linux 2.6.16.38 w/ vs2.0.3-rc1
[linux-2.6.git] / kernel / sched.c
index 5d25134..a3fe25b 100644 (file)
@@ -17,6 +17,7 @@
  *  2003-09-03 Interactivity tuning by Con Kolivas.
  *  2004-04-02 Scheduler domains code by Nick Piggin
  */
+
 #include <linux/mm.h>
 #include <linux/module.h>
 #include <linux/nmi.h>
 #include <asm/uaccess.h>
 #include <linux/highmem.h>
 #include <linux/smp_lock.h>
-#include <linux/pagemap.h>
 #include <asm/mmu_context.h>
 #include <linux/interrupt.h>
+#include <linux/capability.h>
 #include <linux/completion.h>
 #include <linux/kernel_stat.h>
 #include <linux/security.h>
 #include <linux/notifier.h>
+#include <linux/profile.h>
 #include <linux/suspend.h>
+#include <linux/vmalloc.h>
 #include <linux/blkdev.h>
 #include <linux/delay.h>
 #include <linux/smp.h>
+#include <linux/threads.h>
 #include <linux/timer.h>
 #include <linux/rcupdate.h>
 #include <linux/cpu.h>
+#include <linux/cpuset.h>
 #include <linux/percpu.h>
 #include <linux/kthread.h>
-#include <linux/vserver/sched.h>
-#include <linux/vs_base.h>
+#include <linux/seq_file.h>
+#include <linux/syscalls.h>
+#include <linux/times.h>
+#include <linux/acct.h>
 #include <asm/tlb.h>
-
 #include <asm/unistd.h>
 
-#ifdef CONFIG_NUMA
-#define cpu_to_node_mask(cpu) node_to_cpumask(cpu_to_node(cpu))
-#else
-#define cpu_to_node_mask(cpu) (cpu_online_map)
-#endif
+#include <linux/vs_context.h>
+#include <linux/vs_cvirt.h>
+#include <linux/vs_sched.h>
 
 /*
  * Convert user-nice values [ -20 ... 0 ... 19 ]
@@ -69,8 +73,6 @@
 #define USER_PRIO(p)           ((p)-MAX_RT_PRIO)
 #define TASK_USER_PRIO(p)      USER_PRIO((p)->static_prio)
 #define MAX_USER_PRIO          (USER_PRIO(MAX_PRIO))
-#define AVG_TIMESLICE  (MIN_TIMESLICE + ((MAX_TIMESLICE - MIN_TIMESLICE) *\
-                       (MAX_PRIO-1-NICE_TO_PRIO(0))/(MAX_USER_PRIO - 1)))
 
 /*
  * Some helpers for converting nanosecond timing to jiffy resolution
 /*
  * These are the 'tuning knobs' of the scheduler:
  *
- * Minimum timeslice is 10 msecs, default timeslice is 100 msecs,
- * maximum timeslice is 200 msecs. Timeslices get refilled after
- * they expire.
+ * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
+ * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
+ * Timeslices get refilled after they expire.
  */
-#define MIN_TIMESLICE          ( 10 * HZ / 1000)
-#define MAX_TIMESLICE          (200 * HZ / 1000)
+#define MIN_TIMESLICE          max(5 * HZ / 1000, 1)
+#define DEF_TIMESLICE          (100 * HZ / 1000)
 #define ON_RUNQUEUE_WEIGHT      30
 #define CHILD_PENALTY           95
 #define PARENT_PENALTY         100
 #define PRIO_BONUS_RATIO        25
 #define MAX_BONUS              (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
 #define INTERACTIVE_DELTA        2
-#define MAX_SLEEP_AVG          (AVG_TIMESLICE * MAX_BONUS)
+#define MAX_SLEEP_AVG          (DEF_TIMESLICE * MAX_BONUS)
 #define STARVATION_LIMIT       (MAX_SLEEP_AVG)
 #define NS_MAX_SLEEP_AVG       (JIFFIES_TO_NS(MAX_SLEEP_AVG))
-#define CREDIT_LIMIT           100
 
 /*
  * If a task is 'interactive' then we reinsert it in the active
        (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
                MAX_SLEEP_AVG)
 
+#define GRANULARITY    (10 * HZ / 1000 ? : 1)
+
 #ifdef CONFIG_SMP
-#define TIMESLICE_GRANULARITY(p)       (MIN_TIMESLICE * \
+#define TIMESLICE_GRANULARITY(p)       (GRANULARITY * \
                (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
                        num_online_cpus())
 #else
-#define TIMESLICE_GRANULARITY(p)       (MIN_TIMESLICE * \
+#define TIMESLICE_GRANULARITY(p)       (GRANULARITY * \
                (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
 #endif
 
        (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
                (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
 
-#define HIGH_CREDIT(p) \
-       ((p)->interactive_credit > CREDIT_LIMIT)
-
-#define LOW_CREDIT(p) \
-       ((p)->interactive_credit < -CREDIT_LIMIT)
+#define TASK_PREEMPTS_CURR(p, rq) \
+       ((p)->prio < (rq)->curr->prio)
 
 /*
- * BASE_TIMESLICE scales user-nice values [ -20 ... 19 ]
- * to time slice values.
+ * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
+ * to time slice values: [800ms ... 100ms ... 5ms]
  *
  * The higher a thread's priority, the bigger timeslices
  * it gets during one round of execution. But even the lowest
  * priority thread gets MIN_TIMESLICE worth of execution time.
- *
- * task_timeslice() is the interface that is used by the scheduler.
  */
 
-#define BASE_TIMESLICE(p) (MIN_TIMESLICE + \
-               ((MAX_TIMESLICE - MIN_TIMESLICE) * \
-                       (MAX_PRIO-1 - (p)->static_prio) / (MAX_USER_PRIO-1)))
+#define SCALE_PRIO(x, prio) \
+       max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
 
 static unsigned int task_timeslice(task_t *p)
 {
-       return BASE_TIMESLICE(p);
+       if (p->static_prio < NICE_TO_PRIO(0))
+               return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
+       else
+               return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
 }
-
-#define task_hot(p, now, sd) ((now) - (p)->timestamp < (sd)->cache_hot_time)
+#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)      \
+                               < (long long) (sd)->cache_hot_time)
 
 /*
  * These are the runqueue data structures:
  */
-typedef struct runqueue runqueue_t;
 
-#ifdef CONFIG_CKRM_CPU_SCHEDULE
-#include <linux/ckrm_classqueue.h>
-#endif
+#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
 
-#ifdef CONFIG_CKRM_CPU_SCHEDULE
+typedef struct runqueue runqueue_t;
 
-/**
- *  if belong to different class, compare class priority
- *  otherwise compare task priority 
- */
-#define TASK_PREEMPTS_CURR(p, rq) \
-       (((p)->cpu_class != (rq)->curr->cpu_class) && ((rq)->curr != (rq)->idle))? class_preempts_curr((p),(rq)->curr) : ((p)->prio < (rq)->curr->prio)
-#else
-#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
 struct prio_array {
        unsigned int nr_active;
        unsigned long bitmap[BITMAP_SIZE];
        struct list_head queue[MAX_PRIO];
 };
-#define rq_active(p,rq)   (rq->active)
-#define rq_expired(p,rq)  (rq->expired)
-#define ckrm_rebalance_tick(j,this_cpu) do {} while (0)
-#define TASK_PREEMPTS_CURR(p, rq) \
-       ((p)->prio < (rq)->curr->prio)
-#endif
 
 /*
  * This is the main, per-CPU runqueue data structure.
@@ -227,20 +210,24 @@ struct runqueue {
         * remote CPUs use both these fields when doing load calculation.
         */
        unsigned long nr_running;
-#if defined(CONFIG_SMP)
-       unsigned long cpu_load;
+#ifdef CONFIG_SMP
+       unsigned long cpu_load[3];
 #endif
-       unsigned long long nr_switches, nr_preempt;
-       unsigned long expired_timestamp, nr_uninterruptible;
+       unsigned long long nr_switches;
+
+       /*
+        * This is part of a global counter where only the total sum
+        * over all CPUs matters. A task can increase this counter on
+        * one CPU and if it got migrated afterwards it may decrease
+        * it on another CPU. Always updated under the runqueue lock:
+        */
+       unsigned long nr_uninterruptible;
+
+       unsigned long expired_timestamp;
        unsigned long long timestamp_last_tick;
        task_t *curr, *idle;
        struct mm_struct *prev_mm;
-#ifdef CONFIG_CKRM_CPU_SCHEDULE
-       unsigned long ckrm_cpu_load;
-       struct classqueue_struct classqueue;   
-#else
-        prio_array_t *active, *expired, arrays[2];
-#endif
+       prio_array_t *active, *expired, arrays[2];
        int best_expired_prio;
        atomic_t nr_iowait;
 
@@ -253,185 +240,128 @@ struct runqueue {
 
        task_t *migration_thread;
        struct list_head migration_queue;
+       int cpu;
 #endif
+#ifdef CONFIG_VSERVER_HARDCPU
        struct list_head hold_queue;
        int idle_tokens;
+#endif
+
+#ifdef CONFIG_SCHEDSTATS
+       /* latency stats */
+       struct sched_info rq_sched_info;
+
+       /* sys_sched_yield() stats */
+       unsigned long yld_exp_empty;
+       unsigned long yld_act_empty;
+       unsigned long yld_both_empty;
+       unsigned long yld_cnt;
+
+       /* schedule() stats */
+       unsigned long sched_switch;
+       unsigned long sched_cnt;
+       unsigned long sched_goidle;
+
+       /* try_to_wake_up() stats */
+       unsigned long ttwu_cnt;
+       unsigned long ttwu_local;
+#endif
 };
 
 static DEFINE_PER_CPU(struct runqueue, runqueues);
 
+/*
+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
+ * See detach_destroy_domains: synchronize_sched for details.
+ *
+ * The domain tree of any CPU may only be accessed from within
+ * preempt-disabled sections.
+ */
 #define for_each_domain(cpu, domain) \
-       for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
+for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
 
 #define cpu_rq(cpu)            (&per_cpu(runqueues, (cpu)))
 #define this_rq()              (&__get_cpu_var(runqueues))
 #define task_rq(p)             cpu_rq(task_cpu(p))
 #define cpu_curr(cpu)          (cpu_rq(cpu)->curr)
 
-/*
- * Default context-switch locking:
- */
 #ifndef prepare_arch_switch
-# define prepare_arch_switch(rq, next) do { } while (0)
-# define finish_arch_switch(rq, next)  spin_unlock_irq(&(rq)->lock)
-# define task_running(rq, p)           ((rq)->curr == (p))
+# define prepare_arch_switch(next)     do { } while (0)
+#endif
+#ifndef finish_arch_switch
+# define finish_arch_switch(prev)      do { } while (0)
 #endif
 
-#ifdef CONFIG_CKRM_CPU_SCHEDULE
-#include <linux/ckrm_sched.h>
-spinlock_t cvt_lock        = SPIN_LOCK_UNLOCKED;
-rwlock_t   class_list_lock = RW_LOCK_UNLOCKED;
-LIST_HEAD(active_cpu_classes);   // list of active cpu classes; anchor
-struct ckrm_cpu_class default_cpu_class_obj;
-
-/*
- * the minimum CVT allowed is the base_cvt
- * otherwise, it will starve others
- */
-CVT_t get_min_cvt(int cpu)
+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
+static inline int task_running(runqueue_t *rq, task_t *p)
 {
-       cq_node_t *node;
-       struct ckrm_local_runqueue * lrq;
-       CVT_t min_cvt;
-
-       node = classqueue_get_head(bpt_queue(cpu));
-       lrq =  (node) ? class_list_entry(node) : NULL;
-       
-       if (lrq) 
-               min_cvt = lrq->local_cvt;
-       else 
-               min_cvt = 0;
-               
-       return min_cvt;
+       return rq->curr == p;
 }
 
-/*
- * update the classueue base for all the runqueues
- * TODO: we can only update half of the min_base to solve the movebackward issue
- */
-static inline void check_update_class_base(int this_cpu) {
-       unsigned long min_base = 0xFFFFFFFF; 
-       cq_node_t *node;
-       int i;
-
-       if (! cpu_online(this_cpu)) return;
-
-       /*
-        * find the min_base across all the processors
-        */
-       for_each_online_cpu(i) {
-               /*
-                * I should change it to directly use bpt->base
-                */
-               node = classqueue_get_head(bpt_queue(i));
-               if (node && node->prio < min_base) {
-                       min_base = node->prio;
-               }
-       }
-       if (min_base != 0xFFFFFFFF) 
-               classqueue_update_base(bpt_queue(this_cpu),min_base);
+static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
+{
 }
 
-static inline void ckrm_rebalance_tick(int j,int this_cpu)
+static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
 {
-#ifdef CONFIG_CKRM_CPU_SCHEDULE
-       read_lock(&class_list_lock);
-       if (!(j % CVT_UPDATE_TICK))
-               update_global_cvts(this_cpu);
-
-#define CKRM_BASE_UPDATE_RATE 400
-       if (! (jiffies % CKRM_BASE_UPDATE_RATE))
-               check_update_class_base(this_cpu);
-
-       read_unlock(&class_list_lock);
+#ifdef CONFIG_DEBUG_SPINLOCK
+       /* this is a valid case when another task releases the spinlock */
+       rq->lock.owner = current;
 #endif
+       spin_unlock_irq(&rq->lock);
 }
 
-static inline struct ckrm_local_runqueue *rq_get_next_class(struct runqueue *rq)
+#else /* __ARCH_WANT_UNLOCKED_CTXSW */
+static inline int task_running(runqueue_t *rq, task_t *p)
 {
-       cq_node_t *node = classqueue_get_head(&rq->classqueue);
-       return ((node) ? class_list_entry(node) : NULL);
+#ifdef CONFIG_SMP
+       return p->oncpu;
+#else
+       return rq->curr == p;
+#endif
 }
 
-static inline struct task_struct * rq_get_next_task(struct runqueue* rq) 
+static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
 {
-       prio_array_t               *array;
-       struct task_struct         *next;
-       struct ckrm_local_runqueue *queue;
-       int cpu = smp_processor_id();
-       
-       next = rq->idle;
- retry_next_class:
-       if ((queue = rq_get_next_class(rq))) {
-               array = queue->active;
-               //check switch active/expired queue
-               if (unlikely(!queue->active->nr_active)) {
-                       prio_array_t *array;
-                      
-                       array = queue->active;
-                       queue->active = queue->expired;
-                       queue->expired = array;
-                       queue->expired_timestamp = 0;
-
-                       if (queue->active->nr_active)
-                               set_top_priority(queue,
-                                                find_first_bit(queue->active->bitmap, MAX_PRIO));
-                       else {
-                               classqueue_dequeue(queue->classqueue,
-                                                  &queue->classqueue_linkobj);
-                               cpu_demand_event(get_rq_local_stat(queue,cpu),CPU_DEMAND_DEQUEUE,0);
-                       }
-
-                       goto retry_next_class;                          
-               }
-               BUG_ON(!queue->active->nr_active);
-               next = task_list_entry(array->queue[queue->top_priority].next);
-       }
-       return next;
+#ifdef CONFIG_SMP
+       /*
+        * We can optimise this out completely for !SMP, because the
+        * SMP rebalancing from interrupt is the only thing that cares
+        * here.
+        */
+       next->oncpu = 1;
+#endif
+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+       spin_unlock_irq(&rq->lock);
+#else
+       spin_unlock(&rq->lock);
+#endif
 }
 
-static inline void rq_load_inc(runqueue_t *rq, struct task_struct *p) { rq->ckrm_cpu_load += cpu_class_weight(p->cpu_class); }
-static inline void rq_load_dec(runqueue_t *rq, struct task_struct *p) { rq->ckrm_cpu_load -= cpu_class_weight(p->cpu_class); }
-
-#else /*CONFIG_CKRM_CPU_SCHEDULE*/
-
-static inline struct task_struct * rq_get_next_task(struct runqueue* rq) 
+static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
 {
-       prio_array_t *array;
-        struct list_head *queue;
-       int idx;
-
-       array = rq->active;
-       if (unlikely(!array->nr_active)) {
-               /*
-                * Switch the active and expired arrays.
-                */
-               rq->active = rq->expired;
-               rq->expired = array;
-               array = rq->active;
-               rq->expired_timestamp = 0;
-               rq->best_expired_prio = MAX_PRIO;
-       }
-
-       idx = sched_find_first_bit(array->bitmap);
-       queue = array->queue + idx;
-       return list_entry(queue->next, task_t, run_list);
+#ifdef CONFIG_SMP
+       /*
+        * After ->oncpu is cleared, the task can be moved to a different CPU.
+        * We must ensure this doesn't happen until the switch is completely
+        * finished.
+        */
+       smp_wmb();
+       prev->oncpu = 0;
+#endif
+#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+       local_irq_enable();
+#endif
 }
-
-static inline void class_enqueue_task(struct task_struct* p, prio_array_t *array) { }
-static inline void class_dequeue_task(struct task_struct* p, prio_array_t *array) { }
-static inline void init_cpu_classes(void) { }
-static inline void rq_load_inc(runqueue_t *rq, struct task_struct *p) { }
-static inline void rq_load_dec(runqueue_t *rq, struct task_struct *p) { }
-#endif  /* CONFIG_CKRM_CPU_SCHEDULE */
-
+#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
 
 /*
  * task_rq_lock - lock the runqueue a given task resides on and disable
  * interrupts.  Note the ordering: we can safely lookup the task_rq without
  * explicitly disabling preemption.
  */
-runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
+static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
+       __acquires(rq->lock)
 {
        struct runqueue *rq;
 
@@ -446,15 +376,115 @@ repeat_lock_task:
        return rq;
 }
 
-void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
+static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
+       __releases(rq->lock)
 {
        spin_unlock_irqrestore(&rq->lock, *flags);
 }
 
+#ifdef CONFIG_SCHEDSTATS
+/*
+ * bump this up when changing the output format or the meaning of an existing
+ * format, so that tools can adapt (or abort)
+ */
+#define SCHEDSTAT_VERSION 12
+
+static int show_schedstat(struct seq_file *seq, void *v)
+{
+       int cpu;
+
+       seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
+       seq_printf(seq, "timestamp %lu\n", jiffies);
+       for_each_online_cpu(cpu) {
+               runqueue_t *rq = cpu_rq(cpu);
+#ifdef CONFIG_SMP
+               struct sched_domain *sd;
+               int dcnt = 0;
+#endif
+
+               /* runqueue-specific stats */
+               seq_printf(seq,
+                   "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
+                   cpu, rq->yld_both_empty,
+                   rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
+                   rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
+                   rq->ttwu_cnt, rq->ttwu_local,
+                   rq->rq_sched_info.cpu_time,
+                   rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
+
+               seq_printf(seq, "\n");
+
+#ifdef CONFIG_SMP
+               /* domain-specific stats */
+               preempt_disable();
+               for_each_domain(cpu, sd) {
+                       enum idle_type itype;
+                       char mask_str[NR_CPUS];
+
+                       cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
+                       seq_printf(seq, "domain%d %s", dcnt++, mask_str);
+                       for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
+                                       itype++) {
+                               seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
+                                   sd->lb_cnt[itype],
+                                   sd->lb_balanced[itype],
+                                   sd->lb_failed[itype],
+                                   sd->lb_imbalance[itype],
+                                   sd->lb_gained[itype],
+                                   sd->lb_hot_gained[itype],
+                                   sd->lb_nobusyq[itype],
+                                   sd->lb_nobusyg[itype]);
+                       }
+                       seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
+                           sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
+                           sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
+                           sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
+                           sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
+               }
+               preempt_enable();
+#endif
+       }
+       return 0;
+}
+
+static int schedstat_open(struct inode *inode, struct file *file)
+{
+       unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
+       char *buf = kmalloc(size, GFP_KERNEL);
+       struct seq_file *m;
+       int res;
+
+       if (!buf)
+               return -ENOMEM;
+       res = single_open(file, show_schedstat, NULL);
+       if (!res) {
+               m = file->private_data;
+               m->buf = buf;
+               m->size = size;
+       } else
+               kfree(buf);
+       return res;
+}
+
+struct file_operations proc_schedstat_operations = {
+       .open    = schedstat_open,
+       .read    = seq_read,
+       .llseek  = seq_lseek,
+       .release = single_release,
+};
+
+# define schedstat_inc(rq, field)      do { (rq)->field++; } while (0)
+# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
+#else /* !CONFIG_SCHEDSTATS */
+# define schedstat_inc(rq, field)      do { } while (0)
+# define schedstat_add(rq, field, amt) do { } while (0)
+#endif
+
 /*
  * rq_lock - lock a given runqueue and disable interrupts.
  */
-static runqueue_t *this_rq_lock(void)
+static inline runqueue_t *this_rq_lock(void)
+       __acquires(rq->lock)
 {
        runqueue_t *rq;
 
@@ -465,45 +495,151 @@ static runqueue_t *this_rq_lock(void)
        return rq;
 }
 
-static inline void rq_unlock(runqueue_t *rq)
+#ifdef CONFIG_SCHEDSTATS
+/*
+ * Called when a process is dequeued from the active array and given
+ * the cpu.  We should note that with the exception of interactive
+ * tasks, the expired queue will become the active queue after the active
+ * queue is empty, without explicitly dequeuing and requeuing tasks in the
+ * expired queue.  (Interactive tasks may be requeued directly to the
+ * active queue, thus delaying tasks in the expired queue from running;
+ * see scheduler_tick()).
+ *
+ * This function is only called from sched_info_arrive(), rather than
+ * dequeue_task(). Even though a task may be queued and dequeued multiple
+ * times as it is shuffled about, we're really interested in knowing how
+ * long it was from the *first* time it was queued to the time that it
+ * finally hit a cpu.
+ */
+static inline void sched_info_dequeued(task_t *t)
 {
-       spin_unlock_irq(&rq->lock);
+       t->sched_info.last_queued = 0;
+}
+
+/*
+ * Called when a task finally hits the cpu.  We can now calculate how
+ * long it was waiting to run.  We also note when it began so that we
+ * can keep stats on how long its timeslice is.
+ */
+static void sched_info_arrive(task_t *t)
+{
+       unsigned long now = jiffies, diff = 0;
+       struct runqueue *rq = task_rq(t);
+
+       if (t->sched_info.last_queued)
+               diff = now - t->sched_info.last_queued;
+       sched_info_dequeued(t);
+       t->sched_info.run_delay += diff;
+       t->sched_info.last_arrival = now;
+       t->sched_info.pcnt++;
+
+       if (!rq)
+               return;
+
+       rq->rq_sched_info.run_delay += diff;
+       rq->rq_sched_info.pcnt++;
+}
+
+/*
+ * Called when a process is queued into either the active or expired
+ * array.  The time is noted and later used to determine how long we
+ * had to wait for us to reach the cpu.  Since the expired queue will
+ * become the active queue after active queue is empty, without dequeuing
+ * and requeuing any tasks, we are interested in queuing to either. It
+ * is unusual but not impossible for tasks to be dequeued and immediately
+ * requeued in the same or another array: this can happen in sched_yield(),
+ * set_user_nice(), and even load_balance() as it moves tasks from runqueue
+ * to runqueue.
+ *
+ * This function is only called from enqueue_task(), but also only updates
+ * the timestamp if it is already not set.  It's assumed that
+ * sched_info_dequeued() will clear that stamp when appropriate.
+ */
+static inline void sched_info_queued(task_t *t)
+{
+       if (!t->sched_info.last_queued)
+               t->sched_info.last_queued = jiffies;
+}
+
+/*
+ * Called when a process ceases being the active-running process, either
+ * voluntarily or involuntarily.  Now we can calculate how long we ran.
+ */
+static inline void sched_info_depart(task_t *t)
+{
+       struct runqueue *rq = task_rq(t);
+       unsigned long diff = jiffies - t->sched_info.last_arrival;
+
+       t->sched_info.cpu_time += diff;
+
+       if (rq)
+               rq->rq_sched_info.cpu_time += diff;
+}
+
+/*
+ * Called when tasks are switched involuntarily due, typically, to expiring
+ * their time slice.  (This may also be called when switching to or from
+ * the idle task.)  We are only called when prev != next.
+ */
+static inline void sched_info_switch(task_t *prev, task_t *next)
+{
+       struct runqueue *rq = task_rq(prev);
+
+       /*
+        * prev now departs the cpu.  It's not interesting to record
+        * stats about how efficient we were at scheduling the idle
+        * process, however.
+        */
+       if (prev != rq->idle)
+               sched_info_depart(prev);
+
+       if (next != rq->idle)
+               sched_info_arrive(next);
 }
+#else
+#define sched_info_queued(t)           do { } while (0)
+#define sched_info_switch(t, next)     do { } while (0)
+#endif /* CONFIG_SCHEDSTATS */
 
 /*
  * Adding/removing a task to/from a priority array:
  */
-void dequeue_task(struct task_struct *p, prio_array_t *array)
+static void dequeue_task(struct task_struct *p, prio_array_t *array)
 {
-       BUG_ON(! array);
+       BUG_ON(p->state & TASK_ONHOLD);
        array->nr_active--;
        list_del(&p->run_list);
        if (list_empty(array->queue + p->prio))
                __clear_bit(p->prio, array->bitmap);
-       class_dequeue_task(p,array);
 }
 
-void enqueue_task(struct task_struct *p, prio_array_t *array)
+static void enqueue_task(struct task_struct *p, prio_array_t *array)
 {
+       BUG_ON(p->state & TASK_ONHOLD);
+       sched_info_queued(p);
        list_add_tail(&p->run_list, array->queue + p->prio);
        __set_bit(p->prio, array->bitmap);
        array->nr_active++;
        p->array = array;
-       class_enqueue_task(p,array);
 }
 
 /*
- * Used by the migration code - we pull tasks from the head of the
- * remote queue so we want these tasks to show up at the head of the
- * local queue:
+ * Put task to the end of the run list without the overhead of dequeue
+ * followed by enqueue.
  */
+static void requeue_task(struct task_struct *p, prio_array_t *array)
+{
+       BUG_ON(p->state & TASK_ONHOLD);
+       list_move_tail(&p->run_list, array->queue + p->prio);
+}
+
 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
 {
+       BUG_ON(p->state & TASK_ONHOLD);
        list_add(&p->run_list, array->queue + p->prio);
        __set_bit(p->prio, array->bitmap);
        array->nr_active++;
        p->array = array;
-       class_enqueue_task(p,array);
 }
 
 /*
@@ -523,6 +659,7 @@ static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
 static int effective_prio(task_t *p)
 {
        int bonus, prio;
+       struct vx_info *vxi;
 
        if (rt_task(p))
                return p->prio;
@@ -530,8 +667,10 @@ static int effective_prio(task_t *p)
        bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
 
        prio = p->static_prio - bonus;
-       if (__vx_task_flags(p, VXF_SCHED_PRIO, 0))
-               prio += effective_vavavoom(p, MAX_USER_PRIO);
+
+       if ((vxi = p->vx_info) &&
+               vx_info_flags(vxi, VXF_SCHED_PRIO, 0))
+               prio += vx_effective_vavavoom(vxi, MAX_USER_PRIO);
 
        if (prio < MAX_RT_PRIO)
                prio = MAX_RT_PRIO;
@@ -545,9 +684,8 @@ static int effective_prio(task_t *p)
  */
 static inline void __activate_task(task_t *p, runqueue_t *rq)
 {
-       enqueue_task(p, rq_active(p,rq));
+       enqueue_task(p, rq->active);
        rq->nr_running++;
-       rq_load_inc(rq,p);
 }
 
 /*
@@ -555,20 +693,24 @@ static inline void __activate_task(task_t *p, runqueue_t *rq)
  */
 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
 {
-       enqueue_task_head(p, rq_active(p,rq));
+       enqueue_task_head(p, rq->active);
        rq->nr_running++;
-       rq_load_inc(rq,p);
 }
 
