Fedora kernel-2.6.17-1.2142_FC4 patched with stable patch-2.6.17.4-vs2.0.2-rc26.diff
[linux-2.6.git] / kernel / sched.c
index 1493acf..60bff8b 100644 (file)
@@ -15,6 +15,7 @@
  *             and per-CPU runqueues.  Cleanups and useful suggestions
  *             by Davide Libenzi, preemptible kernel bits by Robert Love.
  *  2003-09-03 Interactivity tuning by Con Kolivas.
+ *  2004-04-02 Scheduler domains code by Nick Piggin
  */
 
 #include <linux/mm.h>
 #include <linux/smp_lock.h>
 #include <asm/mmu_context.h>
 #include <linux/interrupt.h>
+#include <linux/capability.h>
 #include <linux/completion.h>
 #include <linux/kernel_stat.h>
 #include <linux/security.h>
 #include <linux/notifier.h>
+#include <linux/profile.h>
 #include <linux/suspend.h>
+#include <linux/vmalloc.h>
 #include <linux/blkdev.h>
 #include <linux/delay.h>
 #include <linux/smp.h>
+#include <linux/threads.h>
 #include <linux/timer.h>
 #include <linux/rcupdate.h>
 #include <linux/cpu.h>
+#include <linux/cpuset.h>
 #include <linux/percpu.h>
 #include <linux/kthread.h>
-
-#ifdef CONFIG_NUMA
-#define cpu_to_node_mask(cpu) node_to_cpumask(cpu_to_node(cpu))
-#else
-#define cpu_to_node_mask(cpu) (cpu_online_map)
-#endif
+#include <linux/seq_file.h>
+#include <linux/syscalls.h>
+#include <linux/times.h>
+#include <linux/acct.h>
+#include <linux/kprobes.h>
+#include <asm/tlb.h>
+
+#include <asm/unistd.h>
+#include <linux/vs_context.h>
+#include <linux/vs_cvirt.h>
+#include <linux/vs_sched.h>
 
 /*
  * Convert user-nice values [ -20 ... 0 ... 19 ]
@@ -63,8 +74,6 @@
 #define USER_PRIO(p)           ((p)-MAX_RT_PRIO)
 #define TASK_USER_PRIO(p)      USER_PRIO((p)->static_prio)
 #define MAX_USER_PRIO          (USER_PRIO(MAX_PRIO))
-#define AVG_TIMESLICE  (MIN_TIMESLICE + ((MAX_TIMESLICE - MIN_TIMESLICE) *\
-                       (MAX_PRIO-1-NICE_TO_PRIO(0))/(MAX_USER_PRIO - 1)))
 
 /*
  * Some helpers for converting nanosecond timing to jiffy resolution
 /*
  * These are the 'tuning knobs' of the scheduler:
  *
- * Minimum timeslice is 10 msecs, default timeslice is 100 msecs,
- * maximum timeslice is 200 msecs. Timeslices get refilled after
- * they expire.
+ * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
+ * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
+ * Timeslices get refilled after they expire.
  */
-#define MIN_TIMESLICE          ( 10 * HZ / 1000)
-#define MAX_TIMESLICE          (200 * HZ / 1000)
+#define MIN_TIMESLICE          max(5 * HZ / 1000, 1)
+#define DEF_TIMESLICE          (100 * HZ / 1000)
 #define ON_RUNQUEUE_WEIGHT      30
 #define CHILD_PENALTY           95
 #define PARENT_PENALTY         100
 #define PRIO_BONUS_RATIO        25
 #define MAX_BONUS              (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
 #define INTERACTIVE_DELTA        2
-#define MAX_SLEEP_AVG          (AVG_TIMESLICE * MAX_BONUS)
+#define MAX_SLEEP_AVG          (DEF_TIMESLICE * MAX_BONUS)
 #define STARVATION_LIMIT       (MAX_SLEEP_AVG)
 #define NS_MAX_SLEEP_AVG       (JIFFIES_TO_NS(MAX_SLEEP_AVG))
-#define NODE_THRESHOLD         125
-#define CREDIT_LIMIT           100
 
 /*
  * If a task is 'interactive' then we reinsert it in the active
        (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
                MAX_SLEEP_AVG)
 
+#define GRANULARITY    (10 * HZ / 1000 ? : 1)
+
 #ifdef CONFIG_SMP
-#define TIMESLICE_GRANULARITY(p)       (MIN_TIMESLICE * \
+#define TIMESLICE_GRANULARITY(p)       (GRANULARITY * \
                (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
                        num_online_cpus())
 #else
-#define TIMESLICE_GRANULARITY(p)       (MIN_TIMESLICE * \
+#define TIMESLICE_GRANULARITY(p)       (GRANULARITY * \
                (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
 #endif
 
        (v1) * (v2_max) / (v1_max)
 
 #define DELTA(p) \
-       (SCALE(TASK_NICE(p), 40, MAX_USER_PRIO*PRIO_BONUS_RATIO/100) + \
+       (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
                INTERACTIVE_DELTA)
 
 #define TASK_INTERACTIVE(p) \
        (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
                (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
 
-#define HIGH_CREDIT(p) \
-       ((p)->interactive_credit > CREDIT_LIMIT)
-
-#define LOW_CREDIT(p) \
-       ((p)->interactive_credit < -CREDIT_LIMIT)
-
 #define TASK_PREEMPTS_CURR(p, rq) \
        ((p)->prio < (rq)->curr->prio)
 
 /*
- * BASE_TIMESLICE scales user-nice values [ -20 ... 19 ]
- * to time slice values.
+ * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
+ * to time slice values: [800ms ... 100ms ... 5ms]
  *
  * The higher a thread's priority, the bigger timeslices
  * it gets during one round of execution. But even the lowest
  * priority thread gets MIN_TIMESLICE worth of execution time.
- *
- * task_timeslice() is the interface that is used by the scheduler.
  */
 
-#define BASE_TIMESLICE(p) (MIN_TIMESLICE + \
-               ((MAX_TIMESLICE - MIN_TIMESLICE) * \
-                       (MAX_PRIO-1 - (p)->static_prio) / (MAX_USER_PRIO-1)))
+#define SCALE_PRIO(x, prio) \
+       max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
 
-static inline unsigned int task_timeslice(task_t *p)
+static unsigned int task_timeslice(task_t *p)
 {
-       return BASE_TIMESLICE(p);
+       if (p->static_prio < NICE_TO_PRIO(0))
+               return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
+       else
+               return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
 }
+#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)      \
+                               < (long long) (sd)->cache_hot_time)
 
 /*
  * These are the runqueue data structures:
@@ -187,7 +192,7 @@ static inline unsigned int task_timeslice(task_t *p)
 typedef struct runqueue runqueue_t;
 
 struct prio_array {
-       int nr_active;
+       unsigned int nr_active;
        unsigned long bitmap[BITMAP_SIZE];
        struct list_head queue[MAX_PRIO];
 };
@@ -201,90 +206,156 @@ struct prio_array {
  */
 struct runqueue {
        spinlock_t lock;
+
+       /*
+        * nr_running and cpu_load should be in the same cacheline because
+        * remote CPUs use both these fields when doing load calculation.
+        */
+       unsigned long nr_running;
+#ifdef CONFIG_SMP
+       unsigned long cpu_load[3];
+#endif
        unsigned long long nr_switches;
-       unsigned long nr_running, expired_timestamp, nr_uninterruptible,
-               timestamp_last_tick;
+
+       /*
+        * This is part of a global counter where only the total sum
+        * over all CPUs matters. A task can increase this counter on
+        * one CPU and if it got migrated afterwards it may decrease
+        * it on another CPU. Always updated under the runqueue lock:
+        */
+       unsigned long nr_uninterruptible;
+
+       unsigned long expired_timestamp;
+       unsigned long long timestamp_last_tick;
        task_t *curr, *idle;
        struct mm_struct *prev_mm;
        prio_array_t *active, *expired, arrays[2];
-       int best_expired_prio, prev_cpu_load[NR_CPUS];
-#ifdef CONFIG_NUMA
-       atomic_t *node_nr_running;
-       int prev_node_load[MAX_NUMNODES];
-#endif
+       int best_expired_prio;
+       atomic_t nr_iowait;
+
+#ifdef CONFIG_SMP
+       struct sched_domain *sd;
+
+       /* For active balancing */
+       int active_balance;
+       int push_cpu;
+
        task_t *migration_thread;
        struct list_head migration_queue;
+       int cpu;
+#endif
+#ifdef CONFIG_VSERVER_HARDCPU
+       struct list_head hold_queue;
+       int idle_tokens;
+#endif
 
-       atomic_t nr_iowait;
+#ifdef CONFIG_SCHEDSTATS
+       /* latency stats */
+       struct sched_info rq_sched_info;
+
+       /* sys_sched_yield() stats */
+       unsigned long yld_exp_empty;
+       unsigned long yld_act_empty;
+       unsigned long yld_both_empty;
+       unsigned long yld_cnt;
+
+       /* schedule() stats */
+       unsigned long sched_switch;
+       unsigned long sched_cnt;
+       unsigned long sched_goidle;
+
+       /* try_to_wake_up() stats */
+       unsigned long ttwu_cnt;
+       unsigned long ttwu_local;
+#endif
 };
 
 static DEFINE_PER_CPU(struct runqueue, runqueues);
 
+/*
+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
+ * See detach_destroy_domains: synchronize_sched for details.
+ *
+ * The domain tree of any CPU may only be accessed from within
+ * preempt-disabled sections.
+ */
+#define for_each_domain(cpu, domain) \
+for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
+
 #define cpu_rq(cpu)            (&per_cpu(runqueues, (cpu)))
 #define this_rq()              (&__get_cpu_var(runqueues))
 #define task_rq(p)             cpu_rq(task_cpu(p))
 #define cpu_curr(cpu)          (cpu_rq(cpu)->curr)
 
-extern unsigned long __scheduling_functions_start_here;
-extern unsigned long __scheduling_functions_end_here;
-const unsigned long scheduling_functions_start_here =
-                       (unsigned long)&__scheduling_functions_start_here;
-const unsigned long scheduling_functions_end_here =
-                       (unsigned long)&__scheduling_functions_end_here;
-
-/*
- * Default context-switch locking:
- */
 #ifndef prepare_arch_switch
-# define prepare_arch_switch(rq, next) do { } while (0)
-# define finish_arch_switch(rq, next)  spin_unlock_irq(&(rq)->lock)
-# define task_running(rq, p)           ((rq)->curr == (p))
+# define prepare_arch_switch(next)     do { } while (0)
+#endif
+#ifndef finish_arch_switch
+# define finish_arch_switch(prev)      do { } while (0)
 #endif
 
-#ifdef CONFIG_NUMA
-
-/*
- * Keep track of running tasks.
- */
-
-static atomic_t node_nr_running[MAX_NUMNODES] ____cacheline_maxaligned_in_smp =
-       {[0 ...MAX_NUMNODES-1] = ATOMIC_INIT(0)};
-
-static inline void nr_running_init(struct runqueue *rq)
+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
+static inline int task_running(runqueue_t *rq, task_t *p)
 {
-       rq->node_nr_running = &node_nr_running[0];
+       return rq->curr == p;
 }
 
-static inline void nr_running_inc(runqueue_t *rq)
+static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
 {
-       atomic_inc(rq->node_nr_running);
-       rq->nr_running++;
 }
 
-static inline void nr_running_dec(runqueue_t *rq)
+static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
 {
-       atomic_dec(rq->node_nr_running);
-       rq->nr_running--;
+#ifdef CONFIG_DEBUG_SPINLOCK
+       /* this is a valid case when another task releases the spinlock */
+       rq->lock.owner = current;
+#endif
+       spin_unlock_irq(&rq->lock);
 }
 
-__init void node_nr_running_init(void)
+#else /* __ARCH_WANT_UNLOCKED_CTXSW */
+static inline int task_running(runqueue_t *rq, task_t *p)
 {
-       int i;
-
-       for (i = 0; i < NR_CPUS; i++) {
-               if (cpu_possible(i))
-                       cpu_rq(i)->node_nr_running =
-                               &node_nr_running[cpu_to_node(i)];
-       }
+#ifdef CONFIG_SMP
+       return p->oncpu;
+#else
+       return rq->curr == p;
+#endif
 }
 
-#else /* !CONFIG_NUMA */
-
-# define nr_running_init(rq)   do { } while (0)
-# define nr_running_inc(rq)    do { (rq)->nr_running++; } while (0)
-# define nr_running_dec(rq)    do { (rq)->nr_running--; } while (0)
+static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
+{
+#ifdef CONFIG_SMP
+       /*
+        * We can optimise this out completely for !SMP, because the
+        * SMP rebalancing from interrupt is the only thing that cares
+        * here.
+        */
+       next->oncpu = 1;
+#endif
+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+       spin_unlock_irq(&rq->lock);
+#else
+       spin_unlock(&rq->lock);
+#endif
+}
 
-#endif /* CONFIG_NUMA */
+static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
+{
+#ifdef CONFIG_SMP
+       /*
+        * After ->oncpu is cleared, the task can be moved to a different CPU.
+        * We must ensure this doesn't happen until the switch is completely
+        * finished.
+        */
+       smp_wmb();
+       prev->oncpu = 0;
+#endif
+#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+       local_irq_enable();
+#endif
+}
+#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
 
 /*
  * task_rq_lock - lock the runqueue a given task resides on and disable
@@ -292,6 +363,7 @@ __init void node_nr_running_init(void)
  * explicitly disabling preemption.
  */
 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
+       __acquires(rq->lock)
 {
        struct runqueue *rq;
 
@@ -307,14 +379,114 @@ repeat_lock_task:
 }
 
 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
+       __releases(rq->lock)
 {
        spin_unlock_irqrestore(&rq->lock, *flags);
 }
 
+#ifdef CONFIG_SCHEDSTATS
+/*
+ * bump this up when changing the output format or the meaning of an existing
+ * format, so that tools can adapt (or abort)
+ */
+#define SCHEDSTAT_VERSION 12
+
+static int show_schedstat(struct seq_file *seq, void *v)
+{
+       int cpu;
+
+       seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
+       seq_printf(seq, "timestamp %lu\n", jiffies);
+       for_each_online_cpu(cpu) {
+               runqueue_t *rq = cpu_rq(cpu);
+#ifdef CONFIG_SMP
+               struct sched_domain *sd;
+               int dcnt = 0;
+#endif
+
+               /* runqueue-specific stats */
+               seq_printf(seq,
+                   "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
+                   cpu, rq->yld_both_empty,
+                   rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
+                   rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
+                   rq->ttwu_cnt, rq->ttwu_local,
+                   rq->rq_sched_info.cpu_time,
+                   rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
+
+               seq_printf(seq, "\n");
+
+#ifdef CONFIG_SMP
+               /* domain-specific stats */
+               preempt_disable();
+               for_each_domain(cpu, sd) {
+                       enum idle_type itype;
+                       char mask_str[NR_CPUS];
+
+                       cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
+                       seq_printf(seq, "domain%d %s", dcnt++, mask_str);
+                       for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
+                                       itype++) {
+                               seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
+                                   sd->lb_cnt[itype],
+                                   sd->lb_balanced[itype],
+                                   sd->lb_failed[itype],
+                                   sd->lb_imbalance[itype],
+                                   sd->lb_gained[itype],
+                                   sd->lb_hot_gained[itype],
+                                   sd->lb_nobusyq[itype],
+                                   sd->lb_nobusyg[itype]);
+                       }
+                       seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
+                           sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
+                           sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
+                           sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
+                           sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
+               }
+               preempt_enable();
+#endif
+       }
+       return 0;
+}
+
+static int schedstat_open(struct inode *inode, struct file *file)
+{
+       unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
+       char *buf = kmalloc(size, GFP_KERNEL);
+       struct seq_file *m;
+       int res;
+
+       if (!buf)
+               return -ENOMEM;
+       res = single_open(file, show_schedstat, NULL);
+       if (!res) {
+               m = file->private_data;
+               m->buf = buf;
+               m->size = size;
+       } else
+               kfree(buf);
+       return res;
+}
+
+struct file_operations proc_schedstat_operations = {
+       .open    = schedstat_open,
+       .read    = seq_read,
+       .llseek  = seq_lseek,
+       .release = single_release,
+};
+
+# define schedstat_inc(rq, field)      do { (rq)->field++; } while (0)
+# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
+#else /* !CONFIG_SCHEDSTATS */
+# define schedstat_inc(rq, field)      do { } while (0)
+# define schedstat_add(rq, field, amt) do { } while (0)
+#endif
+
 /*
  * rq_lock - lock a given runqueue and disable interrupts.
  */
 static inline runqueue_t *this_rq_lock(void)
+       __acquires(rq->lock)
 {
        runqueue_t *rq;
 
@@ -325,30 +497,153 @@ static inline runqueue_t *this_rq_lock(void)
        return rq;
 }
 
-static inline void rq_unlock(runqueue_t *rq)
+#ifdef CONFIG_SCHEDSTATS
+/*
+ * Called when a process is dequeued from the active array and given
+ * the cpu.  We should note that with the exception of interactive
+ * tasks, the expired queue will become the active queue after the active
+ * queue is empty, without explicitly dequeuing and requeuing tasks in the
+ * expired queue.  (Interactive tasks may be requeued directly to the
+ * active queue, thus delaying tasks in the expired queue from running;
+ * see scheduler_tick()).
+ *
+ * This function is only called from sched_info_arrive(), rather than
+ * dequeue_task(). Even though a task may be queued and dequeued multiple
+ * times as it is shuffled about, we're really interested in knowing how
+ * long it was from the *first* time it was queued to the time that it
+ * finally hit a cpu.
+ */
+static inline void sched_info_dequeued(task_t *t)
 {
-       spin_unlock_irq(&rq->lock);
+       t->sched_info.last_queued = 0;
+}
+
+/*
+ * Called when a task finally hits the cpu.  We can now calculate how
+ * long it was waiting to run.  We also note when it began so that we
+ * can keep stats on how long its timeslice is.
+ */
+static void sched_info_arrive(task_t *t)
+{
+       unsigned long now = jiffies, diff = 0;
+       struct runqueue *rq = task_rq(t);
+
+       if (t->sched_info.last_queued)
+               diff = now - t->sched_info.last_queued;
+       sched_info_dequeued(t);
+       t->sched_info.run_delay += diff;
+       t->sched_info.last_arrival = now;
+       t->sched_info.pcnt++;
+
+       if (!rq)
+               return;
+
+       rq->rq_sched_info.run_delay += diff;
+       rq->rq_sched_info.pcnt++;
+}
+
+/*
+ * Called when a process is queued into either the active or expired
+ * array.  The time is noted and later used to determine how long we
+ * had to wait for us to reach the cpu.  Since the expired queue will
+ * become the active queue after active queue is empty, without dequeuing
+ * and requeuing any tasks, we are interested in queuing to either. It
+ * is unusual but not impossible for tasks to be dequeued and immediately
+ * requeued in the same or another array: this can happen in sched_yield(),
+ * set_user_nice(), and even load_balance() as it moves tasks from runqueue
+ * to runqueue.
+ *
+ * This function is only called from enqueue_task(), but also only updates
+ * the timestamp if it is already not set.  It's assumed that
+ * sched_info_dequeued() will clear that stamp when appropriate.
+ */
+static inline void sched_info_queued(task_t *t)
+{
+       if (!t->sched_info.last_queued)
+               t->sched_info.last_queued = jiffies;
+}
+
+/*
+ * Called when a process ceases being the active-running process, either
+ * voluntarily or involuntarily.  Now we can calculate how long we ran.
+ */
+static inline void sched_info_depart(task_t *t)
+{
+       struct runqueue *rq = task_rq(t);
+       unsigned long diff = jiffies - t->sched_info.last_arrival;
+
+       t->sched_info.cpu_time += diff;
+
+       if (rq)
+               rq->rq_sched_info.cpu_time += diff;
+}
+
+/*
+ * Called when tasks are switched involuntarily due, typically, to expiring
+ * their time slice.  (This may also be called when switching to or from
+ * the idle task.)  We are only called when prev != next.
+ */
+static inline void sched_info_switch(task_t *prev, task_t *next)
+{
+       struct runqueue *rq = task_rq(prev);
+
+       /*
+        * prev now departs the cpu.  It's not interesting to record
+        * stats about how efficient we were at scheduling the idle
+        * process, however.
+        */
+       if (prev != rq->idle)
+               sched_info_depart(prev);
+
+       if (next != rq->idle)
+               sched_info_arrive(next);
 }
+#else
+#define sched_info_queued(t)           do { } while (0)
+#define sched_info_switch(t, next)     do { } while (0)
+#endif /* CONFIG_SCHEDSTATS */
 
 /*
  * Adding/removing a task to/from a priority array:
  */
-static inline void dequeue_task(struct task_struct *p, prio_array_t *array)
+static void dequeue_task(struct task_struct *p, prio_array_t *array)
 {
+       BUG_ON(p->state & TASK_ONHOLD);
        array->nr_active--;
        list_del(&p->run_list);
        if (list_empty(array->queue + p->prio))
                __clear_bit(p->prio, array->bitmap);
 }
 
-static inline void enqueue_task(struct task_struct *p, prio_array_t *array)
+static void enqueue_task(struct task_struct *p, prio_array_t *array)
 {
+       BUG_ON(p->state & TASK_ONHOLD);
+       sched_info_queued(p);
        list_add_tail(&p->run_list, array->queue + p->prio);
        __set_bit(p->prio, array->bitmap);
        array->nr_active++;
        p->array = array;
 }
 
+/*
+ * Put task to the end of the run list without the overhead of dequeue
+ * followed by enqueue.
+ */
+static void requeue_task(struct task_struct *p, prio_array_t *array)
+{
+       BUG_ON(p->state & TASK_ONHOLD);
+       list_move_tail(&p->run_list, array->queue + p->prio);
+}
+
+static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
+{
+       BUG_ON(p->state & TASK_ONHOLD);
+       list_add(&p->run_list, array->queue + p->prio);
+       __set_bit(p->prio, array->bitmap);
+       array->nr_active++;
+       p->array = array;
+}
+
 /*
  * effective_prio - return the priority that is based on the static
  * priority but is modified by bonuses/penalties.
@@ -366,6 +661,7 @@ static inline void enqueue_task(struct task_struct *p, prio_array_t *array)
 static int effective_prio(task_t *p)
 {
        int bonus, prio;
+       struct vx_info *vxi;
 
        if (rt_task(p))
                return p->prio;
@@ -373,6 +669,11 @@ static int effective_prio(task_t *p)
        bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
 
        prio = p->static_prio - bonus;
+
+       if ((vxi = p->vx_info) &&
+               vx_info_flags(vxi, VXF_SCHED_PRIO, 0))
+               prio += vx_effective_vavavoom(vxi, MAX_USER_PRIO);
+
        if (prio < MAX_RT_PRIO)
                prio = MAX_RT_PRIO;
        if (prio > MAX_PRIO-1)
@@ -383,56 +684,62 @@ static int effective_prio(task_t *p)
 /*
  * __activate_task - move a task to the runqueue.
  */
-static inline void __activate_task(task_t *p, runqueue_t *rq)
+static void __activate_task(task_t *p, runqueue_t *rq)
+{
+       prio_array_t *target = rq->active;
+
+       if (batch_task(p))
+               target = rq->expired;
+       enqueue_task(p, target);
+       rq->nr_running++;
+}
+
+/*
+ * __activate_idle_task - move idle task to the _front_ of runqueue.
+ */
+static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
 {
-       enqueue_task(p, rq->active);
-       nr_running_inc(rq);
+       enqueue_task_head(p, rq->active);
+       rq->nr_running++;
 }
 
-static void recalc_task_prio(task_t *p, unsigned long long now)
+static int recalc_task_prio(task_t *p, unsigned long long now)
 {
+       /* Caller must always ensure 'now >= p->timestamp' */
        unsigned long long __sleep_time = now - p->timestamp;
        unsigned long sleep_time;
 
-       if (__sleep_time > NS_MAX_SLEEP_AVG)
-               sleep_time = NS_MAX_SLEEP_AVG;
-       else
-               sleep_time = (unsigned long)__sleep_time;
+       if (batch_task(p))
+               sleep_time = 0;
+       else {
+               if (__sleep_time > NS_MAX_SLEEP_AVG)
+                       sleep_time = NS_MAX_SLEEP_AVG;
+               else
+                       sleep_time = (unsigned long)__sleep_time;
+       }
 
        if (likely(sleep_time > 0)) {
                /*
                 * User tasks that sleep a long time are categorised as
-                * idle and will get just interactive status to stay active &
-                * prevent them suddenly becoming cpu hogs and starving
-                * other processes.
+                * idle. They will only have their sleep_avg increased to a
+                * level that makes them just interactive priority to stay
+                * active yet prevent them suddenly becoming cpu hogs and
+                * starving other processes.
                 */
-               if (p->mm && p->activated != -1 &&
-                       sleep_time > INTERACTIVE_SLEEP(p)) {
-                               p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
-                                               AVG_TIMESLICE);
-                               if (!HIGH_CREDIT(p))
-                                       p->interactive_credit++;
-               } else {
-                       /*
-                        * The lower the sleep avg a task has the more
-                        * rapidly it will rise with sleep time.
-                        */
-                       sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
-
-                       /*
-                        * Tasks with low interactive_credit are limited to
-                        * one timeslice worth of sleep avg bonus.
-                        */
-                       if (LOW_CREDIT(p) &&
-                           sleep_time > JIFFIES_TO_NS(task_timeslice(p)))
-                               sleep_time = JIFFIES_TO_NS(task_timeslice(p));
+               if (p->mm && sleep_time > INTERACTIVE_SLEEP(p)) {
+                               unsigned long ceiling;
 
+                               ceiling = JIFFIES_TO_NS(MAX_SLEEP_AVG -
+                                       DEF_TIMESLICE);
+                               if (p->sleep_avg < ceiling)
+                                       p->sleep_avg = ceiling;
+               } else {
                        /*
-                        * Non high_credit tasks waking from uninterruptible
-                        * sleep are limited in their sleep_avg rise as they
-                        * are likely to be cpu hogs waiting on I/O
+                        * Tasks waking from uninterruptible sleep are
+                        * limited in their sleep_avg rise as they
+                        * are likely to be waiting on I/O
                         */
-                       if (p->activated == -1 && !HIGH_CREDIT(p) && p->mm) {
+                       if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
                                if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
                                        sleep_time = 0;
                                else if (p->sleep_avg + sleep_time >=
@@ -452,15 +759,12 @@ static void recalc_task_prio(task_t *p, unsigned long long now)
                         */
                        p->sleep_avg += sleep_time;
 
-                       if (p->sleep_avg > NS_MAX_SLEEP_AVG) {
+                       if (p->sleep_avg > NS_MAX_SLEEP_AVG)
                                p->sleep_avg = NS_MAX_SLEEP_AVG;
-                               if (!HIGH_CREDIT(p))
-                                       p->interactive_credit++;
-                       }
                }
        }
 
-       p->prio = effective_prio(p);
+       return effective_prio(p);
 }
 
 /*
@@ -469,17 +773,28 @@ static void recalc_task_prio(task_t *p, unsigned long long now)
  * Update all the scheduling statistics stuff. (sleep average
  * calculation, priority modifiers, etc.)
  */
-static inline void activate_task(task_t *p, runqueue_t *rq)
+static void activate_task(task_t *p, runqueue_t *rq, int local)
 {
-       unsigned long long now = sched_clock();
+       unsigned long long now;
 
-       recalc_task_prio(p, now);
+       now = sched_clock();
+#ifdef CONFIG_SMP
+       if (!local) {
+               /* Compensate for drifting sched_clock */
+               runqueue_t *this_rq = this_rq();
+               now = (now - this_rq->timestamp_last_tick)
+                       + rq->timestamp_last_tick;
+       }
+#endif
+
+       if (!rt_task(p))
+               p->prio = recalc_task_prio(p, now);
 
        /*
         * This checks to make sure it's not an uninterruptible task
         * that is now waking up.
         */
-       if (!p->activated) {
+       if (p->sleep_type == SLEEP_NORMAL) {
                /*
                 * Tasks which were woken up by interrupts (ie. hw events)
                 * are most likely of interactive nature. So we give them
@@ -488,32 +803,88 @@ static inline void activate_task(task_t *p, runqueue_t *rq)
                 * on a CPU, first time around:
                 */
                if (in_interrupt())
-                       p->activated = 2;
+                       p->sleep_type = SLEEP_INTERRUPTED;
                else {
                        /*
                         * Normal first-time wakeups get a credit too for
                         * on-runqueue time, but it will be weighted down:
                         */
-                       p->activated = 1;
+                       p->sleep_type = SLEEP_INTERACTIVE;
                }
        }
        p->timestamp = now;
 
+       vx_activate_task(p);
        __activate_task(p, rq);
 }
 
 /*
  * deactivate_task - remove a task from the runqueue.
  */
-static inline void deactivate_task(struct task_struct *p, runqueue_t *rq)
+static void __deactivate_task(struct task_struct *p, runqueue_t *rq)
 {
-       nr_running_dec(rq);
-       if (p->state == TASK_UNINTERRUPTIBLE)
-               rq->nr_uninterruptible++;
+       rq->nr_running--;
        dequeue_task(p, p->array);
        p->array = NULL;
 }
 
+static inline
+void deactivate_task(struct task_struct *p, runqueue_t *rq)
+{
+       vx_deactivate_task(p);
+       __deactivate_task(p, rq);
+}
+
+
+#ifdef CONFIG_VSERVER_HARDCPU
+/*
+ * vx_hold_task - put a task on the hold queue
+ */
+static inline
+void vx_hold_task(struct vx_info *vxi,
+       struct task_struct *p, runqueue_t *rq)
+{
+       __deactivate_task(p, rq);
+       p->state |= TASK_ONHOLD;
+       /* a new one on hold */
+       vx_onhold_inc(vxi);
+       list_add_tail(&p->run_list, &rq->hold_queue);
+}
+
+/*
+ * vx_unhold_task - put a task back to the runqueue
+ */
+static inline
+void vx_unhold_task(struct vx_info *vxi,
+       struct task_struct *p, runqueue_t *rq)
+{
+       list_del(&p->run_list);
+       /* one less waiting */
+       vx_onhold_dec(vxi);
+       p->state &= ~TASK_ONHOLD;
+       enqueue_task(p, rq->expired);
+       rq->nr_running++;
+
+       if (p->static_prio < rq->best_expired_prio)
+               rq->best_expired_prio = p->static_prio;
+}
+#else
+static inline
+void vx_hold_task(struct vx_info *vxi,
+       struct task_struct *p, runqueue_t *rq)
+{
+       return;
+}
+
+static inline
+void vx_unhold_task(struct vx_info *vxi,
+       struct task_struct *p, runqueue_t *rq)
+{
+       return;
+}
+#endif /* CONFIG_VSERVER_HARDCPU */
+
+
 /*
  * resched_task - mark a task 'to be rescheduled now'.
  *
@@ -521,30 +892,40 @@ static inline void deactivate_task(struct task_struct *p, runqueue_t *rq)
  * might also involve a cross-CPU call to trigger the scheduler on
  * the target CPU.
  */
-static inline void resched_task(task_t *p)
-{
 #ifdef CONFIG_SMP
-       int need_resched, nrpolling;
+static void resched_task(task_t *p)
+{
+       int cpu;
 
-       preempt_disable();
-       /* minimise the chance of sending an interrupt to poll_idle() */
-       nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
-       need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
-       nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
+       assert_spin_locked(&task_rq(p)->lock);
 
