               printk("in_atomic():%d, irqs_disabled():%d\n",
-                       in_atomic(), irqs_disabled());
+               printk("in_atomic():%d[expected: %d], irqs_disabled():%d\n",
+                       in_atomic(), atomic_depth, irqs_disabled());
                dump_stack();
        }
 #endif
@@ -3008,48 +5579,33 @@ void __might_sleep(char *file, int line)
 EXPORT_SYMBOL(__might_sleep);
 #endif
 
-
-#if defined(CONFIG_SMP) && defined(CONFIG_PREEMPT)
-/*
- * This could be a long-held lock.  If another CPU holds it for a long time,
- * and that CPU is not asked to reschedule then *this* CPU will spin on the
- * lock for a long time, even if *this* CPU is asked to reschedule.
- *
- * So what we do here, in the slow (contended) path is to spin on the lock by
- * hand while permitting preemption.
- *
- * Called inside preempt_disable().
+#ifdef CONFIG_CKRM_CPU_SCHEDULE
+/**
+ * return the classqueue object of a certain processor
  */
-void __sched __preempt_spin_lock(spinlock_t *lock)
+struct classqueue_struct * get_cpu_classqueue(int cpu)
 {
-       if (preempt_count() > 1) {
-               _raw_spin_lock(lock);
-               return;
-       }
-       do {
-               preempt_enable();
-               while (spin_is_locked(lock))
-                       cpu_relax();
-               preempt_disable();
-       } while (!_raw_spin_trylock(lock));
+       return (& (cpu_rq(cpu)->classqueue) );
 }
 
-EXPORT_SYMBOL(__preempt_spin_lock);
-
-void __sched __preempt_write_lock(rwlock_t *lock)
+/**
+ * _ckrm_cpu_change_class - change the class of a task
+ */
+void _ckrm_cpu_change_class(task_t *tsk, struct ckrm_cpu_class *newcls)
 {
-       if (preempt_count() > 1) {
-               _raw_write_lock(lock);
-               return;
-       }
+       prio_array_t *array;
+       struct runqueue *rq;
+       unsigned long flags;
 
-       do {
-               preempt_enable();
-               while (rwlock_is_locked(lock))
-                       cpu_relax();
-               preempt_disable();
-       } while (!_raw_write_trylock(lock));
-}
+       rq = task_rq_lock(tsk,&flags); 
+       array = tsk->array;
+       if (array) {
+               dequeue_task(tsk,array);
+               tsk->cpu_class = newcls;
+               enqueue_task(tsk,rq_active(tsk,rq));
+       } else
+               tsk->cpu_class = newcls;
 
-EXPORT_SYMBOL(__preempt_write_lock);
-#endif /* defined(CONFIG_SMP) && defined(CONFIG_PREEMPT) */
+       task_rq_unlock(rq,&flags);
+}
+#endif