-static void recalc_task_prio(task_t *p, unsigned long long now)
+static int recalc_task_prio(task_t *p, unsigned long long now)
 {
+       /* Caller must always ensure 'now >= p->timestamp' */
        unsigned long long __sleep_time = now - p->timestamp;
        unsigned long sleep_time;
 
-       if (__sleep_time > NS_MAX_SLEEP_AVG)
-               sleep_time = NS_MAX_SLEEP_AVG;
-       else
-               sleep_time = (unsigned long)__sleep_time;
+       if (unlikely(p->policy == SCHED_BATCH))
+               sleep_time = 0;
+       else {
+               if (__sleep_time > NS_MAX_SLEEP_AVG)
+                       sleep_time = NS_MAX_SLEEP_AVG;
+               else
+                       sleep_time = (unsigned long)__sleep_time;
+       }
 
        if (likely(sleep_time > 0)) {
                /*
@@ -580,9 +722,7 @@ static void recalc_task_prio(task_t *p, unsigned long long now)
                if (p->mm && p->activated != -1 &&
                        sleep_time > INTERACTIVE_SLEEP(p)) {
                                p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
-                                               AVG_TIMESLICE);
-                               if (!HIGH_CREDIT(p))
-                                       p->interactive_credit++;
+                                               DEF_TIMESLICE);
                } else {
                        /*
                         * The lower the sleep avg a task has the more
@@ -591,19 +731,11 @@ static void recalc_task_prio(task_t *p, unsigned long long now)
                        sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
 
                        /*
-                        * Tasks with low interactive_credit are limited to
-                        * one timeslice worth of sleep avg bonus.
-                        */
-                       if (LOW_CREDIT(p) &&
-                           sleep_time > JIFFIES_TO_NS(task_timeslice(p)))
-                               sleep_time = JIFFIES_TO_NS(task_timeslice(p));
-
-                       /*
-                        * Non high_credit tasks waking from uninterruptible
-                        * sleep are limited in their sleep_avg rise as they
-                        * are likely to be cpu hogs waiting on I/O
+                        * Tasks waking from uninterruptible sleep are
+                        * limited in their sleep_avg rise as they
+                        * are likely to be waiting on I/O
                         */
-                       if (p->activated == -1 && !HIGH_CREDIT(p) && p->mm) {
+                       if (p->activated == -1 && p->mm) {
                                if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
                                        sleep_time = 0;
                                else if (p->sleep_avg + sleep_time >=
@@ -623,15 +755,12 @@ static void recalc_task_prio(task_t *p, unsigned long long now)
                         */
                        p->sleep_avg += sleep_time;
 
-                       if (p->sleep_avg > NS_MAX_SLEEP_AVG) {
+                       if (p->sleep_avg > NS_MAX_SLEEP_AVG)
                                p->sleep_avg = NS_MAX_SLEEP_AVG;
-                               if (!HIGH_CREDIT(p))
-                                       p->interactive_credit++;
-                       }
                }
        }
 
-       p->prio = effective_prio(p);
+       return effective_prio(p);
 }
 
 /*
@@ -654,7 +783,8 @@ static void activate_task(task_t *p, runqueue_t *rq, int local)
        }
 #endif
 
-       recalc_task_prio(p, now);
+       if (!rt_task(p))
+               p->prio = recalc_task_prio(p, now);
 
        /*
         * This checks to make sure it's not an uninterruptible task
@@ -680,22 +810,77 @@ static void activate_task(task_t *p, runqueue_t *rq, int local)
        }
        p->timestamp = now;
 
+       vx_activate_task(p);
        __activate_task(p, rq);
 }
 
 /*
  * deactivate_task - remove a task from the runqueue.
  */
-static void deactivate_task(struct task_struct *p, runqueue_t *rq)
+static void __deactivate_task(struct task_struct *p, runqueue_t *rq)
 {
        rq->nr_running--;
-       rq_load_dec(rq,p);
-       if (p->state == TASK_UNINTERRUPTIBLE)
-               rq->nr_uninterruptible++;
        dequeue_task(p, p->array);
        p->array = NULL;
 }
 
+static inline
+void deactivate_task(struct task_struct *p, runqueue_t *rq)
+{
+       vx_deactivate_task(p);
+       __deactivate_task(p, rq);
+}
+
+
+#ifdef CONFIG_VSERVER_HARDCPU
+/*
+ * vx_hold_task - put a task on the hold queue
+ */
+static inline
+void vx_hold_task(struct vx_info *vxi,
+       struct task_struct *p, runqueue_t *rq)
+{
+       __deactivate_task(p, rq);
+       p->state |= TASK_ONHOLD;
+       /* a new one on hold */
+       vx_onhold_inc(vxi);
+       list_add_tail(&p->run_list, &rq->hold_queue);
+}
+
+/*
+ * vx_unhold_task - put a task back to the runqueue
+ */
+static inline
+void vx_unhold_task(struct vx_info *vxi,
+       struct task_struct *p, runqueue_t *rq)
+{
+       list_del(&p->run_list);
+       /* one less waiting */
+       vx_onhold_dec(vxi);
+       p->state &= ~TASK_ONHOLD;
+       enqueue_task(p, rq->expired);
+       rq->nr_running++;
+
+       if (p->static_prio < rq->best_expired_prio)
+               rq->best_expired_prio = p->static_prio;
+}
+#else
+static inline
+void vx_hold_task(struct vx_info *vxi,
+       struct task_struct *p, runqueue_t *rq)
+{
+       return;
+}
+
+static inline
+void vx_unhold_task(struct vx_info *vxi,
+       struct task_struct *p, runqueue_t *rq)
+{
+       return;
+}
+#endif /* CONFIG_VSERVER_HARDCPU */
+
+
 /*
  * resched_task - mark a task 'to be rescheduled now'.
  *
@@ -706,21 +891,28 @@ static void deactivate_task(struct task_struct *p, runqueue_t *rq)
 #ifdef CONFIG_SMP
 static void resched_task(task_t *p)
 {
-       int need_resched, nrpolling;
+       int cpu;
 
-       preempt_disable();
-       /* minimise the chance of sending an interrupt to poll_idle() */
-       nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
-       need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
-       nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
+       assert_spin_locked(&task_rq(p)->lock);
 
-       if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
-               smp_send_reschedule(task_cpu(p));
-       preempt_enable();
+       if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
+               return;
+
+       set_tsk_thread_flag(p, TIF_NEED_RESCHED);
+
+       cpu = task_cpu(p);
+       if (cpu == smp_processor_id())
+               return;
+
+       /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
+       smp_mb();
+       if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
+               smp_send_reschedule(cpu);
 }
 #else
 static inline void resched_task(task_t *p)
 {
+       assert_spin_locked(&task_rq(p)->lock);
        set_tsk_need_resched(p);
 }
 #endif
@@ -735,22 +927,12 @@ inline int task_curr(const task_t *p)
 }
 
 #ifdef CONFIG_SMP
-enum request_type {
-       REQ_MOVE_TASK,
-       REQ_SET_DOMAIN,
-};
-
 typedef struct {
        struct list_head list;
-       enum request_type type;
 
-       /* For REQ_MOVE_TASK */
        task_t *task;
        int dest_cpu;
 
-       /* For REQ_SET_DOMAIN */
-       struct sched_domain *sd;
-
        struct completion done;
 } migration_req_t;
 
@@ -772,7 +954,6 @@ static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
        }
 
        init_completion(&req->done);
-       req->type = REQ_MOVE_TASK;
        req->task = p;
        req->dest_cpu = dest_cpu;
        list_add(&req->list, &rq->migration_queue);
@@ -788,7 +969,7 @@ static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
  * smp_call_function() if an IPI is sent by the same process we are
  * waiting to become inactive.
  */
-void wait_task_inactive(task_t * p)
+void wait_task_inactive(task_t *p)
 {
        unsigned long flags;
        runqueue_t *rq;
@@ -797,7 +978,7 @@ void wait_task_inactive(task_t * p)
 repeat:
        rq = task_rq_lock(p, &flags);
        /* Must be off runqueue entirely, not preempted. */
-       if (unlikely(p->array)) {
+       if (unlikely(p->array || task_running(rq, p))) {
                /* If it's preempted, we yield.  It could be a while. */
                preempted = !task_running(rq, p);
                task_rq_unlock(rq, &flags);
@@ -815,6 +996,12 @@ repeat:
  *
  * Cause a process which is running on another CPU to enter
  * kernel-mode, without any delay. (to get signals handled.)
+ *
+ * NOTE: this function doesnt have to take the runqueue lock,
+ * because all it wants to ensure is that the remote task enters
+ * the kernel. If the IPI races and the task has been migrated
+ * to another CPU then no harm is done and the purpose has been
+ * achieved as well.
  */
 void kick_process(task_t *p)
 {
@@ -827,68 +1014,202 @@ void kick_process(task_t *p)
        preempt_enable();
 }
 
-EXPORT_SYMBOL_GPL(kick_process);
-
 /*
  * Return a low guess at the load of a migration-source cpu.
  *
  * We want to under-estimate the load of migration sources, to
  * balance conservatively.
  */
-static inline unsigned long source_load(int cpu)
+static inline unsigned long source_load(int cpu, int type)
 {
        runqueue_t *rq = cpu_rq(cpu);
        unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
+       if (type == 0)
+               return load_now;
 
-       return min(rq->cpu_load, load_now);
+       return min(rq->cpu_load[type-1], load_now);
 }
 
 /*
  * Return a high guess at the load of a migration-target cpu
  */
-static inline unsigned long target_load(int cpu)
+static inline unsigned long target_load(int cpu, int type)
 {
        runqueue_t *rq = cpu_rq(cpu);
        unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
+       if (type == 0)
+               return load_now;
 
-       return max(rq->cpu_load, load_now);
+       return max(rq->cpu_load[type-1], load_now);
 }
 
-#endif
-
 /*
- * wake_idle() is useful especially on SMT architectures to wake a
- * task onto an idle sibling if we would otherwise wake it onto a
- * busy sibling.
- *
- * Returns the CPU we should wake onto.
+ * find_idlest_group finds and returns the least busy CPU group within the
+ * domain.
  */
-#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
-static int wake_idle(int cpu, task_t *p)
+static struct sched_group *
+find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
 {
-       cpumask_t tmp;
-       runqueue_t *rq = cpu_rq(cpu);
-       struct sched_domain *sd;
-       int i;
+       struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
+       unsigned long min_load = ULONG_MAX, this_load = 0;
+       int load_idx = sd->forkexec_idx;
+       int imbalance = 100 + (sd->imbalance_pct-100)/2;
 
-       if (idle_cpu(cpu))
-               return cpu;
+       do {
+               unsigned long load, avg_load;
+               int local_group;
+               int i;
 
-       sd = rq->sd;
-       if (!(sd->flags & SD_WAKE_IDLE))
-               return cpu;
+               /* Skip over this group if it has no CPUs allowed */
+               if (!cpus_intersects(group->cpumask, p->cpus_allowed))
+                       goto nextgroup;
 
-       cpus_and(tmp, sd->span, cpu_online_map);
-       cpus_and(tmp, tmp, p->cpus_allowed);
+               local_group = cpu_isset(this_cpu, group->cpumask);
 
-       for_each_cpu_mask(i, tmp) {
-               if (idle_cpu(i))
-                       return i;
-       }
+               /* Tally up the load of all CPUs in the group */
+               avg_load = 0;
 
-       return cpu;
-}
-#else
+               for_each_cpu_mask(i, group->cpumask) {
+                       /* Bias balancing toward cpus of our domain */
+                       if (local_group)
+                               load = source_load(i, load_idx);
+                       else
+                               load = target_load(i, load_idx);
+
+                       avg_load += load;
+               }
+
+               /* Adjust by relative CPU power of the group */
+               avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
+
+               if (local_group) {
+                       this_load = avg_load;
+                       this = group;
+               } else if (avg_load < min_load) {
+                       min_load = avg_load;
+                       idlest = group;
+               }
+nextgroup:
+               group = group->next;
+       } while (group != sd->groups);
+
+       if (!idlest || 100*this_load < imbalance*min_load)
+               return NULL;
+       return idlest;
+}
+
+/*
+ * find_idlest_queue - find the idlest runqueue among the cpus in group.
+ */
+static int
+find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
+{
+       cpumask_t tmp;
+       unsigned long load, min_load = ULONG_MAX;
+       int idlest = -1;
+       int i;
+
+       /* Traverse only the allowed CPUs */
+       cpus_and(tmp, group->cpumask, p->cpus_allowed);
+
+       for_each_cpu_mask(i, tmp) {
+               load = source_load(i, 0);
+
+               if (load < min_load || (load == min_load && i == this_cpu)) {
+                       min_load = load;
+                       idlest = i;
+               }
+       }
+
+       return idlest;
+}
+
+/*
+ * sched_balance_self: balance the current task (running on cpu) in domains
+ * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
+ * SD_BALANCE_EXEC.
+ *
+ * Balance, ie. select the least loaded group.
+ *
+ * Returns the target CPU number, or the same CPU if no balancing is needed.
+ *
+ * preempt must be disabled.
+ */
+static int sched_balance_self(int cpu, int flag)
+{
+       struct task_struct *t = current;
+       struct sched_domain *tmp, *sd = NULL;
+
+       for_each_domain(cpu, tmp)
+               if (tmp->flags & flag)
+                       sd = tmp;
+
+       while (sd) {
+               cpumask_t span;
+               struct sched_group *group;
+               int new_cpu;
+               int weight;
+
+               span = sd->span;
+               group = find_idlest_group(sd, t, cpu);
+               if (!group)
+                       goto nextlevel;
+
+               new_cpu = find_idlest_cpu(group, t, cpu);
+               if (new_cpu == -1 || new_cpu == cpu)
+                       goto nextlevel;
+
+               /* Now try balancing at a lower domain level */
+               cpu = new_cpu;
+nextlevel:
+               sd = NULL;
+               weight = cpus_weight(span);
+               for_each_domain(cpu, tmp) {
+                       if (weight <= cpus_weight(tmp->span))
+                               break;
+                       if (tmp->flags & flag)
+                               sd = tmp;
+               }
+               /* while loop will break here if sd == NULL */
+       }
+
+       return cpu;
+}
+
+#endif /* CONFIG_SMP */
+
+/*
+ * wake_idle() will wake a task on an idle cpu if task->cpu is
+ * not idle and an idle cpu is available.  The span of cpus to
+ * search starts with cpus closest then further out as needed,
+ * so we always favor a closer, idle cpu.
+ *
+ * Returns the CPU we should wake onto.
+ */
+#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
+static int wake_idle(int cpu, task_t *p)
+{
+       cpumask_t tmp;
+       struct sched_domain *sd;
+       int i;
+
+       if (idle_cpu(cpu))
+               return cpu;
+
+       for_each_domain(cpu, sd) {
+               if (sd->flags & SD_WAKE_IDLE) {
+                       cpus_and(tmp, sd->span, p->cpus_allowed);
+                       for_each_cpu_mask(i, tmp) {
+                               if (idle_cpu(i))
+                                       return i;
+                       }
+               }
+               else
+                       break;
+       }
+       return cpu;
+}
+#else
 static inline int wake_idle(int cpu, task_t *p)
 {
        return cpu;
@@ -909,7 +1230,7 @@ static inline int wake_idle(int cpu, task_t *p)
  *
  * returns failure only if the task is already active.
  */
-static int try_to_wake_up(task_t * p, unsigned int state, int sync)
+static int try_to_wake_up(task_t *p, unsigned int state, int sync)
 {
        int cpu, this_cpu, success = 0;
        unsigned long flags;
@@ -917,12 +1238,18 @@ static int try_to_wake_up(task_t * p, unsigned int state, int sync)
        runqueue_t *rq;
 #ifdef CONFIG_SMP
        unsigned long load, this_load;
-       struct sched_domain *sd;
+       struct sched_domain *sd, *this_sd = NULL;
        int new_cpu;
 #endif
 
        rq = task_rq_lock(p, &flags);
        old_state = p->state;
+
+       /* we need to unhold suspended tasks */
+       if (old_state & TASK_ONHOLD) {
+               vx_unhold_task(p->vx_info, p, rq);
+               old_state = p->state;
+       }
        if (!(old_state & state))
                goto out;
 
@@ -938,54 +1265,76 @@ static int try_to_wake_up(task_t * p, unsigned int state, int sync)
 
        new_cpu = cpu;
 
-       if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
+       schedstat_inc(rq, ttwu_cnt);
+       if (cpu == this_cpu) {
+               schedstat_inc(rq, ttwu_local);
                goto out_set_cpu;
+       }
 
-       load = source_load(cpu);
-       this_load = target_load(this_cpu);
-
-       /*
-        * If sync wakeup then subtract the (maximum possible) effect of
-        * the currently running task from the load of the current CPU:
-        */
-       if (sync)
-               this_load -= SCHED_LOAD_SCALE;
+       for_each_domain(this_cpu, sd) {
+               if (cpu_isset(cpu, sd->span)) {
+                       schedstat_inc(sd, ttwu_wake_remote);
+                       this_sd = sd;
+                       break;
+               }
+       }
 
-       /* Don't pull the task off an idle CPU to a busy one */
-       if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2)
+       if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
                goto out_set_cpu;
 
-       new_cpu = this_cpu; /* Wake to this CPU if we can */
-
        /*
-        * Scan domains for affine wakeup and passive balancing
-        * possibilities.
+        * Check for affine wakeup and passive balancing possibilities.
         */
-       for_each_domain(this_cpu, sd) {
+       if (this_sd) {
+               int idx = this_sd->wake_idx;
                unsigned int imbalance;
+
+               imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
+
+               load = source_load(cpu, idx);
+               this_load = target_load(this_cpu, idx);
+
+               new_cpu = this_cpu; /* Wake to this CPU if we can */
+
+               if (this_sd->flags & SD_WAKE_AFFINE) {
+                       unsigned long tl = this_load;
+                       /*
+                        * If sync wakeup then subtract the (maximum possible)
+                        * effect of the currently running task from the load
+                        * of the current CPU:
+                        */
+                       if (sync)
+                               tl -= SCHED_LOAD_SCALE;
+
+                       if ((tl <= load &&
+                               tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
+                               100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
+                               /*
+                                * This domain has SD_WAKE_AFFINE and
+                                * p is cache cold in this domain, and
+                                * there is no bad imbalance.
+                                */
+                               schedstat_inc(this_sd, ttwu_move_affine);
+                               goto out_set_cpu;
+                       }
+               }
+
                /*
                 * Start passive balancing when half the imbalance_pct
                 * limit is reached.
                 */
-               imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2;
-
-               if ( ((sd->flags & SD_WAKE_AFFINE) &&
-                               !task_hot(p, rq->timestamp_last_tick, sd))
-                       || ((sd->flags & SD_WAKE_BALANCE) &&
-                               imbalance*this_load <= 100*load) ) {
-                       /*
-                        * Now sd has SD_WAKE_AFFINE and p is cache cold in sd
-                        * or sd has SD_WAKE_BALANCE and there is an imbalance
-                        */
-                       if (cpu_isset(cpu, sd->span))
+               if (this_sd->flags & SD_WAKE_BALANCE) {
+                       if (imbalance*this_load <= 100*load) {
+                               schedstat_inc(this_sd, ttwu_move_balance);
                                goto out_set_cpu;
+                       }
                }
        }
 
        new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
 out_set_cpu:
        new_cpu = wake_idle(new_cpu, p);
-       if (new_cpu != cpu && cpu_isset(new_cpu, p->cpus_allowed)) {
+       if (new_cpu != cpu) {
                set_task_cpu(p, new_cpu);
                task_rq_unlock(rq, &flags);
                /* might preempt at this point */
@@ -1011,6 +1360,22 @@ out_activate:
                p->activated = -1;
        }
 
+       /*
+        * Tasks that have marked their sleep as noninteractive get
+        * woken up without updating their sleep average. (i.e. their
+        * sleep is handled in a priority-neutral manner, no priority
+        * boost and no penalty.)
+        */
+       if (old_state & TASK_NONINTERACTIVE) {
+               vx_activate_task(p);
+               __activate_task(p, rq);
+       } else
+               activate_task(p, rq, cpu == this_cpu);
+
+       /* this is to get the accounting behind the load update */
+       if (old_state & TASK_UNINTERRUPTIBLE)
+               vx_uninterruptible_dec(p);
+
        /*
         * Sync wakeups (i.e. those types of wakeups where the waker
         * has indicated that it will leave the CPU in short order)
@@ -1019,7 +1384,6 @@ out_activate:
         * the waker guarantees that the freshly woken up task is going
         * to be considered on this CPU.)
         */
-       activate_task(p, rq, cpu == this_cpu);
        if (!sync || cpu != this_cpu) {
                if (TASK_PREEMPTS_CURR(p, rq))
                        resched_task(rq->curr);
@@ -1034,10 +1398,10 @@ out:
        return success;
 }
 
-int fastcall wake_up_process(task_t * p)
+int fastcall wake_up_process(task_t *p)
 {
-       return try_to_wake_up(p, TASK_STOPPED |
-                                TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
+       return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
+                                TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
 }
 
 EXPORT_SYMBOL(wake_up_process);
@@ -1051,8 +1415,15 @@ int fastcall wake_up_state(task_t *p, unsigned int state)
  * Perform scheduler related setup for a newly forked process p.
  * p is forked by current.
  */
-void fastcall sched_fork(task_t *p)
+void fastcall sched_fork(task_t *p, int clone_flags)
 {
+       int cpu = get_cpu();
+
+#ifdef CONFIG_SMP
+       cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
+#endif
+       set_task_cpu(p, cpu);
+
        /*
         * We mark the process as running here, but have not actually
         * inserted it onto the runqueue yet. This guarantees that
@@ -1062,15 +1433,15 @@ void fastcall sched_fork(task_t *p)
        p->state = TASK_RUNNING;
        INIT_LIST_HEAD(&p->run_list);
        p->array = NULL;
-       spin_lock_init(&p->switch_lock);
+#ifdef CONFIG_SCHEDSTATS
+       memset(&p->sched_info, 0, sizeof(p->sched_info));
+#endif
+#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
+       p->oncpu = 0;
+#endif
 #ifdef CONFIG_PREEMPT
-       /*
-        * During context-switch we hold precisely one spinlock, which
-        * schedule_tail drops. (in the common case it's this_rq()->lock,
-        * but it also can be p->switch_lock.) So we compensate with a count
-        * of 1. Also, we want to start with kernel preemption disabled.
-        */
-       p->thread_info->preempt_count = 1;
+       /* Want to start with kernel preemption disabled. */
+       task_thread_info(p)->preempt_count = 1;
 #endif
        /*
         * Share the timeslice between parent and child, thus the
@@ -1086,61 +1457,100 @@ void fastcall sched_fork(task_t *p)
        p->first_time_slice = 1;
        current->time_slice >>= 1;
        p->timestamp = sched_clock();
-       if (!current->time_slice) {
+       if (unlikely(!current->time_slice)) {
                /*
                 * This case is rare, it happens when the parent has only
                 * a single jiffy left from its timeslice. Taking the
                 * runqueue lock is not a problem.
                 */
                current->time_slice = 1;
-               preempt_disable();
-               scheduler_tick(0, 0);
-               local_irq_enable();
-               preempt_enable();
-       } else
-               local_irq_enable();
+               scheduler_tick();
+       }
+       local_irq_enable();
+       put_cpu();
 }
 
 /*
- * wake_up_forked_process - wake up a freshly forked process.
+ * wake_up_new_task - wake up a newly created task for the first time.
  *
  * This function will do some initial scheduler statistics housekeeping
- * that must be done for every newly created process.
+ * that must be done for every newly created context, then puts the task
+ * on the runqueue and wakes it.
  */
-void fastcall wake_up_forked_process(task_t * p)
+void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
 {
        unsigned long flags;
-       runqueue_t *rq = task_rq_lock(current, &flags);
+       int this_cpu, cpu;
+       runqueue_t *rq, *this_rq;
 
+       rq = task_rq_lock(p, &flags);
        BUG_ON(p->state != TASK_RUNNING);
+       this_cpu = smp_processor_id();
+       cpu = task_cpu(p);
 
        /*
         * We decrease the sleep average of forking parents
         * and children as well, to keep max-interactive tasks
-        * from forking tasks that are max-interactive.
+        * from forking tasks that are max-interactive. The parent
+        * (current) is done further down, under its lock.
         */
-       current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
-               PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
-
        p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
                CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
 
-       p->interactive_credit = 0;
-
        p->prio = effective_prio(p);
-       set_task_cpu(p, smp_processor_id());
 
-       if (unlikely(!current->array))
+       vx_activate_task(p);
+       if (likely(cpu == this_cpu)) {
+               if (!(clone_flags & CLONE_VM)) {
+                       /*
+                        * The VM isn't cloned, so we're in a good position to
+                        * do child-runs-first in anticipation of an exec. This
+                        * usually avoids a lot of COW overhead.
+                        */
+                       if (unlikely(!current->array))
+                               __activate_task(p, rq);
+                       else {
+                               p->prio = current->prio;
+                               BUG_ON(p->state & TASK_ONHOLD);
+                               list_add_tail(&p->run_list, &current->run_list);
+                               p->array = current->array;
+                               p->array->nr_active++;
+                               rq->nr_running++;
+                       }
+                       set_need_resched();
+               } else
+                       /* Run child last */
+                       __activate_task(p, rq);
+               /*
+                * We skip the following code due to cpu == this_cpu
+                *
+                *   task_rq_unlock(rq, &flags);
+                *   this_rq = task_rq_lock(current, &flags);
+                */
+               this_rq = rq;
+       } else {
+               this_rq = cpu_rq(this_cpu);
+
+               /*
+                * Not the local CPU - must adjust timestamp. This should
+                * get optimised away in the !CONFIG_SMP case.
+                */
+               p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
+                                       + rq->timestamp_last_tick;
                __activate_task(p, rq);
-       else {
-               p->prio = current->prio;
-               list_add_tail(&p->run_list, &current->run_list);
-               p->array = current->array;
-               p->array->nr_active++;
-               rq->nr_running++;
-               rq_load_inc(rq,p);
+               if (TASK_PREEMPTS_CURR(p, rq))
+                       resched_task(rq->curr);
+
+               /*
+                * Parent and child are on different CPUs, now get the
+                * parent runqueue to update the parent's ->sleep_avg:
+                */
+               task_rq_unlock(rq, &flags);
+               this_rq = task_rq_lock(current, &flags);
        }
-       task_rq_unlock(rq, &flags);
+       current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
+               PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
+       task_rq_unlock(this_rq, &flags);
 }
 
 /*
@@ -1152,23 +1562,21 @@ void fastcall wake_up_forked_process(task_t * p)
  * artificially, because any timeslice recovered here
  * was given away by the parent in the first place.)
  */
-void fastcall sched_exit(task_t * p)
+void fastcall sched_exit(task_t *p)
 {
        unsigned long flags;
        runqueue_t *rq;
 
-       local_irq_save(flags);
-       if (p->first_time_slice) {
-               p->parent->time_slice += p->time_slice;
-               if (unlikely(p->parent->time_slice > MAX_TIMESLICE))
-                       p->parent->time_slice = MAX_TIMESLICE;
-       }
-       local_irq_restore(flags);
        /*
         * If the child was a (relative-) CPU hog then decrease
         * the sleep_avg of the parent as well.
         */
        rq = task_rq_lock(p->parent, &flags);
+       if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
+               p->parent->time_slice += p->time_slice;
+               if (unlikely(p->parent->time_slice > task_timeslice(p)))
+                       p->parent->time_slice = task_timeslice(p);
+       }
        if (p->sleep_avg < p->parent->sleep_avg)
                p->parent->sleep_avg = p->parent->sleep_avg /
                (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
@@ -1176,22 +1584,42 @@ void fastcall sched_exit(task_t * p)
        task_rq_unlock(rq, &flags);
 }
 