-       if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
-               smp_send_reschedule(task_cpu(p));
-       preempt_enable();
+       if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
+               return;
+
+       set_tsk_thread_flag(p, TIF_NEED_RESCHED);
+
+       cpu = task_cpu(p);
+       if (cpu == smp_processor_id())
+               return;
+
+       /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
+       smp_mb();
+       if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
+               smp_send_reschedule(cpu);
+}
 #else
+static inline void resched_task(task_t *p)
+{
+       assert_spin_locked(&task_rq(p)->lock);
        set_tsk_need_resched(p);
-#endif
 }
+#endif
 
 /**
  * task_curr - is this task currently executing on a CPU?
  * @p: the task in question.
  */
-inline int task_curr(task_t *p)
+inline int task_curr(const task_t *p)
 {
        return cpu_curr(task_cpu(p)) == p;
 }
@@ -552,38 +933,33 @@ inline int task_curr(task_t *p)
 #ifdef CONFIG_SMP
 typedef struct {
        struct list_head list;
+
        task_t *task;
+       int dest_cpu;
+
        struct completion done;
 } migration_req_t;
 
 /*
- * The task's runqueue lock must be held, and the new mask must be valid.
+ * The task's runqueue lock must be held.
  * Returns true if you have to wait for migration thread.
  */
-static int __set_cpus_allowed(task_t *p, cpumask_t new_mask,
-                               migration_req_t *req)
+static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
 {
        runqueue_t *rq = task_rq(p);
 
-       p->cpus_allowed = new_mask;
-       /*
-        * Can the task run on the task's current CPU? If not then
-        * migrate the thread off to a proper CPU.
-        */
-       if (cpu_isset(task_cpu(p), new_mask))
-               return 0;
-
        /*
         * If the task is not on a runqueue (and not running), then
         * it is sufficient to simply update the task's cpu field.
         */
        if (!p->array && !task_running(rq, p)) {
-               set_task_cpu(p, any_online_cpu(p->cpus_allowed));
+               set_task_cpu(p, dest_cpu);
                return 0;
        }
 
        init_completion(&req->done);
        req->task = p;
+       req->dest_cpu = dest_cpu;
        list_add(&req->list, &rq->migration_queue);
        return 1;
 }
@@ -597,7 +973,7 @@ static int __set_cpus_allowed(task_t *p, cpumask_t new_mask,
  * smp_call_function() if an IPI is sent by the same process we are
  * waiting to become inactive.
  */
-void wait_task_inactive(task_t * p)
+void wait_task_inactive(task_t *p)
 {
        unsigned long flags;
        runqueue_t *rq;
@@ -606,7 +982,7 @@ void wait_task_inactive(task_t * p)
 repeat:
        rq = task_rq_lock(p, &flags);
        /* Must be off runqueue entirely, not preempted. */
-       if (unlikely(p->array)) {
+       if (unlikely(p->array || task_running(rq, p))) {
                /* If it's preempted, we yield.  It could be a while. */
                preempted = !task_running(rq, p);
                task_rq_unlock(rq, &flags);
@@ -624,6 +1000,12 @@ repeat:
  *
  * Cause a process which is running on another CPU to enter
  * kernel-mode, without any delay. (to get signals handled.)
+ *
+ * NOTE: this function doesnt have to take the runqueue lock,
+ * because all it wants to ensure is that the remote task enters
+ * the kernel. If the IPI races and the task has been migrated
+ * to another CPU then no harm is done and the purpose has been
+ * achieved as well.
  */
 void kick_process(task_t *p)
 {
@@ -636,76 +1018,389 @@ void kick_process(task_t *p)
        preempt_enable();
 }
 
-EXPORT_SYMBOL_GPL(kick_process);
-
-#endif
-
-/***
- * try_to_wake_up - wake up a thread
- * @p: the to-be-woken-up thread
- * @state: the mask of task states that can be woken
- * @sync: do a synchronous wakeup?
- *
- * Put it on the run-queue if it's not already there. The "current"
- * thread is always on the run-queue (except when the actual
- * re-schedule is in progress), and as such you're allowed to do
- * the simpler "current->state = TASK_RUNNING" to mark yourself
- * runnable without the overhead of this.
+/*
+ * Return a low guess at the load of a migration-source cpu.
  *
- * returns failure only if the task is already active.
+ * We want to under-estimate the load of migration sources, to
+ * balance conservatively.
  */
-static int try_to_wake_up(task_t * p, unsigned int state, int sync)
+static inline unsigned long source_load(int cpu, int type)
 {
-       unsigned long flags;
-       int success = 0;
-       long old_state;
+       runqueue_t *rq = cpu_rq(cpu);
+       unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
+       if (type == 0)
+               return load_now;
+
+       return min(rq->cpu_load[type-1], load_now);
+}
+
+/*
+ * Return a high guess at the load of a migration-target cpu
+ */
+static inline unsigned long target_load(int cpu, int type)
+{
+       runqueue_t *rq = cpu_rq(cpu);
+       unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
+       if (type == 0)
+               return load_now;
+
+       return max(rq->cpu_load[type-1], load_now);
+}
+
+/*
+ * find_idlest_group finds and returns the least busy CPU group within the
+ * domain.
+ */
+static struct sched_group *
+find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
+{
+       struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
+       unsigned long min_load = ULONG_MAX, this_load = 0;
+       int load_idx = sd->forkexec_idx;
+       int imbalance = 100 + (sd->imbalance_pct-100)/2;
+
+       do {
+               unsigned long load, avg_load;
+               int local_group;
+               int i;
+
+               /* Skip over this group if it has no CPUs allowed */
+               if (!cpus_intersects(group->cpumask, p->cpus_allowed))
+                       goto nextgroup;
+
+               local_group = cpu_isset(this_cpu, group->cpumask);
+
+               /* Tally up the load of all CPUs in the group */
+               avg_load = 0;
+
+               for_each_cpu_mask(i, group->cpumask) {
+                       /* Bias balancing toward cpus of our domain */
+                       if (local_group)
+                               load = source_load(i, load_idx);
+                       else
+                               load = target_load(i, load_idx);
+
+                       avg_load += load;
+               }
+
+               /* Adjust by relative CPU power of the group */
+               avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
+
+               if (local_group) {
+                       this_load = avg_load;
+                       this = group;
+               } else if (avg_load < min_load) {
+                       min_load = avg_load;
+                       idlest = group;
+               }
+nextgroup:
+               group = group->next;
+       } while (group != sd->groups);
+
+       if (!idlest || 100*this_load < imbalance*min_load)
+               return NULL;
+       return idlest;
+}
+
+/*
+ * find_idlest_queue - find the idlest runqueue among the cpus in group.
+ */
+static int
+find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
+{
+       cpumask_t tmp;
+       unsigned long load, min_load = ULONG_MAX;
+       int idlest = -1;
+       int i;
+
+       /* Traverse only the allowed CPUs */
+       cpus_and(tmp, group->cpumask, p->cpus_allowed);
+
+       for_each_cpu_mask(i, tmp) {
+               load = source_load(i, 0);
+
+               if (load < min_load || (load == min_load && i == this_cpu)) {
+                       min_load = load;
+                       idlest = i;
+               }
+       }
+
+       return idlest;
+}
+
+/*
+ * sched_balance_self: balance the current task (running on cpu) in domains
+ * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
+ * SD_BALANCE_EXEC.
+ *
+ * Balance, ie. select the least loaded group.
+ *
+ * Returns the target CPU number, or the same CPU if no balancing is needed.
+ *
+ * preempt must be disabled.
+ */
+static int sched_balance_self(int cpu, int flag)
+{
+       struct task_struct *t = current;
+       struct sched_domain *tmp, *sd = NULL;
+
+       for_each_domain(cpu, tmp)
+               if (tmp->flags & flag)
+                       sd = tmp;
+
+       while (sd) {
+               cpumask_t span;
+               struct sched_group *group;
+               int new_cpu;
+               int weight;
+
+               span = sd->span;
+               group = find_idlest_group(sd, t, cpu);
+               if (!group)
+                       goto nextlevel;
+
+               new_cpu = find_idlest_cpu(group, t, cpu);
+               if (new_cpu == -1 || new_cpu == cpu)
+                       goto nextlevel;
+
+               /* Now try balancing at a lower domain level */
+               cpu = new_cpu;
+nextlevel:
+               sd = NULL;
+               weight = cpus_weight(span);
+               for_each_domain(cpu, tmp) {
+                       if (weight <= cpus_weight(tmp->span))
+                               break;
+                       if (tmp->flags & flag)
+                               sd = tmp;
+               }
+               /* while loop will break here if sd == NULL */
+       }
+
+       return cpu;
+}
+
+#endif /* CONFIG_SMP */
+
+/*
+ * wake_idle() will wake a task on an idle cpu if task->cpu is
+ * not idle and an idle cpu is available.  The span of cpus to
+ * search starts with cpus closest then further out as needed,
+ * so we always favor a closer, idle cpu.
+ *
+ * Returns the CPU we should wake onto.
+ */
+#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
+static int wake_idle(int cpu, task_t *p)
+{
+       cpumask_t tmp;
+       struct sched_domain *sd;
+       int i;
+
+       if (idle_cpu(cpu))
+               return cpu;
+
+       for_each_domain(cpu, sd) {
+               if (sd->flags & SD_WAKE_IDLE) {
+                       cpus_and(tmp, sd->span, p->cpus_allowed);
+                       for_each_cpu_mask(i, tmp) {
+                               if (idle_cpu(i))
+                                       return i;
+                       }
+               }
+               else
+                       break;
+       }
+       return cpu;
+}
+#else
+static inline int wake_idle(int cpu, task_t *p)
+{
+       return cpu;
+}
+#endif
+
+/***
+ * try_to_wake_up - wake up a thread
+ * @p: the to-be-woken-up thread
+ * @state: the mask of task states that can be woken
+ * @sync: do a synchronous wakeup?
+ *
+ * Put it on the run-queue if it's not already there. The "current"
+ * thread is always on the run-queue (except when the actual
+ * re-schedule is in progress), and as such you're allowed to do
+ * the simpler "current->state = TASK_RUNNING" to mark yourself
+ * runnable without the overhead of this.
+ *
+ * returns failure only if the task is already active.
+ */
+static int try_to_wake_up(task_t *p, unsigned int state, int sync)
+{
+       int cpu, this_cpu, success = 0;
+       unsigned long flags;
+       long old_state;
        runqueue_t *rq;
+#ifdef CONFIG_SMP
+       unsigned long load, this_load;
+       struct sched_domain *sd, *this_sd = NULL;
+       int new_cpu;
+#endif
 
-repeat_lock_task:
        rq = task_rq_lock(p, &flags);
        old_state = p->state;
-       if (old_state & state) {
-               if (!p->array) {
+
+       /* we need to unhold suspended tasks */
+       if (old_state & TASK_ONHOLD) {
+               vx_unhold_task(p->vx_info, p, rq);
+               old_state = p->state;
+       }
+       if (!(old_state & state))
+               goto out;
+
+       if (p->array)
+               goto out_running;
+
+       cpu = task_cpu(p);
+       this_cpu = smp_processor_id();
+
+#ifdef CONFIG_SMP
+       if (unlikely(task_running(rq, p)))
+               goto out_activate;
+
+       new_cpu = cpu;
+
+       schedstat_inc(rq, ttwu_cnt);
+       if (cpu == this_cpu) {
+               schedstat_inc(rq, ttwu_local);
+               goto out_set_cpu;
+       }
+
+       for_each_domain(this_cpu, sd) {
+               if (cpu_isset(cpu, sd->span)) {
+                       schedstat_inc(sd, ttwu_wake_remote);
+                       this_sd = sd;
+                       break;
+               }
+       }
+
+       if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
+               goto out_set_cpu;
+
+       /*
+        * Check for affine wakeup and passive balancing possibilities.
+        */
+       if (this_sd) {
+               int idx = this_sd->wake_idx;
+               unsigned int imbalance;
+
+               imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
+
+               load = source_load(cpu, idx);
+               this_load = target_load(this_cpu, idx);
+
+               new_cpu = this_cpu; /* Wake to this CPU if we can */
+
+               if (this_sd->flags & SD_WAKE_AFFINE) {
+                       unsigned long tl = this_load;
                        /*
-                        * Fast-migrate the task if it's not running or runnable
-                        * currently. Do not violate hard affinity.
+                        * If sync wakeup then subtract the (maximum possible)
+                        * effect of the currently running task from the load
+                        * of the current CPU:
                         */
-                       if (unlikely(sync && !task_running(rq, p) &&
-                               (task_cpu(p) != smp_processor_id()) &&
-                                       cpu_isset(smp_processor_id(),
-                                                       p->cpus_allowed) &&
-                                       !cpu_is_offline(smp_processor_id()))) {
-                               set_task_cpu(p, smp_processor_id());
-                               task_rq_unlock(rq, &flags);
-                               goto repeat_lock_task;
-                       }
-                       if (old_state == TASK_UNINTERRUPTIBLE) {
-                               rq->nr_uninterruptible--;
+                       if (sync)
+                               tl -= SCHED_LOAD_SCALE;
+
+                       if ((tl <= load &&
+                               tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
+                               100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
                                /*
-                                * Tasks on involuntary sleep don't earn
-                                * sleep_avg beyond just interactive state.
+                                * This domain has SD_WAKE_AFFINE and
+                                * p is cache cold in this domain, and
+                                * there is no bad imbalance.
                                 */
-                               p->activated = -1;
+                               schedstat_inc(this_sd, ttwu_move_affine);
+                               goto out_set_cpu;
                        }
-                       if (sync && (task_cpu(p) == smp_processor_id()))
-                               __activate_task(p, rq);
-                       else {
-                               activate_task(p, rq);
-                               if (TASK_PREEMPTS_CURR(p, rq))
-                                       resched_task(rq->curr);
+               }
+
+               /*
+                * Start passive balancing when half the imbalance_pct
+                * limit is reached.
+                */
+               if (this_sd->flags & SD_WAKE_BALANCE) {
+                       if (imbalance*this_load <= 100*load) {
+                               schedstat_inc(this_sd, ttwu_move_balance);
+                               goto out_set_cpu;
                        }
-                       success = 1;
                }
-               p->state = TASK_RUNNING;
        }
+
+       new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
+out_set_cpu:
+       new_cpu = wake_idle(new_cpu, p);
+       if (new_cpu != cpu) {
+               set_task_cpu(p, new_cpu);
+               task_rq_unlock(rq, &flags);
+               /* might preempt at this point */
+               rq = task_rq_lock(p, &flags);
+               old_state = p->state;
+               if (!(old_state & state))
+                       goto out;
+               if (p->array)
+                       goto out_running;
+
+               this_cpu = smp_processor_id();
+               cpu = task_cpu(p);
+       }
+
+out_activate:
+#endif /* CONFIG_SMP */
+       if (old_state == TASK_UNINTERRUPTIBLE) {
+               rq->nr_uninterruptible--;
+               vx_uninterruptible_dec(p);
+               /*
+                * Tasks on involuntary sleep don't earn
+                * sleep_avg beyond just interactive state.
+                */
+               p->sleep_type = SLEEP_NONINTERACTIVE;
+       } else
+
+       /*
+        * Tasks that have marked their sleep as noninteractive get
+        * woken up with their sleep average not weighted in an
+        * interactive way.
+        */
+               if (old_state & TASK_NONINTERACTIVE)
+                       p->sleep_type = SLEEP_NONINTERACTIVE;
+
+
+       activate_task(p, rq, cpu == this_cpu);
+       /*
+        * Sync wakeups (i.e. those types of wakeups where the waker
+        * has indicated that it will leave the CPU in short order)
+        * don't trigger a preemption, if the woken up task will run on
+        * this cpu. (in this case the 'I will reschedule' promise of
+        * the waker guarantees that the freshly woken up task is going
+        * to be considered on this CPU.)
+        */
+       if (!sync || cpu != this_cpu) {
+               if (TASK_PREEMPTS_CURR(p, rq))
+                       resched_task(rq->curr);
+       }
+       success = 1;
+
+out_running:
+       p->state = TASK_RUNNING;
+out:
        task_rq_unlock(rq, &flags);
 
        return success;
 }
-int fastcall wake_up_process(task_t * p)
+
+int fastcall wake_up_process(task_t *p)
 {
-       return try_to_wake_up(p, TASK_STOPPED |
-                                TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
+       return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
+                                TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
 }
 
 EXPORT_SYMBOL(wake_up_process);
@@ -719,8 +1414,15 @@ int fastcall wake_up_state(task_t *p, unsigned int state)
  * Perform scheduler related setup for a newly forked process p.
  * p is forked by current.
  */
-void fastcall sched_fork(task_t *p)
+void fastcall sched_fork(task_t *p, int clone_flags)
 {
+       int cpu = get_cpu();
+
+#ifdef CONFIG_SMP
+       cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
+#endif
+       set_task_cpu(p, cpu);
+
        /*
         * We mark the process as running here, but have not actually
         * inserted it onto the runqueue yet. This guarantees that
@@ -730,15 +1432,15 @@ void fastcall sched_fork(task_t *p)
        p->state = TASK_RUNNING;
        INIT_LIST_HEAD(&p->run_list);
        p->array = NULL;
-       spin_lock_init(&p->switch_lock);
+#ifdef CONFIG_SCHEDSTATS
+       memset(&p->sched_info, 0, sizeof(p->sched_info));
+#endif
+#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
+       p->oncpu = 0;
+#endif
 #ifdef CONFIG_PREEMPT
-       /*
-        * During context-switch we hold precisely one spinlock, which
-        * schedule_tail drops. (in the common case it's this_rq()->lock,
-        * but it also can be p->switch_lock.) So we compensate with a count
-        * of 1. Also, we want to start with kernel preemption disabled.
-        */
-       p->thread_info->preempt_count = 1;
+       /* Want to start with kernel preemption disabled. */
+       task_thread_info(p)->preempt_count = 1;
 #endif
        /*
         * Share the timeslice between parent and child, thus the
@@ -754,60 +1456,100 @@ void fastcall sched_fork(task_t *p)
        p->first_time_slice = 1;
        current->time_slice >>= 1;
        p->timestamp = sched_clock();
-       if (!current->time_slice) {
+       if (unlikely(!current->time_slice)) {
                /*
-                * This case is rare, it happens when the parent has only
-                * a single jiffy left from its timeslice. Taking the
+                * This case is rare, it happens when the parent has only
+                * a single jiffy left from its timeslice. Taking the
                 * runqueue lock is not a problem.
                 */
                current->time_slice = 1;
-               preempt_disable();
-               scheduler_tick(0, 0);
-               local_irq_enable();
-               preempt_enable();
-       } else
-               local_irq_enable();
+               scheduler_tick();
+       }
+       local_irq_enable();
+       put_cpu();
 }
 
 /*
- * wake_up_forked_process - wake up a freshly forked process.
+ * wake_up_new_task - wake up a newly created task for the first time.
  *
  * This function will do some initial scheduler statistics housekeeping
- * that must be done for every newly created process.
+ * that must be done for every newly created context, then puts the task
+ * on the runqueue and wakes it.
  */
-void fastcall wake_up_forked_process(task_t * p)
+void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
 {
        unsigned long flags;
-       runqueue_t *rq = task_rq_lock(current, &flags);
+       int this_cpu, cpu;
+       runqueue_t *rq, *this_rq;
 
+       rq = task_rq_lock(p, &flags);
        BUG_ON(p->state != TASK_RUNNING);
+       this_cpu = smp_processor_id();
+       cpu = task_cpu(p);
 
        /*
         * We decrease the sleep average of forking parents
         * and children as well, to keep max-interactive tasks
-        * from forking tasks that are max-interactive.
+        * from forking tasks that are max-interactive. The parent
+        * (current) is done further down, under its lock.
         */
-       current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
-               PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
-
        p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
                CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
 
-       p->interactive_credit = 0;
-
        p->prio = effective_prio(p);
-       set_task_cpu(p, smp_processor_id());
 
-       if (unlikely(!current->array))
+       vx_activate_task(p);
+       if (likely(cpu == this_cpu)) {
+               if (!(clone_flags & CLONE_VM)) {
+                       /*
+                        * The VM isn't cloned, so we're in a good position to
+                        * do child-runs-first in anticipation of an exec. This
+                        * usually avoids a lot of COW overhead.
+                        */
+                       if (unlikely(!current->array))
+                               __activate_task(p, rq);
+                       else {
+                               p->prio = current->prio;
+                               BUG_ON(p->state & TASK_ONHOLD);
+                               list_add_tail(&p->run_list, &current->run_list);
+                               p->array = current->array;
+                               p->array->nr_active++;
+                               rq->nr_running++;
+                       }
+                       set_need_resched();
+               } else
+                       /* Run child last */
+                       __activate_task(p, rq);
+               /*
+                * We skip the following code due to cpu == this_cpu
+                *
+                *   task_rq_unlock(rq, &flags);
+                *   this_rq = task_rq_lock(current, &flags);
+                */
+               this_rq = rq;
+       } else {
+               this_rq = cpu_rq(this_cpu);
+
+               /*
+                * Not the local CPU - must adjust timestamp. This should
+                * get optimised away in the !CONFIG_SMP case.
+                */
+               p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
+                                       + rq->timestamp_last_tick;
                __activate_task(p, rq);
-       else {
-               p->prio = current->prio;
-               list_add_tail(&p->run_list, &current->run_list);
-               p->array = current->array;
-               p->array->nr_active++;
-               nr_running_inc(rq);
+               if (TASK_PREEMPTS_CURR(p, rq))
+                       resched_task(rq->curr);
+
+               /*
+                * Parent and child are on different CPUs, now get the
+                * parent runqueue to update the parent's ->sleep_avg:
+                */
+               task_rq_unlock(rq, &flags);
+               this_rq = task_rq_lock(current, &flags);
        }
-       task_rq_unlock(rq, &flags);
+       current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
+               PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
+       task_rq_unlock(this_rq, &flags);
 }
 
 /*
@@ -819,23 +1561,21 @@ void fastcall wake_up_forked_process(task_t * p)
  * artificially, because any timeslice recovered here
  * was given away by the parent in the first place.)
  */
-void fastcall sched_exit(task_t * p)
+void fastcall sched_exit(task_t *p)
 {
        unsigned long flags;
        runqueue_t *rq;
 
-       local_irq_save(flags);
-       if (p->first_time_slice) {
-               p->parent->time_slice += p->time_slice;
-               if (unlikely(p->parent->time_slice > MAX_TIMESLICE))
-                       p->parent->time_slice = MAX_TIMESLICE;
-       }
-       local_irq_restore(flags);
        /*
         * If the child was a (relative-) CPU hog then decrease
         * the sleep_avg of the parent as well.
         */
        rq = task_rq_lock(p->parent, &flags);
+       if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
+               p->parent->time_slice += p->time_slice;
+               if (unlikely(p->parent->time_slice > task_timeslice(p)))
+                       p->parent->time_slice = task_timeslice(p);
+       }
        if (p->sleep_avg < p->parent->sleep_avg)
                p->parent->sleep_avg = p->parent->sleep_avg /
                (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
@@ -843,22 +1583,42 @@ void fastcall sched_exit(task_t * p)
        task_rq_unlock(rq, &flags);
 }
 
+/**
+ * prepare_task_switch - prepare to switch tasks
+ * @rq: the runqueue preparing to switch
+ * @next: the task we are going to switch to.
+ *
+ * This is called with the rq lock held and interrupts off. It must
+ * be paired with a subsequent finish_task_switch after the context
+ * switch.
+ *
+ * prepare_task_switch sets up locking and calls architecture specific
+ * hooks.
+ */
+static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
+{
+       prepare_lock_switch(rq, next);
+       prepare_arch_switch(next);
+}
+
 /**
  * finish_task_switch - clean up after a task-switch
+ * @rq: runqueue associated with task-switch
  * @prev: the thread we just switched away from.
  *
- * We enter this with the runqueue still locked, and finish_arch_switch()
- * will unlock it along with doing any other architecture-specific cleanup
- * actions.
+ * finish_task_switch must be called after the context switch, paired
+ * with a prepare_task_switch call before the context switch.
+ * finish_task_switch will reconcile locking set up by prepare_task_switch,
+ * and do any other architecture-specific cleanup actions.
  *
  * Note that we may have delayed dropping an mm in context_switch(). If
  * so, we finish that here outside of the runqueue lock.  (Doing it
  * with the lock held can cause deadlocks; see schedule() for
  * details.)
  */
-static inline void finish_task_switch(task_t *prev)
+static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
+       __releases(rq->lock)
 {
-       runqueue_t *rq = this_rq();
        struct mm_struct *mm = rq->prev_mm;
        unsigned long prev_task_flags;
 
@@ -866,21 +1626,28 @@ static inline void finish_task_switch(task_t *prev)
 
        /*
         * A task struct has one reference for the use as "current".
-        * If a task dies, then it sets TASK_ZOMBIE in tsk->state and calls
-        * schedule one last time. The schedule call will never return,
+        * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
+        * calls schedule one last time. The schedule call will never return,
         * and the scheduled task must drop that reference.
-        * The test for TASK_ZOMBIE must occur while the runqueue locks are
+        * The test for EXIT_ZOMBIE must occur while the runqueue locks are
         * still held, otherwise prev could be scheduled on another cpu, die
         * there before we look at prev->state, and then the reference would
         * be dropped twice.
-        *              Manfred Spraul <manfred@colorfullife.com>
+        *              Manfred Spraul <manfred@colorfullife.com>
         */
        prev_task_flags = prev->flags;
-       finish_arch_switch(rq, prev);
+       finish_arch_switch(prev);
+       finish_lock_switch(rq, prev);
        if (mm)
                mmdrop(mm);
-       if (unlikely(prev_task_flags & PF_DEAD))
+       if (unlikely(prev_task_flags & PF_DEAD)) {
+               /*
+                * Remove function-return probe instances associated with this
+                * task and put them back on the free list.
+                */
+               kprobe_flush_task(prev);
                put_task_struct(prev);
+       }
 }
 
 /**
@@ -888,9 +1655,14 @@ static inline void finish_task_switch(task_t *prev)
  * @prev: the thread we just switched away from.
  */
 asmlinkage void schedule_tail(task_t *prev)
+       __releases(rq->lock)
 {
-       finish_task_switch(prev);
-
+       runqueue_t *rq = this_rq();
+       finish_task_switch(rq, prev);
+#ifdef __ARCH_WANT_UNLOCKED_CTXSW
+       /* In this case, finish_task_switch does not reenable preemption */
+       preempt_enable();
+#endif
        if (current->set_child_tid)
                put_user(current->pid, current->set_child_tid);
 }
@@ -935,7 +1707,7 @@ unsigned long nr_running(void)
 {
        unsigned long i, sum = 0;
 
-       for (i = 0; i < NR_CPUS; i++)
+       for_each_online_cpu(i)
                sum += cpu_rq(i)->nr_running;
 
        return sum;
@@ -945,9 +1717,16 @@ unsigned long nr_uninterruptible(void)
 {
        unsigned long i, sum = 0;
 
-       for_each_cpu(i)
+       for_each_possible_cpu(i)
                sum += cpu_rq(i)->nr_uninterruptible;
 
+       /*
+        * Since we read the counters lockless, it might be slightly
+        * inaccurate. Do not allow it to go below zero though:
+        */
+       if (unlikely((long)sum < 0))
+               sum = 0;
+
        return sum;
 }
 
@@ -955,7 +1734,7 @@ unsigned long long nr_context_switches(void)
 {
        unsigned long long i, sum = 0;
 
-       for_each_cpu(i)
+       for_each_possible_cpu(i)
                sum += cpu_rq(i)->nr_switches;
 
        return sum;
@@ -965,24 +1744,47 @@ unsigned long nr_iowait(void)
 {
        unsigned long i, sum = 0;
 
-       for_each_cpu(i)
+       for_each_possible_cpu(i)
                sum += atomic_read(&cpu_rq(i)->nr_iowait);
 
        return sum;
 }
 
+unsigned long nr_active(void)
+{
+       unsigned long i, running = 0, uninterruptible = 0;
+
+       for_each_online_cpu(i) {
+               running += cpu_rq(i)->nr_running;
+               uninterruptible += cpu_rq(i)->nr_uninterruptible;
+       }
+
+       if (unlikely((long)uninterruptible < 0))
+               uninterruptible = 0;
+
+       return running + uninterruptible;
+}
+
+#ifdef CONFIG_SMP
+
 /*
  * double_rq_lock - safely lock two runqueues
  *
+ * We must take them in cpu order to match code in
+ * dependent_sleeper and wake_dependent_sleeper.
+ *
  * Note this does not disable interrupts like task_rq_lock,
  * you need to do so manually before calling.
  */
-static inline void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
+static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
+       __acquires(rq1->lock)
+       __acquires(rq2->lock)
 {
-       if (rq1 == rq2)
+       if (rq1 == rq2) {
                spin_lock(&rq1->lock);
-       else {
-               if (rq1 < rq2) {
+               __acquire(rq2->lock);   /* Fake it out ;) */
+       } else {
+               if (rq1->cpu < rq2->cpu) {
                        spin_lock(&rq1->lock);
                        spin_lock(&rq2->lock);
                } else {
@@ -998,14 +1800,35 @@ static inline void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
  * Note this does not restore interrupts like task_rq_unlock,
  * you need to do so manually after calling.
  */
-static inline void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
+static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
+       __releases(rq1->lock)
+       __releases(rq2->lock)
 {
        spin_unlock(&rq1->lock);
        if (rq1 != rq2)
                spin_unlock(&rq2->lock);
+       else
+               __release(rq2->lock);
+}
+
+/*
+ * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
+ */
+static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
+       __releases(this_rq->lock)
+       __acquires(busiest->lock)
+       __acquires(this_rq->lock)
+{
+       if (unlikely(!spin_trylock(&busiest->lock))) {
+               if (busiest->cpu < this_rq->cpu) {
+                       spin_unlock(&this_rq->lock);
+                       spin_lock(&busiest->lock);
+                       spin_lock(&this_rq->lock);
+               } else
+                       spin_lock(&busiest->lock);
+       }
 }
 
-#ifdef CONFIG_NUMA
 /*
  * If dest_cpu is allowed for this process, migrate the task to it.
  * This is accomplished by forcing the cpu_allowed mask to only
@@ -1014,313 +1837,121 @@ static inline void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
  */
 static void sched_migrate_task(task_t *p, int dest_cpu)
 {
-       runqueue_t *rq;
        migration_req_t req;
+       runqueue_t *rq;
        unsigned long flags;
-       cpumask_t old_mask, new_mask = cpumask_of_cpu(dest_cpu);
 
-       lock_cpu_hotplug();
        rq = task_rq_lock(p, &flags);
-       old_mask = p->cpus_allowed;
-       if (!cpu_isset(dest_cpu, old_mask) || !cpu_online(dest_cpu))
+       if (!cpu_isset(dest_cpu, p->cpus_allowed)
+           || unlikely(cpu_is_offline(dest_cpu)))
                goto out;
 
        /* force the process onto the specified CPU */
-       if (__set_cpus_allowed(p, new_mask, &req)) {
-               /* Need to wait for migration thread. */
+       if (migrate_task(p, dest_cpu, &req)) {
+               /* Need to wait for migration thread (might exit: take ref). */
+               struct task_struct *mt = rq->migration_thread;
+               get_task_struct(mt);
                task_rq_unlock(rq, &flags);
-               wake_up_process(rq->migration_thread);
+               wake_up_process(mt);
+               put_task_struct(mt);
                wait_for_completion(&req.done);
-
-               /* If we raced with sys_sched_setaffinity, don't
-                * restore mask. */
-               rq = task_rq_lock(p, &flags);
-               if (likely(cpus_equal(p->cpus_allowed, new_mask))) {
-                       /* Restore old mask: won't need migration
-                        * thread, since current cpu is allowed. */
-                       BUG_ON(__set_cpus_allowed(p, old_mask, NULL));
-               }
+               return;
        }
 out:
        task_rq_unlock(rq, &flags);
-       unlock_cpu_hotplug();
 }
 
