fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / mm / hugetlb.c
index bce0d47..0256117 100644 (file)
 #include <linux/init.h>
 #include <linux/module.h>
 #include <linux/mm.h>
-#include <linux/hugetlb.h>
 #include <linux/sysctl.h>
 #include <linux/highmem.h>
+#include <linux/nodemask.h>
+#include <linux/pagemap.h>
+#include <linux/mempolicy.h>
+#include <linux/cpuset.h>
+#include <linux/mutex.h>
+
+#include <asm/page.h>
+#include <asm/pgtable.h>
+
+#include <linux/hugetlb.h>
+#include <linux/vs_memory.h>
+#include "internal.h"
 
 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
-static unsigned long nr_huge_pages, free_huge_pages;
+static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
 unsigned long max_huge_pages;
 static struct list_head hugepage_freelists[MAX_NUMNODES];
-static spinlock_t hugetlb_lock = SPIN_LOCK_UNLOCKED;
+static unsigned int nr_huge_pages_node[MAX_NUMNODES];
+static unsigned int free_huge_pages_node[MAX_NUMNODES];
+/*
+ * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
+ */
+static DEFINE_SPINLOCK(hugetlb_lock);
+
+static void clear_huge_page(struct page *page, unsigned long addr)
+{
+       int i;
+
+       might_sleep();
+       for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
+               cond_resched();
+               clear_user_highpage(page + i, addr);
+       }
+}
+
+static void copy_huge_page(struct page *dst, struct page *src,
+                          unsigned long addr, struct vm_area_struct *vma)
+{
+       int i;
+
+       might_sleep();
+       for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
+               cond_resched();
+               copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
+       }
+}
 
 static void enqueue_huge_page(struct page *page)
 {
-       list_add(&page->lru,
-                &hugepage_freelists[page_zone(page)->zone_pgdat->node_id]);
+       int nid = page_to_nid(page);
+       list_add(&page->lru, &hugepage_freelists[nid]);
+       free_huge_pages++;
+       free_huge_pages_node[nid]++;
 }
 
-static struct page *dequeue_huge_page(void)
+static struct page *dequeue_huge_page(struct vm_area_struct *vma,
+                               unsigned long address)
 {
        int nid = numa_node_id();
        struct page *page = NULL;
+       struct zonelist *zonelist = huge_zonelist(vma, address);
+       struct zone **z;
 
-       if (list_empty(&hugepage_freelists[nid])) {
-               for (nid = 0; nid < MAX_NUMNODES; ++nid)
-                       if (!list_empty(&hugepage_freelists[nid]))
-                               break;
+       for (z = zonelist->zones; *z; z++) {
+               nid = zone_to_nid(*z);
+               if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) &&
+                   !list_empty(&hugepage_freelists[nid]))
+                       break;
        }
-       if (nid >= 0 && nid < MAX_NUMNODES &&
-           !list_empty(&hugepage_freelists[nid])) {
+
+       if (*z) {
                page = list_entry(hugepage_freelists[nid].next,
                                  struct page, lru);
                list_del(&page->lru);
+               free_huge_pages--;
+               free_huge_pages_node[nid]--;
        }
        return page;
 }
 
-static struct page *alloc_fresh_huge_page(void)
-{
-       static int nid = 0;
-       struct page *page;
-       page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP,
-                                       HUGETLB_PAGE_ORDER);
-       nid = (nid + 1) % numnodes;
-       return page;
-}
-
-void free_huge_page(struct page *page)
+static void free_huge_page(struct page *page)
 {
        BUG_ON(page_count(page));
 
        INIT_LIST_HEAD(&page->lru);
-       page[1].mapping = NULL;
 
        spin_lock(&hugetlb_lock);
        enqueue_huge_page(page);
-       free_huge_pages++;
        spin_unlock(&hugetlb_lock);
 }
 
-struct page *alloc_huge_page(void)
+static int alloc_fresh_huge_page(void)
 {
+       static int nid = 0;
        struct page *page;
-       int i;
-
-       spin_lock(&hugetlb_lock);
-       page = dequeue_huge_page();
-       if (!page) {
+       page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
+                                       HUGETLB_PAGE_ORDER);
+       nid = next_node(nid, node_online_map);
+       if (nid == MAX_NUMNODES)
+               nid = first_node(node_online_map);
+       if (page) {
+               set_compound_page_dtor(page, free_huge_page);
+               spin_lock(&hugetlb_lock);
+               nr_huge_pages++;
+               nr_huge_pages_node[page_to_nid(page)]++;
                spin_unlock(&hugetlb_lock);
-               return NULL;
+               put_page(page); /* free it into the hugepage allocator */
+               return 1;
        }
-       free_huge_pages--;
+       return 0;
+}
+
+static struct page *alloc_huge_page(struct vm_area_struct *vma,
+                                   unsigned long addr)
+{
+       struct page *page;
+
+       spin_lock(&hugetlb_lock);
+       if (vma->vm_flags & VM_MAYSHARE)
+               resv_huge_pages--;
+       else if (free_huge_pages <= resv_huge_pages)
+               goto fail;
+
+       page = dequeue_huge_page(vma, addr);
+       if (!page)
+               goto fail;
+
        spin_unlock(&hugetlb_lock);
-       set_page_count(page, 1);
-       page[1].mapping = (void *)free_huge_page;
-       for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
-               clear_highpage(&page[i]);
+       set_page_refcounted(page);
        return page;
+
+fail:
+       spin_unlock(&hugetlb_lock);
+       return NULL;
 }
 