+/**
+ * prepare_task_switch - prepare to switch tasks
+ * @rq: the runqueue preparing to switch
+ * @next: the task we are going to switch to.
+ *
+ * This is called with the rq lock held and interrupts off. It must
+ * be paired with a subsequent finish_task_switch after the context
+ * switch.
+ *
+ * prepare_task_switch sets up locking and calls architecture specific
+ * hooks.
+ */
+static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
+{
+       prepare_lock_switch(rq, next);
+       prepare_arch_switch(next);
+}
+
 /**
  * finish_task_switch - clean up after a task-switch
+ * @rq: runqueue associated with task-switch
  * @prev: the thread we just switched away from.
  *
- * We enter this with the runqueue still locked, and finish_arch_switch()
- * will unlock it along with doing any other architecture-specific cleanup
- * actions.
+ * finish_task_switch must be called after the context switch, paired
+ * with a prepare_task_switch call before the context switch.
+ * finish_task_switch will reconcile locking set up by prepare_task_switch,
+ * and do any other architecture-specific cleanup actions.
  *
  * Note that we may have delayed dropping an mm in context_switch(). If
  * so, we finish that here outside of the runqueue lock.  (Doing it
  * with the lock held can cause deadlocks; see schedule() for
  * details.)
  */
-static void finish_task_switch(task_t *prev)
+static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
+       __releases(rq->lock)
 {
-       runqueue_t *rq = this_rq();
        struct mm_struct *mm = rq->prev_mm;
        unsigned long prev_task_flags;
 
@@ -1199,17 +1627,18 @@ static void finish_task_switch(task_t *prev)
 
        /*
         * A task struct has one reference for the use as "current".
-        * If a task dies, then it sets TASK_ZOMBIE in tsk->state and calls
-        * schedule one last time. The schedule call will never return,
+        * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
+        * calls schedule one last time. The schedule call will never return,
         * and the scheduled task must drop that reference.
-        * The test for TASK_ZOMBIE must occur while the runqueue locks are
+        * The test for EXIT_ZOMBIE must occur while the runqueue locks are
         * still held, otherwise prev could be scheduled on another cpu, die
         * there before we look at prev->state, and then the reference would
         * be dropped twice.
         *              Manfred Spraul <manfred@colorfullife.com>
         */
        prev_task_flags = prev->flags;
-       finish_arch_switch(rq, prev);
+       finish_arch_switch(prev);
+       finish_lock_switch(rq, prev);
        if (mm)
                mmdrop(mm);
        if (unlikely(prev_task_flags & PF_DEAD))
@@ -1221,9 +1650,14 @@ static void finish_task_switch(task_t *prev)
  * @prev: the thread we just switched away from.
  */
 asmlinkage void schedule_tail(task_t *prev)
+       __releases(rq->lock)
 {
-       finish_task_switch(prev);
-
+       runqueue_t *rq = this_rq();
+       finish_task_switch(rq, prev);
+#ifdef __ARCH_WANT_UNLOCKED_CTXSW
+       /* In this case, finish_task_switch does not reenable preemption */
+       preempt_enable();
+#endif
        if (current->set_child_tid)
                put_user(current->pid, current->set_child_tid);
 }
@@ -1268,7 +1702,7 @@ unsigned long nr_running(void)
 {
        unsigned long i, sum = 0;
 
-       for_each_cpu(i)
+       for_each_online_cpu(i)
                sum += cpu_rq(i)->nr_running;
 
        return sum;
@@ -1278,9 +1712,16 @@ unsigned long nr_uninterruptible(void)
 {
        unsigned long i, sum = 0;
 
-       for_each_online_cpu(i)
+       for_each_cpu(i)
                sum += cpu_rq(i)->nr_uninterruptible;
 
+       /*
+        * Since we read the counters lockless, it might be slightly
+        * inaccurate. Do not allow it to go below zero though:
+        */
+       if (unlikely((long)sum < 0))
+               sum = 0;
+
        return sum;
 }
 
@@ -1288,7 +1729,7 @@ unsigned long long nr_context_switches(void)
 {
        unsigned long long i, sum = 0;
 
-       for_each_online_cpu(i)
+       for_each_cpu(i)
                sum += cpu_rq(i)->nr_switches;
 
        return sum;
@@ -1298,24 +1739,32 @@ unsigned long nr_iowait(void)
 {
        unsigned long i, sum = 0;
 
-       for_each_online_cpu(i)
+       for_each_cpu(i)
                sum += atomic_read(&cpu_rq(i)->nr_iowait);
 
        return sum;
 }
 
+#ifdef CONFIG_SMP
+
 /*
  * double_rq_lock - safely lock two runqueues
  *
+ * We must take them in cpu order to match code in
+ * dependent_sleeper and wake_dependent_sleeper.
+ *
  * Note this does not disable interrupts like task_rq_lock,
  * you need to do so manually before calling.
  */
 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
+       __acquires(rq1->lock)
+       __acquires(rq2->lock)
 {
-       if (rq1 == rq2)
+       if (rq1 == rq2) {
                spin_lock(&rq1->lock);
-       else {
-               if (rq1 < rq2) {
+               __acquire(rq2->lock);   /* Fake it out ;) */
+       } else {
+               if (rq1->cpu < rq2->cpu) {
                        spin_lock(&rq1->lock);
                        spin_lock(&rq2->lock);
                } else {
@@ -1332,257 +1781,92 @@ static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
  * you need to do so manually after calling.
  */
 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
+       __releases(rq1->lock)
+       __releases(rq2->lock)
 {
        spin_unlock(&rq1->lock);
        if (rq1 != rq2)
                spin_unlock(&rq2->lock);
+       else
+               __release(rq2->lock);
 }
 
-unsigned long long nr_preempt(void)
+/*
+ * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
+ */
+static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
+       __releases(this_rq->lock)
+       __acquires(busiest->lock)
+       __acquires(this_rq->lock)
 {
-       unsigned long long i, sum = 0;
-
-       for_each_online_cpu(i)
-               sum += cpu_rq(i)->nr_preempt;
-
-       return sum;
+       if (unlikely(!spin_trylock(&busiest->lock))) {
+               if (busiest->cpu < this_rq->cpu) {
+                       spin_unlock(&this_rq->lock);
+                       spin_lock(&busiest->lock);
+                       spin_lock(&this_rq->lock);
+               } else
+                       spin_lock(&busiest->lock);
+       }
 }
 
-enum idle_type
-{
-       IDLE,
-       NOT_IDLE,
-       NEWLY_IDLE,
-};
-
-#ifdef CONFIG_SMP
-
 /*
- * find_idlest_cpu - find the least busy runqueue.
+ * If dest_cpu is allowed for this process, migrate the task to it.
+ * This is accomplished by forcing the cpu_allowed mask to only
+ * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
+ * the cpu_allowed mask is restored.
  */
-static int find_idlest_cpu(struct task_struct *p, int this_cpu,
-                          struct sched_domain *sd)
+static void sched_migrate_task(task_t *p, int dest_cpu)
 {
-       unsigned long load, min_load, this_load;
-       int i, min_cpu;
-       cpumask_t mask;
-
-       min_cpu = UINT_MAX;
-       min_load = ULONG_MAX;
-
-       cpus_and(mask, sd->span, cpu_online_map);
-       cpus_and(mask, mask, p->cpus_allowed);
-
-       for_each_cpu_mask(i, mask) {
-               load = target_load(i);
+       migration_req_t req;
+       runqueue_t *rq;
+       unsigned long flags;
 
-               if (load < min_load) {
-                       min_cpu = i;
-                       min_load = load;
+       rq = task_rq_lock(p, &flags);
+       if (!cpu_isset(dest_cpu, p->cpus_allowed)
+           || unlikely(cpu_is_offline(dest_cpu)))
+               goto out;
 
-                       /* break out early on an idle CPU: */
-                       if (!min_load)
-                               break;
-               }
+       /* force the process onto the specified CPU */
+       if (migrate_task(p, dest_cpu, &req)) {
+               /* Need to wait for migration thread (might exit: take ref). */
+               struct task_struct *mt = rq->migration_thread;
+               get_task_struct(mt);
+               task_rq_unlock(rq, &flags);
+               wake_up_process(mt);
+               put_task_struct(mt);
+               wait_for_completion(&req.done);
+               return;
        }
-
-       /* add +1 to account for the new task */
-       this_load = source_load(this_cpu) + SCHED_LOAD_SCALE;
-
-       /*
-        * Would with the addition of the new task to the
-        * current CPU there be an imbalance between this
-        * CPU and the idlest CPU?
-        *
-        * Use half of the balancing threshold - new-context is
-        * a good opportunity to balance.
-        */
-       if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
-               return min_cpu;
-
-       return this_cpu;
+out:
+       task_rq_unlock(rq, &flags);
 }
 
 /*
- * wake_up_forked_thread - wake up a freshly forked thread.
- *
- * This function will do some initial scheduler statistics housekeeping
- * that must be done for every newly created context, and it also does
- * runqueue balancing.
+ * sched_exec - execve() is a valuable balancing opportunity, because at
+ * this point the task has the smallest effective memory and cache footprint.
  */
-void fastcall wake_up_forked_thread(task_t * p)
+void sched_exec(void)
 {
-       unsigned long flags;
-       int this_cpu = get_cpu(), cpu;
-       struct sched_domain *tmp, *sd = NULL;
-       runqueue_t *this_rq = cpu_rq(this_cpu), *rq;
-
-       /*
-        * Find the largest domain that this CPU is part of that
-        * is willing to balance on clone:
-        */
-       for_each_domain(this_cpu, tmp)
-               if (tmp->flags & SD_BALANCE_CLONE)
-                       sd = tmp;
-       if (sd)
-               cpu = find_idlest_cpu(p, this_cpu, sd);
-       else
-               cpu = this_cpu;
-
-       local_irq_save(flags);
-lock_again:
-       rq = cpu_rq(cpu);
-       double_rq_lock(this_rq, rq);
-
-       BUG_ON(p->state != TASK_RUNNING);
-
-       /*
-        * We did find_idlest_cpu() unlocked, so in theory
-        * the mask could have changed - just dont migrate
-        * in this case:
-        */
-       if (unlikely(!cpu_isset(cpu, p->cpus_allowed))) {
-               cpu = this_cpu;
-               double_rq_unlock(this_rq, rq);
-               goto lock_again;
-       }
-       /*
-        * We decrease the sleep average of forking parents
-        * and children as well, to keep max-interactive tasks
-        * from forking tasks that are max-interactive.
-        */
-       current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
-               PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
-
-       p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
-               CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
-
-       p->interactive_credit = 0;
-
-       p->prio = effective_prio(p);
-       set_task_cpu(p, cpu);
-
-       if (cpu == this_cpu) {
-               if (unlikely(!current->array))
-                       __activate_task(p, rq);
-               else {
-                       p->prio = current->prio;
-                       list_add_tail(&p->run_list, &current->run_list);
-                       p->array = current->array;
-                       p->array->nr_active++;
-                       rq->nr_running++;
-                       rq_load_inc(rq,p);
-               }
-       } else {
-               /* Not the local CPU - must adjust timestamp */
-               p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
-                                       + rq->timestamp_last_tick;
-               __activate_task(p, rq);
-               if (TASK_PREEMPTS_CURR(p, rq))
-                       resched_task(rq->curr);
-       }
-
-       double_rq_unlock(this_rq, rq);
-       local_irq_restore(flags);
-       put_cpu();
-}
-
-/*
- * If dest_cpu is allowed for this process, migrate the task to it.
- * This is accomplished by forcing the cpu_allowed mask to only
- * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
- * the cpu_allowed mask is restored.
- */
-static void sched_migrate_task(task_t *p, int dest_cpu)
-{
-       migration_req_t req;
-       runqueue_t *rq;
-       unsigned long flags;
-
-       rq = task_rq_lock(p, &flags);
-       if (!cpu_isset(dest_cpu, p->cpus_allowed)
-           || unlikely(cpu_is_offline(dest_cpu)))
-               goto out;
-
-       /* force the process onto the specified CPU */
-       if (migrate_task(p, dest_cpu, &req)) {
-               /* Need to wait for migration thread (might exit: take ref). */
-               struct task_struct *mt = rq->migration_thread;
-               get_task_struct(mt);
-               task_rq_unlock(rq, &flags);
-               wake_up_process(mt);
-               put_task_struct(mt);
-               wait_for_completion(&req.done);
-               return;
-       }
-out:
-       task_rq_unlock(rq, &flags);
-}
-
-/*
- * sched_balance_exec(): find the highest-level, exec-balance-capable
- * domain and try to migrate the task to the least loaded CPU.
- *
- * execve() is a valuable balancing opportunity, because at this point
- * the task has the smallest effective memory and cache footprint.
- */
-void sched_balance_exec(void)
-{
-       struct sched_domain *tmp, *sd = NULL;
        int new_cpu, this_cpu = get_cpu();
-
-       /* Prefer the current CPU if there's only this task running */
-       if (this_rq()->nr_running <= 1)
-               goto out;
-
-       for_each_domain(this_cpu, tmp)
-               if (tmp->flags & SD_BALANCE_EXEC)
-                       sd = tmp;
-
-       if (sd) {
-               new_cpu = find_idlest_cpu(current, this_cpu, sd);
-               if (new_cpu != this_cpu) {
-                       put_cpu();
-                       sched_migrate_task(current, new_cpu);
-                       return;
-               }
-       }
-out:
+       new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
        put_cpu();
-}
-
-/*
- * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
- */
-static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
-{
-       if (unlikely(!spin_trylock(&busiest->lock))) {
-               if (busiest < this_rq) {
-                       spin_unlock(&this_rq->lock);
-                       spin_lock(&busiest->lock);
-                       spin_lock(&this_rq->lock);
-               } else
-                       spin_lock(&busiest->lock);
-       }
+       if (new_cpu != this_cpu)
+               sched_migrate_task(current, new_cpu);
 }
 
 /*
  * pull_task - move a task from a remote runqueue to the local runqueue.
  * Both runqueues must be locked.
  */
-static inline
+static
 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
               runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
 {
        dequeue_task(p, src_array);
        src_rq->nr_running--;
-       rq_load_dec(src_rq,p);
-
        set_task_cpu(p, this_cpu);
        this_rq->nr_running++;
-       rq_load_inc(this_rq,p);
        enqueue_task(p, this_array);
-
        p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
                                + this_rq->timestamp_last_tick;
        /*
@@ -1596,9 +1880,10 @@ void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
 /*
  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  */
-static inline
+static
 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
-                    struct sched_domain *sd, enum idle_type idle)
+                    struct sched_domain *sd, enum idle_type idle,
+                    int *all_pinned)
 {
        /*
         * We do not migrate tasks that are:
@@ -1606,209 +1891,27 @@ int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
         * 2) cannot be migrated to this CPU due to cpus_allowed, or
         * 3) are cache-hot on their current CPU.
         */
-       if (task_running(rq, p))
-               return 0;
        if (!cpu_isset(this_cpu, p->cpus_allowed))
                return 0;
+       *all_pinned = 0;
 
-       /* Aggressive migration if we've failed balancing */
-       if (idle == NEWLY_IDLE ||
-                       sd->nr_balance_failed < sd->cache_nice_tries) {
-               if (task_hot(p, rq->timestamp_last_tick, sd))
-                       return 0;
-       }
-
-       return 1;
-}
-
-#ifdef CONFIG_CKRM_CPU_SCHEDULE
-
-struct ckrm_cpu_class *find_unbalanced_class(int busiest_cpu, int this_cpu, unsigned long *cls_imbalance)
-{
-       struct ckrm_cpu_class *most_unbalanced_class = NULL;
-       struct ckrm_cpu_class *clsptr;
-       int max_unbalance = 0;
-
-       list_for_each_entry(clsptr,&active_cpu_classes,links) {
-               struct ckrm_local_runqueue *this_lrq    = get_ckrm_local_runqueue(clsptr,this_cpu);
-               struct ckrm_local_runqueue *busiest_lrq = get_ckrm_local_runqueue(clsptr,busiest_cpu);
-               int unbalance_degree;
-               
-               unbalance_degree = (local_queue_nr_running(busiest_lrq) - local_queue_nr_running(this_lrq)) * cpu_class_weight(clsptr);
-               if (unbalance_degree >= *cls_imbalance) 
-                       continue;  // already looked at this class
-
-               if (unbalance_degree > max_unbalance) {
-                       max_unbalance = unbalance_degree;
-                       most_unbalanced_class = clsptr;
-               }
-       }
-       *cls_imbalance = max_unbalance;
-       return most_unbalanced_class;
-}
-
-
-/*
- * find_busiest_queue - find the busiest runqueue among the cpus in cpumask.
- */
-static int find_busiest_cpu(runqueue_t *this_rq, int this_cpu, int idle, 
-                           int *imbalance)
-{
-       int cpu_load, load, max_load, i, busiest_cpu;
-       runqueue_t *busiest, *rq_src;
-
-
-       /*Hubertus ... the concept of nr_running is replace with cpu_load */
-       cpu_load = this_rq->ckrm_cpu_load;
-
-       busiest = NULL;
-       busiest_cpu = -1;
-
-       max_load = -1;
-       for_each_online_cpu(i) {
-               rq_src = cpu_rq(i);
-               load = rq_src->ckrm_cpu_load;
-
-               if ((load > max_load) && (rq_src != this_rq)) {
-                       busiest = rq_src;
-                       busiest_cpu = i;
-                       max_load = load;
-               }
-       }
-
-       if (likely(!busiest))
-               goto out;
-
-       *imbalance = max_load - cpu_load;
-
-       /* It needs an at least ~25% imbalance to trigger balancing. */
-       if (!idle && ((*imbalance)*4 < max_load)) {
-               busiest = NULL;
-               goto out;
-       }
-
-       double_lock_balance(this_rq, busiest);
-       /*
-        * Make sure nothing changed since we checked the
-        * runqueue length.
-        */
-       if (busiest->ckrm_cpu_load <= cpu_load) {
-               spin_unlock(&busiest->lock);
-               busiest = NULL;
-       }
-out:
-       return (busiest ? busiest_cpu : -1);
-}
-
-static int load_balance(int this_cpu, runqueue_t *this_rq,
-                       struct sched_domain *sd, enum idle_type idle)
-{
-       int imbalance, idx;
-       int busiest_cpu;
-       runqueue_t *busiest;
-       prio_array_t *array;
-       struct list_head *head, *curr;
-       task_t *tmp;
-        struct ckrm_local_runqueue * busiest_local_queue;
-       struct ckrm_cpu_class *clsptr;
-       int weight;
-       unsigned long cls_imbalance;      // so we can retry other classes
-
-       // need to update global CVT based on local accumulated CVTs
-       read_lock(&class_list_lock);
-       busiest_cpu = find_busiest_cpu(this_rq, this_cpu, idle, &imbalance);
-       if (busiest_cpu == -1)
-               goto out;
-
-       busiest = cpu_rq(busiest_cpu);
+       if (task_running(rq, p))
+               return 0;
 
        /*
-        * We only want to steal a number of tasks equal to 1/2 the imbalance,
-        * otherwise we'll just shift the imbalance to the new queue:
+        * Aggressive migration if:
+        * 1) task is cache cold, or
+        * 2) too many balance attempts have failed.
         */
-       imbalance /= 2;
-               
-       /* now find class on that runqueue with largest inbalance */
-       cls_imbalance = 0xFFFFFFFF; 
-
- retry_other_class:
-       clsptr = find_unbalanced_class(busiest_cpu, this_cpu, &cls_imbalance);
-       if (!clsptr) 
-               goto out_unlock;
-
-       busiest_local_queue = get_ckrm_local_runqueue(clsptr,busiest_cpu);
-       weight = cpu_class_weight(clsptr);
 
-       /*
-        * We first consider expired tasks. Those will likely not be
-        * executed in the near future, and they are most likely to
-        * be cache-cold, thus switching CPUs has the least effect
-        * on them.
-        */
-       if (busiest_local_queue->expired->nr_active)
-               array = busiest_local_queue->expired;
-       else
-               array = busiest_local_queue->active;
-       
- new_array:
-       /* Start searching at priority 0: */
-       idx = 0;
- skip_bitmap:
-       if (!idx)
-               idx = sched_find_first_bit(array->bitmap);
-       else
-               idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
-       if (idx >= MAX_PRIO) {
-               if (array == busiest_local_queue->expired && busiest_local_queue->active->nr_active) {
-                       array = busiest_local_queue->active;
-                       goto new_array;
-               }
-               goto retry_other_class;
-       }
-       
-       head = array->queue + idx;
-       curr = head->prev;
- skip_queue:
-       tmp = list_entry(curr, task_t, run_list);
-       
-       curr = curr->prev;
-       
-       if (!can_migrate_task(tmp, busiest, this_cpu, sd,idle)) {
-               if (curr != head)
-                       goto skip_queue;
-               idx++;
-               goto skip_bitmap;
-       }
-       pull_task(busiest, array, tmp, this_rq, rq_active(tmp,this_rq),this_cpu);
-       /*
-        * tmp BUG FIX: hzheng
-        * load balancing can make the busiest local queue empty
-        * thus it should be removed from bpt
-        */
-       if (! local_queue_nr_running(busiest_local_queue)) {
-               classqueue_dequeue(busiest_local_queue->classqueue,&busiest_local_queue->classqueue_linkobj);
-               cpu_demand_event(get_rq_local_stat(busiest_local_queue,busiest_cpu),CPU_DEMAND_DEQUEUE,0);              
-       }
+       if (sd->nr_balance_failed > sd->cache_nice_tries)
+               return 1;
 
-       imbalance -= weight;
-       if (!idle && (imbalance>0)) {
-               if (curr != head)
-                       goto skip_queue;
-               idx++;
-               goto skip_bitmap;
-       }
- out_unlock:
-       spin_unlock(&busiest->lock);
- out:
-       read_unlock(&class_list_lock);
-       return 0;
+       if (task_hot(p, rq->timestamp_last_tick, sd))
+               return 0;
+       return 1;
 }
 
-
-static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
-{
-}
-#else /* CONFIG_CKRM_CPU_SCHEDULE */
 /*
  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
  * as part of a balancing operation within "domain". Returns the number of
@@ -1818,16 +1921,18 @@ static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
  */
 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
                      unsigned long max_nr_move, struct sched_domain *sd,
-                     enum idle_type idle)
+                     enum idle_type idle, int *all_pinned)
 {
        prio_array_t *array, *dst_array;
        struct list_head *head, *curr;
-       int idx, pulled = 0;
+       int idx, pulled = 0, pinned = 0;
        task_t *tmp;
 
-       if (max_nr_move <= 0 || busiest->nr_running <= 1)
+       if (max_nr_move == 0)
                goto out;
 
+       pinned = 1;
+
        /*
         * We first consider expired tasks. Those will likely not be
         * executed in the near future, and they are most likely to
@@ -1866,12 +1971,18 @@ skip_queue:
 
        curr = curr->prev;
 
-       if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle)) {
+       if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
                if (curr != head)
                        goto skip_queue;
                idx++;
                goto skip_bitmap;
        }
+
+#ifdef CONFIG_SCHEDSTATS
+       if (task_hot(tmp, busiest->timestamp_last_tick, sd))
+               schedstat_inc(sd, lb_hot_gained[idle]);
+#endif
+
        pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
        pulled++;
 
@@ -1883,6 +1994,15 @@ skip_queue:
                goto skip_bitmap;
        }
 out:
+       /*
+        * Right now, this is the only place pull_task() is called,
+        * so we can safely collect pull_task() stats here rather than
+        * inside pull_task().
+        */
+       schedstat_add(sd, lb_gained[idle], pulled);
+
+       if (all_pinned)
+               *all_pinned = pinned;
        return pulled;
 }
 
@@ -1893,41 +2013,48 @@ out:
  */
 static struct sched_group *
 find_busiest_group(struct sched_domain *sd, int this_cpu,
-                  unsigned long *imbalance, enum idle_type idle)
+                  unsigned long *imbalance, enum idle_type idle, int *sd_idle,
+                  cpumask_t *cpus)
 {
        struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
        unsigned long max_load, avg_load, total_load, this_load, total_pwr;
+       unsigned long max_pull;
+       int load_idx;
 
        max_load = this_load = total_load = total_pwr = 0;
+       if (idle == NOT_IDLE)
+               load_idx = sd->busy_idx;
+       else if (idle == NEWLY_IDLE)
+               load_idx = sd->newidle_idx;
+       else
+               load_idx = sd->idle_idx;
 
        do {
-               cpumask_t tmp;
                unsigned long load;
                int local_group;
-               int i, nr_cpus = 0;
+               int i;
 
                local_group = cpu_isset(this_cpu, group->cpumask);
 
                /* Tally up the load of all CPUs in the group */
                avg_load = 0;
-               cpus_and(tmp, group->cpumask, cpu_online_map);
-               if (unlikely(cpus_empty(tmp)))
-                       goto nextgroup;
 
-               for_each_cpu_mask(i, tmp) {
+               for_each_cpu_mask(i, group->cpumask) {
+                       if (!cpu_isset(i, *cpus))
+                               continue;
+
+                       if (*sd_idle && !idle_cpu(i))
+                               *sd_idle = 0;
+
                        /* Bias balancing toward cpus of our domain */
                        if (local_group)
-                               load = target_load(i);
+                               load = target_load(i, load_idx);
                        else
-                               load = source_load(i);
+                               load = source_load(i, load_idx);
 
-                       nr_cpus++;
                        avg_load += load;
                }
 
-               if (!nr_cpus)
-                       goto nextgroup;
-
                total_load += avg_load;
                total_pwr += group->cpu_power;
 
@@ -1937,16 +2064,14 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
                if (local_group) {
                        this_load = avg_load;
                        this = group;
-                       goto nextgroup;
                } else if (avg_load > max_load) {
                        max_load = avg_load;
                        busiest = group;
                }
-nextgroup:
                group = group->next;
        } while (group != sd->groups);
 
-       if (!busiest || this_load >= max_load)
+       if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
                goto out_balanced;
 
        avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
@@ -1966,13 +2091,16 @@ nextgroup:
         * by pulling tasks to us.  Be careful of negative numbers as they'll
         * appear as very large values with unsigned longs.
         */
-       *imbalance = min(max_load - avg_load, avg_load - this_load);
+
+       /* Don't want to pull so many tasks that a group would go idle */
+       max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
 
        /* How much load to actually move to equalise the imbalance */
-       *imbalance = (*imbalance * min(busiest->cpu_power, this->cpu_power))
-                               / SCHED_LOAD_SCALE;
+       *imbalance = min(max_pull * busiest->cpu_power,
+                               (avg_load - this_load) * this->cpu_power)
+                       / SCHED_LOAD_SCALE;
 
-       if (*imbalance < SCHED_LOAD_SCALE - 1) {
+       if (*imbalance < SCHED_LOAD_SCALE) {
                unsigned long pwr_now = 0, pwr_move = 0;
                unsigned long tmp;
 
@@ -1998,14 +2126,16 @@ nextgroup:
                                                        max_load - tmp);
 
                /* Amount of load we'd add */
-               tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
-               if (max_load < tmp)
-                       tmp = max_load;
+               if (max_load*busiest->cpu_power <
+                               SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
+                       tmp = max_load*busiest->cpu_power/this->cpu_power;
+               else
+                       tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
                pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
                pwr_move /= SCHED_LOAD_SCALE;
 
-               /* Move if we gain another 8th of a CPU worth of throughput */
-               if (pwr_move < pwr_now + SCHED_LOAD_SCALE / 8)
+               /* Move if we gain throughput */
+               if (pwr_move <= pwr_now)
                        goto out_balanced;
 
                *imbalance = 1;
@@ -2013,16 +2143,10 @@ nextgroup:
        }
 
        /* Get rid of the scaling factor, rounding down as we divide */
-       *imbalance = (*imbalance + 1) / SCHED_LOAD_SCALE;
-
+       *imbalance = *imbalance / SCHED_LOAD_SCALE;
        return busiest;
 
 out_balanced:
-       if (busiest && (idle == NEWLY_IDLE ||
-                       (idle == IDLE && max_load > SCHED_LOAD_SCALE)) ) {
-               *imbalance = 1;
-               return busiest;
-       }
 