 /*
- * Find the least loaded CPU.  Slightly favor the current CPU by
- * setting its runqueue length as the minimum to start.
+ * sched_exec - execve() is a valuable balancing opportunity, because at
+ * this point the task has the smallest effective memory and cache footprint.
  */
-static int sched_best_cpu(struct task_struct *p)
+void sched_exec(void)
 {
-       int i, minload, load, best_cpu, node = 0;
-       cpumask_t cpumask;
-
-       best_cpu = task_cpu(p);
-       if (cpu_rq(best_cpu)->nr_running <= 2)
-               return best_cpu;
-
-       minload = 10000000;
-       for_each_node_with_cpus(i) {
-               /*
-                * Node load is always divided by nr_cpus_node to normalise
-                * load values in case cpu count differs from node to node.
-                * We first multiply node_nr_running by 10 to get a little
-                * better resolution.
-                */
-               load = 10 * atomic_read(&node_nr_running[i]) / nr_cpus_node(i);
-               if (load < minload) {
-                       minload = load;
-                       node = i;
-               }
-       }
-
-       minload = 10000000;
-       cpumask = node_to_cpumask(node);
-       for (i = 0; i < NR_CPUS; ++i) {
-               if (!cpu_isset(i, cpumask))
-                       continue;
-               if (cpu_rq(i)->nr_running < minload) {
-                       best_cpu = i;
-                       minload = cpu_rq(i)->nr_running;
-               }
-       }
-       return best_cpu;
+       int new_cpu, this_cpu = get_cpu();
+       new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
+       put_cpu();
+       if (new_cpu != this_cpu)
+               sched_migrate_task(current, new_cpu);
 }
 
-void sched_balance_exec(void)
-{
-       int new_cpu;
-
-       if (numnodes > 1) {
-               new_cpu = sched_best_cpu(current);
-               if (new_cpu != smp_processor_id())
-                       sched_migrate_task(current, new_cpu);
-       }
-}
-
-/*
- * Find the busiest node. All previous node loads contribute with a
- * geometrically deccaying weight to the load measure:
- *      load_{t} = load_{t-1}/2 + nr_node_running_{t}
- * This way sudden load peaks are flattened out a bit.
- * Node load is divided by nr_cpus_node() in order to compare nodes
- * of different cpu count but also [first] multiplied by 10 to
- * provide better resolution.
- */
-static int find_busiest_node(int this_node)
-{
-       int i, node = -1, load, this_load, maxload;
-
-       if (!nr_cpus_node(this_node))
-               return node;
-       this_load = maxload = (this_rq()->prev_node_load[this_node] >> 1)
-               + (10 * atomic_read(&node_nr_running[this_node])
-               / nr_cpus_node(this_node));
-       this_rq()->prev_node_load[this_node] = this_load;
-       for_each_node_with_cpus(i) {
-               if (i == this_node)
-                       continue;
-               load = (this_rq()->prev_node_load[i] >> 1)
-                       + (10 * atomic_read(&node_nr_running[i])
-                       / nr_cpus_node(i));
-               this_rq()->prev_node_load[i] = load;
-               if (load > maxload && (100*load > NODE_THRESHOLD*this_load)) {
-                       maxload = load;
-                       node = i;
-               }
-       }
-       return node;
-}
-
-#endif /* CONFIG_NUMA */
-
-#ifdef CONFIG_SMP
-
-/*
- * double_lock_balance - lock the busiest runqueue
- *
- * this_rq is locked already. Recalculate nr_running if we have to
- * drop the runqueue lock.
- */
-static inline
-unsigned int double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest,
-                                int this_cpu, int idle,
-                                unsigned int nr_running)
-{
-       if (unlikely(!spin_trylock(&busiest->lock))) {
-               if (busiest < this_rq) {
-                       spin_unlock(&this_rq->lock);
-                       spin_lock(&busiest->lock);
-                       spin_lock(&this_rq->lock);
-                       /* Need to recalculate nr_running */
-                       if (idle || (this_rq->nr_running >
-                                       this_rq->prev_cpu_load[this_cpu]))
-                               nr_running = this_rq->nr_running;
-                       else
-                               nr_running = this_rq->prev_cpu_load[this_cpu];
-               } else
-                       spin_lock(&busiest->lock);
-       }
-       return nr_running;
-}
-
-/*
- * find_busiest_queue - find the busiest runqueue among the cpus in cpumask.
- */
-static inline
-runqueue_t *find_busiest_queue(runqueue_t *this_rq, int this_cpu, int idle,
-                              int *imbalance, cpumask_t cpumask)
-{
-       int nr_running, load, max_load, i;
-       runqueue_t *busiest, *rq_src;
-
-       /*
-        * We search all runqueues to find the most busy one.
-        * We do this lockless to reduce cache-bouncing overhead,
-        * we re-check the 'best' source CPU later on again, with
-        * the lock held.
-        *
-        * We fend off statistical fluctuations in runqueue lengths by
-        * saving the runqueue length (as seen by the balancing CPU) during
-        * the previous load-balancing operation and using the smaller one
-        * of the current and saved lengths. If a runqueue is long enough
-        * for a longer amount of time then we recognize it and pull tasks
-        * from it.
-        *
-        * The 'current runqueue length' is a statistical maximum variable,
-        * for that one we take the longer one - to avoid fluctuations in
-        * the other direction. So for a load-balance to happen it needs
-        * stable long runqueue on the target CPU and stable short runqueue
-        * on the local runqueue.
-        *
-        * We make an exception if this CPU is about to become idle - in
-        * that case we are less picky about moving a task across CPUs and
-        * take what can be taken.
-        */
-       if (idle || (this_rq->nr_running > this_rq->prev_cpu_load[this_cpu]))
-               nr_running = this_rq->nr_running;
-       else
-               nr_running = this_rq->prev_cpu_load[this_cpu];
-
-       busiest = NULL;
-       max_load = 1;
-       for (i = 0; i < NR_CPUS; i++) {
-               if (!cpu_isset(i, cpumask))
-                       continue;
-
-               rq_src = cpu_rq(i);
-               if (idle || (rq_src->nr_running < this_rq->prev_cpu_load[i]))
-                       load = rq_src->nr_running;
-               else
-                       load = this_rq->prev_cpu_load[i];
-               this_rq->prev_cpu_load[i] = rq_src->nr_running;
-
-               if ((load > max_load) && (rq_src != this_rq)) {
-                       busiest = rq_src;
-                       max_load = load;
-               }
-       }
-
-       if (likely(!busiest))
-               goto out;
-
-       *imbalance = max_load - nr_running;
-
-       /* It needs an at least ~25% imbalance to trigger balancing. */
-       if (!idle && ((*imbalance)*4 < max_load)) {
-               busiest = NULL;
-               goto out;
-       }
-
-       nr_running = double_lock_balance(this_rq, busiest, this_cpu,
-                                        idle, nr_running);
-       /*
-        * Make sure nothing changed since we checked the
-        * runqueue length.
-        */
-       if (busiest->nr_running <= nr_running) {
-               spin_unlock(&busiest->lock);
-               busiest = NULL;
-       }
-out:
-       return busiest;
-}
-
-/*
- * pull_task - move a task from a remote runqueue to the local runqueue.
- * Both runqueues must be locked.
- */
-static inline
-void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
-              runqueue_t *this_rq, int this_cpu)
+/*
+ * pull_task - move a task from a remote runqueue to the local runqueue.
+ * Both runqueues must be locked.
+ */
+static
+void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
+              runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
 {
        dequeue_task(p, src_array);
-       nr_running_dec(src_rq);
+       src_rq->nr_running--;
        set_task_cpu(p, this_cpu);
-       nr_running_inc(this_rq);
-       enqueue_task(p, this_rq->active);
-       p->timestamp = sched_clock() -
-                               (src_rq->timestamp_last_tick - p->timestamp);
+       this_rq->nr_running++;
+       enqueue_task(p, this_array);
+       p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
+                               + this_rq->timestamp_last_tick;
        /*
         * Note that idle threads have a prio of MAX_PRIO, for this test
         * to be always true for them.
         */
        if (TASK_PREEMPTS_CURR(p, this_rq))
-               set_need_resched();
+               resched_task(this_rq->curr);
 }
 
 /*
  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  */
-static inline
-int can_migrate_task(task_t *tsk, runqueue_t *rq, int this_cpu, int idle)
+static
+int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
+                    struct sched_domain *sd, enum idle_type idle,
+                    int *all_pinned)
 {
-       unsigned long delta = rq->timestamp_last_tick - tsk->timestamp;
-
        /*
         * We do not migrate tasks that are:
         * 1) running (obviously), or
         * 2) cannot be migrated to this CPU due to cpus_allowed, or
         * 3) are cache-hot on their current CPU.
         */
-       if (task_running(rq, tsk))
+       if (!cpu_isset(this_cpu, p->cpus_allowed))
                return 0;
-       if (!cpu_isset(this_cpu, tsk->cpus_allowed))
+       *all_pinned = 0;
+
+       if (task_running(rq, p))
                return 0;
-       if (!idle && (delta <= JIFFIES_TO_NS(cache_decay_ticks)))
+
+       /*
+        * Aggressive migration if:
+        * 1) task is cache cold, or
+        * 2) too many balance attempts have failed.
+        */
+
+       if (sd->nr_balance_failed > sd->cache_nice_tries)
+               return 1;
+
+       if (task_hot(p, rq->timestamp_last_tick, sd))
                return 0;
        return 1;
 }
 
 /*
- * Current runqueue is empty, or rebalance tick: if there is an
- * inbalance (current runqueue is too short) then pull from
- * busiest runqueue(s).
+ * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
+ * as part of a balancing operation within "domain". Returns the number of
+ * tasks moved.
  *
- * We call this with the current runqueue locked,
- * irqs disabled.
+ * Called with both runqueues locked.
  */
-static void load_balance(runqueue_t *this_rq, int idle, cpumask_t cpumask)
+static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
+                     unsigned long max_nr_move, struct sched_domain *sd,
+                     enum idle_type idle, int *all_pinned)
 {
-       int imbalance, idx, this_cpu = smp_processor_id();
-       runqueue_t *busiest;
-       prio_array_t *array;
+       prio_array_t *array, *dst_array;
        struct list_head *head, *curr;
+       int idx, pulled = 0, pinned = 0;
        task_t *tmp;
 
-       if (cpu_is_offline(this_cpu))
-               goto out;
-
-       busiest = find_busiest_queue(this_rq, this_cpu, idle,
-                                    &imbalance, cpumask);
-       if (!busiest)
+       if (max_nr_move == 0)
                goto out;
 
-       /*
-        * We only want to steal a number of tasks equal to 1/2 the imbalance,
-        * otherwise we'll just shift the imbalance to the new queue:
-        */
-       imbalance /= 2;
+       pinned = 1;
 
        /*
         * We first consider expired tasks. Those will likely not be
@@ -1328,10 +1959,13 @@ static void load_balance(runqueue_t *this_rq, int idle, cpumask_t cpumask)
         * be cache-cold, thus switching CPUs has the least effect
         * on them.
         */
-       if (busiest->expired->nr_active)
+       if (busiest->expired->nr_active) {
                array = busiest->expired;
-       else
+               dst_array = this_rq->expired;
+       } else {
                array = busiest->active;
+               dst_array = this_rq->active;
+       }
 
 new_array:
        /* Start searching at priority 0: */
@@ -1342,11 +1976,12 @@ skip_bitmap:
        else
                idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
        if (idx >= MAX_PRIO) {
-               if (array == busiest->expired) {
+               if (array == busiest->expired && busiest->active->nr_active) {
                        array = busiest->active;
+                       dst_array = this_rq->active;
                        goto new_array;
                }
-               goto out_unlock;
+               goto out;
        }
 
        head = array->queue + idx;
@@ -1356,1606 +1991,4294 @@ skip_queue:
 
        curr = curr->prev;
 
-       if (!can_migrate_task(tmp, busiest, this_cpu, idle)) {
+       if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
                if (curr != head)
                        goto skip_queue;
                idx++;
                goto skip_bitmap;
        }
-       pull_task(busiest, array, tmp, this_rq, this_cpu);
 
-       /* Only migrate one task if we are idle */
-       if (!idle && --imbalance) {
+#ifdef CONFIG_SCHEDSTATS
+       if (task_hot(tmp, busiest->timestamp_last_tick, sd))
+               schedstat_inc(sd, lb_hot_gained[idle]);
+#endif
+
+       pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
+       pulled++;
+
+       /* We only want to steal up to the prescribed number of tasks. */
+       if (pulled < max_nr_move) {
                if (curr != head)
                        goto skip_queue;
                idx++;
                goto skip_bitmap;
        }
-out_unlock:
-       spin_unlock(&busiest->lock);
 out:
-       ;
+       /*
+        * Right now, this is the only place pull_task() is called,
+        * so we can safely collect pull_task() stats here rather than
+        * inside pull_task().
+        */
+       schedstat_add(sd, lb_gained[idle], pulled);
+
+       if (all_pinned)
+               *all_pinned = pinned;
+       return pulled;
 }
 
 /*
- * One of the idle_cpu_tick() and busy_cpu_tick() functions will
- * get called every timer tick, on every CPU. Our balancing action
- * frequency and balancing agressivity depends on whether the CPU is
- * idle or not.
- *
- * busy-rebalance every 200 msecs. idle-rebalance every 1 msec. (or on
- * systems with HZ=100, every 10 msecs.)
- *
- * On NUMA, do a node-rebalance every 400 msecs.
+ * find_busiest_group finds and returns the busiest CPU group within the
+ * domain. It calculates and returns the number of tasks which should be
+ * moved to restore balance via the imbalance parameter.
  */
-#define IDLE_REBALANCE_TICK (HZ/1000 ?: 1)
-#define BUSY_REBALANCE_TICK (HZ/5 ?: 1)
-#define IDLE_NODE_REBALANCE_TICK (IDLE_REBALANCE_TICK * 5)
-#define BUSY_NODE_REBALANCE_TICK (BUSY_REBALANCE_TICK * 2)
-
-#ifdef CONFIG_NUMA
-static void balance_node(runqueue_t *this_rq, int idle, int this_cpu)
+static struct sched_group *
+find_busiest_group(struct sched_domain *sd, int this_cpu,
+                  unsigned long *imbalance, enum idle_type idle, int *sd_idle)
 {
-       int node = find_busiest_node(cpu_to_node(this_cpu));
+       struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
+       unsigned long max_load, avg_load, total_load, this_load, total_pwr;
+       unsigned long max_pull;
+       int load_idx;
+
+       max_load = this_load = total_load = total_pwr = 0;
+       if (idle == NOT_IDLE)
+               load_idx = sd->busy_idx;
+       else if (idle == NEWLY_IDLE)
+               load_idx = sd->newidle_idx;
+       else
+               load_idx = sd->idle_idx;
 
-       if (node >= 0) {
-               cpumask_t cpumask = node_to_cpumask(node);
-               cpu_set(this_cpu, cpumask);
-               spin_lock(&this_rq->lock);
-               load_balance(this_rq, idle, cpumask);
-               spin_unlock(&this_rq->lock);
-       }
-}
-#endif
+       do {
+               unsigned long load;
+               int local_group;
+               int i;
 
-static void rebalance_tick(runqueue_t *this_rq, int idle)
-{
-#ifdef CONFIG_NUMA
-       int this_cpu = smp_processor_id();
-#endif
-       unsigned long j = jiffies;
+               local_group = cpu_isset(this_cpu, group->cpumask);
+
+               /* Tally up the load of all CPUs in the group */
+               avg_load = 0;
+
+               for_each_cpu_mask(i, group->cpumask) {
+                       if (*sd_idle && !idle_cpu(i))
+                               *sd_idle = 0;
+
+                       /* Bias balancing toward cpus of our domain */
+                       if (local_group)
+                               load = target_load(i, load_idx);
+                       else
+                               load = source_load(i, load_idx);
+
+                       avg_load += load;
+               }
+
+               total_load += avg_load;
+               total_pwr += group->cpu_power;
+
+               /* Adjust by relative CPU power of the group */
+               avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
+
+               if (local_group) {
+                       this_load = avg_load;
+                       this = group;
+               } else if (avg_load > max_load) {
+                       max_load = avg_load;
+                       busiest = group;
+               }
+               group = group->next;
+       } while (group != sd->groups);
+
+       if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
+               goto out_balanced;
+
+       avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
+
+       if (this_load >= avg_load ||
+                       100*max_load <= sd->imbalance_pct*this_load)
+               goto out_balanced;
 
        /*
-        * First do inter-node rebalancing, then intra-node rebalancing,
-        * if both events happen in the same tick. The inter-node
-        * rebalancing does not necessarily have to create a perfect
-        * balance within the node, since we load-balance the most loaded
-        * node with the current CPU. (ie. other CPUs in the local node
-        * are not balanced.)
+        * We're trying to get all the cpus to the average_load, so we don't
+        * want to push ourselves above the average load, nor do we wish to
+        * reduce the max loaded cpu below the average load, as either of these
+        * actions would just result in more rebalancing later, and ping-pong
+        * tasks around. Thus we look for the minimum possible imbalance.
+        * Negative imbalances (*we* are more loaded than anyone else) will
+        * be counted as no imbalance for these purposes -- we can't fix that
+        * by pulling tasks to us.  Be careful of negative numbers as they'll
+        * appear as very large values with unsigned longs.
         */
-       if (idle) {
-#ifdef CONFIG_NUMA
-               if (!(j % IDLE_NODE_REBALANCE_TICK))
-                       balance_node(this_rq, idle, this_cpu);
-#endif
-               if (!(j % IDLE_REBALANCE_TICK)) {
-                       spin_lock(&this_rq->lock);
-                       load_balance(this_rq, idle, cpu_to_node_mask(this_cpu));
-                       spin_unlock(&this_rq->lock);
+
+       /* Don't want to pull so many tasks that a group would go idle */
+       max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
+
+       /* How much load to actually move to equalise the imbalance */
+       *imbalance = min(max_pull * busiest->cpu_power,
+                               (avg_load - this_load) * this->cpu_power)
+                       / SCHED_LOAD_SCALE;
+
+       if (*imbalance < SCHED_LOAD_SCALE) {
+               unsigned long pwr_now = 0, pwr_move = 0;
+               unsigned long tmp;
+
+               if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
+                       *imbalance = 1;
+                       return busiest;
                }
-               return;
-       }
-#ifdef CONFIG_NUMA
-       if (!(j % BUSY_NODE_REBALANCE_TICK))
-               balance_node(this_rq, idle, this_cpu);
-#endif
-       if (!(j % BUSY_REBALANCE_TICK)) {
-               spin_lock(&this_rq->lock);
-               load_balance(this_rq, idle, cpu_to_node_mask(this_cpu));
-               spin_unlock(&this_rq->lock);
+
+               /*
+                * OK, we don't have enough imbalance to justify moving tasks,
+                * however we may be able to increase total CPU power used by
+                * moving them.
+                */
+
+               pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
+               pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
+               pwr_now /= SCHED_LOAD_SCALE;
+
+               /* Amount of load we'd subtract */
+               tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
+               if (max_load > tmp)
+                       pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
+                                                       max_load - tmp);
+
+               /* Amount of load we'd add */
+               if (max_load*busiest->cpu_power <
+                               SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
+                       tmp = max_load*busiest->cpu_power/this->cpu_power;
+               else
+                       tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
+               pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
+               pwr_move /= SCHED_LOAD_SCALE;
+
+               /* Move if we gain throughput */
+               if (pwr_move <= pwr_now)
+                       goto out_balanced;
+
+               *imbalance = 1;
+               return busiest;
        }
+
+       /* Get rid of the scaling factor, rounding down as we divide */
+       *imbalance = *imbalance / SCHED_LOAD_SCALE;
+       return busiest;
+
+out_balanced:
+
+       *imbalance = 0;
+       return NULL;
 }
-#else
+
 /*
- * on UP we do not need to balance between CPUs:
+ * find_busiest_queue - find the busiest runqueue among the cpus in group.
  */
-static inline void rebalance_tick(runqueue_t *this_rq, int idle)
+static runqueue_t *find_busiest_queue(struct sched_group *group,
+       enum idle_type idle)
 {
-}
-#endif
+       unsigned long load, max_load = 0;
+       runqueue_t *busiest = NULL;
+       int i;
 
-DEFINE_PER_CPU(struct kernel_stat, kstat);
+       for_each_cpu_mask(i, group->cpumask) {
+               load = source_load(i, 0);
 
-EXPORT_PER_CPU_SYMBOL(kstat);
+               if (load > max_load) {
+                       max_load = load;
+                       busiest = cpu_rq(i);
+               }
+       }
+
+       return busiest;
+}
 
 /*
- * We place interactive tasks back into the active array, if possible.
- *
- * To guarantee that this does not starve expired tasks we ignore the
- * interactivity of a task if the first expired task had to wait more
- * than a 'reasonable' amount of time. This deadline timeout is
- * load-dependent, as the frequency of array switched decreases with
- * increasing number of running tasks. We also ignore the interactivity
- * if a better static_prio task has expired:
+ * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
+ * so long as it is large enough.
  */
-#define EXPIRED_STARVING(rq) \
-       ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
-               (jiffies - (rq)->expired_timestamp >= \
-                       STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
-                       ((rq)->curr->static_prio > (rq)->best_expired_prio))
+#define MAX_PINNED_INTERVAL    512
 
 /*
- * This function gets called by the timer code, with HZ frequency.
- * We call it with interrupts disabled.
+ * Check this_cpu to ensure it is balanced within domain. Attempt to move
+ * tasks if there is an imbalance.
  *
- * It also gets called by the fork code, when changing the parent's
- * timeslices.
+ * Called with this_rq unlocked.
  */
-void scheduler_tick(int user_ticks, int sys_ticks)
+static int load_balance(int this_cpu, runqueue_t *this_rq,
+                       struct sched_domain *sd, enum idle_type idle)
 {
-       int cpu = smp_processor_id();
-       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-       runqueue_t *rq = this_rq();
-       task_t *p = current;
+       struct sched_group *group;
+       runqueue_t *busiest;
+       unsigned long imbalance;
+       int nr_moved, all_pinned = 0;
+       int active_balance = 0;
+       int sd_idle = 0;
 
-       rq->timestamp_last_tick = sched_clock();
+       if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
+               sd_idle = 1;
 
-       if (rcu_pending(cpu))
-               rcu_check_callbacks(cpu, user_ticks);
+       schedstat_inc(sd, lb_cnt[idle]);
 
-       /* note: this timer irq context must be accounted for as well */
-       if (hardirq_count() - HARDIRQ_OFFSET) {
-               cpustat->irq += sys_ticks;
-               sys_ticks = 0;
-       } else if (softirq_count()) {
-               cpustat->softirq += sys_ticks;
-               sys_ticks = 0;
+       group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
+       if (!group) {
+               schedstat_inc(sd, lb_nobusyg[idle]);
+               goto out_balanced;
        }
 
-       if (p == rq->idle) {
-               if (atomic_read(&rq->nr_iowait) > 0)
-                       cpustat->iowait += sys_ticks;
-               else
-                       cpustat->idle += sys_ticks;
-               rebalance_tick(rq, 1);
-               return;
+       busiest = find_busiest_queue(group, idle);
+       if (!busiest) {
+               schedstat_inc(sd, lb_nobusyq[idle]);
+               goto out_balanced;
        }
-       if (TASK_NICE(p) > 0)
-               cpustat->nice += user_ticks;
-       else
-               cpustat->user += user_ticks;
-       cpustat->system += sys_ticks;
 
-       /* Task might have expired already, but not scheduled off yet */
-       if (p->array != rq->active) {
-               set_tsk_need_resched(p);
-               goto out;
-       }
-       spin_lock(&rq->lock);
-       /*
-        * The task was running during this tick - update the
-        * time slice counter. Note: we do not update a thread's
-        * priority until it either goes to sleep or uses up its
-        * timeslice. This makes it possible for interactive tasks
-        * to use up their timeslices at their highest priority levels.
-        */
-       if (unlikely(rt_task(p))) {
+       BUG_ON(busiest == this_rq);
+
+       schedstat_add(sd, lb_imbalance[idle], imbalance);
+
+       nr_moved = 0;
+       if (busiest->nr_running > 1) {
                /*
-                * RR tasks need a special form of timeslice management.
-                * FIFO tasks have no timeslices.
+                * Attempt to move tasks. If find_busiest_group has found
+                * an imbalance but busiest->nr_running <= 1, the group is
+                * still unbalanced. nr_moved simply stays zero, so it is
+                * correctly treated as an imbalance.
                 */
-               if ((p->policy == SCHED_RR) && !--p->time_slice) {
-                       p->time_slice = task_timeslice(p);
-                       p->first_time_slice = 0;
-                       set_tsk_need_resched(p);
+               double_rq_lock(this_rq, busiest);
+               nr_moved = move_tasks(this_rq, this_cpu, busiest,
+                                       imbalance, sd, idle, &all_pinned);
+               double_rq_unlock(this_rq, busiest);
+
+               /* All tasks on this runqueue were pinned by CPU affinity */
+               if (unlikely(all_pinned))
+                       goto out_balanced;
+       }
 
-                       /* put it at the end of the queue: */
-                       dequeue_task(p, rq->active);
-                       enqueue_task(p, rq->active);
+       if (!nr_moved) {
+               schedstat_inc(sd, lb_failed[idle]);
+               sd->nr_balance_failed++;
+
+               if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
+
+                       spin_lock(&busiest->lock);
+
+                       /* don't kick the migration_thread, if the curr
+                        * task on busiest cpu can't be moved to this_cpu
+                        */
+                       if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
+                               spin_unlock(&busiest->lock);
+                               all_pinned = 1;
+                               goto out_one_pinned;
+                       }
+
+                       if (!busiest->active_balance) {
+                               busiest->active_balance = 1;
+                               busiest->push_cpu = this_cpu;
+                               active_balance = 1;
+                       }
+                       spin_unlock(&busiest->lock);
+                       if (active_balance)
+                               wake_up_process(busiest->migration_thread);
+
+                       /*
+                        * We've kicked active balancing, reset the failure
+                        * counter.
+                        */
+                       sd->nr_balance_failed = sd->cache_nice_tries+1;
                }
-               goto out_unlock;
-       }
-       if (!--p->time_slice) {
-               dequeue_task(p, rq->active);
-               set_tsk_need_resched(p);
-               p->prio = effective_prio(p);
-               p->time_slice = task_timeslice(p);
-               p->first_time_slice = 0;
+       } else
+               sd->nr_balance_failed = 0;
 
-               if (!rq->expired_timestamp)
-                       rq->expired_timestamp = jiffies;
-               if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
-                       enqueue_task(p, rq->expired);
-                       if (p->static_prio < rq->best_expired_prio)
-                               rq->best_expired_prio = p->static_prio;
-               } else
-                       enqueue_task(p, rq->active);
+       if (likely(!active_balance)) {
+               /* We were unbalanced, so reset the balancing interval */
+               sd->balance_interval = sd->min_interval;
        } else {
                /*
-                * Prevent a too long timeslice allowing a task to monopolize
-                * the CPU. We do this by splitting up the timeslice into
-                * smaller pieces.
-                *
-                * Note: this does not mean the task's timeslices expire or
-                * get lost in any way, they just might be preempted by
-                * another task of equal priority. (one with higher
-                * priority would have preempted this task already.) We
-                * requeue this task to the end of the list on this priority
-                * level, which is in essence a round-robin of tasks with
-                * equal priority.
-                *
-                * This only applies to tasks in the interactive
-                * delta range with at least TIMESLICE_GRANULARITY to requeue.
+                * If we've begun active balancing, start to back off. This
+                * case may not be covered by the all_pinned logic if there
+                * is only 1 task on the busy runqueue (because we don't call
+                * move_tasks).
                 */
-               if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
-                       p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
-                       (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
-                       (p->array == rq->active)) {
-
-                       dequeue_task(p, rq->active);
-                       set_tsk_need_resched(p);
-                       p->prio = effective_prio(p);
-                       enqueue_task(p, rq->active);
-               }
+               if (sd->balance_interval < sd->max_interval)
+                       sd->balance_interval *= 2;
        }
-out_unlock:
-       spin_unlock(&rq->lock);
-out:
-       rebalance_tick(rq, 0);
+
+       if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
+               return -1;
+       return nr_moved;
+
+out_balanced:
+       schedstat_inc(sd, lb_balanced[idle]);
+
+       sd->nr_balance_failed = 0;
+
+out_one_pinned:
+       /* tune up the balancing interval */
+       if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
+                       (sd->balance_interval < sd->max_interval))
+               sd->balance_interval *= 2;
+
+       if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
+               return -1;
+       return 0;
 }
 
 /*
- * schedule() is the main scheduler function.
+ * Check this_cpu to ensure it is balanced within domain. Attempt to move
+ * tasks if there is an imbalance.
+ *
+ * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
+ * this_rq is locked.
  */
-asmlinkage void __sched schedule(void)
+static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
+                               struct sched_domain *sd)
 {
-       long *switch_count;
-       task_t *prev, *next;
-       runqueue_t *rq;
-       prio_array_t *array;
-       struct list_head *queue;
-       unsigned long long now;
-       unsigned long run_time;
-       int idx;
+       struct sched_group *group;
+       runqueue_t *busiest = NULL;
+       unsigned long imbalance;
+       int nr_moved = 0;
+       int sd_idle = 0;
+
+       if (sd->flags & SD_SHARE_CPUPOWER)
+               sd_idle = 1;
+
+       schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
+       group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
+       if (!group) {
+               schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
+               goto out_balanced;
+       }
 
-       /*
-        * Test if we are atomic.  Since do_exit() needs to call into
-        * schedule() atomically, we ignore that path for now.
-        * Otherwise, whine if we are scheduling when we should not be.
-        */
-       if (likely(!(current->state & (TASK_DEAD | TASK_ZOMBIE)))) {
-               if (unlikely(in_atomic())) {
-                       printk(KERN_ERR "bad: scheduling while atomic!\n");
-                       dump_stack();
-               }
+       busiest = find_busiest_queue(group, NEWLY_IDLE);
+       if (!busiest) {
+               schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
+               goto out_balanced;
        }
 
-need_resched:
-       preempt_disable();
-       prev = current;
-       rq = this_rq();
+       BUG_ON(busiest == this_rq);
 
-       release_kernel_lock(prev);
-       now = sched_clock();
-       if (likely(now - prev->timestamp < NS_MAX_SLEEP_AVG))
-               run_time = now - prev->timestamp;
-       else
-               run_time = NS_MAX_SLEEP_AVG;
+       schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
 
-       /*
-        * Tasks with interactive credits get charged less run_time
-        * at high sleep_avg to delay them losing their interactive
-        * status
-        */
-       if (HIGH_CREDIT(prev))
-               run_time /= (CURRENT_BONUS(prev) ? : 1);
+       nr_moved = 0;
+       if (busiest->nr_running > 1) {
+               /* Attempt to move tasks */
+               double_lock_balance(this_rq, busiest);
+               nr_moved = move_tasks(this_rq, this_cpu, busiest,
+                                       imbalance, sd, NEWLY_IDLE, NULL);
+               spin_unlock(&busiest->lock);
+       }
 