        *imbalance = 0;
        return NULL;
@@ -2031,16 +2155,18 @@ out_balanced:
 /*
  * find_busiest_queue - find the busiest runqueue among the cpus in group.
  */
-static runqueue_t *find_busiest_queue(struct sched_group *group)
+static runqueue_t *find_busiest_queue(struct sched_group *group,
+       enum idle_type idle, cpumask_t *cpus)
 {
-       cpumask_t tmp;
        unsigned long load, max_load = 0;
        runqueue_t *busiest = NULL;
        int i;
 
-       cpus_and(tmp, group->cpumask, cpu_online_map);
-       for_each_cpu_mask(i, tmp) {
-               load = source_load(i);
+       for_each_cpu_mask(i, group->cpumask) {
+               if (!cpu_isset(i, *cpus))
+                       continue;
+
+               load = source_load(i, 0);
 
                if (load > max_load) {
                        max_load = load;
@@ -2051,6 +2177,12 @@ static runqueue_t *find_busiest_queue(struct sched_group *group)
        return busiest;
 }
 
+/*
+ * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
+ * so long as it is large enough.
+ */
+#define MAX_PINNED_INTERVAL    512
+
 /*
  * Check this_cpu to ensure it is balanced within domain. Attempt to move
  * tasks if there is an imbalance.
@@ -2063,27 +2195,34 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,
        struct sched_group *group;
        runqueue_t *busiest;
        unsigned long imbalance;
-       int nr_moved;
+       int nr_moved, all_pinned = 0;
+       int active_balance = 0;
+       int sd_idle = 0;
+       cpumask_t cpus = CPU_MASK_ALL;
 
-       spin_lock(&this_rq->lock);
+       if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
+               sd_idle = 1;
 
-       group = find_busiest_group(sd, this_cpu, &imbalance, idle);
-       if (!group)
-               goto out_balanced;
+       schedstat_inc(sd, lb_cnt[idle]);
 
-       busiest = find_busiest_queue(group);
-       if (!busiest)
+redo:
+       group = find_busiest_group(sd, this_cpu, &imbalance, idle,
+                       &sd_idle, &cpus);
+       if (!group) {
+               schedstat_inc(sd, lb_nobusyg[idle]);
                goto out_balanced;
-       /*
-        * This should be "impossible", but since load
-        * balancing is inherently racy and statistical,
-        * it could happen in theory.
-        */
-       if (unlikely(busiest == this_rq)) {
-               WARN_ON(1);
+       }
+
+       busiest = find_busiest_queue(group, idle, &cpus);
+       if (!busiest) {
+               schedstat_inc(sd, lb_nobusyq[idle]);
                goto out_balanced;
        }
 
+       BUG_ON(busiest == this_rq);
+
+       schedstat_add(sd, lb_imbalance[idle], imbalance);
+
        nr_moved = 0;
        if (busiest->nr_running > 1) {
                /*
@@ -2092,50 +2231,86 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,
                 * still unbalanced. nr_moved simply stays zero, so it is
                 * correctly treated as an imbalance.
                 */
-               double_lock_balance(this_rq, busiest);
+               double_rq_lock(this_rq, busiest);
                nr_moved = move_tasks(this_rq, this_cpu, busiest,
-                                               imbalance, sd, idle);
-               spin_unlock(&busiest->lock);
+                                       imbalance, sd, idle, &all_pinned);
+               double_rq_unlock(this_rq, busiest);
+
+               /* All tasks on this runqueue were pinned by CPU affinity */
+               if (unlikely(all_pinned)) {
+                       cpu_clear(busiest->cpu, cpus);
+                       if (!cpus_empty(cpus))
+                               goto redo;
+                       goto out_balanced;
+               }
        }
-       spin_unlock(&this_rq->lock);
 
        if (!nr_moved) {
+               schedstat_inc(sd, lb_failed[idle]);
                sd->nr_balance_failed++;
 
                if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
-                       int wake = 0;
 
                        spin_lock(&busiest->lock);
+
+                       /* don't kick the migration_thread, if the curr
+                        * task on busiest cpu can't be moved to this_cpu
+                        */
+                       if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
+                               spin_unlock(&busiest->lock);
+                               all_pinned = 1;
+                               goto out_one_pinned;
+                       }
+
                        if (!busiest->active_balance) {
                                busiest->active_balance = 1;
                                busiest->push_cpu = this_cpu;
-                               wake = 1;
+                               active_balance = 1;
                        }
                        spin_unlock(&busiest->lock);
-                       if (wake)
+                       if (active_balance)
                                wake_up_process(busiest->migration_thread);
 
                        /*
                         * We've kicked active balancing, reset the failure
                         * counter.
                         */
-                       sd->nr_balance_failed = sd->cache_nice_tries;
+                       sd->nr_balance_failed = sd->cache_nice_tries+1;
                }
        } else
                sd->nr_balance_failed = 0;
 
-       /* We were unbalanced, so reset the balancing interval */
-       sd->balance_interval = sd->min_interval;
+       if (likely(!active_balance)) {
+               /* We were unbalanced, so reset the balancing interval */
+               sd->balance_interval = sd->min_interval;
+       } else {
+               /*
+                * If we've begun active balancing, start to back off. This
+                * case may not be covered by the all_pinned logic if there
+                * is only 1 task on the busy runqueue (because we don't call
+                * move_tasks).
+                */
+               if (sd->balance_interval < sd->max_interval)
+                       sd->balance_interval *= 2;
+       }
 
+       if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
+               return -1;
        return nr_moved;
 
 out_balanced:
-       spin_unlock(&this_rq->lock);
+       schedstat_inc(sd, lb_balanced[idle]);
 
+       sd->nr_balance_failed = 0;
+
+out_one_pinned:
        /* tune up the balancing interval */
-       if (sd->balance_interval < sd->max_interval)
+       if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
+                       (sd->balance_interval < sd->max_interval))
                sd->balance_interval *= 2;
 
+       if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
+               return -1;
        return 0;
 }
 
@@ -2153,32 +2328,68 @@ static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
        runqueue_t *busiest = NULL;
        unsigned long imbalance;
        int nr_moved = 0;
+       int sd_idle = 0;
+       cpumask_t cpus = CPU_MASK_ALL;
+
+       if (sd->flags & SD_SHARE_CPUPOWER)
+               sd_idle = 1;
+
+       schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
+redo:
+       group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
+                       &sd_idle, &cpus);
+       if (!group) {
+               schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
+               goto out_balanced;
+       }
 
-       group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
-       if (!group)
-               goto out;
+       busiest = find_busiest_queue(group, NEWLY_IDLE, &cpus);
+       if (!busiest) {
+               schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
+               goto out_balanced;
+       }
 
-       busiest = find_busiest_queue(group);
-       if (!busiest || busiest == this_rq)
-               goto out;
+       BUG_ON(busiest == this_rq);
 
-       /* Attempt to move tasks */
-       double_lock_balance(this_rq, busiest);
+       schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
 
-       nr_moved = move_tasks(this_rq, this_cpu, busiest,
-                                       imbalance, sd, NEWLY_IDLE);
+       nr_moved = 0;
+       if (busiest->nr_running > 1) {
+               /* Attempt to move tasks */
+               double_lock_balance(this_rq, busiest);
+               nr_moved = move_tasks(this_rq, this_cpu, busiest,
+                                       imbalance, sd, NEWLY_IDLE, NULL);
+               spin_unlock(&busiest->lock);
 
-       spin_unlock(&busiest->lock);
+               if (!nr_moved) {
+                       cpu_clear(busiest->cpu, cpus);
+                       if (!cpus_empty(cpus))
+                               goto redo;
+               }
+       }
+
+       if (!nr_moved) {
+               schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
+               if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
+                       return -1;
+       } else
+               sd->nr_balance_failed = 0;
 
-out:
        return nr_moved;
+
+out_balanced:
+       schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
+       if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
+               return -1;
+       sd->nr_balance_failed = 0;
+       return 0;
 }
 
 /*
  * idle_balance is called by schedule() if this_cpu is about to become
  * idle. Attempts to pull tasks from other CPUs.
  */
-static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
+static void idle_balance(int this_cpu, runqueue_t *this_rq)
 {
        struct sched_domain *sd;
 
@@ -2193,72 +2404,53 @@ static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
 }
 
 /*
- * active_load_balance is run by migration threads. It pushes a running
- * task off the cpu. It can be required to correctly have at least 1 task
- * running on each physical CPU where possible, and not have a physical /
- * logical imbalance.
+ * active_load_balance is run by migration threads. It pushes running tasks
+ * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
+ * running on each physical CPU where possible, and avoids physical /
+ * logical imbalances.
  *
- * Called with busiest locked.
+ * Called with busiest_rq locked.
  */
-static void active_load_balance(runqueue_t *busiest, int busiest_cpu)
+static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
 {
        struct sched_domain *sd;
-       struct sched_group *group, *busy_group;
-       int i;
-
-       if (busiest->nr_running <= 1)
-               return;
+       runqueue_t *target_rq;
+       int target_cpu = busiest_rq->push_cpu;
 
-       for_each_domain(busiest_cpu, sd)
-               if (cpu_isset(busiest->push_cpu, sd->span))
-                       break;
-       if (!sd) {
-               WARN_ON(1);
+       if (busiest_rq->nr_running <= 1)
+               /* no task to move */
                return;
-       }
 
-       group = sd->groups;
-       while (!cpu_isset(busiest_cpu, group->cpumask))
-               group = group->next;
-       busy_group = group;
+       target_rq = cpu_rq(target_cpu);
 
-       group = sd->groups;
-       do {
-               cpumask_t tmp;
-               runqueue_t *rq;
-               int push_cpu = 0;
+       /*
+        * This condition is "impossible", if it occurs
+        * we need to fix it.  Originally reported by
+        * Bjorn Helgaas on a 128-cpu setup.
+        */
+       BUG_ON(busiest_rq == target_rq);
 
-               if (group == busy_group)
-                       goto next_group;
+       /* move a task from busiest_rq to target_rq */
+       double_lock_balance(busiest_rq, target_rq);
 
-               cpus_and(tmp, group->cpumask, cpu_online_map);
-               if (!cpus_weight(tmp))
-                       goto next_group;
+       /* Search for an sd spanning us and the target CPU. */
+       for_each_domain(target_cpu, sd)
+               if ((sd->flags & SD_LOAD_BALANCE) &&
+                       cpu_isset(busiest_cpu, sd->span))
+                               break;
 
-               for_each_cpu_mask(i, tmp) {
-                       if (!idle_cpu(i))
-                               goto next_group;
-                       push_cpu = i;
-               }
+       if (unlikely(sd == NULL))
+               goto out;
 
-               rq = cpu_rq(push_cpu);
+       schedstat_inc(sd, alb_cnt);
 
-               /*
-                * This condition is "impossible", but since load
-                * balancing is inherently a bit racy and statistical,
-                * it can trigger.. Reported by Bjorn Helgaas on a
-                * 128-cpu setup.
-                */
-               if (unlikely(busiest == rq))
-                       goto next_group;
-               double_lock_balance(busiest, rq);
-               move_tasks(rq, push_cpu, busiest, 1, sd, IDLE);
-               spin_unlock(&rq->lock);
-next_group:
-               group = group->next;
-       } while (group != sd->groups);
+       if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
+               schedstat_inc(sd, alb_pushed);
+       else
+               schedstat_inc(sd, alb_failed);
+out:
+       spin_unlock(&target_rq->lock);
 }
-#endif /* CONFIG_CKRM_CPU_SCHEDULE*/
 
 /*
  * rebalance_tick will get called every timer tick, on every CPU.
@@ -2278,25 +2470,32 @@ static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
        unsigned long old_load, this_load;
        unsigned long j = jiffies + CPU_OFFSET(this_cpu);
        struct sched_domain *sd;
+       int i;
 
-       ckrm_rebalance_tick(j,this_cpu);
-
-       /* Update our load */
-       old_load = this_rq->cpu_load;
        this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
-       /*
-        * Round up the averaging division if load is increasing. This
-        * prevents us from getting stuck on 9 if the load is 10, for
-        * example.
-        */
-       if (this_load > old_load)
-               old_load++;
-       this_rq->cpu_load = (old_load + this_load) / 2;
+       /* Update our load */
+       for (i = 0; i < 3; i++) {
+               unsigned long new_load = this_load;
+               int scale = 1 << i;
+               old_load = this_rq->cpu_load[i];
+               /*
+                * Round up the averaging division if load is increasing. This
+                * prevents us from getting stuck on 9 if the load is 10, for
+                * example.
+                */
+               if (new_load > old_load)
+                       new_load += scale-1;
+               this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
+       }
 
        for_each_domain(this_cpu, sd) {
-               unsigned long interval = sd->balance_interval;
+               unsigned long interval;
+
+               if (!(sd->flags & SD_LOAD_BALANCE))
+                       continue;
 
-               if (idle != IDLE)
+               interval = sd->balance_interval;
+               if (idle != SCHED_IDLE)
                        interval *= sd->busy_factor;
 
                /* scale ms to jiffies */
@@ -2306,22 +2505,24 @@ static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
 
                if (j - sd->last_balance >= interval) {
                        if (load_balance(this_cpu, this_rq, sd, idle)) {
-                               /* We've pulled tasks over so no longer idle */
+                               /*
+                                * We've pulled tasks over so either we're no
+                                * longer idle, or one of our SMT siblings is
+                                * not idle.
+                                */
                                idle = NOT_IDLE;
                        }
                        sd->last_balance += interval;
                }
        }
 }
-#else /* SMP*/
+#else
 /*
  * on UP we do not need to balance between CPUs:
  */
 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
 {
-       ckrm_rebalance_tick(jiffies,cpu);
 }
-
 static inline void idle_balance(int cpu, runqueue_t *rq)
 {
 }
@@ -2329,23 +2530,52 @@ static inline void idle_balance(int cpu, runqueue_t *rq)
 
 static inline int wake_priority_sleeper(runqueue_t *rq)
 {
+       int ret = 0;
 #ifdef CONFIG_SCHED_SMT
+       spin_lock(&rq->lock);
        /*
         * If an SMT sibling task has been put to sleep for priority
         * reasons reschedule the idle task to see if it can now run.
         */
        if (rq->nr_running) {
                resched_task(rq->idle);
-               return 1;
+               ret = 1;
        }
+       spin_unlock(&rq->lock);
 #endif
-       return 0;
+       return ret;
 }
 
-DEFINE_PER_CPU(struct kernel_stat, kstat) = { { 0 } };
+DEFINE_PER_CPU(struct kernel_stat, kstat);
 
 EXPORT_PER_CPU_SYMBOL(kstat);
 
+/*
+ * This is called on clock ticks and on context switches.
+ * Bank in p->sched_time the ns elapsed since the last tick or switch.
+ */
+static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
+                                   unsigned long long now)
+{
+       unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
+       p->sched_time += now - last;
+}
+
+/*
+ * Return current->sched_time plus any more ns on the sched_clock
+ * that have not yet been banked.
+ */
+unsigned long long current_sched_time(const task_t *tsk)
+{
+       unsigned long long ns;
+       unsigned long flags;
+       local_irq_save(flags);
+       ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
+       ns = tsk->sched_time + (sched_clock() - ns);
+       local_irq_restore(flags);
+       return ns;
+}
+
 /*
  * We place interactive tasks back into the active array, if possible.
  *
@@ -2356,19 +2586,89 @@ EXPORT_PER_CPU_SYMBOL(kstat);
  * increasing number of running tasks. We also ignore the interactivity
  * if a better static_prio task has expired:
  */
-
-#ifndef CONFIG_CKRM_CPU_SCHEDULE
 #define EXPIRED_STARVING(rq) \
        ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
                (jiffies - (rq)->expired_timestamp >= \
                        STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
                        ((rq)->curr->static_prio > (rq)->best_expired_prio))
-#else
-#define EXPIRED_STARVING(rq) \
-               (STARVATION_LIMIT && ((rq)->expired_timestamp && \
-               (jiffies - (rq)->expired_timestamp >= \
-                       STARVATION_LIMIT * (local_queue_nr_running(rq)) + 1)))
-#endif
+
+/*
+ * Account user cpu time to a process.
+ * @p: the process that the cpu time gets accounted to
+ * @hardirq_offset: the offset to subtract from hardirq_count()
+ * @cputime: the cpu time spent in user space since the last update
+ */
+void account_user_time(struct task_struct *p, cputime_t cputime)
+{
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+       struct vx_info *vxi = p->vx_info;  /* p is _always_ current */
+       cputime64_t tmp;
+       int nice = (TASK_NICE(p) > 0);
+
+       p->utime = cputime_add(p->utime, cputime);
+       vx_account_user(vxi, cputime, nice);
+
+       /* Add user time to cpustat. */
+       tmp = cputime_to_cputime64(cputime);
+       if (nice)
+               cpustat->nice = cputime64_add(cpustat->nice, tmp);
+       else
+               cpustat->user = cputime64_add(cpustat->user, tmp);
+}
+
+/*
+ * Account system cpu time to a process.
+ * @p: the process that the cpu time gets accounted to
+ * @hardirq_offset: the offset to subtract from hardirq_count()
+ * @cputime: the cpu time spent in kernel space since the last update
+ */
+void account_system_time(struct task_struct *p, int hardirq_offset,
+                        cputime_t cputime)
+{
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+       struct vx_info *vxi = p->vx_info;  /* p is _always_ current */
+       runqueue_t *rq = this_rq();
+       cputime64_t tmp;
+
+       p->stime = cputime_add(p->stime, cputime);
+       vx_account_system(vxi, cputime, (p == rq->idle));
+
+       /* Add system time to cpustat. */
+       tmp = cputime_to_cputime64(cputime);
+       if (hardirq_count() - hardirq_offset)
+               cpustat->irq = cputime64_add(cpustat->irq, tmp);
+       else if (softirq_count())
+               cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
+       else if (p != rq->idle)
+               cpustat->system = cputime64_add(cpustat->system, tmp);
+       else if (atomic_read(&rq->nr_iowait) > 0)
+               cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
+       else
+               cpustat->idle = cputime64_add(cpustat->idle, tmp);
+       /* Account for system time used */
+       acct_update_integrals(p);
+}
+
+/*
+ * Account for involuntary wait time.
+ * @p: the process from which the cpu time has been stolen
+ * @steal: the cpu time spent in involuntary wait
+ */
+void account_steal_time(struct task_struct *p, cputime_t steal)
+{
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+       cputime64_t tmp = cputime_to_cputime64(steal);
+       runqueue_t *rq = this_rq();
+
+       if (p == rq->idle) {
+               p->stime = cputime_add(p->stime, steal);
+               if (atomic_read(&rq->nr_iowait) > 0)
+                       cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
+               else
+                       cpustat->idle = cputime64_add(cpustat->idle, tmp);
+       } else
+               cpustat->steal = cputime64_add(cpustat->steal, tmp);
+}
 
 /*
  * This function gets called by the timer code, with HZ frequency.
@@ -2377,48 +2677,34 @@ EXPORT_PER_CPU_SYMBOL(kstat);
  * It also gets called by the fork code, when changing the parent's
  * timeslices.
  */
-void scheduler_tick(int user_ticks, int sys_ticks)
+void scheduler_tick(void)
 {
        int cpu = smp_processor_id();
-       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
        runqueue_t *rq = this_rq();
        task_t *p = current;
+       unsigned long long now = sched_clock();
 
-       rq->timestamp_last_tick = sched_clock();
+       update_cpu_clock(p, rq, now);
 
-       if (rcu_pending(cpu))
-               rcu_check_callbacks(cpu, user_ticks);
+       rq->timestamp_last_tick = now;
 
-       /* note: this timer irq context must be accounted for as well */
-       if (hardirq_count() - HARDIRQ_OFFSET) {
-               cpustat->irq += sys_ticks;
-               sys_ticks = 0;
-       } else if (softirq_count()) {
-               cpustat->softirq += sys_ticks;
-               sys_ticks = 0;
-       }
+#if defined(CONFIG_VSERVER_HARDCPU) && defined(CONFIG_VSERVER_ACB_SCHED) 
+       vx_scheduler_tick();
+#endif
 
        if (p == rq->idle) {
-               if (!--rq->idle_tokens && !list_empty(&rq->hold_queue))
-                       set_need_resched();     
-
-               if (atomic_read(&rq->nr_iowait) > 0)
-                       cpustat->iowait += sys_ticks;
-               else
-                       cpustat->idle += sys_ticks;
                if (wake_priority_sleeper(rq))
                        goto out;
-               rebalance_tick(cpu, rq, IDLE);
+#ifdef CONFIG_VSERVER_HARDCPU_IDLE
+               if (!--rq->idle_tokens && !list_empty(&rq->hold_queue))
+                       set_need_resched();
+#endif
+               rebalance_tick(cpu, rq, SCHED_IDLE);
                return;
        }
-       if (TASK_NICE(p) > 0)
-               cpustat->nice += user_ticks;
-       else
-               cpustat->user += user_ticks;
-       cpustat->system += sys_ticks;
 
        /* Task might have expired already, but not scheduled off yet */
-       if (p->array != rq_active(p,rq)) {
+       if (p->array != rq->active) {
                set_tsk_need_resched(p);
                goto out;
        }
@@ -2430,28 +2716,22 @@ void scheduler_tick(int user_ticks, int sys_ticks)
         * timeslice. This makes it possible for interactive tasks
         * to use up their timeslices at their highest priority levels.
         */
-       if (unlikely(rt_task(p))) {
+       if (rt_task(p)) {
                /*
                 * RR tasks need a special form of timeslice management.
                 * FIFO tasks have no timeslices.
                 */
-               if ((p->policy == SCHED_RR) && !--p->time_slice) {
+               if ((p->policy == SCHED_RR) && vx_need_resched(p)) {
                        p->time_slice = task_timeslice(p);
                        p->first_time_slice = 0;
                        set_tsk_need_resched(p);
 
                        /* put it at the end of the queue: */
-                       dequeue_task(p, rq_active(p,rq));
-                       enqueue_task(p, rq_active(p,rq));
+                       requeue_task(p, rq->active);
                }
                goto out_unlock;
        }
-#warning MEF PLANETLAB: "if (vx_need_resched(p)) was if (!--p->time_slice) */"
        if (vx_need_resched(p)) {
-#ifdef CONFIG_CKRM_CPU_SCHEDULE
-               /* Hubertus ... we can abstract this out */
-               struct ckrm_local_runqueue* rq = get_task_class_queue(p);
-#endif
                dequeue_task(p, rq->active);
                set_tsk_need_resched(p);
                p->prio = effective_prio(p);
@@ -2462,8 +2742,8 @@ void scheduler_tick(int user_ticks, int sys_ticks)
                        rq->expired_timestamp = jiffies;
                if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
                        enqueue_task(p, rq->expired);
-                       if (p->static_prio < this_rq()->best_expired_prio)
-                               this_rq()->best_expired_prio = p->static_prio;
+                       if (p->static_prio < rq->best_expired_prio)
+                               rq->best_expired_prio = p->static_prio;
                } else
                        enqueue_task(p, rq->active);
        } else {
@@ -2486,12 +2766,10 @@ void scheduler_tick(int user_ticks, int sys_ticks)
                if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
                        p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
                        (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
-                       (p->array == rq_active(p,rq))) {
+                       (p->array == rq->active)) {
 
-                       dequeue_task(p, rq_active(p,rq));
+                       requeue_task(p, rq->active);
                        set_tsk_need_resched(p);
-                       p->prio = effective_prio(p);
-                       enqueue_task(p, rq_active(p,rq));
                }
        }
 out_unlock:
@@ -2501,52 +2779,113 @@ out:
 }
 
 #ifdef CONFIG_SCHED_SMT
-static inline void wake_sleeping_dependent(int cpu, runqueue_t *rq)
+static inline void wakeup_busy_runqueue(runqueue_t *rq)
 {
-       int i;
-       struct sched_domain *sd = rq->sd;
+       /* If an SMT runqueue is sleeping due to priority reasons wake it up */
+       if (rq->curr == rq->idle && rq->nr_running)
+               resched_task(rq->idle);
+}
+
+static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
+{
+       struct sched_domain *tmp, *sd = NULL;
        cpumask_t sibling_map;
+       int i;
+
+       for_each_domain(this_cpu, tmp)
+               if (tmp->flags & SD_SHARE_CPUPOWER)
+                       sd = tmp;
 
-       if (!(sd->flags & SD_SHARE_CPUPOWER))
+       if (!sd)
                return;
 
-       cpus_and(sibling_map, sd->span, cpu_online_map);
-       for_each_cpu_mask(i, sibling_map) {
-               runqueue_t *smt_rq;
+       /*
+        * Unlock the current runqueue because we have to lock in
+        * CPU order to avoid deadlocks. Caller knows that we might
+        * unlock. We keep IRQs disabled.
+        */
+       spin_unlock(&this_rq->lock);
 
-               if (i == cpu)
-                       continue;
+       sibling_map = sd->span;
 
-               smt_rq = cpu_rq(i);
+       for_each_cpu_mask(i, sibling_map)
+               spin_lock(&cpu_rq(i)->lock);
+       /*
+        * We clear this CPU from the mask. This both simplifies the
+        * inner loop and keps this_rq locked when we exit:
+        */
+       cpu_clear(this_cpu, sibling_map);
 
-               /*
-                * If an SMT sibling task is sleeping due to priority
-                * reasons wake it up now.
-                */
-               if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
-                       resched_task(smt_rq->idle);
+       for_each_cpu_mask(i, sibling_map) {
+               runqueue_t *smt_rq = cpu_rq(i);
+
+               wakeup_busy_runqueue(smt_rq);
        }
+
+       for_each_cpu_mask(i, sibling_map)
+               spin_unlock(&cpu_rq(i)->lock);
+       /*
+        * We exit with this_cpu's rq still held and IRQs
+        * still disabled:
+        */
+}
+
+/*
+ * number of 'lost' timeslices this task wont be able to fully
+ * utilize, if another task runs on a sibling. This models the
+ * slowdown effect of other tasks running on siblings:
+ */
+static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
+{
+       return p->time_slice * (100 - sd->per_cpu_gain) / 100;
 }
 
-static inline int dependent_sleeper(int cpu, runqueue_t *rq, task_t *p)
+static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
 {
-       struct sched_domain *sd = rq->sd;
+       struct sched_domain *tmp, *sd = NULL;
        cpumask_t sibling_map;
+       prio_array_t *array;
        int ret = 0, i;
+       task_t *p;
+
+       for_each_domain(this_cpu, tmp)
+               if (tmp->flags & SD_SHARE_CPUPOWER)
+                       sd = tmp;
 
-       if (!(sd->flags & SD_SHARE_CPUPOWER))
+       if (!sd)
                return 0;
 
-       cpus_and(sibling_map, sd->span, cpu_online_map);
-       for_each_cpu_mask(i, sibling_map) {
-               runqueue_t *smt_rq;
-               task_t *smt_curr;
+       /*
+        * The same locking rules and details apply as for
+        * wake_sleeping_dependent():
+        */
+       spin_unlock(&this_rq->lock);
+       sibling_map = sd->span;
+       for_each_cpu_mask(i, sibling_map)
+               spin_lock(&cpu_rq(i)->lock);
+       cpu_clear(this_cpu, sibling_map);
 
-               if (i == cpu)
-                       continue;
+       /*
+        * Establish next task to be run - it might have gone away because
+        * we released the runqueue lock above:
+        */
+       if (!this_rq->nr_running)
+               goto out_unlock;
+       array = this_rq->active;
+       if (!array->nr_active)
+               array = this_rq->expired;
+       BUG_ON(!array->nr_active);
+
+       p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
+               task_t, run_list);
+
+       for_each_cpu_mask(i, sibling_map) {
+               runqueue_t *smt_rq = cpu_rq(i);
+               task_t *smt_curr = smt_rq->curr;
 