-       spin_lock_irq(&rq->lock);
+       if (!nr_moved) {
+               schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
+               if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
+                       return -1;
+       } else
+               sd->nr_balance_failed = 0;
 
-       /*
-        * if entering off of a kernel preemption go straight
-        * to picking the next task.
-        */
-       switch_count = &prev->nivcsw;
-       if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
-               switch_count = &prev->nvcsw;
-               if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
-                               unlikely(signal_pending(prev))))
-                       prev->state = TASK_RUNNING;
-               else
-                       deactivate_task(prev, rq);
-       }
+       return nr_moved;
 
-       if (unlikely(!rq->nr_running)) {
-#ifdef CONFIG_SMP
-               load_balance(rq, 1, cpu_to_node_mask(smp_processor_id()));
-#endif
-               if (!rq->nr_running) {
-                       next = rq->idle;
-                       rq->expired_timestamp = 0;
-                       goto switch_tasks;
-               }
-       }
+out_balanced:
+       schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
+       if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
+               return -1;
+       sd->nr_balance_failed = 0;
+       return 0;
+}
 
-       array = rq->active;
-       if (unlikely(!array->nr_active)) {
-               /*
-                * Switch the active and expired arrays.
-                */
-               rq->active = rq->expired;
-               rq->expired = array;
-               array = rq->active;
-               rq->expired_timestamp = 0;
-               rq->best_expired_prio = MAX_PRIO;
+/*
+ * idle_balance is called by schedule() if this_cpu is about to become
+ * idle. Attempts to pull tasks from other CPUs.
+ */
+static void idle_balance(int this_cpu, runqueue_t *this_rq)
+{
+       struct sched_domain *sd;
+
+       for_each_domain(this_cpu, sd) {
+               if (sd->flags & SD_BALANCE_NEWIDLE) {
+                       if (load_balance_newidle(this_cpu, this_rq, sd)) {
+                               /* We've pulled tasks over so stop searching */
+                               break;
+                       }
+               }
        }
+}
 
-       idx = sched_find_first_bit(array->bitmap);
-       queue = array->queue + idx;
-       next = list_entry(queue->next, task_t, run_list);
+/*
+ * active_load_balance is run by migration threads. It pushes running tasks
+ * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
+ * running on each physical CPU where possible, and avoids physical /
+ * logical imbalances.
+ *
+ * Called with busiest_rq locked.
+ */
+static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
+{
+       struct sched_domain *sd;
+       runqueue_t *target_rq;
+       int target_cpu = busiest_rq->push_cpu;
 
-       if (!rt_task(next) && next->activated > 0) {
-               unsigned long long delta = now - next->timestamp;
+       if (busiest_rq->nr_running <= 1)
+               /* no task to move */
+               return;
 
-               if (next->activated == 1)
-                       delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
+       target_rq = cpu_rq(target_cpu);
 
-               array = next->array;
-               dequeue_task(next, array);
-               recalc_task_prio(next, next->timestamp + delta);
-               enqueue_task(next, array);
-       }
-       next->activated = 0;
-switch_tasks:
-       prefetch(next);
-       clear_tsk_need_resched(prev);
-       RCU_qsctr(task_cpu(prev))++;
+       /*
+        * This condition is "impossible", if it occurs
+        * we need to fix it.  Originally reported by
+        * Bjorn Helgaas on a 128-cpu setup.
+        */
+       BUG_ON(busiest_rq == target_rq);
 
-       prev->sleep_avg -= run_time;
-       if ((long)prev->sleep_avg <= 0) {
-               prev->sleep_avg = 0;
-               if (!(HIGH_CREDIT(prev) || LOW_CREDIT(prev)))
-                       prev->interactive_credit--;
-       }
-       prev->timestamp = now;
+       /* move a task from busiest_rq to target_rq */
+       double_lock_balance(busiest_rq, target_rq);
 
-       if (likely(prev != next)) {
-               next->timestamp = now;
-               rq->nr_switches++;
-               rq->curr = next;
-               ++*switch_count;
+       /* Search for an sd spanning us and the target CPU. */
+       for_each_domain(target_cpu, sd)
+               if ((sd->flags & SD_LOAD_BALANCE) &&
+                       cpu_isset(busiest_cpu, sd->span))
+                               break;
 
-               prepare_arch_switch(rq, next);
-               prev = context_switch(rq, prev, next);
-               barrier();
+       if (unlikely(sd == NULL))
+               goto out;
 
-               finish_task_switch(prev);
-       } else
-               spin_unlock_irq(&rq->lock);
+       schedstat_inc(sd, alb_cnt);
 
-       reacquire_kernel_lock(current);
-       preempt_enable_no_resched();
-       if (test_thread_flag(TIF_NEED_RESCHED))
-               goto need_resched;
+       if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
+               schedstat_inc(sd, alb_pushed);
+       else
+               schedstat_inc(sd, alb_failed);
+out:
+       spin_unlock(&target_rq->lock);
 }
 
-EXPORT_SYMBOL(schedule);
-
-#ifdef CONFIG_PREEMPT
 /*
- * this is is the entry point to schedule() from in-kernel preemption
- * off of preempt_enable.  Kernel preemptions off return from interrupt
- * occur there and call schedule directly.
+ * rebalance_tick will get called every timer tick, on every CPU.
+ *
+ * It checks each scheduling domain to see if it is due to be balanced,
+ * and initiates a balancing operation if so.
+ *
+ * Balancing parameters are set up in arch_init_sched_domains.
  */
-asmlinkage void __sched preempt_schedule(void)
-{
-       struct thread_info *ti = current_thread_info();
 
-       /*
-        * If there is a non-zero preempt_count or interrupts are disabled,
-        * we do not want to preempt the current task.  Just return..
-        */
-       if (unlikely(ti->preempt_count || irqs_disabled()))
-               return;
+/* Don't have all balancing operations going off at once */
+#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
 
-need_resched:
-       ti->preempt_count = PREEMPT_ACTIVE;
-       schedule();
-       ti->preempt_count = 0;
+static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
+                          enum idle_type idle)
+{
+       unsigned long old_load, this_load;
+       unsigned long j = jiffies + CPU_OFFSET(this_cpu);
+       struct sched_domain *sd;
+       int i;
 
-       /* we could miss a preemption opportunity between schedule and now */
-       barrier();
-       if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
-               goto need_resched;
-}
+       this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
+       /* Update our load */
+       for (i = 0; i < 3; i++) {
+               unsigned long new_load = this_load;
+               int scale = 1 << i;
+               old_load = this_rq->cpu_load[i];
+               /*
+                * Round up the averaging division if load is increasing. This
+                * prevents us from getting stuck on 9 if the load is 10, for
+                * example.
+                */
+               if (new_load > old_load)
+                       new_load += scale-1;
+               this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
+       }
 
-EXPORT_SYMBOL(preempt_schedule);
-#endif /* CONFIG_PREEMPT */
+       for_each_domain(this_cpu, sd) {
+               unsigned long interval;
 
-int default_wake_function(wait_queue_t *curr, unsigned mode, int sync)
-{
-       task_t *p = curr->task;
-       return try_to_wake_up(p, mode, sync);
-}
+               if (!(sd->flags & SD_LOAD_BALANCE))
+                       continue;
 
-EXPORT_SYMBOL(default_wake_function);
+               interval = sd->balance_interval;
+               if (idle != SCHED_IDLE)
+                       interval *= sd->busy_factor;
+
+               /* scale ms to jiffies */
+               interval = msecs_to_jiffies(interval);
+               if (unlikely(!interval))
+                       interval = 1;
 
+               if (j - sd->last_balance >= interval) {
+                       if (load_balance(this_cpu, this_rq, sd, idle)) {
+                               /*
+                                * We've pulled tasks over so either we're no
+                                * longer idle, or one of our SMT siblings is
+                                * not idle.
+                                */
+                               idle = NOT_IDLE;
+                       }
+                       sd->last_balance += interval;
+               }
+       }
+}
+#else
 /*
- * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
- * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
- * number) then we wake all the non-exclusive tasks and one exclusive task.
- *
- * There are circumstances in which we can try to wake a task which has already
- * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
- * zero in this (rare) case, and we handle it by continuing to scan the queue.
+ * on UP we do not need to balance between CPUs:
  */
-static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
-                            int nr_exclusive, int sync)
+static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
 {
-       struct list_head *tmp, *next;
+}
+static inline void idle_balance(int cpu, runqueue_t *rq)
+{
+}
+#endif
 
-       list_for_each_safe(tmp, next, &q->task_list) {
-               wait_queue_t *curr;
-               unsigned flags;
-               curr = list_entry(tmp, wait_queue_t, task_list);
-               flags = curr->flags;
-               if (curr->func(curr, mode, sync) &&
-                   (flags & WQ_FLAG_EXCLUSIVE) &&
-                   !--nr_exclusive)
-                       break;
+static inline int wake_priority_sleeper(runqueue_t *rq)
+{
+       int ret = 0;
+#ifdef CONFIG_SCHED_SMT
+       spin_lock(&rq->lock);
+       /*
+        * If an SMT sibling task has been put to sleep for priority
+        * reasons reschedule the idle task to see if it can now run.
+        */
+       if (rq->nr_running) {
+               resched_task(rq->idle);
+               ret = 1;
        }
+       spin_unlock(&rq->lock);
+#endif
+       return ret;
 }
 
-/**
- * __wake_up - wake up threads blocked on a waitqueue.
- * @q: the waitqueue
- * @mode: which threads
- * @nr_exclusive: how many wake-one or wake-many threads to wake up
+DEFINE_PER_CPU(struct kernel_stat, kstat);
+
+EXPORT_PER_CPU_SYMBOL(kstat);
+
+/*
+ * This is called on clock ticks and on context switches.
+ * Bank in p->sched_time the ns elapsed since the last tick or switch.
  */
-void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
+static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
+                                   unsigned long long now)
 {
-       unsigned long flags;
-
-       spin_lock_irqsave(&q->lock, flags);
-       __wake_up_common(q, mode, nr_exclusive, 0);
-       spin_unlock_irqrestore(&q->lock, flags);
+       unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
+       p->sched_time += now - last;
 }
 
-EXPORT_SYMBOL(__wake_up);
-
 /*
- * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
+ * Return current->sched_time plus any more ns on the sched_clock
+ * that have not yet been banked.
  */
-void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
+unsigned long long current_sched_time(const task_t *tsk)
 {
-       __wake_up_common(q, mode, 1, 0);
+       unsigned long long ns;
+       unsigned long flags;
+       local_irq_save(flags);
+       ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
+       ns = tsk->sched_time + (sched_clock() - ns);
+       local_irq_restore(flags);
+       return ns;
 }
 
-/**
- * __wake_up - sync- wake up threads blocked on a waitqueue.
- * @q: the waitqueue
- * @mode: which threads
- * @nr_exclusive: how many wake-one or wake-many threads to wake up
- *
- * The sync wakeup differs that the waker knows that it will schedule
- * away soon, so while the target thread will be woken up, it will not
- * be migrated to another CPU - ie. the two threads are 'synchronized'
- * with each other. This can prevent needless bouncing between CPUs.
+/*
+ * We place interactive tasks back into the active array, if possible.
  *
- * On UP it can prevent extra preemption.
+ * To guarantee that this does not starve expired tasks we ignore the
+ * interactivity of a task if the first expired task had to wait more
+ * than a 'reasonable' amount of time. This deadline timeout is
+ * load-dependent, as the frequency of array switched decreases with
+ * increasing number of running tasks. We also ignore the interactivity
+ * if a better static_prio task has expired:
+ */
+#define EXPIRED_STARVING(rq) \
+       ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
+               (jiffies - (rq)->expired_timestamp >= \
+                       STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
+                       ((rq)->curr->static_prio > (rq)->best_expired_prio))
+
+/*
+ * Account user cpu time to a process.
+ * @p: the process that the cpu time gets accounted to
+ * @hardirq_offset: the offset to subtract from hardirq_count()
+ * @cputime: the cpu time spent in user space since the last update
  */
-void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
+void account_user_time(struct task_struct *p, cputime_t cputime)
 {
-       unsigned long flags;
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+       struct vx_info *vxi = p->vx_info;  /* p is _always_ current */
+       cputime64_t tmp;
+       int nice = (TASK_NICE(p) > 0);
 
-       if (unlikely(!q))
-               return;
+       p->utime = cputime_add(p->utime, cputime);
+       vx_account_user(vxi, cputime, nice);
 
-       spin_lock_irqsave(&q->lock, flags);
-       if (likely(nr_exclusive))
-               __wake_up_common(q, mode, nr_exclusive, 1);
+       /* Add user time to cpustat. */
+       tmp = cputime_to_cputime64(cputime);
+       if (nice)
+               cpustat->nice = cputime64_add(cpustat->nice, tmp);
        else
-               __wake_up_common(q, mode, nr_exclusive, 0);
-       spin_unlock_irqrestore(&q->lock, flags);
+               cpustat->user = cputime64_add(cpustat->user, tmp);
 }
-EXPORT_SYMBOL_GPL(__wake_up_sync);     /* For internal use only */
 