-               smt_rq = cpu_rq(i);
-               smt_curr = smt_rq->curr;
+               /* Kernel threads do not participate in dependent sleeping */
+               if (!p->mm || !smt_curr->mm || rt_task(p))
+                       goto check_smt_task;
 
                /*
                 * If a user task with lower static priority than the
@@ -2556,35 +2895,94 @@ static inline int dependent_sleeper(int cpu, runqueue_t *rq, task_t *p)
                 * task from using an unfair proportion of the
                 * physical cpu's resources. -ck
                 */
-               if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
-                       task_timeslice(p) || rt_task(smt_curr)) &&
-                       p->mm && smt_curr->mm && !rt_task(p))
-                               ret = 1;
+               if (rt_task(smt_curr)) {
+                       /*
+                        * With real time tasks we run non-rt tasks only
+                        * per_cpu_gain% of the time.
+                        */
+                       if ((jiffies % DEF_TIMESLICE) >
+                               (sd->per_cpu_gain * DEF_TIMESLICE / 100))
+                                       ret = 1;
+               } else
+                       if (smt_curr->static_prio < p->static_prio &&
+                               !TASK_PREEMPTS_CURR(p, smt_rq) &&
+                               smt_slice(smt_curr, sd) > task_timeslice(p))
+                                       ret = 1;
+
+check_smt_task:
+               if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
+                       rt_task(smt_curr))
+                               continue;
+               if (!p->mm) {
+                       wakeup_busy_runqueue(smt_rq);
+                       continue;
+               }
 
                /*
-                * Reschedule a lower priority task on the SMT sibling,
-                * or wake it up if it has been put to sleep for priority
-                * reasons.
+                * Reschedule a lower priority task on the SMT sibling for
+                * it to be put to sleep, or wake it up if it has been put to
+                * sleep for priority reasons to see if it should run now.
                 */
-               if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
-                       task_timeslice(smt_curr) || rt_task(p)) &&
-                       smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
-                       (smt_curr == smt_rq->idle && smt_rq->nr_running))
-                               resched_task(smt_curr);
+               if (rt_task(p)) {
+                       if ((jiffies % DEF_TIMESLICE) >
+                               (sd->per_cpu_gain * DEF_TIMESLICE / 100))
+                                       resched_task(smt_curr);
+               } else {
+                       if (TASK_PREEMPTS_CURR(p, smt_rq) &&
+                               smt_slice(p, sd) > task_timeslice(smt_curr))
+                                       resched_task(smt_curr);
+                       else
+                               wakeup_busy_runqueue(smt_rq);
+               }
        }
+out_unlock:
+       for_each_cpu_mask(i, sibling_map)
+               spin_unlock(&cpu_rq(i)->lock);
        return ret;
 }
 #else
-static inline void wake_sleeping_dependent(int cpu, runqueue_t *rq)
+static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
 {
 }
 
-static inline int dependent_sleeper(int cpu, runqueue_t *rq, task_t *p)
+static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
 {
        return 0;
 }
 #endif
 
+#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
+
+void fastcall add_preempt_count(int val)
+{
+       /*
+        * Underflow?
+        */
+       BUG_ON((preempt_count() < 0));
+       preempt_count() += val;
+       /*
+        * Spinlock count overflowing soon?
+        */
+       BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
+}
+EXPORT_SYMBOL(add_preempt_count);
+
+void fastcall sub_preempt_count(int val)
+{
+       /*
+        * Underflow?
+        */
+       BUG_ON(val > preempt_count());
+       /*
+        * Is the spinlock portion underflowing?
+        */
+       BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
+       preempt_count() -= val;
+}
+EXPORT_SYMBOL(sub_preempt_count);
+
+#endif
+
 /*
  * schedule() is the main scheduler function.
  */
@@ -2594,65 +2992,93 @@ asmlinkage void __sched schedule(void)
        task_t *prev, *next;
        runqueue_t *rq;
        prio_array_t *array;
+       struct list_head *queue;
        unsigned long long now;
        unsigned long run_time;
-       int cpu;
-#ifdef CONFIG_VSERVER_HARDCPU          
+       int cpu, idx, new_prio;
        struct vx_info *vxi;
+#ifdef CONFIG_VSERVER_HARDCPU
        int maxidle = -HZ;
+# ifdef CONFIG_VSERVER_ACB_SCHED
+        int min_guarantee_ticks = VX_INVALID_TICKS;
+        int min_best_effort_ticks = VX_INVALID_TICKS;
+# endif
 #endif
 
-       //WARN_ON(system_state == SYSTEM_BOOTING);
        /*
         * Test if we are atomic.  Since do_exit() needs to call into
         * schedule() atomically, we ignore that path for now.
         * Otherwise, whine if we are scheduling when we should not be.
         */
-       if (likely(!(current->state & (TASK_DEAD | TASK_ZOMBIE)))) {
+       if (likely(!current->exit_state)) {
                if (unlikely(in_atomic())) {
-                       printk(KERN_ERR "bad: scheduling while atomic!\n");
+                       printk(KERN_ERR "scheduling while atomic: "
+                               "%s/0x%08x/%d\n",
+                               current->comm, preempt_count(), current->pid);
                        dump_stack();
                }
        }
+       profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 
 need_resched:
        preempt_disable();
        prev = current;
+       release_kernel_lock(prev);
+need_resched_nonpreemptible:
        rq = this_rq();
 
-       release_kernel_lock(prev);
+       /*
+        * The idle thread is not allowed to schedule!
+        * Remove this check after it has been exercised a bit.
+        */
+       if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
+               printk(KERN_ERR "bad: scheduling from the idle thread!\n");
+               dump_stack();
+       }
+
+       schedstat_inc(rq, sched_cnt);
        now = sched_clock();
-       if (likely(now - prev->timestamp < NS_MAX_SLEEP_AVG))
+       if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
                run_time = now - prev->timestamp;
-       else
+               if (unlikely((long long)(now - prev->timestamp) < 0))
+                       run_time = 0;
+       } else
                run_time = NS_MAX_SLEEP_AVG;
 
        /*
-        * Tasks with interactive credits get charged less run_time
-        * at high sleep_avg to delay them losing their interactive
-        * status
+        * Tasks charged proportionately less run_time at high sleep_avg to
+        * delay them losing their interactive status
         */
-       if (HIGH_CREDIT(prev))
-               run_time /= (CURRENT_BONUS(prev) ? : 1);
+       run_time /= (CURRENT_BONUS(prev) ? : 1);
 
        spin_lock_irq(&rq->lock);
 
-       /*
-        * if entering off of a kernel preemption go straight
-        * to picking the next task.
-        */
+       if (unlikely(prev->flags & PF_DEAD))
+               prev->state = EXIT_DEAD;
+
        switch_count = &prev->nivcsw;
        if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
                switch_count = &prev->nvcsw;
                if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
                                unlikely(signal_pending(prev))))
                        prev->state = TASK_RUNNING;
-               else
+               else {
+                       if (prev->state == TASK_UNINTERRUPTIBLE) {
+                               rq->nr_uninterruptible++;
+                               vx_uninterruptible_inc(prev);
+                       }
                        deactivate_task(prev, rq);
+               }
        }
 
-       cpu = smp_processor_id();
-#ifdef CONFIG_VSERVER_HARDCPU          
+#ifdef CONFIG_VSERVER_HARDCPU
+# ifdef CONFIG_VSERVER_ACB_SCHED
+drain_hold_queue:
+
+       min_guarantee_ticks = VX_INVALID_TICKS;
+       min_best_effort_ticks = VX_INVALID_TICKS;
+
+# endif        
        if (!list_empty(&rq->hold_queue)) {
                struct list_head *l, *n;
                int ret;
@@ -2665,114 +3091,175 @@ need_resched:
 
                        vxi = next->vx_info;
                        ret = vx_tokens_recalc(vxi);
-                       // tokens = vx_tokens_avail(next);
 
                        if (ret > 0) {
-                               list_del(&next->run_list);
-                               next->state &= ~TASK_ONHOLD;
-                               recalc_task_prio(next, now);
-                               __activate_task(next, rq);
-                               // printk("··· unhold %p\n", next);
+                               vx_unhold_task(vxi, next, rq);
                                break;
                        }
                        if ((ret < 0) && (maxidle < ret))
                                maxidle = ret;
-               }       
+# ifdef CONFIG_VSERVER_ACB_SCHED
+                       if (ret < 0) {
+                               if (IS_BEST_EFFORT(vxi)) {
+                                       if (min_best_effort_ticks < ret) 
+                                               min_best_effort_ticks = ret;
+                               } else {
+                                       if (min_guarantee_ticks < ret)
+                                               min_guarantee_ticks = ret;
+                               }
+                       }
+# endif
+               }
        }
        rq->idle_tokens = -maxidle;
 
 pick_next:
 #endif
+
+       cpu = smp_processor_id();
        if (unlikely(!rq->nr_running)) {
+go_idle:
                idle_balance(cpu, rq);
                if (!rq->nr_running) {
                        next = rq->idle;
                        rq->expired_timestamp = 0;
                        wake_sleeping_dependent(cpu, rq);
+                       /*
+                        * wake_sleeping_dependent() might have released
+                        * the runqueue, so break out if we got new
+                        * tasks meanwhile:
+                        */
+                       if (!rq->nr_running)
+                               goto switch_tasks;
+               }
+       } else {
+               if (dependent_sleeper(cpu, rq)) {
+                       next = rq->idle;
                        goto switch_tasks;
                }
+               /*
+                * dependent_sleeper() releases and reacquires the runqueue
+                * lock, hence go into the idle loop if the rq went
+                * empty meanwhile:
+                */
+               if (unlikely(!rq->nr_running))
+                       goto go_idle;
        }
 
-       next = rq_get_next_task(rq);
-       if (next == rq->idle) 
-               goto switch_tasks;
-
-       if (dependent_sleeper(cpu, rq, next)) {
-               next = rq->idle;
-               goto switch_tasks;
+       array = rq->active;
+       if (unlikely(!array->nr_active)) {
+               /*
+                * Switch the active and expired arrays.
+                */
+               schedstat_inc(rq, sched_switch);
+               rq->active = rq->expired;
+               rq->expired = array;
+               array = rq->active;
+               rq->expired_timestamp = 0;
+               rq->best_expired_prio = MAX_PRIO;
        }
 
-#ifdef CONFIG_VSERVER_HARDCPU          
+       idx = sched_find_first_bit(array->bitmap);
+       queue = array->queue + idx;
+       next = list_entry(queue->next, task_t, run_list);
+
        vxi = next->vx_info;
-       if (vxi && __vx_flags(vxi->vx_flags,
-               VXF_SCHED_PAUSE|VXF_SCHED_HARD, 0)) {
+#ifdef CONFIG_VSERVER_HARDCPU
+       if (vx_info_flags(vxi, VXF_SCHED_PAUSE|VXF_SCHED_HARD, 0)) {
                int ret = vx_tokens_recalc(vxi);
 
                if (unlikely(ret <= 0)) {
-                       if (ret && (rq->idle_tokens > -ret))
-                               rq->idle_tokens = -ret;
-                       deactivate_task(next, rq);
-                       list_add_tail(&next->run_list, &rq->hold_queue);
-                       next->state |= TASK_ONHOLD;                     
+                       if (ret) {
+                               if ((rq->idle_tokens > -ret))
+                                       rq->idle_tokens = -ret;
+# ifdef CONFIG_VSERVER_ACB_SCHED
+                               if (IS_BEST_EFFORT(vxi)) {
+                                       if (min_best_effort_ticks < ret) 
+                                               min_best_effort_ticks = ret;
+                               } else {
+                                       if (min_guarantee_ticks < ret)
+                                               min_guarantee_ticks = ret;
+                               }
+# endif
+                       }
+                       vx_hold_task(vxi, next, rq);
                        goto pick_next;
                }
-       }
+       } else  /* well, looks ugly but not as ugly as the ifdef-ed version */
 #endif
+       if (vx_info_flags(vxi, VXF_SCHED_PRIO, 0))
+               vx_tokens_recalc(vxi);
 
        if (!rt_task(next) && next->activated > 0) {
                unsigned long long delta = now - next->timestamp;
+               if (unlikely((long long)(now - next->timestamp) < 0))
+                       delta = 0;
 
                if (next->activated == 1)
                        delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
 
                array = next->array;
-               dequeue_task(next, array);
-               recalc_task_prio(next, next->timestamp + delta);
-               enqueue_task(next, array);
+               new_prio = recalc_task_prio(next, next->timestamp + delta);
+
+               if (unlikely(next->prio != new_prio)) {
+                       dequeue_task(next, array);
+                       next->prio = new_prio;
+                       enqueue_task(next, array);
+               } else
+                       requeue_task(next, array);
        }
        next->activated = 0;
 switch_tasks:
-       prefetch(next);
-       if (test_and_clear_tsk_thread_flag(prev,TIF_NEED_RESCHED))
-               rq->nr_preempt++;
-       RCU_qsctr(task_cpu(prev))++;
-
-#ifdef CONFIG_CKRM_CPU_SCHEDULE
-       if (prev != rq->idle) {
-               unsigned long long run = now - prev->timestamp;
-               cpu_demand_event(get_task_local_stat(prev),CPU_DEMAND_DESCHEDULE,run);
-               update_local_cvt(prev, run);
+#if defined(CONFIG_VSERVER_HARDCPU) && defined(CONFIG_VSERVER_ACB_SCHED)
+       if (next == rq->idle && !list_empty(&rq->hold_queue)) {
+               if (min_best_effort_ticks != VX_INVALID_TICKS) {
+                       vx_advance_best_effort_ticks(-min_best_effort_ticks);
+                       goto drain_hold_queue;
+               } 
+               if (min_guarantee_ticks != VX_INVALID_TICKS) {
+                       vx_advance_guaranteed_ticks(-min_guarantee_ticks);
+                       goto drain_hold_queue;
+               }
        }
 #endif
+       if (next == rq->idle)
+               schedstat_inc(rq, sched_goidle);
+       prefetch(next);
+       prefetch_stack(next);
+       clear_tsk_need_resched(prev);
+       rcu_qsctr_inc(task_cpu(prev));
+
+       update_cpu_clock(prev, rq, now);
 
        prev->sleep_avg -= run_time;
-       if ((long)prev->sleep_avg <= 0) {
+       if ((long)prev->sleep_avg <= 0)
                prev->sleep_avg = 0;
-               if (!(HIGH_CREDIT(prev) || LOW_CREDIT(prev)))
-                       prev->interactive_credit--;
-       }
-       add_delay_ts(prev,runcpu_total,prev->timestamp,now);
-       prev->timestamp = now;
+       prev->timestamp = prev->last_ran = now;
 
+       sched_info_switch(prev, next);
        if (likely(prev != next)) {
-               add_delay_ts(next,waitcpu_total,next->timestamp,now);
-               inc_delay(next,runs);
                next->timestamp = now;
                rq->nr_switches++;
                rq->curr = next;
                ++*switch_count;
 
-               prepare_arch_switch(rq, next);
+               prepare_task_switch(rq, next);
                prev = context_switch(rq, prev, next);
                barrier();
-
-               finish_task_switch(prev);
+               /*
+                * this_rq must be evaluated again because prev may have moved
+                * CPUs since it called schedule(), thus the 'rq' on its stack
+                * frame will be invalid.
+                */
+               finish_task_switch(this_rq(), prev);
        } else
                spin_unlock_irq(&rq->lock);
 
-       reacquire_kernel_lock(current);
+       prev = current;
+       if (unlikely(reacquire_kernel_lock(prev) < 0))
+               goto need_resched_nonpreemptible;
        preempt_enable_no_resched();
-       if (test_thread_flag(TIF_NEED_RESCHED))
+       if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
                goto need_resched;
 }
 
@@ -2787,7 +3274,10 @@ EXPORT_SYMBOL(schedule);
 asmlinkage void __sched preempt_schedule(void)
 {
        struct thread_info *ti = current_thread_info();
-
+#ifdef CONFIG_PREEMPT_BKL
+       struct task_struct *task = current;
+       int saved_lock_depth;
+#endif
        /*
         * If there is a non-zero preempt_count or interrupts are disabled,
         * we do not want to preempt the current task.  Just return..
@@ -2796,10 +3286,22 @@ asmlinkage void __sched preempt_schedule(void)
                return;
 
 need_resched:
-       ti->preempt_count = PREEMPT_ACTIVE;
-       schedule();
-       ti->preempt_count = 0;
-
+       add_preempt_count(PREEMPT_ACTIVE);
+       /*
+        * We keep the big kernel semaphore locked, but we
+        * clear ->lock_depth so that schedule() doesnt
+        * auto-release the semaphore:
+        */
+#ifdef CONFIG_PREEMPT_BKL
+       saved_lock_depth = task->lock_depth;
+       task->lock_depth = -1;
+#endif
+       schedule();
+#ifdef CONFIG_PREEMPT_BKL
+       task->lock_depth = saved_lock_depth;
+#endif
+       sub_preempt_count(PREEMPT_ACTIVE);
+
        /* we could miss a preemption opportunity between schedule and now */
        barrier();
        if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
@@ -2807,11 +3309,54 @@ need_resched:
 }
 
 EXPORT_SYMBOL(preempt_schedule);
+
+/*
+ * this is is the entry point to schedule() from kernel preemption
+ * off of irq context.
+ * Note, that this is called and return with irqs disabled. This will
+ * protect us against recursive calling from irq.
+ */
+asmlinkage void __sched preempt_schedule_irq(void)
+{
+       struct thread_info *ti = current_thread_info();
+#ifdef CONFIG_PREEMPT_BKL
+       struct task_struct *task = current;
+       int saved_lock_depth;
+#endif
+       /* Catch callers which need to be fixed*/
+       BUG_ON(ti->preempt_count || !irqs_disabled());
+
+need_resched:
+       add_preempt_count(PREEMPT_ACTIVE);
+       /*
+        * We keep the big kernel semaphore locked, but we
+        * clear ->lock_depth so that schedule() doesnt
+        * auto-release the semaphore:
+        */
+#ifdef CONFIG_PREEMPT_BKL
+       saved_lock_depth = task->lock_depth;
+       task->lock_depth = -1;
+#endif
+       local_irq_enable();
+       schedule();
+       local_irq_disable();
+#ifdef CONFIG_PREEMPT_BKL
+       task->lock_depth = saved_lock_depth;
+#endif
+       sub_preempt_count(PREEMPT_ACTIVE);
+
+       /* we could miss a preemption opportunity between schedule and now */
+       barrier();
+       if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
+               goto need_resched;
+}
+
 #endif /* CONFIG_PREEMPT */
 
-int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
+int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
+                         void *key)
 {
-       task_t *p = curr->task;
+       task_t *p = curr->private;
        return try_to_wake_up(p, mode, sync);
 }
 
@@ -2848,9 +3393,10 @@ static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  * @q: the waitqueue
  * @mode: which threads
  * @nr_exclusive: how many wake-one or wake-many threads to wake up
+ * @key: is directly passed to the wakeup function
  */
 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
-                               int nr_exclusive, void *key)
+                       int nr_exclusive, void *key)
 {
        unsigned long flags;
 
@@ -2870,7 +3416,7 @@ void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
 }
 
 /**
- * __wake_up - sync- wake up threads blocked on a waitqueue.
+ * __wake_up_sync - wake up threads blocked on a waitqueue.
  * @q: the waitqueue
  * @mode: which threads
  * @nr_exclusive: how many wake-one or wake-many threads to wake up
@@ -2882,7 +3428,8 @@ void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  *
  * On UP it can prevent extra preemption.
  */
-void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
+void fastcall
+__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
 {
        unsigned long flags;
        int sync = 1;
@@ -2945,6 +3492,106 @@ void fastcall __sched wait_for_completion(struct completion *x)
 }
 EXPORT_SYMBOL(wait_for_completion);
 
+unsigned long fastcall __sched
+wait_for_completion_timeout(struct completion *x, unsigned long timeout)
+{
+       might_sleep();
+
+       spin_lock_irq(&x->wait.lock);
+       if (!x->done) {
+               DECLARE_WAITQUEUE(wait, current);
+
+               wait.flags |= WQ_FLAG_EXCLUSIVE;
+               __add_wait_queue_tail(&x->wait, &wait);
+               do {
+                       __set_current_state(TASK_UNINTERRUPTIBLE);
+                       spin_unlock_irq(&x->wait.lock);
+                       timeout = schedule_timeout(timeout);
+                       spin_lock_irq(&x->wait.lock);
+                       if (!timeout) {
+                               __remove_wait_queue(&x->wait, &wait);
+                               goto out;
+                       }
+               } while (!x->done);
+               __remove_wait_queue(&x->wait, &wait);
+       }
+       x->done--;
+out:
+       spin_unlock_irq(&x->wait.lock);
+       return timeout;
+}
+EXPORT_SYMBOL(wait_for_completion_timeout);
+
+int fastcall __sched wait_for_completion_interruptible(struct completion *x)
+{
+       int ret = 0;
+
+       might_sleep();
+
+       spin_lock_irq(&x->wait.lock);
+       if (!x->done) {
+               DECLARE_WAITQUEUE(wait, current);
+
+               wait.flags |= WQ_FLAG_EXCLUSIVE;
+               __add_wait_queue_tail(&x->wait, &wait);
+               do {
+                       if (signal_pending(current)) {
+                               ret = -ERESTARTSYS;
+                               __remove_wait_queue(&x->wait, &wait);
+                               goto out;
+                       }
+                       __set_current_state(TASK_INTERRUPTIBLE);
+                       spin_unlock_irq(&x->wait.lock);
+                       schedule();
+                       spin_lock_irq(&x->wait.lock);
+               } while (!x->done);
+               __remove_wait_queue(&x->wait, &wait);
+       }
+       x->done--;
+out:
+       spin_unlock_irq(&x->wait.lock);
+
+       return ret;
+}
+EXPORT_SYMBOL(wait_for_completion_interruptible);
+
+unsigned long fastcall __sched
+wait_for_completion_interruptible_timeout(struct completion *x,
+                                         unsigned long timeout)
+{
+       might_sleep();
+
+       spin_lock_irq(&x->wait.lock);
+       if (!x->done) {
+               DECLARE_WAITQUEUE(wait, current);
+
+               wait.flags |= WQ_FLAG_EXCLUSIVE;
+               __add_wait_queue_tail(&x->wait, &wait);
+               do {
+                       if (signal_pending(current)) {
+                               timeout = -ERESTARTSYS;
+                               __remove_wait_queue(&x->wait, &wait);
+                               goto out;
+                       }
+                       __set_current_state(TASK_INTERRUPTIBLE);
+                       spin_unlock_irq(&x->wait.lock);
+                       timeout = schedule_timeout(timeout);
+                       spin_lock_irq(&x->wait.lock);
+                       if (!timeout) {
+                               __remove_wait_queue(&x->wait, &wait);
+                               goto out;
+                       }
+               } while (!x->done);
+               __remove_wait_queue(&x->wait, &wait);
+       }
+       x->done--;
+out:
+       spin_unlock_irq(&x->wait.lock);
+       return timeout;
+}
+EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
+
+
 #define        SLEEP_ON_VAR                                    \
        unsigned long flags;                            \
        wait_queue_t wait;                              \
@@ -2960,21 +3607,10 @@ EXPORT_SYMBOL(wait_for_completion);
        __remove_wait_queue(q, &wait);                  \
        spin_unlock_irqrestore(&q->lock, flags);
 
-#define SLEEP_ON_BKLCHECK                              \
-       if (unlikely(!kernel_locked()) &&               \
-           sleep_on_bkl_warnings < 10) {               \
-               sleep_on_bkl_warnings++;                \
-               WARN_ON(1);                             \
-       }
-
-static int sleep_on_bkl_warnings;
-
 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
 {
        SLEEP_ON_VAR
 
-       SLEEP_ON_BKLCHECK
-
        current->state = TASK_INTERRUPTIBLE;
 
        SLEEP_ON_HEAD
@@ -2984,12 +3620,11 @@ void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
 
 EXPORT_SYMBOL(interruptible_sleep_on);
 
-long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
+long fastcall __sched
+interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
 {
        SLEEP_ON_VAR
 
-       SLEEP_ON_BKLCHECK
-
        current->state = TASK_INTERRUPTIBLE;
 
        SLEEP_ON_HEAD
@@ -3001,11 +3636,22 @@ long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long
 
 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
 
-long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
+void fastcall __sched sleep_on(wait_queue_head_t *q)
 {
        SLEEP_ON_VAR
 
-       SLEEP_ON_BKLCHECK
+       current->state = TASK_UNINTERRUPTIBLE;
+
+       SLEEP_ON_HEAD
+       schedule();
+       SLEEP_ON_TAIL
+}
+
+EXPORT_SYMBOL(sleep_on);
+
+long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
+{
+       SLEEP_ON_VAR
 
        current->state = TASK_UNINTERRUPTIBLE;
 
@@ -3033,10 +3679,10 @@ void set_user_nice(task_t *p, long nice)
         */
        rq = task_rq_lock(p, &flags);
        /*
-        * The RT priorities are set via setscheduler(), but we still
+        * The RT priorities are set via sched_setscheduler(), but we still
         * allow the 'normal' nice value to be set - but as expected
         * it wont have any effect on scheduling until the task is
-        * not SCHED_NORMAL:
+        * not SCHED_NORMAL/SCHED_BATCH:
         */
        if (rt_task(p)) {
                p->static_prio = NICE_TO_PRIO(nice);
@@ -3067,6 +3713,19 @@ out_unlock:
 
 EXPORT_SYMBOL(set_user_nice);
 
+/*
+ * can_nice - check if a task can reduce its nice value
+ * @p: task
+ * @nice: nice value
+ */
+int can_nice(const task_t *p, const int nice)
+{
+       /* convert nice value [19,-20] to rlimit style value [1,40] */
+       int nice_rlim = 20 - nice;
+       return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
+               capable(CAP_SYS_NICE));
+}
+
 #ifdef __ARCH_WANT_SYS_NICE
 
 /*
@@ -3086,12 +3745,8 @@ asmlinkage long sys_nice(int increment)
         * We don't have to worry. Conceptually one call occurs first
         * and we have a single winner.
         */
-       if (increment < 0) {
-               if (!capable(CAP_SYS_NICE))
-                       return -EPERM;
-               if (increment < -40)
-                       increment = -40;
-       }
+       if (increment < -40)
+               increment = -40;
        if (increment > 40)
                increment = 40;
 
@@ -3101,6 +3756,9 @@ asmlinkage long sys_nice(int increment)
        if (nice > 19)
                nice = 19;
 
+       if (increment < 0 && !can_nice(current, nice))
+               return vx_flags(VXF_IGNEG_NICE, 0) ? 0 : -EPERM;
+
        retval = security_task_setnice(current, nice);
        if (retval)
                return retval;
@@ -3132,8 +3790,7 @@ int task_nice(const task_t *p)
 {
        return TASK_NICE(p);
 }
-
-EXPORT_SYMBOL(task_nice);
+EXPORT_SYMBOL_GPL(task_nice);
 
 /**
  * idle_cpu - is a given cpu idle currently?
@@ -3144,7 +3801,14 @@ int idle_cpu(int cpu)
        return cpu_curr(cpu) == cpu_rq(cpu)->idle;
 }
 
-EXPORT_SYMBOL_GPL(idle_cpu);
+/**
+ * idle_task - return the idle task for a given cpu.
+ * @cpu: the processor in question.
+ */
+task_t *idle_task(int cpu)
+{
+       return cpu_rq(cpu)->idle;
+}
 
 /**
  * find_process_by_pid - find a process with a matching PID value.
@@ -3161,88 +3825,100 @@ static void __setscheduler(struct task_struct *p, int policy, int prio)
        BUG_ON(p->array);
        p->policy = policy;
        p->rt_priority = prio;
-       if (policy != SCHED_NORMAL)
-               p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
-       else
+       if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
+               p->prio = MAX_RT_PRIO-1 - p->rt_priority;
+       } else {
                p->prio = p->static_prio;
+               /*
+                * SCHED_BATCH tasks are treated as perpetual CPU hogs:
+                */
+               if (policy == SCHED_BATCH)
+                       p->sleep_avg = 0;
+       }
 }
 