-void fastcall complete(struct completion *x)
+/*
+ * Account system cpu time to a process.
+ * @p: the process that the cpu time gets accounted to
+ * @hardirq_offset: the offset to subtract from hardirq_count()
+ * @cputime: the cpu time spent in kernel space since the last update
+ */
+void account_system_time(struct task_struct *p, int hardirq_offset,
+                        cputime_t cputime)
 {
-       unsigned long flags;
-
-       spin_lock_irqsave(&x->wait.lock, flags);
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+       struct vx_info *vxi = p->vx_info;  /* p is _always_ current */
+       runqueue_t *rq = this_rq();
+       cputime64_t tmp;
+
+       p->stime = cputime_add(p->stime, cputime);
+       vx_account_system(vxi, cputime, (p == rq->idle));
+
+       /* Add system time to cpustat. */
+       tmp = cputime_to_cputime64(cputime);
+       if (hardirq_count() - hardirq_offset)
+               cpustat->irq = cputime64_add(cpustat->irq, tmp);
+       else if (softirq_count())
+               cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
+       else if (p != rq->idle)
+               cpustat->system = cputime64_add(cpustat->system, tmp);
+       else if (atomic_read(&rq->nr_iowait) > 0)
+               cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
+       else
+               cpustat->idle = cputime64_add(cpustat->idle, tmp);
+       /* Account for system time used */
+       acct_update_integrals(p);
+}
+
+/*
+ * Account for involuntary wait time.
+ * @p: the process from which the cpu time has been stolen
+ * @steal: the cpu time spent in involuntary wait
+ */
+void account_steal_time(struct task_struct *p, cputime_t steal)
+{
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+       cputime64_t tmp = cputime_to_cputime64(steal);
+       runqueue_t *rq = this_rq();
+
+       if (p == rq->idle) {
+               p->stime = cputime_add(p->stime, steal);
+               if (atomic_read(&rq->nr_iowait) > 0)
+                       cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
+               else
+                       cpustat->idle = cputime64_add(cpustat->idle, tmp);
+       } else
+               cpustat->steal = cputime64_add(cpustat->steal, tmp);
+}
+
+/*
+ * This function gets called by the timer code, with HZ frequency.
+ * We call it with interrupts disabled.
+ *
+ * It also gets called by the fork code, when changing the parent's
+ * timeslices.
+ */
+void scheduler_tick(void)
+{
+       int cpu = smp_processor_id();
+       runqueue_t *rq = this_rq();
+       task_t *p = current;
+       unsigned long long now = sched_clock();
+
+       update_cpu_clock(p, rq, now);
+
+       rq->timestamp_last_tick = now;
+
+       if (p == rq->idle) {
+               if (wake_priority_sleeper(rq))
+                       goto out;
+#ifdef CONFIG_VSERVER_HARDCPU_IDLE
+               if (!--rq->idle_tokens && !list_empty(&rq->hold_queue))
+                       set_need_resched();
+#endif
+               rebalance_tick(cpu, rq, SCHED_IDLE);
+               return;
+       }
+
+       /* Task might have expired already, but not scheduled off yet */
+       if (p->array != rq->active) {
+               set_tsk_need_resched(p);
+               goto out;
+       }
+       spin_lock(&rq->lock);
+       /*
+        * The task was running during this tick - update the
+        * time slice counter. Note: we do not update a thread's
+        * priority until it either goes to sleep or uses up its
+        * timeslice. This makes it possible for interactive tasks
+        * to use up their timeslices at their highest priority levels.
+        */
+       if (rt_task(p)) {
+               /*
+                * RR tasks need a special form of timeslice management.
+                * FIFO tasks have no timeslices.
+                */
+               if ((p->policy == SCHED_RR) && !--p->time_slice) {
+                       p->time_slice = task_timeslice(p);
+                       p->first_time_slice = 0;
+                       set_tsk_need_resched(p);
+
+                       /* put it at the end of the queue: */
+                       requeue_task(p, rq->active);
+               }
+               goto out_unlock;
+       }
+       if (vx_need_resched(p)) {
+               dequeue_task(p, rq->active);
+               set_tsk_need_resched(p);
+               p->prio = effective_prio(p);
+               p->time_slice = task_timeslice(p);
+               p->first_time_slice = 0;
+
+               if (!rq->expired_timestamp)
+                       rq->expired_timestamp = jiffies;
+               if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
+                       enqueue_task(p, rq->expired);
+                       if (p->static_prio < rq->best_expired_prio)
+                               rq->best_expired_prio = p->static_prio;
+               } else
+                       enqueue_task(p, rq->active);
+       } else {
+               /*
+                * Prevent a too long timeslice allowing a task to monopolize
+                * the CPU. We do this by splitting up the timeslice into
+                * smaller pieces.
+                *
+                * Note: this does not mean the task's timeslices expire or
+                * get lost in any way, they just might be preempted by
+                * another task of equal priority. (one with higher
+                * priority would have preempted this task already.) We
+                * requeue this task to the end of the list on this priority
+                * level, which is in essence a round-robin of tasks with
+                * equal priority.
+                *
+                * This only applies to tasks in the interactive
+                * delta range with at least TIMESLICE_GRANULARITY to requeue.
+                */
+               if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
+                       p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
+                       (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
+                       (p->array == rq->active)) {
+
+                       requeue_task(p, rq->active);
+                       set_tsk_need_resched(p);
+               }
+       }
+out_unlock:
+       spin_unlock(&rq->lock);
+out:
+       rebalance_tick(cpu, rq, NOT_IDLE);
+}
+
+#ifdef CONFIG_SCHED_SMT
+static inline void wakeup_busy_runqueue(runqueue_t *rq)
+{
+       /* If an SMT runqueue is sleeping due to priority reasons wake it up */
+       if (rq->curr == rq->idle && rq->nr_running)
+               resched_task(rq->idle);
+}
+
+static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
+{
+       struct sched_domain *tmp, *sd = NULL;
+       cpumask_t sibling_map;
+       int i;
+
+       for_each_domain(this_cpu, tmp)
+               if (tmp->flags & SD_SHARE_CPUPOWER)
+                       sd = tmp;
+
+       if (!sd)
+               return;
+
+       /*
+        * Unlock the current runqueue because we have to lock in
+        * CPU order to avoid deadlocks. Caller knows that we might
+        * unlock. We keep IRQs disabled.
+        */
+       spin_unlock(&this_rq->lock);
+
+       sibling_map = sd->span;
+
+       for_each_cpu_mask(i, sibling_map)
+               spin_lock(&cpu_rq(i)->lock);
+       /*
+        * We clear this CPU from the mask. This both simplifies the
+        * inner loop and keps this_rq locked when we exit:
+        */
+       cpu_clear(this_cpu, sibling_map);
+
+       for_each_cpu_mask(i, sibling_map) {
+               runqueue_t *smt_rq = cpu_rq(i);
+
+               wakeup_busy_runqueue(smt_rq);
+       }
+
+       for_each_cpu_mask(i, sibling_map)
+               spin_unlock(&cpu_rq(i)->lock);
+       /*
+        * We exit with this_cpu's rq still held and IRQs
+        * still disabled:
+        */
+}
+
+/*
+ * number of 'lost' timeslices this task wont be able to fully
+ * utilize, if another task runs on a sibling. This models the
+ * slowdown effect of other tasks running on siblings:
+ */
+static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
+{
+       return p->time_slice * (100 - sd->per_cpu_gain) / 100;
+}
+
+static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
+{
+       struct sched_domain *tmp, *sd = NULL;
+       cpumask_t sibling_map;
+       prio_array_t *array;
+       int ret = 0, i;
+       task_t *p;
+
+       for_each_domain(this_cpu, tmp)
+               if (tmp->flags & SD_SHARE_CPUPOWER)
+                       sd = tmp;
+
+       if (!sd)
+               return 0;
+
+       /*
+        * The same locking rules and details apply as for
+        * wake_sleeping_dependent():
+        */
+       spin_unlock(&this_rq->lock);
+       sibling_map = sd->span;
+       for_each_cpu_mask(i, sibling_map)
+               spin_lock(&cpu_rq(i)->lock);
+       cpu_clear(this_cpu, sibling_map);
+
+       /*
+        * Establish next task to be run - it might have gone away because
+        * we released the runqueue lock above:
+        */
+       if (!this_rq->nr_running)
+               goto out_unlock;
+       array = this_rq->active;
+       if (!array->nr_active)
+               array = this_rq->expired;
+       BUG_ON(!array->nr_active);
+
+       p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
+               task_t, run_list);
+
+       for_each_cpu_mask(i, sibling_map) {
+               runqueue_t *smt_rq = cpu_rq(i);
+               task_t *smt_curr = smt_rq->curr;
+
+               /* Kernel threads do not participate in dependent sleeping */
+               if (!p->mm || !smt_curr->mm || rt_task(p))
+                       goto check_smt_task;
+
+               /*
+                * If a user task with lower static priority than the
+                * running task on the SMT sibling is trying to schedule,
+                * delay it till there is proportionately less timeslice
+                * left of the sibling task to prevent a lower priority
+                * task from using an unfair proportion of the
+                * physical cpu's resources. -ck
+                */
+               if (rt_task(smt_curr)) {
+                       /*
+                        * With real time tasks we run non-rt tasks only
+                        * per_cpu_gain% of the time.
+                        */
+                       if ((jiffies % DEF_TIMESLICE) >
+                               (sd->per_cpu_gain * DEF_TIMESLICE / 100))
+                                       ret = 1;
+               } else
+                       if (smt_curr->static_prio < p->static_prio &&
+                               !TASK_PREEMPTS_CURR(p, smt_rq) &&
+                               smt_slice(smt_curr, sd) > task_timeslice(p))
+                                       ret = 1;
+
+check_smt_task:
+               if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
+                       rt_task(smt_curr))
+                               continue;
+               if (!p->mm) {
+                       wakeup_busy_runqueue(smt_rq);
+                       continue;
+               }
+
+               /*
+                * Reschedule a lower priority task on the SMT sibling for
+                * it to be put to sleep, or wake it up if it has been put to
+                * sleep for priority reasons to see if it should run now.
+                */
+               if (rt_task(p)) {
+                       if ((jiffies % DEF_TIMESLICE) >
+                               (sd->per_cpu_gain * DEF_TIMESLICE / 100))
+                                       resched_task(smt_curr);
+               } else {
+                       if (TASK_PREEMPTS_CURR(p, smt_rq) &&
+                               smt_slice(p, sd) > task_timeslice(smt_curr))
+                                       resched_task(smt_curr);
+                       else
+                               wakeup_busy_runqueue(smt_rq);
+               }
+       }
+out_unlock:
+       for_each_cpu_mask(i, sibling_map)
+               spin_unlock(&cpu_rq(i)->lock);
+       return ret;
+}
+#else
+static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
+{
+}
+
+static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
+{
+       return 0;
+}
+#endif
+
+#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
+
+void fastcall add_preempt_count(int val)
+{
+       /*
+        * Underflow?
+        */
+       BUG_ON((preempt_count() < 0));
+       preempt_count() += val;
+       /*
+        * Spinlock count overflowing soon?
+        */
+       BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
+}
+EXPORT_SYMBOL(add_preempt_count);
+
+void fastcall sub_preempt_count(int val)
+{
+       /*
+        * Underflow?
+        */
+       BUG_ON(val > preempt_count());
+       /*
+        * Is the spinlock portion underflowing?
+        */
+       BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
+       preempt_count() -= val;
+}
+EXPORT_SYMBOL(sub_preempt_count);
+
+#endif
+
+static inline int interactive_sleep(enum sleep_type sleep_type)
+{
+       return (sleep_type == SLEEP_INTERACTIVE ||
+               sleep_type == SLEEP_INTERRUPTED);
+}
+
+/*
+ * schedule() is the main scheduler function.
+ */
+asmlinkage void __sched schedule(void)
+{
+       long *switch_count;
+       task_t *prev, *next;
+       runqueue_t *rq;
+       prio_array_t *array;
+       struct list_head *queue;
+       unsigned long long now;
+       unsigned long run_time;
+       int cpu, idx, new_prio;
+       struct vx_info *vxi;
+#ifdef CONFIG_VSERVER_HARDCPU
+       int maxidle = -HZ;
+#endif
+
+       /*
+        * Test if we are atomic.  Since do_exit() needs to call into
+        * schedule() atomically, we ignore that path for now.
+        * Otherwise, whine if we are scheduling when we should not be.
+        */
+       if (unlikely(in_atomic() && !current->exit_state)) {
+               printk(KERN_ERR "BUG: scheduling while atomic: "
+                       "%s/0x%08x/%d\n",
+                       current->comm, preempt_count(), current->pid);
+               dump_stack();
+       }
+       profile_hit(SCHED_PROFILING, __builtin_return_address(0));
+
+need_resched:
+       preempt_disable();
+       prev = current;
+       release_kernel_lock(prev);
+need_resched_nonpreemptible:
+       rq = this_rq();
+
+       /*
+        * The idle thread is not allowed to schedule!
+        * Remove this check after it has been exercised a bit.
+        */
+       if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
+               printk(KERN_ERR "bad: scheduling from the idle thread!\n");
+               dump_stack();
+       }
+
+       schedstat_inc(rq, sched_cnt);
+       now = sched_clock();
+       if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
+               run_time = now - prev->timestamp;
+               if (unlikely((long long)(now - prev->timestamp) < 0))
+                       run_time = 0;
+       } else
+               run_time = NS_MAX_SLEEP_AVG;
+
+       /*
+        * Tasks charged proportionately less run_time at high sleep_avg to
+        * delay them losing their interactive status
+        */
+       run_time /= (CURRENT_BONUS(prev) ? : 1);
+
+       spin_lock_irq(&rq->lock);
+
+       if (unlikely(prev->flags & PF_DEAD))
+               prev->state = EXIT_DEAD;
+
+       switch_count = &prev->nivcsw;
+       if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
+               switch_count = &prev->nvcsw;
+               if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
+                               unlikely(signal_pending(prev))))
+                       prev->state = TASK_RUNNING;
+               else {
+                       if (prev->state == TASK_UNINTERRUPTIBLE) {
+                               rq->nr_uninterruptible++;
+                               vx_uninterruptible_inc(prev);
+                       }
+                       deactivate_task(prev, rq);
+               }
+       }
+
+#ifdef CONFIG_VSERVER_HARDCPU
+       if (!list_empty(&rq->hold_queue)) {
+               struct list_head *l, *n;
+               int ret;
+
+               vxi = NULL;
+               list_for_each_safe(l, n, &rq->hold_queue) {
+                       next = list_entry(l, task_t, run_list);
+                       if (vxi == next->vx_info)
+                               continue;
+
+                       vxi = next->vx_info;
+                       ret = vx_tokens_recalc(vxi);
+
+                       if (ret > 0) {
+                               vx_unhold_task(vxi, next, rq);
+                               break;
+                       }
+                       if ((ret < 0) && (maxidle < ret))
+                               maxidle = ret;
+               }
+       }
+       rq->idle_tokens = -maxidle;
+
+pick_next:
+#endif
+
+       cpu = smp_processor_id();
+       if (unlikely(!rq->nr_running)) {
+go_idle:
+               idle_balance(cpu, rq);
+               if (!rq->nr_running) {
+                       next = rq->idle;
+                       rq->expired_timestamp = 0;
+                       wake_sleeping_dependent(cpu, rq);
+                       /*
+                        * wake_sleeping_dependent() might have released
+                        * the runqueue, so break out if we got new
+                        * tasks meanwhile:
+                        */
+                       if (!rq->nr_running)
+                               goto switch_tasks;
+               }
+       } else {
+               if (dependent_sleeper(cpu, rq)) {
+                       next = rq->idle;
+                       goto switch_tasks;
+               }
+               /*
+                * dependent_sleeper() releases and reacquires the runqueue
+                * lock, hence go into the idle loop if the rq went
+                * empty meanwhile:
+                */
+               if (unlikely(!rq->nr_running))
+                       goto go_idle;
+       }
+
+       array = rq->active;
+       if (unlikely(!array->nr_active)) {
+               /*
+                * Switch the active and expired arrays.
+                */
+               schedstat_inc(rq, sched_switch);
+               rq->active = rq->expired;
+               rq->expired = array;
+               array = rq->active;
+               rq->expired_timestamp = 0;
+               rq->best_expired_prio = MAX_PRIO;
+       }
+
+       idx = sched_find_first_bit(array->bitmap);
+       queue = array->queue + idx;
+       next = list_entry(queue->next, task_t, run_list);
+
+       vxi = next->vx_info;
+#ifdef CONFIG_VSERVER_HARDCPU
+       if (vx_info_flags(vxi, VXF_SCHED_PAUSE|VXF_SCHED_HARD, 0)) {
+               int ret = vx_tokens_recalc(vxi);
+
+               if (unlikely(ret <= 0)) {
+                       if (ret && (rq->idle_tokens > -ret))
+                               rq->idle_tokens = -ret;
+                       vx_hold_task(vxi, next, rq);
+                       goto pick_next;
+               }
+       } else  /* well, looks ugly but not as ugly as the ifdef-ed version */
+#endif
+       if (vx_info_flags(vxi, VXF_SCHED_PRIO, 0))
+               vx_tokens_recalc(vxi);
+
+       if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
+               unsigned long long delta = now - next->timestamp;
+               if (unlikely((long long)(now - next->timestamp) < 0))
+                       delta = 0;
+
+               if (next->sleep_type == SLEEP_INTERACTIVE)
+                       delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
+
+               array = next->array;
+               new_prio = recalc_task_prio(next, next->timestamp + delta);
+
+               if (unlikely(next->prio != new_prio)) {
+                       dequeue_task(next, array);
+                       next->prio = new_prio;
+                       enqueue_task(next, array);
+               }
+       }
+       next->sleep_type = SLEEP_NORMAL;
+switch_tasks:
+       if (next == rq->idle)
+               schedstat_inc(rq, sched_goidle);
+       prefetch(next);
+       prefetch_stack(next);
+       clear_tsk_need_resched(prev);
+       rcu_qsctr_inc(task_cpu(prev));
+
+       update_cpu_clock(prev, rq, now);
+
+       prev->sleep_avg -= run_time;
+       if ((long)prev->sleep_avg <= 0)
+               prev->sleep_avg = 0;
+       prev->timestamp = prev->last_ran = now;
+
+       sched_info_switch(prev, next);
+       if (likely(prev != next)) {
+               next->timestamp = now;
+               rq->nr_switches++;
+               rq->curr = next;
+               ++*switch_count;
+
+               prepare_task_switch(rq, next);
+               prev = context_switch(rq, prev, next);
+               barrier();
+               /*
+                * this_rq must be evaluated again because prev may have moved
+                * CPUs since it called schedule(), thus the 'rq' on its stack
+                * frame will be invalid.
+                */
+               finish_task_switch(this_rq(), prev);
+       } else
+               spin_unlock_irq(&rq->lock);
+
+       prev = current;
+       if (unlikely(reacquire_kernel_lock(prev) < 0))
+               goto need_resched_nonpreemptible;
+       preempt_enable_no_resched();
+       if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
+               goto need_resched;
+}
+
+EXPORT_SYMBOL(schedule);
+
+#ifdef CONFIG_PREEMPT
+/*
+ * this is is the entry point to schedule() from in-kernel preemption
+ * off of preempt_enable.  Kernel preemptions off return from interrupt
+ * occur there and call schedule directly.
+ */
+asmlinkage void __sched preempt_schedule(void)
+{
+       struct thread_info *ti = current_thread_info();
+#ifdef CONFIG_PREEMPT_BKL
+       struct task_struct *task = current;
+       int saved_lock_depth;
+#endif
+       /*
+        * If there is a non-zero preempt_count or interrupts are disabled,
+        * we do not want to preempt the current task.  Just return..
+        */
+       if (unlikely(ti->preempt_count || irqs_disabled()))
+               return;
+
+need_resched:
+       add_preempt_count(PREEMPT_ACTIVE);
+       /*
+        * We keep the big kernel semaphore locked, but we
+        * clear ->lock_depth so that schedule() doesnt
+        * auto-release the semaphore:
+        */
+#ifdef CONFIG_PREEMPT_BKL
+       saved_lock_depth = task->lock_depth;
+       task->lock_depth = -1;
+#endif
+       schedule();
+#ifdef CONFIG_PREEMPT_BKL
+       task->lock_depth = saved_lock_depth;
+#endif
+       sub_preempt_count(PREEMPT_ACTIVE);
+
+       /* we could miss a preemption opportunity between schedule and now */
+       barrier();
+       if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
+               goto need_resched;
+}
+
+EXPORT_SYMBOL(preempt_schedule);
+
+/*
+ * this is is the entry point to schedule() from kernel preemption
+ * off of irq context.
+ * Note, that this is called and return with irqs disabled. This will
+ * protect us against recursive calling from irq.
+ */
+asmlinkage void __sched preempt_schedule_irq(void)
+{
+       struct thread_info *ti = current_thread_info();
+#ifdef CONFIG_PREEMPT_BKL
+       struct task_struct *task = current;
+       int saved_lock_depth;
+#endif
+       /* Catch callers which need to be fixed*/
+       BUG_ON(ti->preempt_count || !irqs_disabled());
+
+need_resched:
+       add_preempt_count(PREEMPT_ACTIVE);
+       /*
+        * We keep the big kernel semaphore locked, but we
+        * clear ->lock_depth so that schedule() doesnt
+        * auto-release the semaphore:
+        */
+#ifdef CONFIG_PREEMPT_BKL
+       saved_lock_depth = task->lock_depth;
+       task->lock_depth = -1;
+#endif
+       local_irq_enable();
+       schedule();
+       local_irq_disable();
+#ifdef CONFIG_PREEMPT_BKL
+       task->lock_depth = saved_lock_depth;
+#endif
+       sub_preempt_count(PREEMPT_ACTIVE);
+
+       /* we could miss a preemption opportunity between schedule and now */
+       barrier();
+       if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
+               goto need_resched;
+}
+
+#endif /* CONFIG_PREEMPT */
+
+int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
+                         void *key)
+{
+       task_t *p = curr->private;
+       return try_to_wake_up(p, mode, sync);
+}
+
+EXPORT_SYMBOL(default_wake_function);
+
+/*
+ * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
+ * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
+ * number) then we wake all the non-exclusive tasks and one exclusive task.
+ *
+ * There are circumstances in which we can try to wake a task which has already
+ * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
+ * zero in this (rare) case, and we handle it by continuing to scan the queue.
+ */
+static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
+                            int nr_exclusive, int sync, void *key)
+{
+       struct list_head *tmp, *next;
+
+       list_for_each_safe(tmp, next, &q->task_list) {
+               wait_queue_t *curr;
+               unsigned flags;
+               curr = list_entry(tmp, wait_queue_t, task_list);
+               flags = curr->flags;
+               if (curr->func(curr, mode, sync, key) &&
+                   (flags & WQ_FLAG_EXCLUSIVE) &&
+                   !--nr_exclusive)
+                       break;
+       }
+}
+
+/**
+ * __wake_up - wake up threads blocked on a waitqueue.
+ * @q: the waitqueue
+ * @mode: which threads
+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
+ * @key: is directly passed to the wakeup function
+ */
+void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
+                       int nr_exclusive, void *key)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(&q->lock, flags);
+       __wake_up_common(q, mode, nr_exclusive, 0, key);
+       spin_unlock_irqrestore(&q->lock, flags);
+}
+
+EXPORT_SYMBOL(__wake_up);
+
+/*
+ * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
+ */
+void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
+{
+       __wake_up_common(q, mode, 1, 0, NULL);
+}
+
+/**
+ * __wake_up_sync - wake up threads blocked on a waitqueue.
+ * @q: the waitqueue
+ * @mode: which threads
+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
+ *
+ * The sync wakeup differs that the waker knows that it will schedule
+ * away soon, so while the target thread will be woken up, it will not
+ * be migrated to another CPU - ie. the two threads are 'synchronized'
+ * with each other. This can prevent needless bouncing between CPUs.
+ *
+ * On UP it can prevent extra preemption.
+ */
+void fastcall
+__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
+{
+       unsigned long flags;
+       int sync = 1;
+
+       if (unlikely(!q))
+               return;
+
+       if (unlikely(!nr_exclusive))
+               sync = 0;
+
+       spin_lock_irqsave(&q->lock, flags);
+       __wake_up_common(q, mode, nr_exclusive, sync, NULL);
+       spin_unlock_irqrestore(&q->lock, flags);
+}
+EXPORT_SYMBOL_GPL(__wake_up_sync);     /* For internal use only */
+
+void fastcall complete(struct completion *x)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(&x->wait.lock, flags);
        x->done++;
        __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
-                        1, 0);
+                        1, 0, NULL);
+       spin_unlock_irqrestore(&x->wait.lock, flags);
+}
+EXPORT_SYMBOL(complete);
+
+void fastcall complete_all(struct completion *x)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(&x->wait.lock, flags);
+       x->done += UINT_MAX/2;
+       __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
+                        0, 0, NULL);
        spin_unlock_irqrestore(&x->wait.lock, flags);
 }
-EXPORT_SYMBOL(complete);
+EXPORT_SYMBOL(complete_all);
+
+void fastcall __sched wait_for_completion(struct completion *x)
+{
+       might_sleep();
+       spin_lock_irq(&x->wait.lock);
+       if (!x->done) {
+               DECLARE_WAITQUEUE(wait, current);
+
+               wait.flags |= WQ_FLAG_EXCLUSIVE;
+               __add_wait_queue_tail(&x->wait, &wait);
+               do {
+                       __set_current_state(TASK_UNINTERRUPTIBLE);
+                       spin_unlock_irq(&x->wait.lock);
+                       schedule();
+                       spin_lock_irq(&x->wait.lock);
+               } while (!x->done);
+               __remove_wait_queue(&x->wait, &wait);
+       }
+       x->done--;
+       spin_unlock_irq(&x->wait.lock);
+}
+EXPORT_SYMBOL(wait_for_completion);
+
+unsigned long fastcall __sched
+wait_for_completion_timeout(struct completion *x, unsigned long timeout)
+{
+       might_sleep();
+
+       spin_lock_irq(&x->wait.lock);
+       if (!x->done) {
+               DECLARE_WAITQUEUE(wait, current);
+
+               wait.flags |= WQ_FLAG_EXCLUSIVE;
+               __add_wait_queue_tail(&x->wait, &wait);
+               do {
+                       __set_current_state(TASK_UNINTERRUPTIBLE);
+                       spin_unlock_irq(&x->wait.lock);
+                       timeout = schedule_timeout(timeout);
+                       spin_lock_irq(&x->wait.lock);
+                       if (!timeout) {
+                               __remove_wait_queue(&x->wait, &wait);
+                               goto out;
+                       }
+               } while (!x->done);
+               __remove_wait_queue(&x->wait, &wait);
+       }
+       x->done--;
+out:
+       spin_unlock_irq(&x->wait.lock);
+       return timeout;
+}
+EXPORT_SYMBOL(wait_for_completion_timeout);
+
+int fastcall __sched wait_for_completion_interruptible(struct completion *x)
+{
+       int ret = 0;
+
+       might_sleep();
+
+       spin_lock_irq(&x->wait.lock);
+       if (!x->done) {
+               DECLARE_WAITQUEUE(wait, current);
+
+               wait.flags |= WQ_FLAG_EXCLUSIVE;
+               __add_wait_queue_tail(&x->wait, &wait);
+               do {
+                       if (signal_pending(current)) {
+                               ret = -ERESTARTSYS;
+                               __remove_wait_queue(&x->wait, &wait);
+                               goto out;
+                       }
+                       __set_current_state(TASK_INTERRUPTIBLE);
+                       spin_unlock_irq(&x->wait.lock);
+                       schedule();
+                       spin_lock_irq(&x->wait.lock);
+               } while (!x->done);
+               __remove_wait_queue(&x->wait, &wait);
+       }
+       x->done--;
+out:
+       spin_unlock_irq(&x->wait.lock);
+
+       return ret;
+}
+EXPORT_SYMBOL(wait_for_completion_interruptible);
+
+unsigned long fastcall __sched
+wait_for_completion_interruptible_timeout(struct completion *x,
+                                         unsigned long timeout)
+{
+       might_sleep();
+
+       spin_lock_irq(&x->wait.lock);
+       if (!x->done) {
+               DECLARE_WAITQUEUE(wait, current);
+
+               wait.flags |= WQ_FLAG_EXCLUSIVE;
+               __add_wait_queue_tail(&x->wait, &wait);
+               do {
+                       if (signal_pending(current)) {
+                               timeout = -ERESTARTSYS;
+                               __remove_wait_queue(&x->wait, &wait);
+                               goto out;
+                       }
+                       __set_current_state(TASK_INTERRUPTIBLE);
+                       spin_unlock_irq(&x->wait.lock);
+                       timeout = schedule_timeout(timeout);
+                       spin_lock_irq(&x->wait.lock);
+                       if (!timeout) {
+                               __remove_wait_queue(&x->wait, &wait);
+                               goto out;
+                       }
+               } while (!x->done);
+               __remove_wait_queue(&x->wait, &wait);
+       }
+       x->done--;
+out:
+       spin_unlock_irq(&x->wait.lock);
+       return timeout;
+}
+EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
+
+
+#define        SLEEP_ON_VAR                                    \
+       unsigned long flags;                            \
+       wait_queue_t wait;                              \
+       init_waitqueue_entry(&wait, current);
+
+#define SLEEP_ON_HEAD                                  \
+       spin_lock_irqsave(&q->lock,flags);              \
+       __add_wait_queue(q, &wait);                     \
+       spin_unlock(&q->lock);
+
+#define        SLEEP_ON_TAIL                                   \
+       spin_lock_irq(&q->lock);                        \
+       __remove_wait_queue(q, &wait);                  \
+       spin_unlock_irqrestore(&q->lock, flags);
+
+#define SLEEP_ON_BKLCHECK                              \
+       if (unlikely(!kernel_locked()) &&               \
+           sleep_on_bkl_warnings < 10) {               \
+               sleep_on_bkl_warnings++;                \
+               WARN_ON(1);                             \
+       }
+
+static int sleep_on_bkl_warnings;
+
+void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
+{
+       SLEEP_ON_VAR
+
+       SLEEP_ON_BKLCHECK
+
+       current->state = TASK_INTERRUPTIBLE;
+
+       SLEEP_ON_HEAD
+       schedule();
+       SLEEP_ON_TAIL
+}
+
+EXPORT_SYMBOL(interruptible_sleep_on);
+
+long fastcall __sched
+interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
+{
+       SLEEP_ON_VAR
+
+       SLEEP_ON_BKLCHECK
+
+       current->state = TASK_INTERRUPTIBLE;
+
+       SLEEP_ON_HEAD
+       timeout = schedule_timeout(timeout);
+       SLEEP_ON_TAIL
+
+       return timeout;
+}
+
+EXPORT_SYMBOL(interruptible_sleep_on_timeout);
+
+long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
+{
+       SLEEP_ON_VAR
+
+       SLEEP_ON_BKLCHECK
+
+       current->state = TASK_UNINTERRUPTIBLE;
+
+       SLEEP_ON_HEAD
+       timeout = schedule_timeout(timeout);
+       SLEEP_ON_TAIL
+
+       return timeout;
+}
+
+EXPORT_SYMBOL(sleep_on_timeout);
+
+void set_user_nice(task_t *p, long nice)
+{
+       unsigned long flags;
+       prio_array_t *array;
+       runqueue_t *rq;
+       int old_prio, new_prio, delta;
+
+       if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
+               return;
+       /*
+        * We have to be careful, if called from sys_setpriority(),
+        * the task might be in the middle of scheduling on another CPU.
+        */
+       rq = task_rq_lock(p, &flags);
+       /*
+        * The RT priorities are set via sched_setscheduler(), but we still
+        * allow the 'normal' nice value to be set - but as expected
+        * it wont have any effect on scheduling until the task is
+        * not SCHED_NORMAL/SCHED_BATCH:
+        */
+       if (rt_task(p)) {
+               p->static_prio = NICE_TO_PRIO(nice);
+               goto out_unlock;
+       }
+       array = p->array;
+       if (array)
+               dequeue_task(p, array);
+
+       old_prio = p->prio;
+       new_prio = NICE_TO_PRIO(nice);
+       delta = new_prio - old_prio;
+       p->static_prio = NICE_TO_PRIO(nice);
+       p->prio += delta;
+
+       if (array) {
+               enqueue_task(p, array);
+               /*
+                * If the task increased its priority or is running and
+                * lowered its priority, then reschedule its CPU:
+                */
+               if (delta < 0 || (delta > 0 && task_running(rq, p)))
+                       resched_task(rq->curr);
+       }
+out_unlock:
+       task_rq_unlock(rq, &flags);
+}
+
+EXPORT_SYMBOL(set_user_nice);
+
+/*
+ * can_nice - check if a task can reduce its nice value
+ * @p: task
+ * @nice: nice value
+ */
+int can_nice(const task_t *p, const int nice)
+{
+       /* convert nice value [19,-20] to rlimit style value [1,40] */
+       int nice_rlim = 20 - nice;
+       return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
+               capable(CAP_SYS_NICE));
+}
+
+#ifdef __ARCH_WANT_SYS_NICE
+
+/*
+ * sys_nice - change the priority of the current process.
+ * @increment: priority increment
+ *
+ * sys_setpriority is a more generic, but much slower function that
+ * does similar things.
+ */
+asmlinkage long sys_nice(int increment)
+{
+       int retval;
+       long nice;
+
+       /*
+        * Setpriority might change our priority at the same moment.
+        * We don't have to worry. Conceptually one call occurs first
+        * and we have a single winner.
+        */
+       if (increment < -40)
+               increment = -40;
+       if (increment > 40)
+               increment = 40;
+
+       nice = PRIO_TO_NICE(current->static_prio) + increment;
+       if (nice < -20)
+               nice = -20;
+       if (nice > 19)
+               nice = 19;
+
+       if (increment < 0 && !can_nice(current, nice))
+               return vx_flags(VXF_IGNEG_NICE, 0) ? 0 : -EPERM;
+
+       retval = security_task_setnice(current, nice);
+       if (retval)
+               return retval;
+
+       set_user_nice(current, nice);
+       return 0;
+}
+
+#endif
+
+/**
+ * task_prio - return the priority value of a given task.
+ * @p: the task in question.
+ *
+ * This is the priority value as seen by users in /proc.
+ * RT tasks are offset by -200. Normal tasks are centered
+ * around 0, value goes from -16 to +15.
+ */
+int task_prio(const task_t *p)
+{
+       return p->prio - MAX_RT_PRIO;
+}
+
+/**
+ * task_nice - return the nice value of a given task.
+ * @p: the task in question.
+ */
+int task_nice(const task_t *p)
+{
+       return TASK_NICE(p);
+}
+EXPORT_SYMBOL_GPL(task_nice);
+
+/**
+ * idle_cpu - is a given cpu idle currently?
+ * @cpu: the processor in question.
+ */
+int idle_cpu(int cpu)
+{
+       return cpu_curr(cpu) == cpu_rq(cpu)->idle;
+}
+
+/**
+ * idle_task - return the idle task for a given cpu.
+ * @cpu: the processor in question.
+ */
+task_t *idle_task(int cpu)
+{
+       return cpu_rq(cpu)->idle;
+}
+
+/**
+ * find_process_by_pid - find a process with a matching PID value.
+ * @pid: the pid in question.
+ */
+static inline task_t *find_process_by_pid(pid_t pid)
+{
+       return pid ? find_task_by_pid(pid) : current;
+}
+
+/* Actually do priority change: must hold rq lock. */
+static void __setscheduler(struct task_struct *p, int policy, int prio)
+{
+       BUG_ON(p->array);
+       p->policy = policy;
+       p->rt_priority = prio;
+       if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
+               p->prio = MAX_RT_PRIO-1 - p->rt_priority;
+       } else {
+               p->prio = p->static_prio;
+               /*
+                * SCHED_BATCH tasks are treated as perpetual CPU hogs:
+                */
+               if (policy == SCHED_BATCH)
+                       p->sleep_avg = 0;
+       }
+}
+
+/**
+ * sched_setscheduler - change the scheduling policy and/or RT priority of
+ * a thread.
+ * @p: the task in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
+ */
+int sched_setscheduler(struct task_struct *p, int policy,
+                      struct sched_param *param)
+{
+       int retval;
+       int oldprio, oldpolicy = -1;
+       prio_array_t *array;
+       unsigned long flags;
+       runqueue_t *rq;
+
+recheck:
+       /* double check policy once rq lock held */
+       if (policy < 0)
+               policy = oldpolicy = p->policy;
+       else if (policy != SCHED_FIFO && policy != SCHED_RR &&
+                       policy != SCHED_NORMAL && policy != SCHED_BATCH)
+               return -EINVAL;
+       /*
+        * Valid priorities for SCHED_FIFO and SCHED_RR are
+        * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
+        * SCHED_BATCH is 0.
+        */
+       if (param->sched_priority < 0 ||
+           (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
+           (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
+               return -EINVAL;
+       if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
+                                       != (param->sched_priority == 0))
+               return -EINVAL;
+
+       /*
+        * Allow unprivileged RT tasks to decrease priority:
+        */
+       if (!capable(CAP_SYS_NICE)) {
+               /*
+                * can't change policy, except between SCHED_NORMAL
+                * and SCHED_BATCH:
+                */
+               if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
+                       (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
+                               !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
+                       return -EPERM;
+               /* can't increase priority */
+               if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
+                   param->sched_priority > p->rt_priority &&
+                   param->sched_priority >
+                               p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
+                       return -EPERM;
+               /* can't change other user's priorities */
+               if ((current->euid != p->euid) &&
+                   (current->euid != p->uid))
+                       return -EPERM;
+       }
+
+       retval = security_task_setscheduler(p, policy, param);
+       if (retval)
+               return retval;
+       /*
+        * To be able to change p->policy safely, the apropriate
+        * runqueue lock must be held.
+        */
+       rq = task_rq_lock(p, &flags);
+       /* recheck policy now with rq lock held */
+       if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
+               policy = oldpolicy = -1;
+               task_rq_unlock(rq, &flags);
+               goto recheck;
+       }
+       array = p->array;
+       if (array)
+               deactivate_task(p, rq);
+       oldprio = p->prio;
+       __setscheduler(p, policy, param->sched_priority);
+       if (array) {
+               vx_activate_task(p);
+               __activate_task(p, rq);
+               /*
+                * Reschedule if we are currently running on this runqueue and
+                * our priority decreased, or if we are not currently running on
+                * this runqueue and our priority is higher than the current's
+                */
+               if (task_running(rq, p)) {
+                       if (p->prio > oldprio)
+                               resched_task(rq->curr);
+               } else if (TASK_PREEMPTS_CURR(p, rq))
+                       resched_task(rq->curr);
+       }
+       task_rq_unlock(rq, &flags);
+       return 0;
+}
+EXPORT_SYMBOL_GPL(sched_setscheduler);
+
+static int
+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
+{
+       int retval;
+       struct sched_param lparam;
+       struct task_struct *p;
+
+       if (!param || pid < 0)
+               return -EINVAL;
+       if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
+               return -EFAULT;
+       read_lock_irq(&tasklist_lock);
+       p = find_process_by_pid(pid);
+       if (!p) {
+               read_unlock_irq(&tasklist_lock);
+               return -ESRCH;
+       }
+       retval = sched_setscheduler(p, policy, &lparam);
+       read_unlock_irq(&tasklist_lock);
+       return retval;
+}
+
+/**
+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
+ * @pid: the pid in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
+ */
+asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
+                                      struct sched_param __user *param)
+{
+       /* negative values for policy are not valid */
+       if (policy < 0)
+               return -EINVAL;
+
+       return do_sched_setscheduler(pid, policy, param);
+}
+
+/**
+ * sys_sched_setparam - set/change the RT priority of a thread
+ * @pid: the pid in question.
+ * @param: structure containing the new RT priority.
+ */
+asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
+{
+       return do_sched_setscheduler(pid, -1, param);
+}
+
+/**
+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
+ * @pid: the pid in question.
+ */
+asmlinkage long sys_sched_getscheduler(pid_t pid)
+{
+       int retval = -EINVAL;
+       task_t *p;
+
+       if (pid < 0)
+               goto out_nounlock;
+
+       retval = -ESRCH;
+       read_lock(&tasklist_lock);
+       p = find_process_by_pid(pid);
+       if (p) {
+               retval = security_task_getscheduler(p);
+               if (!retval)
+                       retval = p->policy;
+       }
+       read_unlock(&tasklist_lock);
+
+out_nounlock:
+       return retval;
+}
+
+/**
+ * sys_sched_getscheduler - get the RT priority of a thread
+ * @pid: the pid in question.
+ * @param: structure containing the RT priority.
+ */
+asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
+{
+       struct sched_param lp;
+       int retval = -EINVAL;
+       task_t *p;
+
+       if (!param || pid < 0)
+               goto out_nounlock;
+
+       read_lock(&tasklist_lock);
+       p = find_process_by_pid(pid);
+       retval = -ESRCH;
+       if (!p)
+               goto out_unlock;
+
+       retval = security_task_getscheduler(p);
+       if (retval)
+               goto out_unlock;
+
+       lp.sched_priority = p->rt_priority;
+       read_unlock(&tasklist_lock);
+
+       /*
+        * This one might sleep, we cannot do it with a spinlock held ...
+        */
+       retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
+
+out_nounlock:
+       return retval;
+
+out_unlock:
+       read_unlock(&tasklist_lock);
+       return retval;
+}
+
+long sched_setaffinity(pid_t pid, cpumask_t new_mask)
+{
+       task_t *p;
+       int retval;
+       cpumask_t cpus_allowed;
+
+       lock_cpu_hotplug();
+       read_lock(&tasklist_lock);
+
+       p = find_process_by_pid(pid);
+       if (!p) {
+               read_unlock(&tasklist_lock);
+               unlock_cpu_hotplug();
+               return -ESRCH;
+       }
+
+       /*
+        * It is not safe to call set_cpus_allowed with the
+        * tasklist_lock held.  We will bump the task_struct's
+        * usage count and then drop tasklist_lock.
+        */
+       get_task_struct(p);
+       read_unlock(&tasklist_lock);
+
+       retval = -EPERM;
+       if ((current->euid != p->euid) && (current->euid != p->uid) &&
+                       !capable(CAP_SYS_NICE))
+               goto out_unlock;
+
+       cpus_allowed = cpuset_cpus_allowed(p);
+       cpus_and(new_mask, new_mask, cpus_allowed);
+       retval = set_cpus_allowed(p, new_mask);
+
+out_unlock:
+       put_task_struct(p);
+       unlock_cpu_hotplug();
+       return retval;
+}
+
+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
+                            cpumask_t *new_mask)
+{
+       if (len < sizeof(cpumask_t)) {
+               memset(new_mask, 0, sizeof(cpumask_t));
+       } else if (len > sizeof(cpumask_t)) {
+               len = sizeof(cpumask_t);
+       }
+       return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
+}
+
+/**
+ * sys_sched_setaffinity - set the cpu affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to the new cpu mask
+ */
+asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
+                                     unsigned long __user *user_mask_ptr)
+{
+       cpumask_t new_mask;
+       int retval;
+
+       retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
+       if (retval)
+               return retval;
+
+       return sched_setaffinity(pid, new_mask);
+}
+
+/*
+ * Represents all cpu's present in the system
+ * In systems capable of hotplug, this map could dynamically grow
+ * as new cpu's are detected in the system via any platform specific
+ * method, such as ACPI for e.g.
+ */
+
+cpumask_t cpu_present_map __read_mostly;
+EXPORT_SYMBOL(cpu_present_map);
+
+#ifndef CONFIG_SMP
+cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
+cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
+#endif
+
+long sched_getaffinity(pid_t pid, cpumask_t *mask)
+{
+       int retval;
+       task_t *p;
+
+       lock_cpu_hotplug();
+       read_lock(&tasklist_lock);
+
+       retval = -ESRCH;
+       p = find_process_by_pid(pid);
+       if (!p)
+               goto out_unlock;
+
+       retval = 0;
+       cpus_and(*mask, p->cpus_allowed, cpu_online_map);
+
+out_unlock:
+       read_unlock(&tasklist_lock);
+       unlock_cpu_hotplug();
+       if (retval)
+               return retval;
+
+       return 0;
+}
+
+/**
+ * sys_sched_getaffinity - get the cpu affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to hold the current cpu mask
+ */
+asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
+                                     unsigned long __user *user_mask_ptr)
+{
+       int ret;
+       cpumask_t mask;
+
+       if (len < sizeof(cpumask_t))
+               return -EINVAL;
+
+       ret = sched_getaffinity(pid, &mask);
+       if (ret < 0)
+               return ret;
+
+       if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
+               return -EFAULT;
+
+       return sizeof(cpumask_t);
+}
+
+/**
+ * sys_sched_yield - yield the current processor to other threads.
+ *
+ * this function yields the current CPU by moving the calling thread
+ * to the expired array. If there are no other threads running on this
+ * CPU then this function will return.
+ */
+asmlinkage long sys_sched_yield(void)
+{
+       runqueue_t *rq = this_rq_lock();
+       prio_array_t *array = current->array;
+       prio_array_t *target = rq->expired;
+
+       schedstat_inc(rq, yld_cnt);
+       /*
+        * We implement yielding by moving the task into the expired
+        * queue.
+        *
+        * (special rule: RT tasks will just roundrobin in the active
+        *  array.)
+        */
+       if (rt_task(current))
+               target = rq->active;
+
+       if (array->nr_active == 1) {
+               schedstat_inc(rq, yld_act_empty);
+               if (!rq->expired->nr_active)
+                       schedstat_inc(rq, yld_both_empty);
+       } else if (!rq->expired->nr_active)
+               schedstat_inc(rq, yld_exp_empty);
+
+       if (array != target) {
+               dequeue_task(current, array);
+               enqueue_task(current, target);
+       } else
+               /*
+                * requeue_task is cheaper so perform that if possible.
+                */
+               requeue_task(current, array);
+
+       /*
+        * Since we are going to call schedule() anyway, there's
+        * no need to preempt or enable interrupts:
+        */
+       __release(rq->lock);
+       _raw_spin_unlock(&rq->lock);
+       preempt_enable_no_resched();
+
+       schedule();
+
+       return 0;
+}
+
+static inline void __cond_resched(void)
+{
+       /*
+        * The BKS might be reacquired before we have dropped
+        * PREEMPT_ACTIVE, which could trigger a second
+        * cond_resched() call.
+        */
+       if (unlikely(preempt_count()))
+               return;
+       if (unlikely(system_state != SYSTEM_RUNNING))
+               return;
+       do {
+               add_preempt_count(PREEMPT_ACTIVE);
+               schedule();
+               sub_preempt_count(PREEMPT_ACTIVE);
+       } while (need_resched());
+}
+
+int __sched cond_resched(void)
+{
+       if (need_resched()) {
+               __cond_resched();
+               return 1;
+       }
+       return 0;
+}
+
+EXPORT_SYMBOL(cond_resched);
+
+/*
+ * cond_resched_lock() - if a reschedule is pending, drop the given lock,
+ * call schedule, and on return reacquire the lock.
+ *
+ * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
+ * operations here to prevent schedule() from being called twice (once via
+ * spin_unlock(), once by hand).
+ */
+int cond_resched_lock(spinlock_t *lock)
+{
+       int ret = 0;
+
+       if (need_lockbreak(lock)) {
+               spin_unlock(lock);
+               cpu_relax();
+               ret = 1;
+               spin_lock(lock);
+       }
+       if (need_resched()) {
+               _raw_spin_unlock(lock);
+               preempt_enable_no_resched();
+               __cond_resched();
+               ret = 1;
+               spin_lock(lock);
+       }
+       return ret;
+}
+
+EXPORT_SYMBOL(cond_resched_lock);
+
+int __sched cond_resched_softirq(void)
+{
+       BUG_ON(!in_softirq());
+
+       if (need_resched()) {
+               __local_bh_enable();
+               __cond_resched();
+               local_bh_disable();
+               return 1;
+       }
+       return 0;
+}
+
+EXPORT_SYMBOL(cond_resched_softirq);
+
+
+/**
+ * yield - yield the current processor to other threads.
+ *
+ * this is a shortcut for kernel-space yielding - it marks the
+ * thread runnable and calls sys_sched_yield().
+ */
+void __sched yield(void)
+{
+       set_current_state(TASK_RUNNING);
+       sys_sched_yield();
+}
+
+EXPORT_SYMBOL(yield);
+
+/*
+ * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
+ * that process accounting knows that this is a task in IO wait state.
+ *
+ * But don't do that if it is a deliberate, throttling IO wait (this task
+ * has set its backing_dev_info: the queue against which it should throttle)
+ */
+void __sched io_schedule(void)
+{
+       struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
+
+       atomic_inc(&rq->nr_iowait);
+       schedule();
+       atomic_dec(&rq->nr_iowait);
+}
+
+EXPORT_SYMBOL(io_schedule);
+
+long __sched io_schedule_timeout(long timeout)
+{
+       struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
+       long ret;
+
+       atomic_inc(&rq->nr_iowait);
+       ret = schedule_timeout(timeout);
+       atomic_dec(&rq->nr_iowait);
+       return ret;
+}
+
+/**
+ * sys_sched_get_priority_max - return maximum RT priority.
+ * @policy: scheduling class.
+ *
+ * this syscall returns the maximum rt_priority that can be used
+ * by a given scheduling class.
+ */
+asmlinkage long sys_sched_get_priority_max(int policy)
+{
+       int ret = -EINVAL;
+
+       switch (policy) {
+       case SCHED_FIFO:
+       case SCHED_RR:
+               ret = MAX_USER_RT_PRIO-1;
+               break;
+       case SCHED_NORMAL:
+       case SCHED_BATCH:
+               ret = 0;
+               break;
+       }
+       return ret;
+}
+
+/**
+ * sys_sched_get_priority_min - return minimum RT priority.
+ * @policy: scheduling class.
+ *
+ * this syscall returns the minimum rt_priority that can be used
+ * by a given scheduling class.
+ */
+asmlinkage long sys_sched_get_priority_min(int policy)
+{
+       int ret = -EINVAL;
+
+       switch (policy) {
+       case SCHED_FIFO:
+       case SCHED_RR:
+               ret = 1;
+               break;
+       case SCHED_NORMAL:
+       case SCHED_BATCH:
+               ret = 0;
+       }
+       return ret;
+}
+
+/**
+ * sys_sched_rr_get_interval - return the default timeslice of a process.
+ * @pid: pid of the process.
+ * @interval: userspace pointer to the timeslice value.
+ *
+ * this syscall writes the default timeslice value of a given process
+ * into the user-space timespec buffer. A value of '0' means infinity.
+ */
+asmlinkage
+long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
+{
+       int retval = -EINVAL;
+       struct timespec t;
+       task_t *p;
+
+       if (pid < 0)
+               goto out_nounlock;
+
+       retval = -ESRCH;
+       read_lock(&tasklist_lock);
+       p = find_process_by_pid(pid);
+       if (!p)
+               goto out_unlock;
+
+       retval = security_task_getscheduler(p);
+       if (retval)
+               goto out_unlock;
+
+       jiffies_to_timespec(p->policy & SCHED_FIFO ?
+                               0 : task_timeslice(p), &t);
+       read_unlock(&tasklist_lock);
+       retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
+out_nounlock:
+       return retval;
+out_unlock:
+       read_unlock(&tasklist_lock);
+       return retval;
+}
+
+static inline struct task_struct *eldest_child(struct task_struct *p)
+{
+       if (list_empty(&p->children)) return NULL;
+       return list_entry(p->children.next,struct task_struct,sibling);
+}
+
+static inline struct task_struct *older_sibling(struct task_struct *p)
+{
+       if (p->sibling.prev==&p->parent->children) return NULL;
+       return list_entry(p->sibling.prev,struct task_struct,sibling);
+}
+
+static inline struct task_struct *younger_sibling(struct task_struct *p)
+{
+       if (p->sibling.next==&p->parent->children) return NULL;
+       return list_entry(p->sibling.next,struct task_struct,sibling);
+}
+
+static void show_task(task_t *p)
+{
+       task_t *relative;
+       unsigned state;
+       unsigned long free = 0;
+       static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
+
+       printk("%-13.13s ", p->comm);
+       state = p->state ? __ffs(p->state) + 1 : 0;
+       if (state < ARRAY_SIZE(stat_nam))
+               printk(stat_nam[state]);
+       else
+               printk("?");
+#if (BITS_PER_LONG == 32)
+       if (state == TASK_RUNNING)
+               printk(" running ");
+       else
+               printk(" %08lX ", thread_saved_pc(p));
+#else
+       if (state == TASK_RUNNING)
+               printk("  running task   ");
+       else
+               printk(" %016lx ", thread_saved_pc(p));
+#endif
+#ifdef CONFIG_DEBUG_STACK_USAGE
+       {
+               unsigned long *n = end_of_stack(p);
+               while (!*n)
+                       n++;
+               free = (unsigned long)n - (unsigned long)end_of_stack(p);
+       }
+#endif
+       printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
+       if ((relative = eldest_child(p)))
+               printk("%5d ", relative->pid);
+       else
+               printk("      ");
+       if ((relative = younger_sibling(p)))
+               printk("%7d", relative->pid);
+       else
+               printk("       ");
+       if ((relative = older_sibling(p)))
+               printk(" %5d", relative->pid);
+       else
+               printk("      ");
+       if (!p->mm)
+               printk(" (L-TLB)\n");
+       else
+               printk(" (NOTLB)\n");
+
+       if (state != TASK_RUNNING)
+               show_stack(p, NULL);
+}
+
+void show_state(void)
+{
+       task_t *g, *p;
+
+#if (BITS_PER_LONG == 32)
+       printk("\n"
+              "                                               sibling\n");
+       printk("  task             PC      pid father child younger older\n");
+#else
+       printk("\n"
+              "                                                       sibling\n");
+       printk("  task                 PC          pid father child younger older\n");
+#endif
+       read_lock(&tasklist_lock);
+       do_each_thread(g, p) {
+               /*
+                * reset the NMI-timeout, listing all files on a slow
+                * console might take alot of time:
+                */
+               touch_nmi_watchdog();
+               show_task(p);
+       } while_each_thread(g, p);
+
+       read_unlock(&tasklist_lock);
+       mutex_debug_show_all_locks();
+}
+
+/**
+ * init_idle - set up an idle thread for a given CPU
+ * @idle: task in question
+ * @cpu: cpu the idle task belongs to
+ *
+ * NOTE: this function does not set the idle thread's NEED_RESCHED
+ * flag, to make booting more robust.
+ */
+void __devinit init_idle(task_t *idle, int cpu)
+{
+       runqueue_t *rq = cpu_rq(cpu);
+       unsigned long flags;
+
+       idle->timestamp = sched_clock();
+       idle->sleep_avg = 0;
+       idle->array = NULL;
+       idle->prio = MAX_PRIO;
+       idle->state = TASK_RUNNING;
+       idle->cpus_allowed = cpumask_of_cpu(cpu);
+       set_task_cpu(idle, cpu);
+
+       spin_lock_irqsave(&rq->lock, flags);
+       rq->curr = rq->idle = idle;
+#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
+       idle->oncpu = 1;
+#endif
+       spin_unlock_irqrestore(&rq->lock, flags);
+
+       /* Set the preempt count _outside_ the spinlocks! */
+#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
+       task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
+#else
+       task_thread_info(idle)->preempt_count = 0;
+#endif
+}
+
+/*
+ * In a system that switches off the HZ timer nohz_cpu_mask
+ * indicates which cpus entered this state. This is used
+ * in the rcu update to wait only for active cpus. For system
+ * which do not switch off the HZ timer nohz_cpu_mask should
+ * always be CPU_MASK_NONE.
+ */
+cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
+
+#ifdef CONFIG_SMP
+/*
+ * This is how migration works:
+ *
+ * 1) we queue a migration_req_t structure in the source CPU's
+ *    runqueue and wake up that CPU's migration thread.
+ * 2) we down() the locked semaphore => thread blocks.
+ * 3) migration thread wakes up (implicitly it forces the migrated
+ *    thread off the CPU)
+ * 4) it gets the migration request and checks whether the migrated
+ *    task is still in the wrong runqueue.
+ * 5) if it's in the wrong runqueue then the migration thread removes
+ *    it and puts it into the right queue.
+ * 6) migration thread up()s the semaphore.
+ * 7) we wake up and the migration is done.
+ */
+
+/*
+ * Change a given task's CPU affinity. Migrate the thread to a
+ * proper CPU and schedule it away if the CPU it's executing on
+ * is removed from the allowed bitmask.
+ *
+ * NOTE: the caller must have a valid reference to the task, the
+ * task must not exit() & deallocate itself prematurely.  The
+ * call is not atomic; no spinlocks may be held.
+ */
+int set_cpus_allowed(task_t *p, cpumask_t new_mask)
+{
+       unsigned long flags;
+       int ret = 0;
+       migration_req_t req;
+       runqueue_t *rq;
+
+       rq = task_rq_lock(p, &flags);
+       if (!cpus_intersects(new_mask, cpu_online_map)) {
+               ret = -EINVAL;
+               goto out;
+       }
+
+       p->cpus_allowed = new_mask;
+       /* Can the task run on the task's current CPU? If so, we're done */
+       if (cpu_isset(task_cpu(p), new_mask))
+               goto out;
+
+       if (migrate_task(p, any_online_cpu(new_mask), &req)) {
+               /* Need help from migration thread: drop lock and wait. */
+               task_rq_unlock(rq, &flags);
+               wake_up_process(rq->migration_thread);
+               wait_for_completion(&req.done);
+               tlb_migrate_finish(p->mm);
+               return 0;
+       }
+out:
+       task_rq_unlock(rq, &flags);
+       return ret;
+}
+
+EXPORT_SYMBOL_GPL(set_cpus_allowed);
+
+/*
+ * Move (not current) task off this cpu, onto dest cpu.  We're doing
+ * this because either it can't run here any more (set_cpus_allowed()
+ * away from this CPU, or CPU going down), or because we're
+ * attempting to rebalance this task on exec (sched_exec).
+ *
+ * So we race with normal scheduler movements, but that's OK, as long
+ * as the task is no longer on this CPU.
+ */
+static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
+{
+       runqueue_t *rq_dest, *rq_src;
+
+       if (unlikely(cpu_is_offline(dest_cpu)))
+               return;
+
+       rq_src = cpu_rq(src_cpu);
+       rq_dest = cpu_rq(dest_cpu);
+
+       double_rq_lock(rq_src, rq_dest);
+       /* Already moved. */
+       if (task_cpu(p) != src_cpu)
+               goto out;
+       /* Affinity changed (again). */
+       if (!cpu_isset(dest_cpu, p->cpus_allowed))
+               goto out;
+
+       set_task_cpu(p, dest_cpu);
+       if (p->array) {
+               /*
+                * Sync timestamp with rq_dest's before activating.
+                * The same thing could be achieved by doing this step
+                * afterwards, and pretending it was a local activate.
+                * This way is cleaner and logically correct.
+                */
+               p->timestamp = p->timestamp - rq_src->timestamp_last_tick
+                               + rq_dest->timestamp_last_tick;
+               deactivate_task(p, rq_src);
+               activate_task(p, rq_dest, 0);
+               if (TASK_PREEMPTS_CURR(p, rq_dest))
+                       resched_task(rq_dest->curr);
+       }
+
+out:
+       double_rq_unlock(rq_src, rq_dest);
+}
+
+/*
+ * migration_thread - this is a highprio system thread that performs
+ * thread migration by bumping thread off CPU then 'pushing' onto
+ * another runqueue.
+ */
+static int migration_thread(void *data)
+{
+       runqueue_t *rq;
+       int cpu = (long)data;
+
+       rq = cpu_rq(cpu);
+       BUG_ON(rq->migration_thread != current);
+
+       set_current_state(TASK_INTERRUPTIBLE);
+       while (!kthread_should_stop()) {
+               struct list_head *head;
+               migration_req_t *req;
+
+               try_to_freeze();
+
+               spin_lock_irq(&rq->lock);
+
+               if (cpu_is_offline(cpu)) {
+                       spin_unlock_irq(&rq->lock);
+                       goto wait_to_die;
+               }
+
+               if (rq->active_balance) {
+                       active_load_balance(rq, cpu);
+                       rq->active_balance = 0;
+               }
+
+               head = &rq->migration_queue;
+
+               if (list_empty(head)) {
+                       spin_unlock_irq(&rq->lock);
+                       schedule();
+                       set_current_state(TASK_INTERRUPTIBLE);
+                       continue;
+               }
+               req = list_entry(head->next, migration_req_t, list);
+               list_del_init(head->next);
+
+               spin_unlock(&rq->lock);
+               __migrate_task(req->task, cpu, req->dest_cpu);
+               local_irq_enable();
+
+               complete(&req->done);
+       }
+       __set_current_state(TASK_RUNNING);
+       return 0;
+
+wait_to_die:
+       /* Wait for kthread_stop */
+       set_current_state(TASK_INTERRUPTIBLE);
+       while (!kthread_should_stop()) {
+               schedule();
+               set_current_state(TASK_INTERRUPTIBLE);
+       }
+       __set_current_state(TASK_RUNNING);
+       return 0;
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+/* Figure out where task on dead CPU should go, use force if neccessary. */
+static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
+{
+       int dest_cpu;
+       cpumask_t mask;
+
+       /* On same node? */
+       mask = node_to_cpumask(cpu_to_node(dead_cpu));
+       cpus_and(mask, mask, tsk->cpus_allowed);
+       dest_cpu = any_online_cpu(mask);
+
+       /* On any allowed CPU? */
+       if (dest_cpu == NR_CPUS)
+               dest_cpu = any_online_cpu(tsk->cpus_allowed);
+
+       /* No more Mr. Nice Guy. */
+       if (dest_cpu == NR_CPUS) {
+               cpus_setall(tsk->cpus_allowed);
+               dest_cpu = any_online_cpu(tsk->cpus_allowed);
+
+               /*
+                * Don't tell them about moving exiting tasks or
+                * kernel threads (both mm NULL), since they never
+                * leave kernel.
+                */
+               if (tsk->mm && printk_ratelimit())
+                       printk(KERN_INFO "process %d (%s) no "
+                              "longer affine to cpu%d\n",
+                              tsk->pid, tsk->comm, dead_cpu);
+       }
+       __migrate_task(tsk, dead_cpu, dest_cpu);
+}
+
+/*
+ * While a dead CPU has no uninterruptible tasks queued at this point,
+ * it might still have a nonzero ->nr_uninterruptible counter, because
+ * for performance reasons the counter is not stricly tracking tasks to
+ * their home CPUs. So we just add the counter to another CPU's counter,
+ * to keep the global sum constant after CPU-down:
+ */
+static void migrate_nr_uninterruptible(runqueue_t *rq_src)
+{
+       runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
+       unsigned long flags;
+
+       local_irq_save(flags);
+       double_rq_lock(rq_src, rq_dest);
+       rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
+       rq_src->nr_uninterruptible = 0;
+       double_rq_unlock(rq_src, rq_dest);
+       local_irq_restore(flags);
+}
+
+/* Run through task list and migrate tasks from the dead cpu. */
+static void migrate_live_tasks(int src_cpu)
+{
+       struct task_struct *tsk, *t;
+
+       write_lock_irq(&tasklist_lock);
+
+       do_each_thread(t, tsk) {
+               if (tsk == current)
+                       continue;
+
+               if (task_cpu(tsk) == src_cpu)
+                       move_task_off_dead_cpu(src_cpu, tsk);
+       } while_each_thread(t, tsk);
+
+       write_unlock_irq(&tasklist_lock);
+}
+
+/* Schedules idle task to be the next runnable task on current CPU.
+ * It does so by boosting its priority to highest possible and adding it to
+ * the _front_ of runqueue. Used by CPU offline code.
+ */
+void sched_idle_next(void)
+{
+       int cpu = smp_processor_id();
+       runqueue_t *rq = this_rq();
+       struct task_struct *p = rq->idle;
+       unsigned long flags;
+
+       /* cpu has to be offline */
+       BUG_ON(cpu_online(cpu));
+
+       /* Strictly not necessary since rest of the CPUs are stopped by now
+        * and interrupts disabled on current cpu.
+        */
+       spin_lock_irqsave(&rq->lock, flags);
+
+       __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
+       /* Add idle task to _front_ of it's priority queue */
+       __activate_idle_task(p, rq);
+
+       spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+/* Ensures that the idle task is using init_mm right before its cpu goes
+ * offline.
+ */
+void idle_task_exit(void)
+{
+       struct mm_struct *mm = current->active_mm;
+
+       BUG_ON(cpu_online(smp_processor_id()));
+
+       if (mm != &init_mm)
+               switch_mm(mm, &init_mm, current);
+       mmdrop(mm);
+}
+
+static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
+{
+       struct runqueue *rq = cpu_rq(dead_cpu);
+
+       /* Must be exiting, otherwise would be on tasklist. */
+       BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
+
+       /* Cannot have done final schedule yet: would have vanished. */
+       BUG_ON(tsk->flags & PF_DEAD);
+
+       get_task_struct(tsk);
+
+       /*
+        * Drop lock around migration; if someone else moves it,
+        * that's OK.  No task can be added to this CPU, so iteration is
+        * fine.
+        */
+       spin_unlock_irq(&rq->lock);
+       move_task_off_dead_cpu(dead_cpu, tsk);
+       spin_lock_irq(&rq->lock);
+
+       put_task_struct(tsk);
+}
+
+/* release_task() removes task from tasklist, so we won't find dead tasks. */
+static void migrate_dead_tasks(unsigned int dead_cpu)
+{
+       unsigned arr, i;
+       struct runqueue *rq = cpu_rq(dead_cpu);
+
+       for (arr = 0; arr < 2; arr++) {
+               for (i = 0; i < MAX_PRIO; i++) {
+                       struct list_head *list = &rq->arrays[arr].queue[i];
+                       while (!list_empty(list))
+                               migrate_dead(dead_cpu,
+                                            list_entry(list->next, task_t,
+                                                       run_list));
+               }
+       }
+}
+#endif /* CONFIG_HOTPLUG_CPU */
+
+/*
+ * migration_call - callback that gets triggered when a CPU is added.
+ * Here we can start up the necessary migration thread for the new CPU.
+ */
+static int migration_call(struct notifier_block *nfb, unsigned long action,
+                         void *hcpu)
+{
+       int cpu = (long)hcpu;
+       struct task_struct *p;
+       struct runqueue *rq;
+       unsigned long flags;
+
+       switch (action) {
+       case CPU_UP_PREPARE:
+               p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
+               if (IS_ERR(p))
+                       return NOTIFY_BAD;
+               p->flags |= PF_NOFREEZE;
+               kthread_bind(p, cpu);
+               /* Must be high prio: stop_machine expects to yield to it. */
+               rq = task_rq_lock(p, &flags);
+               __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
+               task_rq_unlock(rq, &flags);
+               cpu_rq(cpu)->migration_thread = p;
+               break;
+       case CPU_ONLINE:
+               /* Strictly unneccessary, as first user will wake it. */
+               wake_up_process(cpu_rq(cpu)->migration_thread);
+               break;
+#ifdef CONFIG_HOTPLUG_CPU
+       case CPU_UP_CANCELED:
+               /* Unbind it from offline cpu so it can run.  Fall thru. */
+               kthread_bind(cpu_rq(cpu)->migration_thread,
+                            any_online_cpu(cpu_online_map));
+               kthread_stop(cpu_rq(cpu)->migration_thread);
+               cpu_rq(cpu)->migration_thread = NULL;
+               break;
+       case CPU_DEAD:
+               migrate_live_tasks(cpu);
+               rq = cpu_rq(cpu);
+               kthread_stop(rq->migration_thread);
+               rq->migration_thread = NULL;
+               /* Idle task back to normal (off runqueue, low prio) */
+               rq = task_rq_lock(rq->idle, &flags);
+               deactivate_task(rq->idle, rq);
+               rq->idle->static_prio = MAX_PRIO;
+               __setscheduler(rq->idle, SCHED_NORMAL, 0);
+               migrate_dead_tasks(cpu);
+               task_rq_unlock(rq, &flags);
+               migrate_nr_uninterruptible(rq);
+               BUG_ON(rq->nr_running != 0);
+
+               /* No need to migrate the tasks: it was best-effort if
+                * they didn't do lock_cpu_hotplug().  Just wake up
+                * the requestors. */
+               spin_lock_irq(&rq->lock);
+               while (!list_empty(&rq->migration_queue)) {
+                       migration_req_t *req;
+                       req = list_entry(rq->migration_queue.next,
+                                        migration_req_t, list);
+                       list_del_init(&req->list);
+                       complete(&req->done);
+               }
+               spin_unlock_irq(&rq->lock);
+               break;
+#endif
+       }
+       return NOTIFY_OK;
+}
 