-/*
- * setscheduler - change the scheduling policy and/or RT priority of a thread.
+/**
+ * sched_setscheduler - change the scheduling policy and/or RT priority of
+ * a thread.
+ * @p: the task in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
  */
-static int setscheduler(pid_t pid, int policy, struct sched_param __user *param)
+int sched_setscheduler(struct task_struct *p, int policy,
+                      struct sched_param *param)
 {
-       struct sched_param lp;
-       int retval = -EINVAL;
-       int oldprio;
+       int retval;
+       int oldprio, oldpolicy = -1;
        prio_array_t *array;
        unsigned long flags;
        runqueue_t *rq;
-       task_t *p;
-
-       if (!param || pid < 0)
-               goto out_nounlock;
-
-       retval = -EFAULT;
-       if (copy_from_user(&lp, param, sizeof(struct sched_param)))
-               goto out_nounlock;
 
+recheck:
+       /* double check policy once rq lock held */
+       if (policy < 0)
+               policy = oldpolicy = p->policy;
+       else if (policy != SCHED_FIFO && policy != SCHED_RR &&
+                       policy != SCHED_NORMAL && policy != SCHED_BATCH)
+               return -EINVAL;
        /*
-        * We play safe to avoid deadlocks.
+        * Valid priorities for SCHED_FIFO and SCHED_RR are
+        * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
+        * SCHED_BATCH is 0.
         */
-       read_lock_irq(&tasklist_lock);
-
-       p = find_process_by_pid(pid);
+       if (param->sched_priority < 0 ||
+           (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
+           (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
+               return -EINVAL;
+       if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
+                                       != (param->sched_priority == 0))
+               return -EINVAL;
 
-       retval = -ESRCH;
-       if (!p)
-               goto out_unlock_tasklist;
+       /*
+        * Allow unprivileged RT tasks to decrease priority:
+        */
+       if (!capable(CAP_SYS_NICE)) {
+               /*
+                * can't change policy, except between SCHED_NORMAL
+                * and SCHED_BATCH:
+                */
+               if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
+                       (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
+                               !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
+                       return -EPERM;
+               /* can't increase priority */
+               if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
+                   param->sched_priority > p->rt_priority &&
+                   param->sched_priority >
+                               p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
+                       return -EPERM;
+               /* can't change other user's priorities */
+               if ((current->euid != p->euid) &&
+                   (current->euid != p->uid))
+                       return -EPERM;
+       }
 
+       retval = security_task_setscheduler(p, policy, param);
+       if (retval)
+               return retval;
        /*
         * To be able to change p->policy safely, the apropriate
         * runqueue lock must be held.
         */
        rq = task_rq_lock(p, &flags);
-
-       if (policy < 0)
-               policy = p->policy;
-       else {
-               retval = -EINVAL;
-               if (policy != SCHED_FIFO && policy != SCHED_RR &&
-                               policy != SCHED_NORMAL)
-                       goto out_unlock;
+       /* recheck policy now with rq lock held */
+       if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
+               policy = oldpolicy = -1;
+               task_rq_unlock(rq, &flags);
+               goto recheck;
        }
-
-       /*
-        * Valid priorities for SCHED_FIFO and SCHED_RR are
-        * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
-        */
-       retval = -EINVAL;
-       if (lp.sched_priority < 0 || lp.sched_priority > MAX_USER_RT_PRIO-1)
-               goto out_unlock;
-       if ((policy == SCHED_NORMAL) != (lp.sched_priority == 0))
-               goto out_unlock;
-
-       retval = -EPERM;
-       if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
-           !capable(CAP_SYS_NICE))
-               goto out_unlock;
-       if ((current->euid != p->euid) && (current->euid != p->uid) &&
-           !capable(CAP_SYS_NICE))
-               goto out_unlock;
-
-       retval = security_task_setscheduler(p, policy, &lp);
-       if (retval)
-               goto out_unlock;
-
        array = p->array;
        if (array)
-               deactivate_task(p, task_rq(p));
-       retval = 0;
+               deactivate_task(p, rq);
        oldprio = p->prio;
-       __setscheduler(p, policy, lp.sched_priority);
+       __setscheduler(p, policy, param->sched_priority);
        if (array) {
-               __activate_task(p, task_rq(p));
+               vx_activate_task(p);
+               __activate_task(p, rq);
                /*
                 * Reschedule if we are currently running on this runqueue and
                 * our priority decreased, or if we are not currently running on
@@ -3254,26 +3930,47 @@ static int setscheduler(pid_t pid, int policy, struct sched_param __user *param)
                } else if (TASK_PREEMPTS_CURR(p, rq))
                        resched_task(rq->curr);
        }
-
-out_unlock:
        task_rq_unlock(rq, &flags);
-out_unlock_tasklist:
-       read_unlock_irq(&tasklist_lock);
+       return 0;
+}
+EXPORT_SYMBOL_GPL(sched_setscheduler);
 
-out_nounlock:
+static int
+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
+{
+       int retval;
+       struct sched_param lparam;
+       struct task_struct *p;
+
+       if (!param || pid < 0)
+               return -EINVAL;
+       if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
+               return -EFAULT;
+       read_lock_irq(&tasklist_lock);
+       p = find_process_by_pid(pid);
+       if (!p) {
+               read_unlock_irq(&tasklist_lock);
+               return -ESRCH;
+       }
+       retval = sched_setscheduler(p, policy, &lparam);
+       read_unlock_irq(&tasklist_lock);
        return retval;
 }
 
 /**
  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  * @pid: the pid in question.
- * @policy: new policy
+ * @policy: new policy.
  * @param: structure containing the new RT priority.
  */
 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
                                       struct sched_param __user *param)
 {
-       return setscheduler(pid, policy, param);
+       /* negative values for policy are not valid */
+       if (policy < 0)
+               return -EINVAL;
+
+       return do_sched_setscheduler(pid, policy, param);
 }
 
 /**
@@ -3283,7 +3980,7 @@ asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  */
 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
 {
-       return setscheduler(pid, -1, param);
+       return do_sched_setscheduler(pid, -1, param);
 }
 
 /**
@@ -3352,24 +4049,11 @@ out_unlock:
        return retval;
 }
 
-/**
- * sys_sched_setaffinity - set the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to the new cpu mask
- */
-asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
-                                     unsigned long __user *user_mask_ptr)
+long sched_setaffinity(pid_t pid, cpumask_t new_mask)
 {
-       cpumask_t new_mask;
-       int retval;
        task_t *p;
-
-       if (len < sizeof(new_mask))
-               return -EINVAL;
-
-       if (copy_from_user(&new_mask, user_mask_ptr, sizeof(new_mask)))
-               return -EFAULT;
+       int retval;
+       cpumask_t cpus_allowed;
 
        lock_cpu_hotplug();
        read_lock(&tasklist_lock);
@@ -3394,6 +4078,8 @@ asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
                        !capable(CAP_SYS_NICE))
                goto out_unlock;
 
+       cpus_allowed = cpuset_cpus_allowed(p);
+       cpus_and(new_mask, new_mask, cpus_allowed);
        retval = set_cpus_allowed(p, new_mask);
 
 out_unlock:
@@ -3402,6 +4088,36 @@ out_unlock:
        return retval;
 }
 
+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
+                            cpumask_t *new_mask)
+{
+       if (len < sizeof(cpumask_t)) {
+               memset(new_mask, 0, sizeof(cpumask_t));
+       } else if (len > sizeof(cpumask_t)) {
+               len = sizeof(cpumask_t);
+       }
+       return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
+}
+
+/**
+ * sys_sched_setaffinity - set the cpu affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to the new cpu mask
+ */
+asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
+                                     unsigned long __user *user_mask_ptr)
+{
+       cpumask_t new_mask;
+       int retval;
+
+       retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
+       if (retval)
+               return retval;
+
+       return sched_setaffinity(pid, new_mask);
+}
+
 /*
  * Represents all cpu's present in the system
  * In systems capable of hotplug, this map could dynamically grow
@@ -3409,32 +4125,19 @@ out_unlock:
  * method, such as ACPI for e.g.
  */
 
-cpumask_t cpu_present_map;
+cpumask_t cpu_present_map __read_mostly;
 EXPORT_SYMBOL(cpu_present_map);
 
 #ifndef CONFIG_SMP
-cpumask_t cpu_online_map = CPU_MASK_ALL;
-cpumask_t cpu_possible_map = CPU_MASK_ALL;
+cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
+cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
 #endif
 
-/**
- * sys_sched_getaffinity - get the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to hold the current cpu mask
- */
-asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
-                                     unsigned long __user *user_mask_ptr)
+long sched_getaffinity(pid_t pid, cpumask_t *mask)
 {
-       unsigned int real_len;
-       cpumask_t mask;
        int retval;
        task_t *p;
 
-       real_len = sizeof(mask);
-       if (len < real_len)
-               return -EINVAL;
-
        lock_cpu_hotplug();
        read_lock(&tasklist_lock);
 
@@ -3444,16 +4147,40 @@ asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
                goto out_unlock;
 
        retval = 0;
-       cpus_and(mask, p->cpus_allowed, cpu_possible_map);
+       cpus_and(*mask, p->cpus_allowed, cpu_online_map);
 
 out_unlock:
        read_unlock(&tasklist_lock);
        unlock_cpu_hotplug();
        if (retval)
                return retval;
-       if (copy_to_user(user_mask_ptr, &mask, real_len))
+
+       return 0;
+}
+
+/**
+ * sys_sched_getaffinity - get the cpu affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to hold the current cpu mask
+ */
+asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
+                                     unsigned long __user *user_mask_ptr)
+{
+       int ret;
+       cpumask_t mask;
+
+       if (len < sizeof(cpumask_t))
+               return -EINVAL;
+
+       ret = sched_getaffinity(pid, &mask);
+       if (ret < 0)
+               return ret;
+
+       if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
                return -EFAULT;
-       return real_len;
+
+       return sizeof(cpumask_t);
 }
 
 /**
@@ -3467,8 +4194,9 @@ asmlinkage long sys_sched_yield(void)
 {
        runqueue_t *rq = this_rq_lock();
        prio_array_t *array = current->array;
-       prio_array_t *target = rq_expired(current,rq);
+       prio_array_t *target = rq->expired;
 
+       schedstat_inc(rq, yld_cnt);
        /*
         * We implement yielding by moving the task into the expired
         * queue.
@@ -3476,16 +4204,30 @@ asmlinkage long sys_sched_yield(void)
         * (special rule: RT tasks will just roundrobin in the active
         *  array.)
         */
-       if (unlikely(rt_task(current)))
-               target = rq_active(current,rq);
-
-       dequeue_task(current, array);
-       enqueue_task(current, target);
+       if (rt_task(current))
+               target = rq->active;
+
+       if (array->nr_active == 1) {
+               schedstat_inc(rq, yld_act_empty);
+               if (!rq->expired->nr_active)
+                       schedstat_inc(rq, yld_both_empty);
+       } else if (!rq->expired->nr_active)
+               schedstat_inc(rq, yld_exp_empty);
+
+       if (array != target) {
+               dequeue_task(current, array);
+               enqueue_task(current, target);
+       } else
+               /*
+                * requeue_task is cheaper so perform that if possible.
+                */
+               requeue_task(current, array);
 
        /*
         * Since we are going to call schedule() anyway, there's
         * no need to preempt or enable interrupts:
         */
+       __release(rq->lock);
        _raw_spin_unlock(&rq->lock);
        preempt_enable_no_resched();
 
@@ -3494,35 +4236,80 @@ asmlinkage long sys_sched_yield(void)
        return 0;
 }
 
-void __sched __cond_resched(void)
+static inline void __cond_resched(void)
 {
-#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
-       __might_sleep(__FILE__, __LINE__, 0);
-#endif
        /*
-        * The system_state check is somewhat ugly but we might be
-        * called during early boot when we are not yet ready to reschedule.
+        * The BKS might be reacquired before we have dropped
+        * PREEMPT_ACTIVE, which could trigger a second
+        * cond_resched() call.
         */
-       if (need_resched() && system_state >= SYSTEM_BOOTING_SCHEDULER_OK) {
-               set_current_state(TASK_RUNNING);
+       if (unlikely(preempt_count()))
+               return;
+       if (unlikely(system_state != SYSTEM_RUNNING))
+               return;
+       do {
+               add_preempt_count(PREEMPT_ACTIVE);
                schedule();
+               sub_preempt_count(PREEMPT_ACTIVE);
+       } while (need_resched());
+}
+
+int __sched cond_resched(void)
+{
+       if (need_resched()) {
+               __cond_resched();
+               return 1;
        }
+       return 0;
 }
 
-EXPORT_SYMBOL(__cond_resched);
+EXPORT_SYMBOL(cond_resched);
 
-void __sched __cond_resched_lock(spinlock_t * lock)
+/*
+ * cond_resched_lock() - if a reschedule is pending, drop the given lock,
+ * call schedule, and on return reacquire the lock.
+ *
+ * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
+ * operations here to prevent schedule() from being called twice (once via
+ * spin_unlock(), once by hand).
+ */
+int cond_resched_lock(spinlock_t *lock)
 {
-        if (need_resched()) {
-                _raw_spin_unlock(lock);
-                preempt_enable_no_resched();
-               set_current_state(TASK_RUNNING);
-               schedule();
-                spin_lock(lock);
-        }
+       int ret = 0;
+
+       if (need_lockbreak(lock)) {
+               spin_unlock(lock);
+               cpu_relax();
+               ret = 1;
+               spin_lock(lock);
+       }
+       if (need_resched()) {
+               _raw_spin_unlock(lock);
+               preempt_enable_no_resched();
+               __cond_resched();
+               ret = 1;
+               spin_lock(lock);
+       }
+       return ret;
 }
 
-EXPORT_SYMBOL(__cond_resched_lock);
+EXPORT_SYMBOL(cond_resched_lock);
+
+int __sched cond_resched_softirq(void)
+{
+       BUG_ON(!in_softirq());
+
+       if (need_resched()) {
+               __local_bh_enable();
+               __cond_resched();
+               local_bh_disable();
+               return 1;
+       }
+       return 0;
+}
+
+EXPORT_SYMBOL(cond_resched_softirq);
+
 
 /**
  * yield - yield the current processor to other threads.
@@ -3547,29 +4334,23 @@ EXPORT_SYMBOL(yield);
  */
 void __sched io_schedule(void)
 {
-       struct runqueue *rq = this_rq();
-       def_delay_var(dstart);
+       struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
 
-       start_delay_set(dstart,PF_IOWAIT);
        atomic_inc(&rq->nr_iowait);
        schedule();
        atomic_dec(&rq->nr_iowait);
-       add_io_delay(dstart);
 }
 
 EXPORT_SYMBOL(io_schedule);
 
 long __sched io_schedule_timeout(long timeout)
 {
-       struct runqueue *rq = this_rq();
+       struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
        long ret;
-       def_delay_var(dstart);
 
-       start_delay_set(dstart,PF_IOWAIT);
        atomic_inc(&rq->nr_iowait);
        ret = schedule_timeout(timeout);
        atomic_dec(&rq->nr_iowait);
-       add_io_delay(dstart);
        return ret;
 }
 
@@ -3590,6 +4371,7 @@ asmlinkage long sys_sched_get_priority_max(int policy)
                ret = MAX_USER_RT_PRIO-1;
                break;
        case SCHED_NORMAL:
+       case SCHED_BATCH:
                ret = 0;
                break;
        }
@@ -3613,6 +4395,7 @@ asmlinkage long sys_sched_get_priority_min(int policy)
                ret = 1;
                break;
        case SCHED_NORMAL:
+       case SCHED_BATCH:
                ret = 0;
        }
        return ret;
@@ -3675,12 +4458,12 @@ static inline struct task_struct *younger_sibling(struct task_struct *p)
        return list_entry(p->sibling.next,struct task_struct,sibling);
 }
 
-static void show_task(task_t * p)
+static void show_task(task_t *p)
 {
        task_t *relative;
        unsigned state;
        unsigned long free = 0;
-       static const char *stat_nam[] = { "R", "S", "D", "T", "Z", "W" };
+       static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
 
        printk("%-13.13s ", p->comm);
        state = p->state ? __ffs(p->state) + 1 : 0;
@@ -3701,10 +4484,10 @@ static void show_task(task_t * p)
 #endif
 #ifdef CONFIG_DEBUG_STACK_USAGE
        {
-               unsigned long * n = (unsigned long *) (p->thread_info+1);
+               unsigned long *n = end_of_stack(p);
                while (!*n)
                        n++;
-               free = (unsigned long) n - (unsigned long)(p->thread_info+1);
+               free = (unsigned long)n - (unsigned long)end_of_stack(p);
        }
 #endif
        printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
@@ -3753,33 +4536,42 @@ void show_state(void)
        } while_each_thread(g, p);
 
        read_unlock(&tasklist_lock);
+       mutex_debug_show_all_locks();
 }
 
-EXPORT_SYMBOL_GPL(show_state);
-
+/**
+ * init_idle - set up an idle thread for a given CPU
+ * @idle: task in question
+ * @cpu: cpu the idle task belongs to
+ *
+ * NOTE: this function does not set the idle thread's NEED_RESCHED
+ * flag, to make booting more robust.
+ */
 void __devinit init_idle(task_t *idle, int cpu)
 {
-       runqueue_t *idle_rq = cpu_rq(cpu), *rq = cpu_rq(task_cpu(idle));
+       runqueue_t *rq = cpu_rq(cpu);
        unsigned long flags;
 
-       local_irq_save(flags);
-       double_rq_lock(idle_rq, rq);
-
-       idle_rq->curr = idle_rq->idle = idle;
-       deactivate_task(idle, rq);
+       idle->timestamp = sched_clock();
+       idle->sleep_avg = 0;
        idle->array = NULL;
        idle->prio = MAX_PRIO;
        idle->state = TASK_RUNNING;
+       idle->cpus_allowed = cpumask_of_cpu(cpu);
        set_task_cpu(idle, cpu);
-       double_rq_unlock(idle_rq, rq);
-       set_tsk_need_resched(idle);
-       local_irq_restore(flags);
+
+       spin_lock_irqsave(&rq->lock, flags);
+       rq->curr = rq->idle = idle;
+#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
+       idle->oncpu = 1;
+#endif
+       spin_unlock_irqrestore(&rq->lock, flags);
 
        /* Set the preempt count _outside_ the spinlocks! */
-#ifdef CONFIG_PREEMPT
-       idle->thread_info->preempt_count = (idle->lock_depth >= 0);
+#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
+       task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
 #else
-       idle->thread_info->preempt_count = 0;
+       task_thread_info(idle)->preempt_count = 0;
 #endif
 }
 
@@ -3855,7 +4647,7 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed);
  * Move (not current) task off this cpu, onto dest cpu.  We're doing
  * this because either it can't run here any more (set_cpus_allowed()
  * away from this CPU, or CPU going down), or because we're
- * attempting to rebalance this task on exec (sched_balance_exec).
+ * attempting to rebalance this task on exec (sched_exec).
  *
  * So we race with normal scheduler movements, but that's OK, as long
  * as the task is no longer on this CPU.
@@ -3867,7 +4659,7 @@ static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
        if (unlikely(cpu_is_offline(dest_cpu)))
                return;
 
-       rq_src  = cpu_rq(src_cpu);
+       rq_src = cpu_rq(src_cpu);
        rq_dest = cpu_rq(dest_cpu);
 
        double_rq_lock(rq_src, rq_dest);
@@ -3903,7 +4695,7 @@ out:
  * thread migration by bumping thread off CPU then 'pushing' onto
  * another runqueue.
  */
-static int migration_thread(void * data)
+static int migration_thread(void *data)
 {
        runqueue_t *rq;
        int cpu = (long)data;
@@ -3916,8 +4708,7 @@ static int migration_thread(void * data)
                struct list_head *head;
                migration_req_t *req;
 
-               if (current->flags & PF_FREEZE)
-                       refrigerator(PF_FREEZE);
+               try_to_freeze();
 
                spin_lock_irq(&rq->lock);
 
@@ -3927,9 +4718,7 @@ static int migration_thread(void * data)
                }
 
                if (rq->active_balance) {
-#ifndef CONFIG_CKRM_CPU_SCHEDULE
                        active_load_balance(rq, cpu);
-#endif
                        rq->active_balance = 0;
                }
 
@@ -3944,18 +4733,9 @@ static int migration_thread(void * data)
                req = list_entry(head->next, migration_req_t, list);
                list_del_init(head->next);
 
-               if (req->type == REQ_MOVE_TASK) {
-                       spin_unlock(&rq->lock);
-                       __migrate_task(req->task, smp_processor_id(),
-                                       req->dest_cpu);
-                       local_irq_enable();
-               } else if (req->type == REQ_SET_DOMAIN) {
-                       rq->sd = req->sd;
-                       spin_unlock_irq(&rq->lock);
-               } else {
-                       spin_unlock_irq(&rq->lock);
-                       WARN_ON(1);
-               }
+               spin_unlock(&rq->lock);
+               __migrate_task(req->task, cpu, req->dest_cpu);
+               local_irq_enable();
 
                complete(&req->done);
        }
@@ -3974,49 +4754,72 @@ wait_to_die:
 }
 
 #ifdef CONFIG_HOTPLUG_CPU
-/* migrate_all_tasks - function to migrate all tasks from the dead cpu.  */
-static void migrate_all_tasks(int src_cpu)
+/* Figure out where task on dead CPU should go, use force if neccessary. */
+static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
 {
-       struct task_struct *tsk, *t;
        int dest_cpu;
-       unsigned int node;
+       cpumask_t mask;
 
-       write_lock_irq(&tasklist_lock);
+       /* On same node? */
+       mask = node_to_cpumask(cpu_to_node(dead_cpu));
+       cpus_and(mask, mask, tsk->cpus_allowed);
+       dest_cpu = any_online_cpu(mask);
+
+       /* On any allowed CPU? */
+       if (dest_cpu == NR_CPUS)
+               dest_cpu = any_online_cpu(tsk->cpus_allowed);
+
+       /* No more Mr. Nice Guy. */
+       if (dest_cpu == NR_CPUS) {
+               cpus_setall(tsk->cpus_allowed);
+               dest_cpu = any_online_cpu(tsk->cpus_allowed);
+
+               /*
+                * Don't tell them about moving exiting tasks or
+                * kernel threads (both mm NULL), since they never
+                * leave kernel.
+                */
+               if (tsk->mm && printk_ratelimit())
+                       printk(KERN_INFO "process %d (%s) no "
+                              "longer affine to cpu%d\n",
+                              tsk->pid, tsk->comm, dead_cpu);
+       }
+       __migrate_task(tsk, dead_cpu, dest_cpu);
+}
+
+/*
+ * While a dead CPU has no uninterruptible tasks queued at this point,
+ * it might still have a nonzero ->nr_uninterruptible counter, because
+ * for performance reasons the counter is not stricly tracking tasks to
+ * their home CPUs. So we just add the counter to another CPU's counter,
+ * to keep the global sum constant after CPU-down:
+ */
+static void migrate_nr_uninterruptible(runqueue_t *rq_src)
+{
+       runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
+       unsigned long flags;
+
+       local_irq_save(flags);
+       double_rq_lock(rq_src, rq_dest);
+       rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
+       rq_src->nr_uninterruptible = 0;
+       double_rq_unlock(rq_src, rq_dest);
+       local_irq_restore(flags);
+}
+
+/* Run through task list and migrate tasks from the dead cpu. */
+static void migrate_live_tasks(int src_cpu)
+{
+       struct task_struct *tsk, *t;
 
-       /* watch out for per node tasks, let's stay on this node */
-       node = cpu_to_node(src_cpu);
+       write_lock_irq(&tasklist_lock);
 
        do_each_thread(t, tsk) {
-               cpumask_t mask;
                if (tsk == current)
                        continue;
 
-               if (task_cpu(tsk) != src_cpu)
-                       continue;
-
-               /* Figure out where this task should go (attempting to
-                * keep it on-node), and check if it can be migrated
-                * as-is.  NOTE that kernel threads bound to more than
-                * one online cpu will be migrated. */
-               mask = node_to_cpumask(node);
-               cpus_and(mask, mask, tsk->cpus_allowed);
-               dest_cpu = any_online_cpu(mask);
-               if (dest_cpu == NR_CPUS)
-                       dest_cpu = any_online_cpu(tsk->cpus_allowed);
-               if (dest_cpu == NR_CPUS) {
-                       cpus_setall(tsk->cpus_allowed);
-                       dest_cpu = any_online_cpu(tsk->cpus_allowed);
-
-                       /* Don't tell them about moving exiting tasks
-                          or kernel threads (both mm NULL), since
-                          they never leave kernel. */
-                       if (tsk->mm && printk_ratelimit())
-                               printk(KERN_INFO "process %d (%s) no "
-                                      "longer affine to cpu%d\n",
-                                      tsk->pid, tsk->comm, src_cpu);
-               }
-
-               __migrate_task(tsk, src_cpu, dest_cpu);
+               if (task_cpu(tsk) == src_cpu)
+                       move_task_off_dead_cpu(src_cpu, tsk);
        } while_each_thread(t, tsk);
 
        write_unlock_irq(&tasklist_lock);
@@ -4047,6 +4850,61 @@ void sched_idle_next(void)
 
        spin_unlock_irqrestore(&rq->lock, flags);
 }
+
+/* Ensures that the idle task is using init_mm right before its cpu goes
+ * offline.
+ */
+void idle_task_exit(void)
+{
+       struct mm_struct *mm = current->active_mm;
+
+       BUG_ON(cpu_online(smp_processor_id()));
+
+       if (mm != &init_mm)
+               switch_mm(mm, &init_mm, current);
+       mmdrop(mm);
+}
+
+static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
+{
+       struct runqueue *rq = cpu_rq(dead_cpu);
+
+       /* Must be exiting, otherwise would be on tasklist. */
+       BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
+
+       /* Cannot have done final schedule yet: would have vanished. */
+       BUG_ON(tsk->flags & PF_DEAD);
+
+       get_task_struct(tsk);
+
+       /*
+        * Drop lock around migration; if someone else moves it,
+        * that's OK.  No task can be added to this CPU, so iteration is
+        * fine.
+        */
+       spin_unlock_irq(&rq->lock);
+       move_task_off_dead_cpu(dead_cpu, tsk);
+       spin_lock_irq(&rq->lock);
+
+       put_task_struct(tsk);
+}
+
+/* release_task() removes task from tasklist, so we won't find dead tasks. */
+static void migrate_dead_tasks(unsigned int dead_cpu)
+{
+       unsigned arr, i;
+       struct runqueue *rq = cpu_rq(dead_cpu);
+
+       for (arr = 0; arr < 2; arr++) {
+               for (i = 0; i < MAX_PRIO; i++) {
+                       struct list_head *list = &rq->arrays[arr].queue[i];
+                       while (!list_empty(list))
+                               migrate_dead(dead_cpu,
+                                            list_entry(list->next, task_t,
+                                                       run_list));
+               }
+       }
+}
 #endif /* CONFIG_HOTPLUG_CPU */
 
 /*
@@ -4081,12 +4939,13 @@ static int migration_call(struct notifier_block *nfb, unsigned long action,
 #ifdef CONFIG_HOTPLUG_CPU
        case CPU_UP_CANCELED:
                /* Unbind it from offline cpu so it can run.  Fall thru. */
-               kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
+               kthread_bind(cpu_rq(cpu)->migration_thread,
+                            any_online_cpu(cpu_online_map));
                kthread_stop(cpu_rq(cpu)->migration_thread);
                cpu_rq(cpu)->migration_thread = NULL;
                break;
        case CPU_DEAD:
-               migrate_all_tasks(cpu);
+               migrate_live_tasks(cpu);
                rq = cpu_rq(cpu);
                kthread_stop(rq->migration_thread);
                rq->migration_thread = NULL;
@@ -4095,8 +4954,10 @@ static int migration_call(struct notifier_block *nfb, unsigned long action,
                deactivate_task(rq->idle, rq);
                rq->idle->static_prio = MAX_PRIO;
                __setscheduler(rq->idle, SCHED_NORMAL, 0);
+               migrate_dead_tasks(cpu);
                task_rq_unlock(rq, &flags);
-               BUG_ON(rq->nr_running != 0);
+               migrate_nr_uninterruptible(rq);
+               BUG_ON(rq->nr_running != 0);
 