-void fastcall complete_all(struct completion *x)
-{
-       unsigned long flags;
+/* Register at highest priority so that task migration (migrate_all_tasks)
+ * happens before everything else.
+ */
+static struct notifier_block migration_notifier = {
+       .notifier_call = migration_call,
+       .priority = 10
+};
 
-       spin_lock_irqsave(&x->wait.lock, flags);
-       x->done += UINT_MAX/2;
-       __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
-                        0, 0);
-       spin_unlock_irqrestore(&x->wait.lock, flags);
+int __init migration_init(void)
+{
+       void *cpu = (void *)(long)smp_processor_id();
+       /* Start one for boot CPU. */
+       migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
+       migration_call(&migration_notifier, CPU_ONLINE, cpu);
+       register_cpu_notifier(&migration_notifier);
+       return 0;
 }
-EXPORT_SYMBOL(complete_all);
+#endif
 
-void fastcall __sched wait_for_completion(struct completion *x)
+#ifdef CONFIG_SMP
+#undef SCHED_DOMAIN_DEBUG
+#ifdef SCHED_DOMAIN_DEBUG
+static void sched_domain_debug(struct sched_domain *sd, int cpu)
 {
-       might_sleep();
-       spin_lock_irq(&x->wait.lock);
-       if (!x->done) {
-               DECLARE_WAITQUEUE(wait, current);
+       int level = 0;
 
-               wait.flags |= WQ_FLAG_EXCLUSIVE;
-               __add_wait_queue_tail(&x->wait, &wait);
-               do {
-                       __set_current_state(TASK_UNINTERRUPTIBLE);
-                       spin_unlock_irq(&x->wait.lock);
-                       schedule();
-                       spin_lock_irq(&x->wait.lock);
-               } while (!x->done);
-               __remove_wait_queue(&x->wait, &wait);
+       if (!sd) {
+               printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
+               return;
        }
-       x->done--;
-       spin_unlock_irq(&x->wait.lock);
-}
-EXPORT_SYMBOL(wait_for_completion);
 
-#define        SLEEP_ON_VAR                                    \
-       unsigned long flags;                            \
-       wait_queue_t wait;                              \
-       init_waitqueue_entry(&wait, current);
+       printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
 
-#define SLEEP_ON_HEAD                                  \
-       spin_lock_irqsave(&q->lock,flags);              \
-       __add_wait_queue(q, &wait);                     \
-       spin_unlock(&q->lock);
+       do {
+               int i;
+               char str[NR_CPUS];
+               struct sched_group *group = sd->groups;
+               cpumask_t groupmask;
+
+               cpumask_scnprintf(str, NR_CPUS, sd->span);
+               cpus_clear(groupmask);
+
+               printk(KERN_DEBUG);
+               for (i = 0; i < level + 1; i++)
+                       printk(" ");
+               printk("domain %d: ", level);
+
+               if (!(sd->flags & SD_LOAD_BALANCE)) {
+                       printk("does not load-balance\n");
+                       if (sd->parent)
+                               printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
+                       break;
+               }
 
-#define        SLEEP_ON_TAIL                                   \
-       spin_lock_irq(&q->lock);                        \
-       __remove_wait_queue(q, &wait);                  \
-       spin_unlock_irqrestore(&q->lock, flags);
+               printk("span %s\n", str);
 
-void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
-{
-       SLEEP_ON_VAR
+               if (!cpu_isset(cpu, sd->span))
+                       printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
+               if (!cpu_isset(cpu, group->cpumask))
+                       printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
 
-       current->state = TASK_INTERRUPTIBLE;
+               printk(KERN_DEBUG);
+               for (i = 0; i < level + 2; i++)
+                       printk(" ");
+               printk("groups:");
+               do {
+                       if (!group) {
+                               printk("\n");
+                               printk(KERN_ERR "ERROR: group is NULL\n");
+                               break;
+                       }
 
-       SLEEP_ON_HEAD
-       schedule();
-       SLEEP_ON_TAIL
-}
+                       if (!group->cpu_power) {
+                               printk("\n");
+                               printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
+                       }
 
-EXPORT_SYMBOL(interruptible_sleep_on);
+                       if (!cpus_weight(group->cpumask)) {
+                               printk("\n");
+                               printk(KERN_ERR "ERROR: empty group\n");
+                       }
 
-long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
-{
-       SLEEP_ON_VAR
+                       if (cpus_intersects(groupmask, group->cpumask)) {
+                               printk("\n");
+                               printk(KERN_ERR "ERROR: repeated CPUs\n");
+                       }
 
-       current->state = TASK_INTERRUPTIBLE;
+                       cpus_or(groupmask, groupmask, group->cpumask);
 
-       SLEEP_ON_HEAD
-       timeout = schedule_timeout(timeout);
-       SLEEP_ON_TAIL
+                       cpumask_scnprintf(str, NR_CPUS, group->cpumask);
+                       printk(" %s", str);
 
-       return timeout;
-}
+                       group = group->next;
+               } while (group != sd->groups);
+               printk("\n");
 
-EXPORT_SYMBOL(interruptible_sleep_on_timeout);
+               if (!cpus_equal(sd->span, groupmask))
+                       printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 
-void fastcall __sched sleep_on(wait_queue_head_t *q)
-{
-       SLEEP_ON_VAR
+               level++;
+               sd = sd->parent;
 
-       current->state = TASK_UNINTERRUPTIBLE;
+               if (sd) {
+                       if (!cpus_subset(groupmask, sd->span))
+                               printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
+               }
 
-       SLEEP_ON_HEAD
-       schedule();
-       SLEEP_ON_TAIL
+       } while (sd);
 }
+#else
+#define sched_domain_debug(sd, cpu) {}
+#endif
 
-EXPORT_SYMBOL(sleep_on);
-
-long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
+static int sd_degenerate(struct sched_domain *sd)
 {
-       SLEEP_ON_VAR
-
-       current->state = TASK_UNINTERRUPTIBLE;
+       if (cpus_weight(sd->span) == 1)
+               return 1;
+
+       /* Following flags need at least 2 groups */
+       if (sd->flags & (SD_LOAD_BALANCE |
+                        SD_BALANCE_NEWIDLE |
+                        SD_BALANCE_FORK |
+                        SD_BALANCE_EXEC)) {
+               if (sd->groups != sd->groups->next)
+                       return 0;
+       }
 
-       SLEEP_ON_HEAD
-       timeout = schedule_timeout(timeout);
-       SLEEP_ON_TAIL
+       /* Following flags don't use groups */
+       if (sd->flags & (SD_WAKE_IDLE |
+                        SD_WAKE_AFFINE |
+                        SD_WAKE_BALANCE))
+               return 0;
 
-       return timeout;
+       return 1;
 }
 
-EXPORT_SYMBOL(sleep_on_timeout);
-
-void set_user_nice(task_t *p, long nice)
+static int sd_parent_degenerate(struct sched_domain *sd,
+                                               struct sched_domain *parent)
 {
-       unsigned long flags;
-       prio_array_t *array;
-       runqueue_t *rq;
-       int old_prio, new_prio, delta;
+       unsigned long cflags = sd->flags, pflags = parent->flags;
 
-       if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
-               return;
-       /*
-        * We have to be careful, if called from sys_setpriority(),
-        * the task might be in the middle of scheduling on another CPU.
-        */
-       rq = task_rq_lock(p, &flags);
-       /*
-        * The RT priorities are set via setscheduler(), but we still
-        * allow the 'normal' nice value to be set - but as expected
-        * it wont have any effect on scheduling until the task is
-        * not SCHED_NORMAL:
-        */
-       if (rt_task(p)) {
-               p->static_prio = NICE_TO_PRIO(nice);
-               goto out_unlock;
-       }
-       array = p->array;
-       if (array)
-               dequeue_task(p, array);
+       if (sd_degenerate(parent))
+               return 1;
 
-       old_prio = p->prio;
-       new_prio = NICE_TO_PRIO(nice);
-       delta = new_prio - old_prio;
-       p->static_prio = NICE_TO_PRIO(nice);
-       p->prio += delta;
+       if (!cpus_equal(sd->span, parent->span))
+               return 0;
 
-       if (array) {
-               enqueue_task(p, array);
-               /*
-                * If the task increased its priority or is running and
-                * lowered its priority, then reschedule its CPU:
-                */
-               if (delta < 0 || (delta > 0 && task_running(rq, p)))
-                       resched_task(rq->curr);
+       /* Does parent contain flags not in child? */
+       /* WAKE_BALANCE is a subset of WAKE_AFFINE */
+       if (cflags & SD_WAKE_AFFINE)
+               pflags &= ~SD_WAKE_BALANCE;
+       /* Flags needing groups don't count if only 1 group in parent */
+       if (parent->groups == parent->groups->next) {
+               pflags &= ~(SD_LOAD_BALANCE |
+                               SD_BALANCE_NEWIDLE |
+                               SD_BALANCE_FORK |
+                               SD_BALANCE_EXEC);
        }
-out_unlock:
-       task_rq_unlock(rq, &flags);
-}
-
-EXPORT_SYMBOL(set_user_nice);
+       if (~cflags & pflags)
+               return 0;
 
-#ifndef __alpha__
+       return 1;
+}
 
 /*
- * sys_nice - change the priority of the current process.
- * @increment: priority increment
- *
- * sys_setpriority is a more generic, but much slower function that
- * does similar things.
+ * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
+ * hold the hotplug lock.
  */
-asmlinkage long sys_nice(int increment)
+static void cpu_attach_domain(struct sched_domain *sd, int cpu)
 {
-       int retval;
-       long nice;
+       runqueue_t *rq = cpu_rq(cpu);
+       struct sched_domain *tmp;
 
-       /*
-        * Setpriority might change our priority at the same moment.
-        * We don't have to worry. Conceptually one call occurs first
-        * and we have a single winner.
-        */
-       if (increment < 0) {
-               if (!capable(CAP_SYS_NICE))
-                       return -EPERM;
-               if (increment < -40)
-                       increment = -40;
+       /* Remove the sched domains which do not contribute to scheduling. */
+       for (tmp = sd; tmp; tmp = tmp->parent) {
+               struct sched_domain *parent = tmp->parent;
+               if (!parent)
+                       break;
+               if (sd_parent_degenerate(tmp, parent))
+                       tmp->parent = parent->parent;
        }
-       if (increment > 40)
-               increment = 40;
 
-       nice = PRIO_TO_NICE(current->static_prio) + increment;
-       if (nice < -20)
-               nice = -20;
-       if (nice > 19)
-               nice = 19;
+       if (sd && sd_degenerate(sd))
+               sd = sd->parent;
 
-       retval = security_task_setnice(current, nice);
-       if (retval)
-               return retval;
+       sched_domain_debug(sd, cpu);
 
-       set_user_nice(current, nice);
-       return 0;
+       rcu_assign_pointer(rq->sd, sd);
 }
 
-#endif
+/* cpus with isolated domains */
+static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
 
-/**
- * task_prio - return the priority value of a given task.
- * @p: the task in question.
- *
- * This is the priority value as seen by users in /proc.
- * RT tasks are offset by -200. Normal tasks are centered
- * around 0, value goes from -16 to +15.
- */
-int task_prio(task_t *p)
+/* Setup the mask of cpus configured for isolated domains */
+static int __init isolated_cpu_setup(char *str)
 {
-       return p->prio - MAX_RT_PRIO;
-}
+       int ints[NR_CPUS], i;
 
-/**
- * task_nice - return the nice value of a given task.
- * @p: the task in question.
- */
-int task_nice(task_t *p)
-{
-       return TASK_NICE(p);
+       str = get_options(str, ARRAY_SIZE(ints), ints);
+       cpus_clear(cpu_isolated_map);
+       for (i = 1; i <= ints[0]; i++)
+               if (ints[i] < NR_CPUS)
+                       cpu_set(ints[i], cpu_isolated_map);
+       return 1;
 }
 
-EXPORT_SYMBOL(task_nice);
+__setup ("isolcpus=", isolated_cpu_setup);
 
-/**
- * idle_cpu - is a given cpu idle currently?
- * @cpu: the processor in question.
+/*
+ * init_sched_build_groups takes an array of groups, the cpumask we wish
+ * to span, and a pointer to a function which identifies what group a CPU
+ * belongs to. The return value of group_fn must be a valid index into the
+ * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
+ * keep track of groups covered with a cpumask_t).
+ *
+ * init_sched_build_groups will build a circular linked list of the groups
+ * covered by the given span, and will set each group's ->cpumask correctly,
+ * and ->cpu_power to 0.
  */
-int idle_cpu(int cpu)
+static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
+                                   int (*group_fn)(int cpu))
 {
-       return cpu_curr(cpu) == cpu_rq(cpu)->idle;
-}
+       struct sched_group *first = NULL, *last = NULL;
+       cpumask_t covered = CPU_MASK_NONE;
+       int i;
 