                /* No need to migrate the tasks: it was best-effort if
                 * they didn't do lock_cpu_hotplug().  Just wake up
@@ -4106,12 +4967,11 @@ static int migration_call(struct notifier_block *nfb, unsigned long action,
                        migration_req_t *req;
                        req = list_entry(rq->migration_queue.next,
                                         migration_req_t, list);
-                       BUG_ON(req->type != REQ_MOVE_TASK);
                        list_del_init(&req->list);
                        complete(&req->done);
                }
                spin_unlock_irq(&rq->lock);
-               break;
+               break;
 #endif
        }
        return NOTIFY_OK;
@@ -4136,324 +4996,1277 @@ int __init migration_init(void)
 }
 #endif
 
-/*
- * The 'big kernel lock'
- *
- * This spinlock is taken and released recursively by lock_kernel()
- * and unlock_kernel().  It is transparently dropped and reaquired
- * over schedule().  It is used to protect legacy code that hasn't
- * been migrated to a proper locking design yet.
- *
- * Don't use in new code.
- *
- * Note: spinlock debugging needs this even on !CONFIG_SMP.
- */
-spinlock_t kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
-EXPORT_SYMBOL(kernel_flag);
-
 #ifdef CONFIG_SMP
-/* Attach the domain 'sd' to 'cpu' as its base domain */
-void cpu_attach_domain(struct sched_domain *sd, int cpu)
+#undef SCHED_DOMAIN_DEBUG
+#ifdef SCHED_DOMAIN_DEBUG
+static void sched_domain_debug(struct sched_domain *sd, int cpu)
 {
-       migration_req_t req;
-       unsigned long flags;
-       runqueue_t *rq = cpu_rq(cpu);
-       int local = 1;
+       int level = 0;
 
-       lock_cpu_hotplug();
+       if (!sd) {
+               printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
+               return;
+       }
 
-       spin_lock_irqsave(&rq->lock, flags);
+       printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
 
-       if (cpu == smp_processor_id() || !cpu_online(cpu)) {
-               rq->sd = sd;
-       } else {
-               init_completion(&req.done);
-               req.type = REQ_SET_DOMAIN;
-               req.sd = sd;
-               list_add(&req.list, &rq->migration_queue);
-               local = 0;
-       }
+       do {
+               int i;
+               char str[NR_CPUS];
+               struct sched_group *group = sd->groups;
+               cpumask_t groupmask;
+
+               cpumask_scnprintf(str, NR_CPUS, sd->span);
+               cpus_clear(groupmask);
+
+               printk(KERN_DEBUG);
+               for (i = 0; i < level + 1; i++)
+                       printk(" ");
+               printk("domain %d: ", level);
+
+               if (!(sd->flags & SD_LOAD_BALANCE)) {
+                       printk("does not load-balance\n");
+                       if (sd->parent)
+                               printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
+                       break;
+               }
 
-       spin_unlock_irqrestore(&rq->lock, flags);
+               printk("span %s\n", str);
 
-       if (!local) {
-               wake_up_process(rq->migration_thread);
-               wait_for_completion(&req.done);
-       }
+               if (!cpu_isset(cpu, sd->span))
+                       printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
+               if (!cpu_isset(cpu, group->cpumask))
+                       printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
 
-       unlock_cpu_hotplug();
-}
+               printk(KERN_DEBUG);
+               for (i = 0; i < level + 2; i++)
+                       printk(" ");
+               printk("groups:");
+               do {
+                       if (!group) {
+                               printk("\n");
+                               printk(KERN_ERR "ERROR: group is NULL\n");
+                               break;
+                       }
 
-#ifdef ARCH_HAS_SCHED_DOMAIN
-extern void __init arch_init_sched_domains(void);
-#else
-static struct sched_group sched_group_cpus[NR_CPUS];
-static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
-#ifdef CONFIG_NUMA
-static struct sched_group sched_group_nodes[MAX_NUMNODES];
-static DEFINE_PER_CPU(struct sched_domain, node_domains);
-static void __init arch_init_sched_domains(void)
-{
-       int i;
-       struct sched_group *first_node = NULL, *last_node = NULL;
+                       if (!group->cpu_power) {
+                               printk("\n");
+                               printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
+                       }
 
-       /* Set up domains */
-       for_each_cpu(i) {
-               int node = cpu_to_node(i);
-               cpumask_t nodemask = node_to_cpumask(node);
-               struct sched_domain *node_sd = &per_cpu(node_domains, i);
-               struct sched_domain *cpu_sd = &per_cpu(cpu_domains, i);
-
-               *node_sd = SD_NODE_INIT;
-               node_sd->span = cpu_possible_map;
-               node_sd->groups = &sched_group_nodes[cpu_to_node(i)];
-
-               *cpu_sd = SD_CPU_INIT;
-               cpus_and(cpu_sd->span, nodemask, cpu_possible_map);
-               cpu_sd->groups = &sched_group_cpus[i];
-               cpu_sd->parent = node_sd;
-       }
+                       if (!cpus_weight(group->cpumask)) {
+                               printk("\n");
+                               printk(KERN_ERR "ERROR: empty group\n");
+                       }
 
-       /* Set up groups */
-       for (i = 0; i < MAX_NUMNODES; i++) {
-               cpumask_t tmp = node_to_cpumask(i);
-               cpumask_t nodemask;
-               struct sched_group *first_cpu = NULL, *last_cpu = NULL;
-               struct sched_group *node = &sched_group_nodes[i];
-               int j;
+                       if (cpus_intersects(groupmask, group->cpumask)) {
+                               printk("\n");
+                               printk(KERN_ERR "ERROR: repeated CPUs\n");
+                       }
 
-               cpus_and(nodemask, tmp, cpu_possible_map);
+                       cpus_or(groupmask, groupmask, group->cpumask);
 
-               if (cpus_empty(nodemask))
-                       continue;
+                       cpumask_scnprintf(str, NR_CPUS, group->cpumask);
+                       printk(" %s", str);
 
-               node->cpumask = nodemask;
-               node->cpu_power = SCHED_LOAD_SCALE * cpus_weight(node->cpumask);
+                       group = group->next;
+               } while (group != sd->groups);
+               printk("\n");
 
-               for_each_cpu_mask(j, node->cpumask) {
-                       struct sched_group *cpu = &sched_group_cpus[j];
+               if (!cpus_equal(sd->span, groupmask))
+                       printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 
-                       cpus_clear(cpu->cpumask);
-                       cpu_set(j, cpu->cpumask);
-                       cpu->cpu_power = SCHED_LOAD_SCALE;
+               level++;
+               sd = sd->parent;
 
-                       if (!first_cpu)
-                               first_cpu = cpu;
-                       if (last_cpu)
-                               last_cpu->next = cpu;
-                       last_cpu = cpu;
+               if (sd) {
+                       if (!cpus_subset(groupmask, sd->span))
+                               printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
                }
-               last_cpu->next = first_cpu;
 
-               if (!first_node)
-                       first_node = node;
-               if (last_node)
-                       last_node->next = node;
-               last_node = node;
-       }
-       last_node->next = first_node;
+       } while (sd);
+}
+#else
+#define sched_domain_debug(sd, cpu) {}
+#endif
 
-       mb();
-       for_each_cpu(i) {
-               struct sched_domain *cpu_sd = &per_cpu(cpu_domains, i);
-               cpu_attach_domain(cpu_sd, i);
+static int sd_degenerate(struct sched_domain *sd)
+{
+       if (cpus_weight(sd->span) == 1)
+               return 1;
+
+       /* Following flags need at least 2 groups */
+       if (sd->flags & (SD_LOAD_BALANCE |
+                        SD_BALANCE_NEWIDLE |
+                        SD_BALANCE_FORK |
+                        SD_BALANCE_EXEC)) {
+               if (sd->groups != sd->groups->next)
+                       return 0;
        }
+
+       /* Following flags don't use groups */
+       if (sd->flags & (SD_WAKE_IDLE |
+                        SD_WAKE_AFFINE |
+                        SD_WAKE_BALANCE))
+               return 0;
+
+       return 1;
 }
 
-#else /* !CONFIG_NUMA */
-static void __init arch_init_sched_domains(void)
+static int sd_parent_degenerate(struct sched_domain *sd,
+                                               struct sched_domain *parent)
 {
-       int i;
-       struct sched_group *first_cpu = NULL, *last_cpu = NULL;
+       unsigned long cflags = sd->flags, pflags = parent->flags;
 
-       /* Set up domains */
-       for_each_cpu(i) {
-               struct sched_domain *cpu_sd = &per_cpu(cpu_domains, i);
+       if (sd_degenerate(parent))
+               return 1;
+
+       if (!cpus_equal(sd->span, parent->span))
+               return 0;
 
-               *cpu_sd = SD_CPU_INIT;
-               cpu_sd->span = cpu_possible_map;
-               cpu_sd->groups = &sched_group_cpus[i];
+       /* Does parent contain flags not in child? */
+       /* WAKE_BALANCE is a subset of WAKE_AFFINE */
+       if (cflags & SD_WAKE_AFFINE)
+               pflags &= ~SD_WAKE_BALANCE;
+       /* Flags needing groups don't count if only 1 group in parent */
+       if (parent->groups == parent->groups->next) {
+               pflags &= ~(SD_LOAD_BALANCE |
+                               SD_BALANCE_NEWIDLE |
+                               SD_BALANCE_FORK |
+                               SD_BALANCE_EXEC);
        }
+       if (~cflags & pflags)
+               return 0;
 
-       /* Set up CPU groups */
-       for_each_cpu_mask(i, cpu_possible_map) {
-               struct sched_group *cpu = &sched_group_cpus[i];
+       return 1;
+}
 
-               cpus_clear(cpu->cpumask);
-               cpu_set(i, cpu->cpumask);
-               cpu->cpu_power = SCHED_LOAD_SCALE;
+/*
+ * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
+ * hold the hotplug lock.
+ */
+static void cpu_attach_domain(struct sched_domain *sd, int cpu)
+{
+       runqueue_t *rq = cpu_rq(cpu);
+       struct sched_domain *tmp;
 
-               if (!first_cpu)
-                       first_cpu = cpu;
-               if (last_cpu)
-                       last_cpu->next = cpu;
-               last_cpu = cpu;
+       /* Remove the sched domains which do not contribute to scheduling. */
+       for (tmp = sd; tmp; tmp = tmp->parent) {
+               struct sched_domain *parent = tmp->parent;
+               if (!parent)
+                       break;
+               if (sd_parent_degenerate(tmp, parent))
+                       tmp->parent = parent->parent;
        }
-       last_cpu->next = first_cpu;
 
-       mb(); /* domains were modified outside the lock */
-       for_each_cpu(i) {
-               struct sched_domain *cpu_sd = &per_cpu(cpu_domains, i);
-               cpu_attach_domain(cpu_sd, i);
-       }
+       if (sd && sd_degenerate(sd))
+               sd = sd->parent;
+
+       sched_domain_debug(sd, cpu);
+
+       rcu_assign_pointer(rq->sd, sd);
 }
 
-#endif /* CONFIG_NUMA */
-#endif /* ARCH_HAS_SCHED_DOMAIN */
+/* cpus with isolated domains */
+static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
 
-#define SCHED_DOMAIN_DEBUG
-#ifdef SCHED_DOMAIN_DEBUG
-void sched_domain_debug(void)
+/* Setup the mask of cpus configured for isolated domains */
+static int __init isolated_cpu_setup(char *str)
 {
-       int i;
-
-       for_each_cpu(i) {
-               runqueue_t *rq = cpu_rq(i);
-               struct sched_domain *sd;
-               int level = 0;
+       int ints[NR_CPUS], i;
 
-               sd = rq->sd;
+       str = get_options(str, ARRAY_SIZE(ints), ints);
+       cpus_clear(cpu_isolated_map);
+       for (i = 1; i <= ints[0]; i++)
+               if (ints[i] < NR_CPUS)
+                       cpu_set(ints[i], cpu_isolated_map);
+       return 1;
+}
 
-               printk(KERN_DEBUG "CPU%d: %s\n",
-                               i, (cpu_online(i) ? " online" : "offline"));
+__setup ("isolcpus=", isolated_cpu_setup);
 
-               do {
-                       int j;
-                       char str[NR_CPUS];
-                       struct sched_group *group = sd->groups;
-                       cpumask_t groupmask;
-
-                       cpumask_scnprintf(str, NR_CPUS, sd->span);
-                       cpus_clear(groupmask);
-
-                       printk(KERN_DEBUG);
-                       for (j = 0; j < level + 1; j++)
-                               printk(" ");
-                       printk("domain %d: span %s\n", level, str);
-
-                       if (!cpu_isset(i, sd->span))
-                               printk(KERN_DEBUG "ERROR domain->span does not contain CPU%d\n", i);
-                       if (!cpu_isset(i, group->cpumask))
-                               printk(KERN_DEBUG "ERROR domain->groups does not contain CPU%d\n", i);
-                       if (!group->cpu_power)
-                               printk(KERN_DEBUG "ERROR domain->cpu_power not set\n");
-
-                       printk(KERN_DEBUG);
-                       for (j = 0; j < level + 2; j++)
-                               printk(" ");
-                       printk("groups:");
-                       do {
-                               if (!group) {
-                                       printk(" ERROR: NULL");
-                                       break;
-                               }
+/*
+ * init_sched_build_groups takes an array of groups, the cpumask we wish
+ * to span, and a pointer to a function which identifies what group a CPU
+ * belongs to. The return value of group_fn must be a valid index into the
+ * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
+ * keep track of groups covered with a cpumask_t).
+ *
+ * init_sched_build_groups will build a circular linked list of the groups
+ * covered by the given span, and will set each group's ->cpumask correctly,
+ * and ->cpu_power to 0.
+ */
+static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
+                                   int (*group_fn)(int cpu))
+{
+       struct sched_group *first = NULL, *last = NULL;
+       cpumask_t covered = CPU_MASK_NONE;
+       int i;
 
-                               if (!cpus_weight(group->cpumask))
-                                       printk(" ERROR empty group:");
+       for_each_cpu_mask(i, span) {
+               int group = group_fn(i);
+               struct sched_group *sg = &groups[group];
+               int j;
 
-                               if (cpus_intersects(groupmask, group->cpumask))
-                                       printk(" ERROR repeated CPUs:");
+               if (cpu_isset(i, covered))
+                       continue;
 
-                               cpus_or(groupmask, groupmask, group->cpumask);
+               sg->cpumask = CPU_MASK_NONE;
+               sg->cpu_power = 0;
 
-                               cpumask_scnprintf(str, NR_CPUS, group->cpumask);
-                               printk(" %s", str);
+               for_each_cpu_mask(j, span) {
+                       if (group_fn(j) != group)
+                               continue;
 
-                               group = group->next;
-                       } while (group != sd->groups);
-                       printk("\n");
+                       cpu_set(j, covered);
+                       cpu_set(j, sg->cpumask);
+               }
+               if (!first)
+                       first = sg;
+               if (last)
+                       last->next = sg;
+               last = sg;
+       }
+       last->next = first;
+}
 
-                       if (!cpus_equal(sd->span, groupmask))
-                               printk(KERN_DEBUG "ERROR groups don't span domain->span\n");
+#define SD_NODES_PER_DOMAIN 16
 
-                       level++;
-                       sd = sd->parent;
+/*
+ * Self-tuning task migration cost measurement between source and target CPUs.
+ *
+ * This is done by measuring the cost of manipulating buffers of varying
+ * sizes. For a given buffer-size here are the steps that are taken:
+ *
+ * 1) the source CPU reads+dirties a shared buffer
+ * 2) the target CPU reads+dirties the same shared buffer
+ *
+ * We measure how long they take, in the following 4 scenarios:
+ *
+ *  - source: CPU1, target: CPU2 | cost1
+ *  - source: CPU2, target: CPU1 | cost2
+ *  - source: CPU1, target: CPU1 | cost3
+ *  - source: CPU2, target: CPU2 | cost4
+ *
+ * We then calculate the cost3+cost4-cost1-cost2 difference - this is
+ * the cost of migration.
+ *
+ * We then start off from a small buffer-size and iterate up to larger
+ * buffer sizes, in 5% steps - measuring each buffer-size separately, and
+ * doing a maximum search for the cost. (The maximum cost for a migration
+ * normally occurs when the working set size is around the effective cache
+ * size.)
+ */
+#define SEARCH_SCOPE           2
+#define MIN_CACHE_SIZE         (64*1024U)
+#define DEFAULT_CACHE_SIZE     (5*1024*1024U)
+#define ITERATIONS             1
+#define SIZE_THRESH            130
+#define COST_THRESH            130
 
-                       if (sd) {
-                               if (!cpus_subset(groupmask, sd->span))
-                                       printk(KERN_DEBUG "ERROR parent span is not a superset of domain->span\n");
-                       }
+/*
+ * The migration cost is a function of 'domain distance'. Domain
+ * distance is the number of steps a CPU has to iterate down its
+ * domain tree to share a domain with the other CPU. The farther
+ * two CPUs are from each other, the larger the distance gets.
+ *
+ * Note that we use the distance only to cache measurement results,
+ * the distance value is not used numerically otherwise. When two
+ * CPUs have the same distance it is assumed that the migration
+ * cost is the same. (this is a simplification but quite practical)
+ */
+#define MAX_DOMAIN_DISTANCE 32
 
-               } while (sd);
-       }
-}
+static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
+               { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
+/*
+ * Architectures may override the migration cost and thus avoid
+ * boot-time calibration. Unit is nanoseconds. Mostly useful for
+ * virtualized hardware:
+ */
+#ifdef CONFIG_DEFAULT_MIGRATION_COST
+                       CONFIG_DEFAULT_MIGRATION_COST
 #else
-#define sched_domain_debug() {}
+                       -1LL
 #endif
+};
 
-void __init sched_init_smp(void)
-{
-       arch_init_sched_domains();
-       sched_domain_debug();
-}
-#else
-void __init sched_init_smp(void)
+/*
+ * Allow override of migration cost - in units of microseconds.
+ * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
+ * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
+ */
+static int __init migration_cost_setup(char *str)
 {
-}
-#endif /* CONFIG_SMP */
+       int ints[MAX_DOMAIN_DISTANCE+1], i;
 
-int in_sched_functions(unsigned long addr)
-{
-       /* Linker adds these: start and end of __sched functions */
-       extern char __sched_text_start[], __sched_text_end[];
-       return addr >= (unsigned long)__sched_text_start
-               && addr < (unsigned long)__sched_text_end;
+       str = get_options(str, ARRAY_SIZE(ints), ints);
+
+       printk("#ints: %d\n", ints[0]);
+       for (i = 1; i <= ints[0]; i++) {
+               migration_cost[i-1] = (unsigned long long)ints[i]*1000;
+               printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
+       }
+       return 1;
 }
 
-void __init sched_init(void)
+__setup ("migration_cost=", migration_cost_setup);
+
+/*
+ * Global multiplier (divisor) for migration-cutoff values,
+ * in percentiles. E.g. use a value of 150 to get 1.5 times
+ * longer cache-hot cutoff times.
+ *
+ * (We scale it from 100 to 128 to long long handling easier.)
+ */
+
+#define MIGRATION_FACTOR_SCALE 128
+
+static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
+
+static int __init setup_migration_factor(char *str)
 {
-       runqueue_t *rq;
-       int i;
-#ifndef CONFIG_CKRM_CPU_SCHEDULE
-       int j, k;
+       get_option(&str, &migration_factor);
+       migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
+       return 1;
+}
+
+__setup("migration_factor=", setup_migration_factor);
+
+/*
+ * Estimated distance of two CPUs, measured via the number of domains
+ * we have to pass for the two CPUs to be in the same span:
+ */
+static unsigned long domain_distance(int cpu1, int cpu2)
+{
+       unsigned long distance = 0;
+       struct sched_domain *sd;
+
+       for_each_domain(cpu1, sd) {
+               WARN_ON(!cpu_isset(cpu1, sd->span));
+               if (cpu_isset(cpu2, sd->span))
+                       return distance;
+               distance++;
+       }
+       if (distance >= MAX_DOMAIN_DISTANCE) {
+               WARN_ON(1);
+               distance = MAX_DOMAIN_DISTANCE-1;
+       }
+
+       return distance;
+}
+
+static unsigned int migration_debug;
+
+static int __init setup_migration_debug(char *str)
+{
+       get_option(&str, &migration_debug);
+       return 1;
+}
+
+__setup("migration_debug=", setup_migration_debug);
+
+/*
+ * Maximum cache-size that the scheduler should try to measure.
+ * Architectures with larger caches should tune this up during
+ * bootup. Gets used in the domain-setup code (i.e. during SMP
+ * bootup).
+ */
+unsigned int max_cache_size;
+
+static int __init setup_max_cache_size(char *str)
+{
+       get_option(&str, &max_cache_size);
+       return 1;
+}
+
+__setup("max_cache_size=", setup_max_cache_size);
+
+/*
+ * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
+ * is the operation that is timed, so we try to generate unpredictable
+ * cachemisses that still end up filling the L2 cache:
+ */
+static void touch_cache(void *__cache, unsigned long __size)
+{
+       unsigned long size = __size/sizeof(long), chunk1 = size/3,
+                       chunk2 = 2*size/3;
+       unsigned long *cache = __cache;
+       int i;
+
+       for (i = 0; i < size/6; i += 8) {
+               switch (i % 6) {
+                       case 0: cache[i]++;
+                       case 1: cache[size-1-i]++;
+                       case 2: cache[chunk1-i]++;
+                       case 3: cache[chunk1+i]++;
+                       case 4: cache[chunk2-i]++;
+                       case 5: cache[chunk2+i]++;
+               }
+       }
+}
+
+/*
+ * Measure the cache-cost of one task migration. Returns in units of nsec.
+ */
+static unsigned long long measure_one(void *cache, unsigned long size,
+                                     int source, int target)
+{
+       cpumask_t mask, saved_mask;
+       unsigned long long t0, t1, t2, t3, cost;
+
+       saved_mask = current->cpus_allowed;
+
+       /*
+        * Flush source caches to RAM and invalidate them:
+        */
+       sched_cacheflush();
+
+       /*
+        * Migrate to the source CPU:
+        */
+       mask = cpumask_of_cpu(source);
+       set_cpus_allowed(current, mask);
+       WARN_ON(smp_processor_id() != source);
+
+       /*
+        * Dirty the working set:
+        */
+       t0 = sched_clock();
+       touch_cache(cache, size);
+       t1 = sched_clock();
+
+       /*
+        * Migrate to the target CPU, dirty the L2 cache and access
+        * the shared buffer. (which represents the working set
+        * of a migrated task.)
+        */
+       mask = cpumask_of_cpu(target);
+       set_cpus_allowed(current, mask);
+       WARN_ON(smp_processor_id() != target);
+
+       t2 = sched_clock();
+       touch_cache(cache, size);
+       t3 = sched_clock();
+
+       cost = t1-t0 + t3-t2;
+
+       if (migration_debug >= 2)
+               printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
+                       source, target, t1-t0, t1-t0, t3-t2, cost);
+       /*
+        * Flush target caches to RAM and invalidate them:
+        */
+       sched_cacheflush();
+
+       set_cpus_allowed(current, saved_mask);
+
+       return cost;
+}
+
+/*
+ * Measure a series of task migrations and return the average
+ * result. Since this code runs early during bootup the system
+ * is 'undisturbed' and the average latency makes sense.
+ *
+ * The algorithm in essence auto-detects the relevant cache-size,
+ * so it will properly detect different cachesizes for different
+ * cache-hierarchies, depending on how the CPUs are connected.
+ *
+ * Architectures can prime the upper limit of the search range via
+ * max_cache_size, otherwise the search range defaults to 20MB...64K.
+ */
+static unsigned long long
+measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
+{
+       unsigned long long cost1, cost2;
+       int i;
+
+       /*
+        * Measure the migration cost of 'size' bytes, over an
+        * average of 10 runs:
+        *
+        * (We perturb the cache size by a small (0..4k)
+        *  value to compensate size/alignment related artifacts.
+        *  We also subtract the cost of the operation done on
+        *  the same CPU.)
+        */
+       cost1 = 0;
+
+       /*
+        * dry run, to make sure we start off cache-cold on cpu1,
+        * and to get any vmalloc pagefaults in advance:
+        */
+       measure_one(cache, size, cpu1, cpu2);
+       for (i = 0; i < ITERATIONS; i++)
+               cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
+
+       measure_one(cache, size, cpu2, cpu1);
+       for (i = 0; i < ITERATIONS; i++)
+               cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
+
+       /*
+        * (We measure the non-migrating [cached] cost on both
+        *  cpu1 and cpu2, to handle CPUs with different speeds)
+        */
+       cost2 = 0;
+
+       measure_one(cache, size, cpu1, cpu1);
+       for (i = 0; i < ITERATIONS; i++)
+               cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
+
+       measure_one(cache, size, cpu2, cpu2);
+       for (i = 0; i < ITERATIONS; i++)
+               cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
+
+       /*
+        * Get the per-iteration migration cost:
+        */
+       do_div(cost1, 2*ITERATIONS);
+       do_div(cost2, 2*ITERATIONS);
+
+       return cost1 - cost2;
+}
+
+static unsigned long long measure_migration_cost(int cpu1, int cpu2)
+{
+       unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
+       unsigned int max_size, size, size_found = 0;
+       long long cost = 0, prev_cost;
+       void *cache;
+
+       /*
+        * Search from max_cache_size*5 down to 64K - the real relevant
+        * cachesize has to lie somewhere inbetween.
+        */
+       if (max_cache_size) {
+               max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
+               size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
+       } else {
+               /*
+                * Since we have no estimation about the relevant
+                * search range
+                */
+               max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
+               size = MIN_CACHE_SIZE;
+       }
+
+       if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
+               printk("cpu %d and %d not both online!\n", cpu1, cpu2);
+               return 0;
+       }
+
+       /*
+        * Allocate the working set:
+        */
+       cache = vmalloc(max_size);
+       if (!cache) {
+               printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
+               return 1000000; // return 1 msec on very small boxen
+       }
+
+       while (size <= max_size) {
+               prev_cost = cost;
+               cost = measure_cost(cpu1, cpu2, cache, size);
+
+               /*
+                * Update the max:
+                */
+               if (cost > 0) {
+                       if (max_cost < cost) {
+                               max_cost = cost;
+                               size_found = size;
+                       }
+               }
+               /*
+                * Calculate average fluctuation, we use this to prevent
+                * noise from triggering an early break out of the loop:
+                */
+               fluct = abs(cost - prev_cost);
+               avg_fluct = (avg_fluct + fluct)/2;
+
+               if (migration_debug)
+                       printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
+                               cpu1, cpu2, size,
+                               (long)cost / 1000000,
+                               ((long)cost / 100000) % 10,
+                               (long)max_cost / 1000000,
+                               ((long)max_cost / 100000) % 10,
+                               domain_distance(cpu1, cpu2),
+                               cost, avg_fluct);
+
+               /*
+                * If we iterated at least 20% past the previous maximum,
+                * and the cost has dropped by more than 20% already,
+                * (taking fluctuations into account) then we assume to
+                * have found the maximum and break out of the loop early:
+                */
+               if (size_found && (size*100 > size_found*SIZE_THRESH))
+                       if (cost+avg_fluct <= 0 ||
+                               max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
+
+                               if (migration_debug)
+                                       printk("-> found max.\n");
+                               break;
+                       }
+               /*
+                * Increase the cachesize in 10% steps:
+                */
+               size = size * 10 / 9;
+       }
+
+       if (migration_debug)
+               printk("[%d][%d] working set size found: %d, cost: %Ld\n",
+                       cpu1, cpu2, size_found, max_cost);
+
+       vfree(cache);
+
+       /*
+        * A task is considered 'cache cold' if at least 2 times
+        * the worst-case cost of migration has passed.
+        *
+        * (this limit is only listened to if the load-balancing
+        * situation is 'nice' - if there is a large imbalance we
+        * ignore it for the sake of CPU utilization and
+        * processing fairness.)
+        */
+       return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
+}
+
+static void calibrate_migration_costs(const cpumask_t *cpu_map)
+{
+       int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
+       unsigned long j0, j1, distance, max_distance = 0;
+       struct sched_domain *sd;
+
+       j0 = jiffies;
+
+       /*
+        * First pass - calculate the cacheflush times:
+        */
+       for_each_cpu_mask(cpu1, *cpu_map) {
+               for_each_cpu_mask(cpu2, *cpu_map) {
+                       if (cpu1 == cpu2)
+                               continue;
+                       distance = domain_distance(cpu1, cpu2);
+                       max_distance = max(max_distance, distance);
+                       /*
+                        * No result cached yet?
+                        */
+                       if (migration_cost[distance] == -1LL)
+                               migration_cost[distance] =
+                                       measure_migration_cost(cpu1, cpu2);
+               }
+       }
+       /*
+        * Second pass - update the sched domain hierarchy with
+        * the new cache-hot-time estimations:
+        */
+       for_each_cpu_mask(cpu, *cpu_map) {
+               distance = 0;
+               for_each_domain(cpu, sd) {
+                       sd->cache_hot_time = migration_cost[distance];
+                       distance++;
+               }
+       }
+       /*
+        * Print the matrix:
+        */
+       if (migration_debug)
+               printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
+                       max_cache_size,
+#ifdef CONFIG_X86
+                       cpu_khz/1000
+#else
+                       -1
 #endif
+               );
+       if (system_state == SYSTEM_BOOTING) {
+               printk("migration_cost=");
+               for (distance = 0; distance <= max_distance; distance++) {
+                       if (distance)
+                               printk(",");
+                       printk("%ld", (long)migration_cost[distance] / 1000);
+               }
+               printk("\n");
+       }
+       j1 = jiffies;
+       if (migration_debug)
+               printk("migration: %ld seconds\n", (j1-j0)/HZ);
 