-EXPORT_SYMBOL_GPL(idle_cpu);
+       for_each_cpu_mask(i, span) {
+               int group = group_fn(i);
+               struct sched_group *sg = &groups[group];
+               int j;
 
-/**
- * find_process_by_pid - find a process with a matching PID value.
- * @pid: the pid in question.
- */
-static inline task_t *find_process_by_pid(pid_t pid)
-{
-       return pid ? find_task_by_pid(pid) : current;
-}
+               if (cpu_isset(i, covered))
+                       continue;
 
-/* Actually do priority change: must hold rq lock. */
-static void __setscheduler(struct task_struct *p, int policy, int prio)
-{
-       BUG_ON(p->array);
-       p->policy = policy;
-       p->rt_priority = prio;
-       if (policy != SCHED_NORMAL)
-               p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
-       else
-               p->prio = p->static_prio;
+               sg->cpumask = CPU_MASK_NONE;
+               sg->cpu_power = 0;
+
+               for_each_cpu_mask(j, span) {
+                       if (group_fn(j) != group)
+                               continue;
+
+                       cpu_set(j, covered);
+                       cpu_set(j, sg->cpumask);
+               }
+               if (!first)
+                       first = sg;
+               if (last)
+                       last->next = sg;
+               last = sg;
+       }
+       last->next = first;
 }
 
+#define SD_NODES_PER_DOMAIN 16
+
 /*
- * setscheduler - change the scheduling policy and/or RT priority of a thread.
+ * Self-tuning task migration cost measurement between source and target CPUs.
+ *
+ * This is done by measuring the cost of manipulating buffers of varying
+ * sizes. For a given buffer-size here are the steps that are taken:
+ *
+ * 1) the source CPU reads+dirties a shared buffer
+ * 2) the target CPU reads+dirties the same shared buffer
+ *
+ * We measure how long they take, in the following 4 scenarios:
+ *
+ *  - source: CPU1, target: CPU2 | cost1
+ *  - source: CPU2, target: CPU1 | cost2
+ *  - source: CPU1, target: CPU1 | cost3
+ *  - source: CPU2, target: CPU2 | cost4
+ *
+ * We then calculate the cost3+cost4-cost1-cost2 difference - this is
+ * the cost of migration.
+ *
+ * We then start off from a small buffer-size and iterate up to larger
+ * buffer sizes, in 5% steps - measuring each buffer-size separately, and
+ * doing a maximum search for the cost. (The maximum cost for a migration
+ * normally occurs when the working set size is around the effective cache
+ * size.)
  */
-static int setscheduler(pid_t pid, int policy, struct sched_param __user *param)
-{
-       struct sched_param lp;
-       int retval = -EINVAL;
-       int oldprio;
-       prio_array_t *array;
-       unsigned long flags;
-       runqueue_t *rq;
-       task_t *p;
-
-       if (!param || pid < 0)
-               goto out_nounlock;
-
-       retval = -EFAULT;
-       if (copy_from_user(&lp, param, sizeof(struct sched_param)))
-               goto out_nounlock;
+#define SEARCH_SCOPE           2
+#define MIN_CACHE_SIZE         (64*1024U)
+#define DEFAULT_CACHE_SIZE     (5*1024*1024U)
+#define ITERATIONS             1
+#define SIZE_THRESH            130
+#define COST_THRESH            130
 
-       /*
-        * We play safe to avoid deadlocks.
-        */
-       read_lock_irq(&tasklist_lock);
+/*
+ * The migration cost is a function of 'domain distance'. Domain
+ * distance is the number of steps a CPU has to iterate down its
+ * domain tree to share a domain with the other CPU. The farther
+ * two CPUs are from each other, the larger the distance gets.
+ *
+ * Note that we use the distance only to cache measurement results,
+ * the distance value is not used numerically otherwise. When two
+ * CPUs have the same distance it is assumed that the migration
+ * cost is the same. (this is a simplification but quite practical)
+ */
+#define MAX_DOMAIN_DISTANCE 32
 
-       p = find_process_by_pid(pid);
+static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
+               { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
+/*
+ * Architectures may override the migration cost and thus avoid
+ * boot-time calibration. Unit is nanoseconds. Mostly useful for
+ * virtualized hardware:
+ */
+#ifdef CONFIG_DEFAULT_MIGRATION_COST
+                       CONFIG_DEFAULT_MIGRATION_COST
+#else
+                       -1LL
+#endif
+};
 
-       retval = -ESRCH;
-       if (!p)
-               goto out_unlock_tasklist;
+/*
+ * Allow override of migration cost - in units of microseconds.
+ * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
+ * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
+ */
+static int __init migration_cost_setup(char *str)
+{
+       int ints[MAX_DOMAIN_DISTANCE+1], i;
 
-       /*
-        * To be able to change p->policy safely, the apropriate
-        * runqueue lock must be held.
-        */
-       rq = task_rq_lock(p, &flags);
+       str = get_options(str, ARRAY_SIZE(ints), ints);
 
-       if (policy < 0)
-               policy = p->policy;
-       else {
-               retval = -EINVAL;
-               if (policy != SCHED_FIFO && policy != SCHED_RR &&
-                               policy != SCHED_NORMAL)
-                       goto out_unlock;
+       printk("#ints: %d\n", ints[0]);
+       for (i = 1; i <= ints[0]; i++) {
+               migration_cost[i-1] = (unsigned long long)ints[i]*1000;
+               printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
        }
+       return 1;
+}
 
-       /*
-        * Valid priorities for SCHED_FIFO and SCHED_RR are
-        * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
-        */
-       retval = -EINVAL;
-       if (lp.sched_priority < 0 || lp.sched_priority > MAX_USER_RT_PRIO-1)
-               goto out_unlock;
-       if ((policy == SCHED_NORMAL) != (lp.sched_priority == 0))
-               goto out_unlock;
-
-       retval = -EPERM;
-       if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
-           !capable(CAP_SYS_NICE))
-               goto out_unlock;
-       if ((current->euid != p->euid) && (current->euid != p->uid) &&
-           !capable(CAP_SYS_NICE))
-               goto out_unlock;
+__setup ("migration_cost=", migration_cost_setup);
 
-       retval = security_task_setscheduler(p, policy, &lp);
-       if (retval)
-               goto out_unlock;
+/*
+ * Global multiplier (divisor) for migration-cutoff values,
+ * in percentiles. E.g. use a value of 150 to get 1.5 times
+ * longer cache-hot cutoff times.
+ *
+ * (We scale it from 100 to 128 to long long handling easier.)
+ */
 
-       array = p->array;
-       if (array)
-               deactivate_task(p, task_rq(p));
-       retval = 0;
-       oldprio = p->prio;
-       __setscheduler(p, policy, lp.sched_priority);
-       if (array) {
-               __activate_task(p, task_rq(p));
-               /*
-                * Reschedule if we are currently running on this runqueue and
-                * our priority decreased, or if we are not currently running on
-                * this runqueue and our priority is higher than the current's
-                */
-               if (task_running(rq, p)) {
-                       if (p->prio > oldprio)
-                               resched_task(rq->curr);
-               } else if (p->prio < rq->curr->prio)
-                       resched_task(rq->curr);
-       }
+#define MIGRATION_FACTOR_SCALE 128
 
-out_unlock:
-       task_rq_unlock(rq, &flags);
-out_unlock_tasklist:
-       read_unlock_irq(&tasklist_lock);
+static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
 
-out_nounlock:
-       return retval;
+static int __init setup_migration_factor(char *str)
+{
+       get_option(&str, &migration_factor);
+       migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
+       return 1;
 }
 
-/**
- * sys_sched_setscheduler - set/change the scheduler policy and RT priority
- * @pid: the pid in question.
- * @policy: new policy
- * @param: structure containing the new RT priority.
+__setup("migration_factor=", setup_migration_factor);
+
+/*
+ * Estimated distance of two CPUs, measured via the number of domains
+ * we have to pass for the two CPUs to be in the same span:
  */
-asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
-                                      struct sched_param __user *param)
+static unsigned long domain_distance(int cpu1, int cpu2)
 {
-       return setscheduler(pid, policy, param);
+       unsigned long distance = 0;
+       struct sched_domain *sd;
+
+       for_each_domain(cpu1, sd) {
+               WARN_ON(!cpu_isset(cpu1, sd->span));
+               if (cpu_isset(cpu2, sd->span))
+                       return distance;
+               distance++;
+       }
+       if (distance >= MAX_DOMAIN_DISTANCE) {
+               WARN_ON(1);
+               distance = MAX_DOMAIN_DISTANCE-1;
+       }
+
+       return distance;
 }
 
-/**
- * sys_sched_setparam - set/change the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the new RT priority.
- */
-asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
+static unsigned int migration_debug;
+
+static int __init setup_migration_debug(char *str)
 {
-       return setscheduler(pid, -1, param);
+       get_option(&str, &migration_debug);
+       return 1;
 }
 
-/**
- * sys_sched_getscheduler - get the policy (scheduling class) of a thread
- * @pid: the pid in question.
+__setup("migration_debug=", setup_migration_debug);
+
+/*
+ * Maximum cache-size that the scheduler should try to measure.
+ * Architectures with larger caches should tune this up during
+ * bootup. Gets used in the domain-setup code (i.e. during SMP
+ * bootup).
  */
-asmlinkage long sys_sched_getscheduler(pid_t pid)
+unsigned int max_cache_size;
+
+static int __init setup_max_cache_size(char *str)
 {
-       int retval = -EINVAL;
-       task_t *p;
+       get_option(&str, &max_cache_size);
+       return 1;
+}
 
-       if (pid < 0)
-               goto out_nounlock;
+__setup("max_cache_size=", setup_max_cache_size);
 
-       retval = -ESRCH;
-       read_lock(&tasklist_lock);
-       p = find_process_by_pid(pid);
-       if (p) {
-               retval = security_task_getscheduler(p);
-               if (!retval)
-                       retval = p->policy;
-       }
-       read_unlock(&tasklist_lock);
+/*
+ * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
+ * is the operation that is timed, so we try to generate unpredictable
+ * cachemisses that still end up filling the L2 cache:
+ */
+static void touch_cache(void *__cache, unsigned long __size)
+{
+       unsigned long size = __size/sizeof(long), chunk1 = size/3,
+                       chunk2 = 2*size/3;
+       unsigned long *cache = __cache;
+       int i;
 
-out_nounlock:
-       return retval;
+       for (i = 0; i < size/6; i += 8) {
+               switch (i % 6) {
+                       case 0: cache[i]++;
+                       case 1: cache[size-1-i]++;
+                       case 2: cache[chunk1-i]++;
+                       case 3: cache[chunk1+i]++;
+                       case 4: cache[chunk2-i]++;
+                       case 5: cache[chunk2+i]++;
+               }
+       }
 }
 
-/**
- * sys_sched_getscheduler - get the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the RT priority.
+/*
+ * Measure the cache-cost of one task migration. Returns in units of nsec.
  */
-asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
+static unsigned long long measure_one(void *cache, unsigned long size,
+                                     int source, int target)
 {
-       struct sched_param lp;
-       int retval = -EINVAL;
-       task_t *p;
+       cpumask_t mask, saved_mask;
+       unsigned long long t0, t1, t2, t3, cost;
 
-       if (!param || pid < 0)
-               goto out_nounlock;
+       saved_mask = current->cpus_allowed;
 
-       read_lock(&tasklist_lock);
-       p = find_process_by_pid(pid);
-       retval = -ESRCH;
-       if (!p)
-               goto out_unlock;
+       /*
+        * Flush source caches to RAM and invalidate them:
+        */
+       sched_cacheflush();
 
-       retval = security_task_getscheduler(p);
-       if (retval)
-               goto out_unlock;
+       /*
+        * Migrate to the source CPU:
+        */
+       mask = cpumask_of_cpu(source);
+       set_cpus_allowed(current, mask);
+       WARN_ON(smp_processor_id() != source);
 
-       lp.sched_priority = p->rt_priority;
-       read_unlock(&tasklist_lock);
+       /*
+        * Dirty the working set:
+        */
+       t0 = sched_clock();
+       touch_cache(cache, size);
+       t1 = sched_clock();
 
        /*
-        * This one might sleep, we cannot do it with a spinlock held ...
+        * Migrate to the target CPU, dirty the L2 cache and access
+        * the shared buffer. (which represents the working set
+        * of a migrated task.)
         */
-       retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
+       mask = cpumask_of_cpu(target);
+       set_cpus_allowed(current, mask);
+       WARN_ON(smp_processor_id() != target);
 
-out_nounlock:
-       return retval;
+       t2 = sched_clock();
+       touch_cache(cache, size);
+       t3 = sched_clock();
 
-out_unlock:
-       read_unlock(&tasklist_lock);
-       return retval;
+       cost = t1-t0 + t3-t2;
+
+       if (migration_debug >= 2)
+               printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
+                       source, target, t1-t0, t1-t0, t3-t2, cost);
+       /*
+        * Flush target caches to RAM and invalidate them:
+        */
+       sched_cacheflush();
+
+       set_cpus_allowed(current, saved_mask);
+
+       return cost;
 }
 
-/**
- * sys_sched_setaffinity - set the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to the new cpu mask
+/*
+ * Measure a series of task migrations and return the average
+ * result. Since this code runs early during bootup the system
+ * is 'undisturbed' and the average latency makes sense.
+ *
+ * The algorithm in essence auto-detects the relevant cache-size,
+ * so it will properly detect different cachesizes for different
+ * cache-hierarchies, depending on how the CPUs are connected.
+ *
+ * Architectures can prime the upper limit of the search range via
+ * max_cache_size, otherwise the search range defaults to 20MB...64K.
  */
-asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
-                                     unsigned long __user *user_mask_ptr)
+static unsigned long long
+measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
 {
-       cpumask_t new_mask;
-       int retval;
-       task_t *p;
-
-       if (len < sizeof(new_mask))
-               return -EINVAL;
+       unsigned long long cost1, cost2;
+       int i;
 
-       if (copy_from_user(&new_mask, user_mask_ptr, sizeof(new_mask)))
-               return -EFAULT;
+       /*
+        * Measure the migration cost of 'size' bytes, over an
+        * average of 10 runs:
+        *
+        * (We perturb the cache size by a small (0..4k)
+        *  value to compensate size/alignment related artifacts.
+        *  We also subtract the cost of the operation done on
+        *  the same CPU.)
+        */
+       cost1 = 0;
 
-       lock_cpu_hotplug();
-       read_lock(&tasklist_lock);
+       /*
+        * dry run, to make sure we start off cache-cold on cpu1,
+        * and to get any vmalloc pagefaults in advance:
+        */
+       measure_one(cache, size, cpu1, cpu2);
+       for (i = 0; i < ITERATIONS; i++)
+               cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
 
-       p = find_process_by_pid(pid);
-       if (!p) {
-               read_unlock(&tasklist_lock);
-               unlock_cpu_hotplug();
-               return -ESRCH;
-       }
+       measure_one(cache, size, cpu2, cpu1);
+       for (i = 0; i < ITERATIONS; i++)
+               cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
 
        /*
-        * It is not safe to call set_cpus_allowed with the
-        * tasklist_lock held.  We will bump the task_struct's
-        * usage count and then drop tasklist_lock.
+        * (We measure the non-migrating [cached] cost on both
+        *  cpu1 and cpu2, to handle CPUs with different speeds)
         */
-       get_task_struct(p);
-       read_unlock(&tasklist_lock);
+       cost2 = 0;
 
-       retval = -EPERM;
-       if ((current->euid != p->euid) && (current->euid != p->uid) &&
-                       !capable(CAP_SYS_NICE))
-               goto out_unlock;
+       measure_one(cache, size, cpu1, cpu1);
+       for (i = 0; i < ITERATIONS; i++)
+               cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
 
-       retval = set_cpus_allowed(p, new_mask);
+       measure_one(cache, size, cpu2, cpu2);
+       for (i = 0; i < ITERATIONS; i++)
+               cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
 
-out_unlock:
-       put_task_struct(p);
-       unlock_cpu_hotplug();
-       return retval;
+       /*
+        * Get the per-iteration migration cost:
+        */
+       do_div(cost1, 2*ITERATIONS);
+       do_div(cost2, 2*ITERATIONS);
+
+       return cost1 - cost2;
 }
 
-/**
- * sys_sched_getaffinity - get the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to hold the current cpu mask
- */
-asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
-                                     unsigned long __user *user_mask_ptr)
+static unsigned long long measure_migration_cost(int cpu1, int cpu2)
 {
-       unsigned int real_len;
-       cpumask_t mask;
-       int retval;
-       task_t *p;
+       unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
+       unsigned int max_size, size, size_found = 0;
+       long long cost = 0, prev_cost;
+       void *cache;
 
-       real_len = sizeof(mask);
-       if (len < real_len)
-               return -EINVAL;
+       /*
+        * Search from max_cache_size*5 down to 64K - the real relevant
+        * cachesize has to lie somewhere inbetween.
+        */
+       if (max_cache_size) {
+               max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
+               size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
+       } else {
+               /*
+                * Since we have no estimation about the relevant
+                * search range
+                */
+               max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
+               size = MIN_CACHE_SIZE;
+       }
 
-       read_lock(&tasklist_lock);
+       if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
+               printk("cpu %d and %d not both online!\n", cpu1, cpu2);
+               return 0;
+       }
 
-       retval = -ESRCH;
-       p = find_process_by_pid(pid);
-       if (!p)
-               goto out_unlock;
+       /*
+        * Allocate the working set:
+        */
+       cache = vmalloc(max_size);
+       if (!cache) {
+               printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
+               return 1000000; // return 1 msec on very small boxen
+       }
 
-       retval = 0;
-       cpus_and(mask, p->cpus_allowed, cpu_possible_map);
+       while (size <= max_size) {
+               prev_cost = cost;
+               cost = measure_cost(cpu1, cpu2, cache, size);
 
-out_unlock:
-       read_unlock(&tasklist_lock);
-       if (retval)
-               return retval;
-       if (copy_to_user(user_mask_ptr, &mask, real_len))
-               return -EFAULT;
-       return real_len;
+               /*
+                * Update the max:
+                */
+               if (cost > 0) {
+                       if (max_cost < cost) {
+                               max_cost = cost;
+                               size_found = size;
+                       }
+               }
+               /*
+                * Calculate average fluctuation, we use this to prevent
+                * noise from triggering an early break out of the loop:
+                */
+               fluct = abs(cost - prev_cost);
+               avg_fluct = (avg_fluct + fluct)/2;
+
+               if (migration_debug)
+                       printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
+                               cpu1, cpu2, size,
+                               (long)cost / 1000000,
+                               ((long)cost / 100000) % 10,
+                               (long)max_cost / 1000000,
+                               ((long)max_cost / 100000) % 10,
+                               domain_distance(cpu1, cpu2),
+                               cost, avg_fluct);
+
+               /*
+                * If we iterated at least 20% past the previous maximum,
+                * and the cost has dropped by more than 20% already,
+                * (taking fluctuations into account) then we assume to
+                * have found the maximum and break out of the loop early:
+                */
+               if (size_found && (size*100 > size_found*SIZE_THRESH))
+                       if (cost+avg_fluct <= 0 ||
+                               max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
+
+                               if (migration_debug)
+                                       printk("-> found max.\n");
+                               break;
+                       }
+               /*
+                * Increase the cachesize in 10% steps:
+                */
+               size = size * 10 / 9;
+       }
+
+       if (migration_debug)
+               printk("[%d][%d] working set size found: %d, cost: %Ld\n",
+                       cpu1, cpu2, size_found, max_cost);
+
+       vfree(cache);
+
+       /*
+        * A task is considered 'cache cold' if at least 2 times
+        * the worst-case cost of migration has passed.
+        *
+        * (this limit is only listened to if the load-balancing
+        * situation is 'nice' - if there is a large imbalance we
+        * ignore it for the sake of CPU utilization and
+        * processing fairness.)
+        */
+       return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
 }
 
-/**
- * sys_sched_yield - yield the current processor to other threads.
- *
- * this function yields the current CPU by moving the calling thread
- * to the expired array. If there are no other threads running on this
- * CPU then this function will return.
- */
-asmlinkage long sys_sched_yield(void)
+static void calibrate_migration_costs(const cpumask_t *cpu_map)
 {
-       runqueue_t *rq = this_rq_lock();
-       prio_array_t *array = current->array;
+       int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
+       unsigned long j0, j1, distance, max_distance = 0;
+       struct sched_domain *sd;
+
+       j0 = jiffies;
 
        /*
-        * We implement yielding by moving the task into the expired
-        * queue.
-        *
-        * (special rule: RT tasks will just roundrobin in the active
-        *  array.)
+        * First pass - calculate the cacheflush times:
+        */
+       for_each_cpu_mask(cpu1, *cpu_map) {
+               for_each_cpu_mask(cpu2, *cpu_map) {
+                       if (cpu1 == cpu2)
+                               continue;
+                       distance = domain_distance(cpu1, cpu2);
+                       max_distance = max(max_distance, distance);
+                       /*
+                        * No result cached yet?
+                        */
+                       if (migration_cost[distance] == -1LL)
+                               migration_cost[distance] =
+                                       measure_migration_cost(cpu1, cpu2);
+               }
+       }
+       /*
+        * Second pass - update the sched domain hierarchy with
+        * the new cache-hot-time estimations:
         */
-       if (likely(!rt_task(current))) {
-               dequeue_task(current, array);
-               enqueue_task(current, rq->expired);
-       } else {
-               list_del(&current->run_list);
-               list_add_tail(&current->run_list, array->queue + current->prio);
+       for_each_cpu_mask(cpu, *cpu_map) {
+               distance = 0;
+               for_each_domain(cpu, sd) {
+                       sd->cache_hot_time = migration_cost[distance];
+                       distance++;
+               }
        }
        /*
-        * Since we are going to call schedule() anyway, there's
-        * no need to preempt:
+        * Print the matrix:
         */
-       _raw_spin_unlock(&rq->lock);
-       preempt_enable_no_resched();
-
-       schedule();
+       if (migration_debug)
+               printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
+                       max_cache_size,
+#ifdef CONFIG_X86
+                       cpu_khz/1000
+#else
+                       -1
+#endif
+               );
+       if (system_state == SYSTEM_BOOTING) {
+               if (num_online_cpus() > 1) {
+                       printk("migration_cost=");
+                       for (distance = 0; distance <= max_distance; distance++) {
+                               if (distance)
+                                       printk(",");
+                               printk("%ld", (long)migration_cost[distance] / 1000);
+                       }
+                       printk("\n");
+               }
+       }
+       j1 = jiffies;
+       if (migration_debug)
+               printk("migration: %ld seconds\n", (j1-j0)/HZ);
 
-       return 0;
-}
+       /*
+        * Move back to the original CPU. NUMA-Q gets confused
+        * if we migrate to another quad during bootup.
+        */
+       if (raw_smp_processor_id() != orig_cpu) {
+               cpumask_t mask = cpumask_of_cpu(orig_cpu),
+                       saved_mask = current->cpus_allowed;
 
-void __sched __cond_resched(void)
-{
-       set_current_state(TASK_RUNNING);
-       schedule();
+               set_cpus_allowed(current, mask);
+               set_cpus_allowed(current, saved_mask);
+       }
 }
 
-EXPORT_SYMBOL(__cond_resched);
+#ifdef CONFIG_NUMA
 
 /**
- * yield - yield the current processor to other threads.
+ * find_next_best_node - find the next node to include in a sched_domain
+ * @node: node whose sched_domain we're building
+ * @used_nodes: nodes already in the sched_domain
  *
- * this is a shortcut for kernel-space yielding - it marks the
- * thread runnable and calls sys_sched_yield().
- */
-void __sched yield(void)
-{
-       set_current_state(TASK_RUNNING);
-       sys_sched_yield();
-}
-
-EXPORT_SYMBOL(yield);
-
-/*
- * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
- * that process accounting knows that this is a task in IO wait state.
+ * Find the next node to include in a given scheduling domain.  Simply
+ * finds the closest node not already in the @used_nodes map.
  *
- * But don't do that if it is a deliberate, throttling IO wait (this task
- * has set its backing_dev_info: the queue against which it should throttle)
+ * Should use nodemask_t.
  */
-void __sched io_schedule(void)
+static int find_next_best_node(int node, unsigned long *used_nodes)
 {
-       struct runqueue *rq = this_rq();
+       int i, n, val, min_val, best_node = 0;
 
-       atomic_inc(&rq->nr_iowait);
-       schedule();
-       atomic_dec(&rq->nr_iowait);
-}
+       min_val = INT_MAX;
 
-EXPORT_SYMBOL(io_schedule);
+       for (i = 0; i < MAX_NUMNODES; i++) {
+               /* Start at @node */
+               n = (node + i) % MAX_NUMNODES;
 
-long __sched io_schedule_timeout(long timeout)
-{
-       struct runqueue *rq = this_rq();
-       long ret;
+               if (!nr_cpus_node(n))
+                       continue;
 
-       atomic_inc(&rq->nr_iowait);
-       ret = schedule_timeout(timeout);
-       atomic_dec(&rq->nr_iowait);
-       return ret;
-}
+               /* Skip already used nodes */
+               if (test_bit(n, used_nodes))
+                       continue;
 
-/**
- * sys_sched_get_priority_max - return maximum RT priority.
- * @policy: scheduling class.
- *
- * this syscall returns the maximum rt_priority that can be used
- * by a given scheduling class.
- */
-asmlinkage long sys_sched_get_priority_max(int policy)
-{
-       int ret = -EINVAL;
+               /* Simple min distance search */
+               val = node_distance(node, n);
 
-       switch (policy) {
-       case SCHED_FIFO:
-       case SCHED_RR:
-               ret = MAX_USER_RT_PRIO-1;
-               break;
-       case SCHED_NORMAL:
-               ret = 0;
-               break;
+               if (val < min_val) {
+                       min_val = val;
+                       best_node = n;
+               }
        }
-       return ret;
-}
-
-/**
- * sys_sched_get_priority_min - return minimum RT priority.
- * @policy: scheduling class.
- *
- * this syscall returns the minimum rt_priority that can be used
- * by a given scheduling class.
- */
-asmlinkage long sys_sched_get_priority_min(int policy)
-{
-       int ret = -EINVAL;
 
-       switch (policy) {
-       case SCHED_FIFO:
-       case SCHED_RR:
-               ret = 1;
-               break;
-       case SCHED_NORMAL:
-               ret = 0;
-       }
-       return ret;
+       set_bit(best_node, used_nodes);
+       return best_node;
 }
 
 /**
- * sys_sched_rr_get_interval - return the default timeslice of a process.
- * @pid: pid of the process.
- * @interval: userspace pointer to the timeslice value.
+ * sched_domain_node_span - get a cpumask for a node's sched_domain
+ * @node: node whose cpumask we're constructing
+ * @size: number of nodes to include in this span
  *
- * this syscall writes the default timeslice value of a given process
- * into the user-space timespec buffer. A value of '0' means infinity.
+ * Given a node, construct a good cpumask for its sched_domain to span.  It
+ * should be one that prevents unnecessary balancing, but also spreads tasks
+ * out optimally.
  */
-asmlinkage
-long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
+static cpumask_t sched_domain_node_span(int node)
 {
-       int retval = -EINVAL;
-       struct timespec t;
-       task_t *p;
+       int i;
+       cpumask_t span, nodemask;
+       DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
 
-       if (pid < 0)
-               goto out_nounlock;
+       cpus_clear(span);
+       bitmap_zero(used_nodes, MAX_NUMNODES);
 
-       retval = -ESRCH;
-       read_lock(&tasklist_lock);
-       p = find_process_by_pid(pid);
-       if (!p)
-               goto out_unlock;
+       nodemask = node_to_cpumask(node);
+       cpus_or(span, span, nodemask);
+       set_bit(node, used_nodes);
 
-       retval = security_task_getscheduler(p);
-       if (retval)
-               goto out_unlock;
+       for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
+               int next_node = find_next_best_node(node, used_nodes);
+               nodemask = node_to_cpumask(next_node);
+               cpus_or(span, span, nodemask);
+       }
 
-       jiffies_to_timespec(p->policy & SCHED_FIFO ?
-                               0 : task_timeslice(p), &t);
-       read_unlock(&tasklist_lock);
-       retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
-out_nounlock:
-       return retval;
-out_unlock:
-       read_unlock(&tasklist_lock);
-       return retval;
+       return span;
 }
+#endif
 
-static inline struct task_struct *eldest_child(struct task_struct *p)
+/*
+ * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
+ * can switch it on easily if needed.
+ */
+#ifdef CONFIG_SCHED_SMT
+static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
+static struct sched_group sched_group_cpus[NR_CPUS];
+static int cpu_to_cpu_group(int cpu)
 {
-       if (list_empty(&p->children)) return NULL;
-       return list_entry(p->children.next,struct task_struct,sibling);
+       return cpu;
 }
+#endif
 
-static inline struct task_struct *older_sibling(struct task_struct *p)
-{
-       if (p->sibling.prev==&p->parent->children) return NULL;
-       return list_entry(p->sibling.prev,struct task_struct,sibling);
-}
+#ifdef CONFIG_SCHED_MC
+static DEFINE_PER_CPU(struct sched_domain, core_domains);
+static struct sched_group sched_group_core[NR_CPUS];
+#endif
 
-static inline struct task_struct *younger_sibling(struct task_struct *p)
+#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
+static int cpu_to_core_group(int cpu)
 {
-       if (p->sibling.next==&p->parent->children) return NULL;
-       return list_entry(p->sibling.next,struct task_struct,sibling);
+       return first_cpu(cpu_sibling_map[cpu]);
 }
-
-static void show_task(task_t * p)
+#elif defined(CONFIG_SCHED_MC)
+static int cpu_to_core_group(int cpu)
 {
-       task_t *relative;
-       unsigned state;
-       unsigned long free = 0;
-       static const char *stat_nam[] = { "R", "S", "D", "T", "Z", "W" };
-
-       printk("%-13.13s ", p->comm);
-       state = p->state ? __ffs(p->state) + 1 : 0;
-       if (state < ARRAY_SIZE(stat_nam))
-               printk(stat_nam[state]);
-       else
-               printk("?");
-#if (BITS_PER_LONG == 32)
-       if (state == TASK_RUNNING)
-               printk(" running ");
-       else
-               printk(" %08lX ", thread_saved_pc(p));
-#else
-       if (state == TASK_RUNNING)
-               printk("  running task   ");
-       else
-               printk(" %016lx ", thread_saved_pc(p));
-#endif
-#ifdef CONFIG_DEBUG_STACK_USAGE
-       {
-               unsigned long * n = (unsigned long *) (p->thread_info+1);
-               while (!*n)
-                       n++;
-               free = (unsigned long) n - (unsigned long)(p->thread_info+1);
-       }
-#endif
-       printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
-       if ((relative = eldest_child(p)))
-               printk("%5d ", relative->pid);
-       else
-               printk("      ");
-       if ((relative = younger_sibling(p)))
-               printk("%7d", relative->pid);
-       else
-               printk("       ");
-       if ((relative = older_sibling(p)))
-               printk(" %5d", relative->pid);
-       else
-               printk("      ");
-       if (!p->mm)
-               printk(" (L-TLB)\n");
-       else
-               printk(" (NOTLB)\n");
-
-       if (state != TASK_RUNNING)
-               show_stack(p, NULL);
+       return cpu;
 }
-
-void show_state(void)
-{
-       task_t *g, *p;
-
-#if (BITS_PER_LONG == 32)
-       printk("\n"
-              "                                               sibling\n");
-       printk("  task             PC      pid father child younger older\n");
-#else
-       printk("\n"
-              "                                                       sibling\n");
-       printk("  task                 PC          pid father child younger older\n");
 #endif
-       read_lock(&tasklist_lock);
-       do_each_thread(g, p) {
-               /*
-                * reset the NMI-timeout, listing all files on a slow
-                * console might take alot of time:
-                */
-               touch_nmi_watchdog();
-               show_task(p);
-       } while_each_thread(g, p);
-
-       read_unlock(&tasklist_lock);
-}
 