-#ifdef CONFIG_SMP
-       /* Set up an initial dummy domain for early boot */
-       static struct sched_domain sched_domain_init;
-       static struct sched_group sched_group_init;
-
-       memset(&sched_domain_init, 0, sizeof(struct sched_domain));
-       sched_domain_init.span = CPU_MASK_ALL;
-       sched_domain_init.groups = &sched_group_init;
-       sched_domain_init.last_balance = jiffies;
-       sched_domain_init.balance_interval = INT_MAX; /* Don't balance */
-
-       memset(&sched_group_init, 0, sizeof(struct sched_group));
-       sched_group_init.cpumask = CPU_MASK_ALL;
-       sched_group_init.next = &sched_group_init;
-       sched_group_init.cpu_power = SCHED_LOAD_SCALE;
+       /*
+        * Move back to the original CPU. NUMA-Q gets confused
+        * if we migrate to another quad during bootup.
+        */
+       if (raw_smp_processor_id() != orig_cpu) {
+               cpumask_t mask = cpumask_of_cpu(orig_cpu),
+                       saved_mask = current->cpus_allowed;
+
+               set_cpus_allowed(current, mask);
+               set_cpus_allowed(current, saved_mask);
+       }
+}
+
+#ifdef CONFIG_NUMA
+
+/**
+ * find_next_best_node - find the next node to include in a sched_domain
+ * @node: node whose sched_domain we're building
+ * @used_nodes: nodes already in the sched_domain
+ *
+ * Find the next node to include in a given scheduling domain.  Simply
+ * finds the closest node not already in the @used_nodes map.
+ *
+ * Should use nodemask_t.
+ */
+static int find_next_best_node(int node, unsigned long *used_nodes)
+{
+       int i, n, val, min_val, best_node = 0;
+
+       min_val = INT_MAX;
+
+       for (i = 0; i < MAX_NUMNODES; i++) {
+               /* Start at @node */
+               n = (node + i) % MAX_NUMNODES;
+
+               if (!nr_cpus_node(n))
+                       continue;
+
+               /* Skip already used nodes */
+               if (test_bit(n, used_nodes))
+                       continue;
+
+               /* Simple min distance search */
+               val = node_distance(node, n);
+
+               if (val < min_val) {
+                       min_val = val;
+                       best_node = n;
+               }
+       }
+
+       set_bit(best_node, used_nodes);
+       return best_node;
+}
+
+/**
+ * sched_domain_node_span - get a cpumask for a node's sched_domain
+ * @node: node whose cpumask we're constructing
+ * @size: number of nodes to include in this span
+ *
+ * Given a node, construct a good cpumask for its sched_domain to span.  It
+ * should be one that prevents unnecessary balancing, but also spreads tasks
+ * out optimally.
+ */
+static cpumask_t sched_domain_node_span(int node)
+{
+       int i;
+       cpumask_t span, nodemask;
+       DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
+
+       cpus_clear(span);
+       bitmap_zero(used_nodes, MAX_NUMNODES);
+
+       nodemask = node_to_cpumask(node);
+       cpus_or(span, span, nodemask);
+       set_bit(node, used_nodes);
+
+       for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
+               int next_node = find_next_best_node(node, used_nodes);
+               nodemask = node_to_cpumask(next_node);
+               cpus_or(span, span, nodemask);
+       }
+
+       return span;
+}
+#endif
+
+/*
+ * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
+ * can switch it on easily if needed.
+ */
+#ifdef CONFIG_SCHED_SMT
+static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
+static struct sched_group sched_group_cpus[NR_CPUS];
+static int cpu_to_cpu_group(int cpu)
+{
+       return cpu;
+}
 #endif
 
-       init_cpu_classes();
+static DEFINE_PER_CPU(struct sched_domain, phys_domains);
+static struct sched_group sched_group_phys[NR_CPUS];
+static int cpu_to_phys_group(int cpu)
+{
+#ifdef CONFIG_SCHED_SMT
+       return first_cpu(cpu_sibling_map[cpu]);
+#else
+       return cpu;
+#endif
+}
 
-       for (i = 0; i < NR_CPUS; i++) {
-#ifndef CONFIG_CKRM_CPU_SCHEDULE
-               prio_array_t *array;
+#ifdef CONFIG_NUMA
+/*
+ * The init_sched_build_groups can't handle what we want to do with node
+ * groups, so roll our own. Now each node has its own list of groups which
+ * gets dynamically allocated.
+ */
+static DEFINE_PER_CPU(struct sched_domain, node_domains);
+static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
+
+static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
+static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
+
+static int cpu_to_allnodes_group(int cpu)
+{
+       return cpu_to_node(cpu);
+}
+#endif
+
+/*
+ * Build sched domains for a given set of cpus and attach the sched domains
+ * to the individual cpus
+ */
+void build_sched_domains(const cpumask_t *cpu_map)
+{
+       int i;
+#ifdef CONFIG_NUMA
+       struct sched_group **sched_group_nodes = NULL;
+       struct sched_group *sched_group_allnodes = NULL;
+
+       /*
+        * Allocate the per-node list of sched groups
+        */
+       sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
+                                          GFP_ATOMIC);
+       if (!sched_group_nodes) {
+               printk(KERN_WARNING "Can not alloc sched group node list\n");
+               return;
+       }
+       sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
+#endif
+
+       /*
+        * Set up domains for cpus specified by the cpu_map.
+        */
+       for_each_cpu_mask(i, *cpu_map) {
+               int group;
+               struct sched_domain *sd = NULL, *p;
+               cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
+
+               cpus_and(nodemask, nodemask, *cpu_map);
+
+#ifdef CONFIG_NUMA
+               if (cpus_weight(*cpu_map)
+                               > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
+                       if (!sched_group_allnodes) {
+                               sched_group_allnodes
+                                       = kmalloc(sizeof(struct sched_group)
+                                                       * MAX_NUMNODES,
+                                                 GFP_KERNEL);
+                               if (!sched_group_allnodes) {
+                                       printk(KERN_WARNING
+                                       "Can not alloc allnodes sched group\n");
+                                       break;
+                               }
+                               sched_group_allnodes_bycpu[i]
+                                               = sched_group_allnodes;
+                       }
+                       sd = &per_cpu(allnodes_domains, i);
+                       *sd = SD_ALLNODES_INIT;
+                       sd->span = *cpu_map;
+                       group = cpu_to_allnodes_group(i);
+                       sd->groups = &sched_group_allnodes[group];
+                       p = sd;
+               } else
+                       p = NULL;
+
+               sd = &per_cpu(node_domains, i);
+               *sd = SD_NODE_INIT;
+               sd->span = sched_domain_node_span(cpu_to_node(i));
+               sd->parent = p;
+               cpus_and(sd->span, sd->span, *cpu_map);
+#endif
+
+               p = sd;
+               sd = &per_cpu(phys_domains, i);
+               group = cpu_to_phys_group(i);
+               *sd = SD_CPU_INIT;
+               sd->span = nodemask;
+               sd->parent = p;
+               sd->groups = &sched_group_phys[group];
+
+#ifdef CONFIG_SCHED_SMT
+               p = sd;
+               sd = &per_cpu(cpu_domains, i);
+               group = cpu_to_cpu_group(i);
+               *sd = SD_SIBLING_INIT;
+               sd->span = cpu_sibling_map[i];
+               cpus_and(sd->span, sd->span, *cpu_map);
+               sd->parent = p;
+               sd->groups = &sched_group_cpus[group];
 #endif
+       }
+
+#ifdef CONFIG_SCHED_SMT
+       /* Set up CPU (sibling) groups */
+       for_each_cpu_mask(i, *cpu_map) {
+               cpumask_t this_sibling_map = cpu_sibling_map[i];
+               cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
+               if (i != first_cpu(this_sibling_map))
+                       continue;
+
+               init_sched_build_groups(sched_group_cpus, this_sibling_map,
+                                               &cpu_to_cpu_group);
+       }
+#endif
+
+       /* Set up physical groups */
+       for (i = 0; i < MAX_NUMNODES; i++) {
+               cpumask_t nodemask = node_to_cpumask(i);
+
+               cpus_and(nodemask, nodemask, *cpu_map);
+               if (cpus_empty(nodemask))
+                       continue;
+
+               init_sched_build_groups(sched_group_phys, nodemask,
+                                               &cpu_to_phys_group);
+       }
+
+#ifdef CONFIG_NUMA
+       /* Set up node groups */
+       if (sched_group_allnodes)
+               init_sched_build_groups(sched_group_allnodes, *cpu_map,
+                                       &cpu_to_allnodes_group);
+
+       for (i = 0; i < MAX_NUMNODES; i++) {
+               /* Set up node groups */
+               struct sched_group *sg, *prev;
+               cpumask_t nodemask = node_to_cpumask(i);
+               cpumask_t domainspan;
+               cpumask_t covered = CPU_MASK_NONE;
+               int j;
+
+               cpus_and(nodemask, nodemask, *cpu_map);
+               if (cpus_empty(nodemask)) {
+                       sched_group_nodes[i] = NULL;
+                       continue;
+               }
+
+               domainspan = sched_domain_node_span(i);
+               cpus_and(domainspan, domainspan, *cpu_map);
+
+               sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
+               sched_group_nodes[i] = sg;
+               for_each_cpu_mask(j, nodemask) {
+                       struct sched_domain *sd;
+                       sd = &per_cpu(node_domains, j);
+                       sd->groups = sg;
+                       if (sd->groups == NULL) {
+                               /* Turn off balancing if we have no groups */
+                               sd->flags = 0;
+                       }
+               }
+               if (!sg) {
+                       printk(KERN_WARNING
+                       "Can not alloc domain group for node %d\n", i);
+                       continue;
+               }
+               sg->cpu_power = 0;
+               sg->cpumask = nodemask;
+               cpus_or(covered, covered, nodemask);
+               prev = sg;
+
+               for (j = 0; j < MAX_NUMNODES; j++) {
+                       cpumask_t tmp, notcovered;
+                       int n = (i + j) % MAX_NUMNODES;
+
+                       cpus_complement(notcovered, covered);
+                       cpus_and(tmp, notcovered, *cpu_map);
+                       cpus_and(tmp, tmp, domainspan);
+                       if (cpus_empty(tmp))
+                               break;
+
+                       nodemask = node_to_cpumask(n);
+                       cpus_and(tmp, tmp, nodemask);
+                       if (cpus_empty(tmp))
+                               continue;
+
+                       sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
+                       if (!sg) {
+                               printk(KERN_WARNING
+                               "Can not alloc domain group for node %d\n", j);
+                               break;
+                       }
+                       sg->cpu_power = 0;
+                       sg->cpumask = tmp;
+                       cpus_or(covered, covered, tmp);
+                       prev->next = sg;
+                       prev = sg;
+               }
+               prev->next = sched_group_nodes[i];
+       }
+#endif
+
+       /* Calculate CPU power for physical packages and nodes */
+       for_each_cpu_mask(i, *cpu_map) {
+               int power;
+               struct sched_domain *sd;
+#ifdef CONFIG_SCHED_SMT
+               sd = &per_cpu(cpu_domains, i);
+               power = SCHED_LOAD_SCALE;
+               sd->groups->cpu_power = power;
+#endif
+
+               sd = &per_cpu(phys_domains, i);
+               power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
+                               (cpus_weight(sd->groups->cpumask)-1) / 10;
+               sd->groups->cpu_power = power;
+
+#ifdef CONFIG_NUMA
+               sd = &per_cpu(allnodes_domains, i);
+               if (sd->groups) {
+                       power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
+                               (cpus_weight(sd->groups->cpumask)-1) / 10;
+                       sd->groups->cpu_power = power;
+               }
+#endif
+       }
+
+#ifdef CONFIG_NUMA
+       for (i = 0; i < MAX_NUMNODES; i++) {
+               struct sched_group *sg = sched_group_nodes[i];
+               int j;
+
+               if (sg == NULL)
+                       continue;
+next_sg:
+               for_each_cpu_mask(j, sg->cpumask) {
+                       struct sched_domain *sd;
+                       int power;
+
+                       sd = &per_cpu(phys_domains, j);
+                       if (j != first_cpu(sd->groups->cpumask)) {
+                               /*
+                                * Only add "power" once for each
+                                * physical package.
+                                */
+                               continue;
+                       }
+                       power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
+                               (cpus_weight(sd->groups->cpumask)-1) / 10;
+
+                       sg->cpu_power += power;
+               }
+               sg = sg->next;
+               if (sg != sched_group_nodes[i])
+                       goto next_sg;
+       }
+#endif
+
+       /* Attach the domains */
+       for_each_cpu_mask(i, *cpu_map) {
+               struct sched_domain *sd;
+#ifdef CONFIG_SCHED_SMT
+               sd = &per_cpu(cpu_domains, i);
+#else
+               sd = &per_cpu(phys_domains, i);
+#endif
+               cpu_attach_domain(sd, i);
+       }
+       /*
+        * Tune cache-hot values:
+        */
+       calibrate_migration_costs(cpu_map);
+}
+/*
+ * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
+ */
+static void arch_init_sched_domains(const cpumask_t *cpu_map)
+{
+       cpumask_t cpu_default_map;
+
+       /*
+        * Setup mask for cpus without special case scheduling requirements.
+        * For now this just excludes isolated cpus, but could be used to
+        * exclude other special cases in the future.
+        */
+       cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
+
+       build_sched_domains(&cpu_default_map);
+}
+
+static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
+{
+#ifdef CONFIG_NUMA
+       int i;
+       int cpu;
+
+       for_each_cpu_mask(cpu, *cpu_map) {
+               struct sched_group *sched_group_allnodes
+                       = sched_group_allnodes_bycpu[cpu];
+               struct sched_group **sched_group_nodes
+                       = sched_group_nodes_bycpu[cpu];
+
+               if (sched_group_allnodes) {
+                       kfree(sched_group_allnodes);
+                       sched_group_allnodes_bycpu[cpu] = NULL;
+               }
+
+               if (!sched_group_nodes)
+                       continue;
+
+               for (i = 0; i < MAX_NUMNODES; i++) {
+                       cpumask_t nodemask = node_to_cpumask(i);
+                       struct sched_group *oldsg, *sg = sched_group_nodes[i];
+
+                       cpus_and(nodemask, nodemask, *cpu_map);
+                       if (cpus_empty(nodemask))
+                               continue;
+
+                       if (sg == NULL)
+                               continue;
+                       sg = sg->next;
+next_sg:
+                       oldsg = sg;
+                       sg = sg->next;
+                       kfree(oldsg);
+                       if (oldsg != sched_group_nodes[i])
+                               goto next_sg;
+               }
+               kfree(sched_group_nodes);
+               sched_group_nodes_bycpu[cpu] = NULL;
+       }
+#endif
+}
+
+/*
+ * Detach sched domains from a group of cpus specified in cpu_map
+ * These cpus will now be attached to the NULL domain
+ */
+static void detach_destroy_domains(const cpumask_t *cpu_map)
+{
+       int i;
+
+       for_each_cpu_mask(i, *cpu_map)
+               cpu_attach_domain(NULL, i);
+       synchronize_sched();
+       arch_destroy_sched_domains(cpu_map);
+}
+
+/*
+ * Partition sched domains as specified by the cpumasks below.
+ * This attaches all cpus from the cpumasks to the NULL domain,
+ * waits for a RCU quiescent period, recalculates sched
+ * domain information and then attaches them back to the
+ * correct sched domains
+ * Call with hotplug lock held
+ */
+void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
+{
+       cpumask_t change_map;
+
+       cpus_and(*partition1, *partition1, cpu_online_map);
+       cpus_and(*partition2, *partition2, cpu_online_map);
+       cpus_or(change_map, *partition1, *partition2);
+
+       /* Detach sched domains from all of the affected cpus */
+       detach_destroy_domains(&change_map);
+       if (!cpus_empty(*partition1))
+               build_sched_domains(partition1);
+       if (!cpus_empty(*partition2))
+               build_sched_domains(partition2);
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+/*
+ * Force a reinitialization of the sched domains hierarchy.  The domains
+ * and groups cannot be updated in place without racing with the balancing
+ * code, so we temporarily attach all running cpus to the NULL domain
+ * which will prevent rebalancing while the sched domains are recalculated.
+ */
+static int update_sched_domains(struct notifier_block *nfb,
+                               unsigned long action, void *hcpu)
+{
+       switch (action) {
+       case CPU_UP_PREPARE:
+       case CPU_DOWN_PREPARE:
+               detach_destroy_domains(&cpu_online_map);
+               return NOTIFY_OK;
+
+       case CPU_UP_CANCELED:
+       case CPU_DOWN_FAILED:
+       case CPU_ONLINE:
+       case CPU_DEAD:
+               /*
+                * Fall through and re-initialise the domains.
+                */
+               break;
+       default:
+               return NOTIFY_DONE;
+       }
+
+       /* The hotplug lock is already held by cpu_up/cpu_down */
+       arch_init_sched_domains(&cpu_online_map);
+
+       return NOTIFY_OK;
+}
+#endif
+
+void __init sched_init_smp(void)
+{
+       lock_cpu_hotplug();
+       arch_init_sched_domains(&cpu_online_map);
+       unlock_cpu_hotplug();
+       /* XXX: Theoretical race here - CPU may be hotplugged now */
+       hotcpu_notifier(update_sched_domains, 0);
+}
+#else
+void __init sched_init_smp(void)
+{
+}
+#endif /* CONFIG_SMP */
+
+int in_sched_functions(unsigned long addr)
+{
+       /* Linker adds these: start and end of __sched functions */
+       extern char __sched_text_start[], __sched_text_end[];
+       return in_lock_functions(addr) ||
+               (addr >= (unsigned long)__sched_text_start
+               && addr < (unsigned long)__sched_text_end);
+}
+
+void __init sched_init(void)
+{
+       runqueue_t *rq;
+       int i, j, k;
+
+       for_each_cpu(i) {
+               prio_array_t *array;
+
                rq = cpu_rq(i);
                spin_lock_init(&rq->lock);
-
-#ifndef CONFIG_CKRM_CPU_SCHEDULE
+               rq->nr_running = 0;
                rq->active = rq->arrays;
                rq->expired = rq->arrays + 1;
-#else
-               rq->ckrm_cpu_load = 0;
-#endif
                rq->best_expired_prio = MAX_PRIO;
 
 #ifdef CONFIG_SMP
-               rq->sd = &sched_domain_init;
-               rq->cpu_load = 0;
+               rq->sd = NULL;
+               for (j = 1; j < 3; j++)
+                       rq->cpu_load[j] = 0;
                rq->active_balance = 0;
                rq->push_cpu = 0;
+               rq->cpu = i;
                rq->migration_thread = NULL;
                INIT_LIST_HEAD(&rq->migration_queue);
+               rq->cpu = i;
 #endif
-               INIT_LIST_HEAD(&rq->hold_queue);
                atomic_set(&rq->nr_iowait, 0);
+#ifdef CONFIG_VSERVER_HARDCPU
+               INIT_LIST_HEAD(&rq->hold_queue);
+#endif
 
-#ifndef CONFIG_CKRM_CPU_SCHEDULE
                for (j = 0; j < 2; j++) {
                        array = rq->arrays + j;
                        for (k = 0; k < MAX_PRIO; k++) {
@@ -4463,48 +6276,38 @@ void __init sched_init(void)
                        // delimiter for bitsearch
                        __set_bit(MAX_PRIO, array->bitmap);
                }
-#endif
        }
 
-       /*
-        * We have to do a little magic to get the first
-        * thread right in SMP mode.
-        */
-       rq = this_rq();
-       rq->curr = current;
-       rq->idle = current;
-       set_task_cpu(current, smp_processor_id());
-#ifdef CONFIG_CKRM_CPU_SCHEDULE
-       current->cpu_class = default_cpu_class;
-       current->array = NULL;
-#endif
-       wake_up_forked_process(current);
-
        /*
         * The boot idle thread does lazy MMU switching as well:
         */
        atomic_inc(&init_mm.mm_count);
        enter_lazy_tlb(&init_mm, current);
+
+       /*
+        * Make us the idle thread. Technically, schedule() should not be
+        * called from this thread, however somewhere below it might be,
+        * but because we are the idle thread, we just pick up running again
+        * when this runqueue becomes "idle".
+        */
+       init_idle(current, smp_processor_id());
 }
 
 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
-void __might_sleep(char *file, int line, int atomic_depth)
+void __might_sleep(char *file, int line)
 {
 #if defined(in_atomic)
        static unsigned long prev_jiffy;        /* ratelimiting */
 
-#ifndef CONFIG_PREEMPT
-       atomic_depth = 0;
-#endif
-       if (((in_atomic() != atomic_depth) || irqs_disabled()) &&
-           system_state == SYSTEM_RUNNING) {
+       if ((in_atomic() || irqs_disabled()) &&
+           system_state == SYSTEM_RUNNING && !oops_in_progress) {
                if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
                        return;
                prev_jiffy = jiffies;
                printk(KERN_ERR "Debug: sleeping function called from invalid"
                                " context at %s:%d\n", file, line);
-               printk("in_atomic():%d[expected: %d], irqs_disabled():%d\n",
-                       in_atomic(), atomic_depth, irqs_disabled());
+               printk("in_atomic():%d, irqs_disabled():%d\n",
+                       in_atomic(), irqs_disabled());
                dump_stack();
        }
 #endif
@@ -4512,67 +6315,78 @@ void __might_sleep(char *file, int line, int atomic_depth)
 EXPORT_SYMBOL(__might_sleep);
 #endif
 
-
-#if defined(CONFIG_SMP) && defined(CONFIG_PREEMPT)
-/*
- * This could be a long-held lock.  If another CPU holds it for a long time,
- * and that CPU is not asked to reschedule then *this* CPU will spin on the
- * lock for a long time, even if *this* CPU is asked to reschedule.
- *
- * So what we do here, in the slow (contended) path is to spin on the lock by
- * hand while permitting preemption.
- *
- * Called inside preempt_disable().
- */
-void __sched __preempt_spin_lock(spinlock_t *lock)
+#ifdef CONFIG_MAGIC_SYSRQ
+void normalize_rt_tasks(void)
 {
-       if (preempt_count() > 1) {
-               _raw_spin_lock(lock);
-               return;
-       }
-       do {
-               preempt_enable();
-               while (spin_is_locked(lock))
-                       cpu_relax();
-               preempt_disable();
-       } while (!_raw_spin_trylock(lock));
-}
+       struct task_struct *p;
+       prio_array_t *array;
+       unsigned long flags;
+       runqueue_t *rq;
 
-EXPORT_SYMBOL(__preempt_spin_lock);
+       read_lock_irq(&tasklist_lock);
+       for_each_process (p) {
+               if (!rt_task(p))
+                       continue;
 
-void __sched __preempt_write_lock(rwlock_t *lock)
-{
-       if (preempt_count() > 1) {
-               _raw_write_lock(lock);
-               return;
-       }
+               rq = task_rq_lock(p, &flags);
 
-       do {
-               preempt_enable();
-               while (rwlock_is_locked(lock))
-                       cpu_relax();
-               preempt_disable();
-       } while (!_raw_write_trylock(lock));
+               array = p->array;
+               if (array)
+                       deactivate_task(p, task_rq(p));
+               __setscheduler(p, SCHED_NORMAL, 0);
+               if (array) {
+                       vx_activate_task(p);
+                       __activate_task(p, task_rq(p));
+                       resched_task(rq->curr);
+               }
+
+               task_rq_unlock(rq, &flags);
+       }
+       read_unlock_irq(&tasklist_lock);
 }
 
-EXPORT_SYMBOL(__preempt_write_lock);
-#endif /* defined(CONFIG_SMP) && defined(CONFIG_PREEMPT) */
+#endif /* CONFIG_MAGIC_SYSRQ */
 
-#ifdef CONFIG_DELAY_ACCT
-int task_running_sys(struct task_struct *p)
+#ifdef CONFIG_IA64
+/*
+ * These functions are only useful for the IA64 MCA handling.
+ *
+ * They can only be called when the whole system has been
+ * stopped - every CPU needs to be quiescent, and no scheduling
+ * activity can take place. Using them for anything else would
+ * be a serious bug, and as a result, they aren't even visible
+ * under any other configuration.
+ */
+
+/**
+ * curr_task - return the current task for a given cpu.
+ * @cpu: the processor in question.
+ *
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
+ */
+task_t *curr_task(int cpu)
 {
-       return task_running(task_rq(p),p);
+       return cpu_curr(cpu);
 }
-EXPORT_SYMBOL(task_running_sys);
-#endif
 
-#ifdef CONFIG_CKRM_CPU_SCHEDULE
 /**
- * return the classqueue object of a certain processor
- * Note: not supposed to be used in performance sensitive functions
+ * set_curr_task - set the current task for a given cpu.
+ * @cpu: the processor in question.
+ * @p: the task pointer to set.
+ *
+ * Description: This function must only be used when non-maskable interrupts
+ * are serviced on a separate stack.  It allows the architecture to switch the
+ * notion of the current task on a cpu in a non-blocking manner.  This function
+ * must be called with all CPU's synchronized, and interrupts disabled, the
+ * and caller must save the original value of the current task (see
+ * curr_task() above) and restore that value before reenabling interrupts and
+ * re-starting the system.
+ *
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  */
-struct classqueue_struct * get_cpu_classqueue(int cpu)
+void set_curr_task(int cpu, task_t *p)
 {
-       return (& (cpu_rq(cpu)->classqueue) );
+       cpu_curr(cpu) = p;
 }
+
 #endif