-void __init init_idle(task_t *idle, int cpu)
+static DEFINE_PER_CPU(struct sched_domain, phys_domains);
+static struct sched_group sched_group_phys[NR_CPUS];
+static int cpu_to_phys_group(int cpu)
 {
-       runqueue_t *idle_rq = cpu_rq(cpu), *rq = cpu_rq(task_cpu(idle));
-       unsigned long flags;
-
-       local_irq_save(flags);
-       double_rq_lock(idle_rq, rq);
-
-       idle_rq->curr = idle_rq->idle = idle;
-       deactivate_task(idle, rq);
-       idle->array = NULL;
-       idle->prio = MAX_PRIO;
-       idle->state = TASK_RUNNING;
-       set_task_cpu(idle, cpu);
-       double_rq_unlock(idle_rq, rq);
-       set_tsk_need_resched(idle);
-       local_irq_restore(flags);
-
-       /* Set the preempt count _outside_ the spinlocks! */
-#ifdef CONFIG_PREEMPT
-       idle->thread_info->preempt_count = (idle->lock_depth >= 0);
+#if defined(CONFIG_SCHED_MC)
+       cpumask_t mask = cpu_coregroup_map(cpu);
+       return first_cpu(mask);
+#elif defined(CONFIG_SCHED_SMT)
+       return first_cpu(cpu_sibling_map[cpu]);
 #else
-       idle->thread_info->preempt_count = 0;
+       return cpu;
 #endif
 }
 
+#ifdef CONFIG_NUMA
 /*
- * In a system that switches off the HZ timer idle_cpu_mask
- * indicates which cpus entered this state. This is used
- * in the rcu update to wait only for active cpus. For system
- * which do not switch off the HZ timer idle_cpu_mask should
- * always be CPU_MASK_NONE.
+ * The init_sched_build_groups can't handle what we want to do with node
+ * groups, so roll our own. Now each node has its own list of groups which
+ * gets dynamically allocated.
  */
-cpumask_t idle_cpu_mask = CPU_MASK_NONE;
+static DEFINE_PER_CPU(struct sched_domain, node_domains);
+static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
 
-#ifdef CONFIG_SMP
-/*
- * This is how migration works:
- *
- * 1) we queue a migration_req_t structure in the source CPU's
- *    runqueue and wake up that CPU's migration thread.
- * 2) we down() the locked semaphore => thread blocks.
- * 3) migration thread wakes up (implicitly it forces the migrated
- *    thread off the CPU)
- * 4) it gets the migration request and checks whether the migrated
- *    task is still in the wrong runqueue.
- * 5) if it's in the wrong runqueue then the migration thread removes
- *    it and puts it into the right queue.
- * 6) migration thread up()s the semaphore.
- * 7) we wake up and the migration is done.
- */
+static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
+static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
+
+static int cpu_to_allnodes_group(int cpu)
+{
+       return cpu_to_node(cpu);
+}
+static void init_numa_sched_groups_power(struct sched_group *group_head)
+{
+       struct sched_group *sg = group_head;
+       int j;
+
+       if (!sg)
+               return;
+next_sg:
+       for_each_cpu_mask(j, sg->cpumask) {
+               struct sched_domain *sd;
+
+               sd = &per_cpu(phys_domains, j);
+               if (j != first_cpu(sd->groups->cpumask)) {
+                       /*
+                        * Only add "power" once for each
+                        * physical package.
+                        */
+                       continue;
+               }
+
+               sg->cpu_power += sd->groups->cpu_power;
+       }
+       sg = sg->next;
+       if (sg != group_head)
+               goto next_sg;
+}
+#endif
 
 /*
- * Change a given task's CPU affinity. Migrate the thread to a
- * proper CPU and schedule it away if the CPU it's executing on
- * is removed from the allowed bitmask.
- *
- * NOTE: the caller must have a valid reference to the task, the
- * task must not exit() & deallocate itself prematurely.  The
- * call is not atomic; no spinlocks may be held.
+ * Build sched domains for a given set of cpus and attach the sched domains
+ * to the individual cpus
  */
-int set_cpus_allowed(task_t *p, cpumask_t new_mask)
+void build_sched_domains(const cpumask_t *cpu_map)
 {
-       unsigned long flags;
-       int ret = 0;
-       migration_req_t req;
-       runqueue_t *rq;
+       int i;
+#ifdef CONFIG_NUMA
+       struct sched_group **sched_group_nodes = NULL;
+       struct sched_group *sched_group_allnodes = NULL;
 
-       rq = task_rq_lock(p, &flags);
-       if (any_online_cpu(new_mask) == NR_CPUS) {
-               ret = -EINVAL;
-               goto out;
+       /*
+        * Allocate the per-node list of sched groups
+        */
+       sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
+                                          GFP_ATOMIC);
+       if (!sched_group_nodes) {
+               printk(KERN_WARNING "Can not alloc sched group node list\n");
+               return;
        }
+       sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
+#endif
 
-       if (__set_cpus_allowed(p, new_mask, &req)) {
-               /* Need help from migration thread: drop lock and wait. */
-               task_rq_unlock(rq, &flags);
-               wake_up_process(rq->migration_thread);
-               wait_for_completion(&req.done);
-               return 0;
-       }
-out:
-       task_rq_unlock(rq, &flags);
-       return ret;
-}
+       /*
+        * Set up domains for cpus specified by the cpu_map.
+        */
+       for_each_cpu_mask(i, *cpu_map) {
+               int group;
+               struct sched_domain *sd = NULL, *p;
+               cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
 
-EXPORT_SYMBOL_GPL(set_cpus_allowed);
+               cpus_and(nodemask, nodemask, *cpu_map);
 
-/* Move (not current) task off this cpu, onto dest cpu. */
-static void move_task_away(struct task_struct *p, int dest_cpu)
-{
-       runqueue_t *rq_dest;
+#ifdef CONFIG_NUMA
+               if (cpus_weight(*cpu_map)
+                               > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
+                       if (!sched_group_allnodes) {
+                               sched_group_allnodes
+                                       = kmalloc(sizeof(struct sched_group)
+                                                       * MAX_NUMNODES,
+                                                 GFP_KERNEL);
+                               if (!sched_group_allnodes) {
+                                       printk(KERN_WARNING
+                                       "Can not alloc allnodes sched group\n");
+                                       break;
+                               }
+                               sched_group_allnodes_bycpu[i]
+                                               = sched_group_allnodes;
+                       }
+                       sd = &per_cpu(allnodes_domains, i);
+                       *sd = SD_ALLNODES_INIT;
+                       sd->span = *cpu_map;
+                       group = cpu_to_allnodes_group(i);
+                       sd->groups = &sched_group_allnodes[group];
+                       p = sd;
+               } else
+                       p = NULL;
 
-       rq_dest = cpu_rq(dest_cpu);
+               sd = &per_cpu(node_domains, i);
+               *sd = SD_NODE_INIT;
+               sd->span = sched_domain_node_span(cpu_to_node(i));
+               sd->parent = p;
+               cpus_and(sd->span, sd->span, *cpu_map);
+#endif
 
-       double_rq_lock(this_rq(), rq_dest);
-       if (task_cpu(p) != smp_processor_id())
-               goto out; /* Already moved */
+               p = sd;
+               sd = &per_cpu(phys_domains, i);
+               group = cpu_to_phys_group(i);
+               *sd = SD_CPU_INIT;
+               sd->span = nodemask;
+               sd->parent = p;
+               sd->groups = &sched_group_phys[group];
+
+#ifdef CONFIG_SCHED_MC
+               p = sd;
+               sd = &per_cpu(core_domains, i);
+               group = cpu_to_core_group(i);
+               *sd = SD_MC_INIT;
+               sd->span = cpu_coregroup_map(i);
+               cpus_and(sd->span, sd->span, *cpu_map);
+               sd->parent = p;
+               sd->groups = &sched_group_core[group];
+#endif
 
-       set_task_cpu(p, dest_cpu);
-       if (p->array) {
-               deactivate_task(p, this_rq());
-               activate_task(p, rq_dest);
-               if (p->prio < rq_dest->curr->prio)
-                       resched_task(rq_dest->curr);
+#ifdef CONFIG_SCHED_SMT
+               p = sd;
+               sd = &per_cpu(cpu_domains, i);
+               group = cpu_to_cpu_group(i);
+               *sd = SD_SIBLING_INIT;
+               sd->span = cpu_sibling_map[i];
+               cpus_and(sd->span, sd->span, *cpu_map);
+               sd->parent = p;
+               sd->groups = &sched_group_cpus[group];
+#endif
        }
-       p->timestamp = rq_dest->timestamp_last_tick;
 
-out:
-       double_rq_unlock(this_rq(), rq_dest);
-}
+#ifdef CONFIG_SCHED_SMT
+       /* Set up CPU (sibling) groups */
+       for_each_cpu_mask(i, *cpu_map) {
+               cpumask_t this_sibling_map = cpu_sibling_map[i];
+               cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
+               if (i != first_cpu(this_sibling_map))
+                       continue;
 
-/*
- * migration_thread - this is a highprio system thread that performs
- * thread migration by bumping thread off CPU then 'pushing' onto
- * another runqueue.
- */
-static int migration_thread(void * data)
-{
-       runqueue_t *rq;
-       int cpu = (long)data;
+               init_sched_build_groups(sched_group_cpus, this_sibling_map,
+                                               &cpu_to_cpu_group);
+       }
+#endif
 
-       rq = cpu_rq(cpu);
-       BUG_ON(rq->migration_thread != current);
+#ifdef CONFIG_SCHED_MC
+       /* Set up multi-core groups */
+       for_each_cpu_mask(i, *cpu_map) {
+               cpumask_t this_core_map = cpu_coregroup_map(i);
+               cpus_and(this_core_map, this_core_map, *cpu_map);
+               if (i != first_cpu(this_core_map))
+                       continue;
+               init_sched_build_groups(sched_group_core, this_core_map,
+                                       &cpu_to_core_group);
+       }
+#endif
 
-       while (!kthread_should_stop()) {
-               struct list_head *head;
-               migration_req_t *req;
 
-               if (current->flags & PF_FREEZE)
-                       refrigerator(PF_FREEZE);
+       /* Set up physical groups */
+       for (i = 0; i < MAX_NUMNODES; i++) {
+               cpumask_t nodemask = node_to_cpumask(i);
 
-               spin_lock_irq(&rq->lock);
-               head = &rq->migration_queue;
-               current->state = TASK_INTERRUPTIBLE;
-               if (list_empty(head)) {
-                       spin_unlock_irq(&rq->lock);
-                       schedule();
+               cpus_and(nodemask, nodemask, *cpu_map);
+               if (cpus_empty(nodemask))
+                       continue;
+
+               init_sched_build_groups(sched_group_phys, nodemask,
+                                               &cpu_to_phys_group);
+       }
+
+#ifdef CONFIG_NUMA
+       /* Set up node groups */
+       if (sched_group_allnodes)
+               init_sched_build_groups(sched_group_allnodes, *cpu_map,
+                                       &cpu_to_allnodes_group);
+
+       for (i = 0; i < MAX_NUMNODES; i++) {
+               /* Set up node groups */
+               struct sched_group *sg, *prev;
+               cpumask_t nodemask = node_to_cpumask(i);
+               cpumask_t domainspan;
+               cpumask_t covered = CPU_MASK_NONE;
+               int j;
+
+               cpus_and(nodemask, nodemask, *cpu_map);
+               if (cpus_empty(nodemask)) {
+                       sched_group_nodes[i] = NULL;
                        continue;
                }
-               req = list_entry(head->next, migration_req_t, list);
-               list_del_init(head->next);
-               spin_unlock(&rq->lock);
 
-               move_task_away(req->task,
-                              any_online_cpu(req->task->cpus_allowed));
-               local_irq_enable();
-               complete(&req->done);
+               domainspan = sched_domain_node_span(i);
+               cpus_and(domainspan, domainspan, *cpu_map);
+
+               sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
+               sched_group_nodes[i] = sg;
+               for_each_cpu_mask(j, nodemask) {
+                       struct sched_domain *sd;
+                       sd = &per_cpu(node_domains, j);
+                       sd->groups = sg;
+                       if (sd->groups == NULL) {
+                               /* Turn off balancing if we have no groups */
+                               sd->flags = 0;
+                       }
+               }
+               if (!sg) {
+                       printk(KERN_WARNING
+                       "Can not alloc domain group for node %d\n", i);
+                       continue;
+               }
+               sg->cpu_power = 0;
+               sg->cpumask = nodemask;
+               cpus_or(covered, covered, nodemask);
+               prev = sg;
+
+               for (j = 0; j < MAX_NUMNODES; j++) {
+                       cpumask_t tmp, notcovered;
+                       int n = (i + j) % MAX_NUMNODES;
+
+                       cpus_complement(notcovered, covered);
+                       cpus_and(tmp, notcovered, *cpu_map);
+                       cpus_and(tmp, tmp, domainspan);
+                       if (cpus_empty(tmp))
+                               break;
+
+                       nodemask = node_to_cpumask(n);
+                       cpus_and(tmp, tmp, nodemask);
+                       if (cpus_empty(tmp))
+                               continue;
+
+                       sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
+                       if (!sg) {
+                               printk(KERN_WARNING
+                               "Can not alloc domain group for node %d\n", j);
+                               break;
+                       }
+                       sg->cpu_power = 0;
+                       sg->cpumask = tmp;
+                       cpus_or(covered, covered, tmp);
+                       prev->next = sg;
+                       prev = sg;
+               }
+               prev->next = sched_group_nodes[i];
        }
-       return 0;
-}
+#endif
 
-#ifdef CONFIG_HOTPLUG_CPU
-/* migrate_all_tasks - function to migrate all the tasks from the
- * current cpu caller must have already scheduled this to the target
- * cpu via set_cpus_allowed.  Machine is stopped.  */
-void migrate_all_tasks(void)
+       /* Calculate CPU power for physical packages and nodes */
+       for_each_cpu_mask(i, *cpu_map) {
+               int power;
+               struct sched_domain *sd;
+#ifdef CONFIG_SCHED_SMT
+               sd = &per_cpu(cpu_domains, i);
+               power = SCHED_LOAD_SCALE;
+               sd->groups->cpu_power = power;
+#endif
+#ifdef CONFIG_SCHED_MC
+               sd = &per_cpu(core_domains, i);
+               power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
+                                           * SCHED_LOAD_SCALE / 10;
+               sd->groups->cpu_power = power;
+
+               sd = &per_cpu(phys_domains, i);
+
+               /*
+                * This has to be < 2 * SCHED_LOAD_SCALE
+                * Lets keep it SCHED_LOAD_SCALE, so that
+                * while calculating NUMA group's cpu_power
+                * we can simply do
+                *  numa_group->cpu_power += phys_group->cpu_power;
+                *
+                * See "only add power once for each physical pkg"
+                * comment below
+                */
+               sd->groups->cpu_power = SCHED_LOAD_SCALE;
+#else
+               sd = &per_cpu(phys_domains, i);
+               power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
+                               (cpus_weight(sd->groups->cpumask)-1) / 10;
+               sd->groups->cpu_power = power;
+#endif
+       }
+
+#ifdef CONFIG_NUMA
+       for (i = 0; i < MAX_NUMNODES; i++)
+               init_numa_sched_groups_power(sched_group_nodes[i]);
+
+       init_numa_sched_groups_power(sched_group_allnodes);
+#endif
+
+       /* Attach the domains */
+       for_each_cpu_mask(i, *cpu_map) {
+               struct sched_domain *sd;
+#ifdef CONFIG_SCHED_SMT
+               sd = &per_cpu(cpu_domains, i);
+#elif defined(CONFIG_SCHED_MC)
+               sd = &per_cpu(core_domains, i);
+#else
+               sd = &per_cpu(phys_domains, i);
+#endif
+               cpu_attach_domain(sd, i);
+       }
+       /*
+        * Tune cache-hot values:
+        */
+       calibrate_migration_costs(cpu_map);
+}
+/*
+ * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
+ */
+static void arch_init_sched_domains(const cpumask_t *cpu_map)
 {
-       struct task_struct *tsk, *t;
-       int dest_cpu, src_cpu;
-       unsigned int node;
+       cpumask_t cpu_default_map;
 
-       /* We're nailed to this CPU. */
-       src_cpu = smp_processor_id();
+       /*
+        * Setup mask for cpus without special case scheduling requirements.
+        * For now this just excludes isolated cpus, but could be used to
+        * exclude other special cases in the future.
+        */
+       cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
 
-       /* Not required, but here for neatness. */
-       write_lock(&tasklist_lock);
+       build_sched_domains(&cpu_default_map);
+}
 
-       /* watch out for per node tasks, let's stay on this node */
-       node = cpu_to_node(src_cpu);
+static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
+{
+#ifdef CONFIG_NUMA
+       int i;
+       int cpu;
 
-       do_each_thread(t, tsk) {
-               cpumask_t mask;
-               if (tsk == current)
-                       continue;
+       for_each_cpu_mask(cpu, *cpu_map) {
+               struct sched_group *sched_group_allnodes
+                       = sched_group_allnodes_bycpu[cpu];
+               struct sched_group **sched_group_nodes
+                       = sched_group_nodes_bycpu[cpu];
+
+               if (sched_group_allnodes) {
+                       kfree(sched_group_allnodes);
+                       sched_group_allnodes_bycpu[cpu] = NULL;
+               }
 
-               if (task_cpu(tsk) != src_cpu)
+               if (!sched_group_nodes)
                        continue;
 
-               /* Figure out where this task should go (attempting to
-                * keep it on-node), and check if it can be migrated
-                * as-is.  NOTE that kernel threads bound to more than
-                * one online cpu will be migrated. */
-               mask = node_to_cpumask(node);
-               cpus_and(mask, mask, tsk->cpus_allowed);
-               dest_cpu = any_online_cpu(mask);
-               if (dest_cpu == NR_CPUS)
-                       dest_cpu = any_online_cpu(tsk->cpus_allowed);
-               if (dest_cpu == NR_CPUS) {
-                       cpus_clear(tsk->cpus_allowed);
-                       cpus_complement(tsk->cpus_allowed);
-                       dest_cpu = any_online_cpu(tsk->cpus_allowed);
-
-                       /* Don't tell them about moving exiting tasks
-                          or kernel threads (both mm NULL), since
-                          they never leave kernel. */
-                       if (tsk->mm && printk_ratelimit())
-                               printk(KERN_INFO "process %d (%s) no "
-                                      "longer affine to cpu%d\n",
-                                      tsk->pid, tsk->comm, src_cpu);
+               for (i = 0; i < MAX_NUMNODES; i++) {
+                       cpumask_t nodemask = node_to_cpumask(i);
+                       struct sched_group *oldsg, *sg = sched_group_nodes[i];
+
+                       cpus_and(nodemask, nodemask, *cpu_map);
+                       if (cpus_empty(nodemask))
+                               continue;
+
+                       if (sg == NULL)
+                               continue;
+                       sg = sg->next;
+next_sg:
+                       oldsg = sg;
+                       sg = sg->next;
+                       kfree(oldsg);
+                       if (oldsg != sched_group_nodes[i])
+                               goto next_sg;
                }
+               kfree(sched_group_nodes);
+               sched_group_nodes_bycpu[cpu] = NULL;
+       }
+#endif
+}
 
-               move_task_away(tsk, dest_cpu);
-       } while_each_thread(t, tsk);
+/*
+ * Detach sched domains from a group of cpus specified in cpu_map
+ * These cpus will now be attached to the NULL domain
+ */
+static void detach_destroy_domains(const cpumask_t *cpu_map)
+{
+       int i;
 
-       write_unlock(&tasklist_lock);
+       for_each_cpu_mask(i, *cpu_map)
+               cpu_attach_domain(NULL, i);
+       synchronize_sched();
+       arch_destroy_sched_domains(cpu_map);
 }
-#endif /* CONFIG_HOTPLUG_CPU */
 
 /*
- * migration_call - callback that gets triggered when a CPU is added.
- * Here we can start up the necessary migration thread for the new CPU.
+ * Partition sched domains as specified by the cpumasks below.
+ * This attaches all cpus from the cpumasks to the NULL domain,
+ * waits for a RCU quiescent period, recalculates sched
+ * domain information and then attaches them back to the
+ * correct sched domains
+ * Call with hotplug lock held
  */
-static int migration_call(struct notifier_block *nfb, unsigned long action,
-                         void *hcpu)
+void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
 {
-       int cpu = (long)hcpu;
-       struct task_struct *p;
-       struct runqueue *rq;
-       unsigned long flags;
+       cpumask_t change_map;
+
+       cpus_and(*partition1, *partition1, cpu_online_map);
+       cpus_and(*partition2, *partition2, cpu_online_map);
+       cpus_or(change_map, *partition1, *partition2);
+
+       /* Detach sched domains from all of the affected cpus */
+       detach_destroy_domains(&change_map);
+       if (!cpus_empty(*partition1))
+               build_sched_domains(partition1);
+       if (!cpus_empty(*partition2))
+               build_sched_domains(partition2);
+}
 
+#ifdef CONFIG_HOTPLUG_CPU
+/*
+ * Force a reinitialization of the sched domains hierarchy.  The domains
+ * and groups cannot be updated in place without racing with the balancing
+ * code, so we temporarily attach all running cpus to the NULL domain
+ * which will prevent rebalancing while the sched domains are recalculated.
+ */
+static int update_sched_domains(struct notifier_block *nfb,
+                               unsigned long action, void *hcpu)
+{
        switch (action) {
        case CPU_UP_PREPARE:
-               p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
-               if (IS_ERR(p))
-                       return NOTIFY_BAD;
-               kthread_bind(p, cpu);
-               /* Must be high prio: stop_machine expects to yield to it. */
-               rq = task_rq_lock(p, &flags);
-               __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
-               task_rq_unlock(rq, &flags);
-               cpu_rq(cpu)->migration_thread = p;
-               break;
-       case CPU_ONLINE:
-               /* Strictly unneccessary, as first user will wake it. */
-               wake_up_process(cpu_rq(cpu)->migration_thread);
-               break;
-#ifdef CONFIG_HOTPLUG_CPU
+       case CPU_DOWN_PREPARE:
+               detach_destroy_domains(&cpu_online_map);
+               return NOTIFY_OK;
+
        case CPU_UP_CANCELED:
-               /* Unbind it from offline cpu so it can run.  Fall thru. */
-               kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
+       case CPU_DOWN_FAILED:
+       case CPU_ONLINE:
        case CPU_DEAD:
-               kthread_stop(cpu_rq(cpu)->migration_thread);
-               cpu_rq(cpu)->migration_thread = NULL;
-               BUG_ON(cpu_rq(cpu)->nr_running != 0);
-               break;
-#endif
+               /*
+                * Fall through and re-initialise the domains.
+                */
+               break;
+       default:
+               return NOTIFY_DONE;
        }
+
+       /* The hotplug lock is already held by cpu_up/cpu_down */
+       arch_init_sched_domains(&cpu_online_map);
+
        return NOTIFY_OK;
 }
+#endif
 
-static struct notifier_block __devinitdata migration_notifier = {
-       .notifier_call = migration_call,
-};
-
-int __init migration_init(void)
+void __init sched_init_smp(void)
 {
-       void *cpu = (void *)(long)smp_processor_id();
-       /* Start one for boot CPU. */
-       migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
-       migration_call(&migration_notifier, CPU_ONLINE, cpu);
-       register_cpu_notifier(&migration_notifier);
-       return 0;
+       lock_cpu_hotplug();
+       arch_init_sched_domains(&cpu_online_map);
+       unlock_cpu_hotplug();
+       /* XXX: Theoretical race here - CPU may be hotplugged now */
+       hotcpu_notifier(update_sched_domains, 0);
 }
-#endif
+#else
+void __init sched_init_smp(void)
+{
+}
+#endif /* CONFIG_SMP */
 
-/*
- * The 'big kernel lock'
- *
- * This spinlock is taken and released recursively by lock_kernel()
- * and unlock_kernel().  It is transparently dropped and reaquired
- * over schedule().  It is used to protect legacy code that hasn't
- * been migrated to a proper locking design yet.
- *
- * Don't use in new code.
- *
- * Note: spinlock debugging needs this even on !CONFIG_SMP.
- */
-spinlock_t kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
-EXPORT_SYMBOL(kernel_flag);
+int in_sched_functions(unsigned long addr)
+{
+       /* Linker adds these: start and end of __sched functions */
+       extern char __sched_text_start[], __sched_text_end[];
+       return in_lock_functions(addr) ||
+               (addr >= (unsigned long)__sched_text_start
+               && addr < (unsigned long)__sched_text_end);
+}
 
 void __init sched_init(void)
 {
        runqueue_t *rq;
        int i, j, k;
 
-       for (i = 0; i < NR_CPUS; i++) {
+       for_each_possible_cpu(i) {
                prio_array_t *array;
 
                rq = cpu_rq(i);
+               spin_lock_init(&rq->lock);
+               rq->nr_running = 0;
                rq->active = rq->arrays;
                rq->expired = rq->arrays + 1;
                rq->best_expired_prio = MAX_PRIO;
 
-               spin_lock_init(&rq->lock);
+#ifdef CONFIG_SMP
+               rq->sd = NULL;
+               for (j = 1; j < 3; j++)
+                       rq->cpu_load[j] = 0;
+               rq->active_balance = 0;
+               rq->push_cpu = 0;
+               rq->migration_thread = NULL;
                INIT_LIST_HEAD(&rq->migration_queue);
+               rq->cpu = i;
+#endif
                atomic_set(&rq->nr_iowait, 0);
-               nr_running_init(rq);
+#ifdef CONFIG_VSERVER_HARDCPU
+               INIT_LIST_HEAD(&rq->hold_queue);
+#endif
 
                for (j = 0; j < 2; j++) {
                        array = rq->arrays + j;
@@ -2967,23 +6290,20 @@ void __init sched_init(void)
                        __set_bit(MAX_PRIO, array->bitmap);
                }
        }
-       /*
-        * We have to do a little magic to get the first
-        * thread right in SMP mode.
-        */
-       rq = this_rq();
-       rq->curr = current;
-       rq->idle = current;
-       set_task_cpu(current, smp_processor_id());
-       wake_up_forked_process(current);
-
-       init_timers();
 
        /*
         * The boot idle thread does lazy MMU switching as well:
         */
        atomic_inc(&init_mm.mm_count);
        enter_lazy_tlb(&init_mm, current);
+
+       /*
+        * Make us the idle thread. Technically, schedule() should not be
+        * called from this thread, however somewhere below it might be,
+        * but because we are the idle thread, we just pick up running again
+        * when this runqueue becomes "idle".
+        */
+       init_idle(current, smp_processor_id());
 }
 
 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
@@ -2993,11 +6313,11 @@ void __might_sleep(char *file, int line)
        static unsigned long prev_jiffy;        /* ratelimiting */
 
        if ((in_atomic() || irqs_disabled()) &&
-           system_state == SYSTEM_RUNNING) {
+           system_state == SYSTEM_RUNNING && !oops_in_progress) {
                if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
                        return;
                prev_jiffy = jiffies;
-               printk(KERN_ERR "Debug: sleeping function called from invalid"
+               printk(KERN_ERR "BUG: sleeping function called from invalid"
                                " context at %s:%d\n", file, line);
                printk("in_atomic():%d, irqs_disabled():%d\n",
                        in_atomic(), irqs_disabled());
@@ -3008,48 +6328,78 @@ void __might_sleep(char *file, int line)
 EXPORT_SYMBOL(__might_sleep);
 #endif
 
+#ifdef CONFIG_MAGIC_SYSRQ
+void normalize_rt_tasks(void)
+{
+       struct task_struct *p;
+       prio_array_t *array;
+       unsigned long flags;
+       runqueue_t *rq;
+
+       read_lock_irq(&tasklist_lock);
+       for_each_process (p) {
+               if (!rt_task(p))
+                       continue;
+
+               rq = task_rq_lock(p, &flags);
+
+               array = p->array;
+               if (array)
+                       deactivate_task(p, task_rq(p));
+               __setscheduler(p, SCHED_NORMAL, 0);
+               if (array) {
+                       vx_activate_task(p);
+                       __activate_task(p, task_rq(p));
+                       resched_task(rq->curr);
+               }
+
+               task_rq_unlock(rq, &flags);
+       }
+       read_unlock_irq(&tasklist_lock);
+}
+
+#endif /* CONFIG_MAGIC_SYSRQ */
 
-#if defined(CONFIG_SMP) && defined(CONFIG_PREEMPT)
+#ifdef CONFIG_IA64
 /*
- * This could be a long-held lock.  If another CPU holds it for a long time,
- * and that CPU is not asked to reschedule then *this* CPU will spin on the
- * lock for a long time, even if *this* CPU is asked to reschedule.
+ * These functions are only useful for the IA64 MCA handling.
  *
- * So what we do here, in the slow (contended) path is to spin on the lock by
- * hand while permitting preemption.
+ * They can only be called when the whole system has been
+ * stopped - every CPU needs to be quiescent, and no scheduling
+ * activity can take place. Using them for anything else would
+ * be a serious bug, and as a result, they aren't even visible
+ * under any other configuration.
+ */
+
+/**
+ * curr_task - return the current task for a given cpu.
+ * @cpu: the processor in question.
  *
- * Called inside preempt_disable().
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  */
-void __sched __preempt_spin_lock(spinlock_t *lock)
+task_t *curr_task(int cpu)
 {
-       if (preempt_count() > 1) {
-               _raw_spin_lock(lock);
-               return;
-       }
-       do {
-               preempt_enable();
-               while (spin_is_locked(lock))
-                       cpu_relax();
-               preempt_disable();
-       } while (!_raw_spin_trylock(lock));
+       return cpu_curr(cpu);
 }
 
-EXPORT_SYMBOL(__preempt_spin_lock);
-
-void __sched __preempt_write_lock(rwlock_t *lock)
+/**
+ * set_curr_task - set the current task for a given cpu.
+ * @cpu: the processor in question.
+ * @p: the task pointer to set.
+ *
+ * Description: This function must only be used when non-maskable interrupts
+ * are serviced on a separate stack.  It allows the architecture to switch the
+ * notion of the current task on a cpu in a non-blocking manner.  This function
+ * must be called with all CPU's synchronized, and interrupts disabled, the
+ * and caller must save the original value of the current task (see
+ * curr_task() above) and restore that value before reenabling interrupts and
+ * re-starting the system.
+ *
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
+ */
+void set_curr_task(int cpu, task_t *p)
 {
-       if (preempt_count() > 1) {
-               _raw_write_lock(lock);
-               return;
-       }
-
-       do {
-               preempt_enable();
-               while (rwlock_is_locked(lock))
-                       cpu_relax();
-               preempt_disable();
-       } while (!_raw_write_trylock(lock));
+       cpu_curr(cpu) = p;
 }
 
-EXPORT_SYMBOL(__preempt_write_lock);
-#endif /* defined(CONFIG_SMP) && defined(CONFIG_PREEMPT) */
+#endif