 static int __init hugetlb_init(void)
 {
        unsigned long i;
-       struct page *page;
+
+       if (HPAGE_SHIFT == 0)
+               return 0;
 
        for (i = 0; i < MAX_NUMNODES; ++i)
                INIT_LIST_HEAD(&hugepage_freelists[i]);
 
        for (i = 0; i < max_huge_pages; ++i) {
-               page = alloc_fresh_huge_page();
-               if (!page)
+               if (!alloc_fresh_huge_page())
                        break;
-               spin_lock(&hugetlb_lock);
-               enqueue_huge_page(page);
-               spin_unlock(&hugetlb_lock);
        }
        max_huge_pages = free_huge_pages = nr_huge_pages = i;
        printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
@@ -115,63 +173,61 @@ static int __init hugetlb_setup(char *s)
 }
 __setup("hugepages=", hugetlb_setup);
 
+#ifdef CONFIG_SYSCTL
 static void update_and_free_page(struct page *page)
 {
        int i;
        nr_huge_pages--;
+       nr_huge_pages_node[page_to_nid(page)]--;
        for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
                page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
                                1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
                                1 << PG_private | 1<< PG_writeback);
-               set_page_count(&page[i], 0);
        }
-       set_page_count(page, 1);
+       page[1].lru.next = NULL;
+       set_page_refcounted(page);
        __free_pages(page, HUGETLB_PAGE_ORDER);
 }
 
 #ifdef CONFIG_HIGHMEM
-static int try_to_free_low(unsigned long count)
+static void try_to_free_low(unsigned long count)
 {
        int i;
+
        for (i = 0; i < MAX_NUMNODES; ++i) {
-               struct page *page;
-               list_for_each_entry(page, &hugepage_freelists[i], lru) {
+               struct page *page, *next;
+               list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
                        if (PageHighMem(page))
                                continue;
                        list_del(&page->lru);
                        update_and_free_page(page);
-                       --free_huge_pages;
-                       if (!--count)
-                               return 0;
+                       free_huge_pages--;
+                       free_huge_pages_node[page_to_nid(page)]--;
+                       if (count >= nr_huge_pages)
+                               return;
                }
        }
-       return count;
 }
 #else
-static inline int try_to_free_low(unsigned long count)
+static inline void try_to_free_low(unsigned long count)
 {
-       return count;
 }
 #endif
 
 static unsigned long set_max_huge_pages(unsigned long count)
 {
        while (count > nr_huge_pages) {
-               struct page *page = alloc_fresh_huge_page();
-               if (!page)
+               if (!alloc_fresh_huge_page())
                        return nr_huge_pages;
-               spin_lock(&hugetlb_lock);
-               enqueue_huge_page(page);
-               free_huge_pages++;
-               nr_huge_pages++;
-               spin_unlock(&hugetlb_lock);
        }
        if (count >= nr_huge_pages)
                return nr_huge_pages;
 
        spin_lock(&hugetlb_lock);
-       for (count = try_to_free_low(count); count < nr_huge_pages; --free_huge_pages) {
-               struct page *page = dequeue_huge_page();
+       count = max(count, resv_huge_pages);
+       try_to_free_low(count);
+       while (count < nr_huge_pages) {
+               struct page *page = dequeue_huge_page(NULL, 0);
                if (!page)
                        break;
                update_and_free_page(page);
@@ -180,12 +236,11 @@ static unsigned long set_max_huge_pages(unsigned long count)
        return nr_huge_pages;
 }
 
-#ifdef CONFIG_SYSCTL
 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
                           struct file *file, void __user *buffer,
-                          size_t *length)
+                          size_t *length, loff_t *ppos)
 {
-       proc_doulongvec_minmax(table, write, file, buffer, length);
+       proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
        max_huge_pages = set_max_huge_pages(max_huge_pages);
        return 0;
 }
@@ -196,15 +251,21 @@ int hugetlb_report_meminfo(char *buf)
        return sprintf(buf,
                        "HugePages_Total: %5lu\n"
                        "HugePages_Free:  %5lu\n"
+                       "HugePages_Rsvd:  %5lu\n"
                        "Hugepagesize:    %5lu kB\n",
                        nr_huge_pages,
                        free_huge_pages,
+                       resv_huge_pages,
                        HPAGE_SIZE/1024);
 }
 
-int is_hugepage_mem_enough(size_t size)
+int hugetlb_report_node_meminfo(int nid, char *buf)
 {
-       return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
+       return sprintf(buf,
+               "Node %d HugePages_Total: %5u\n"
+               "Node %d HugePages_Free:  %5u\n",
+               nid, nr_huge_pages_node[nid],
+               nid, free_huge_pages_node[nid]);
 }
 
 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
@@ -212,7 +273,6 @@ unsigned long hugetlb_total_pages(void)
 {
        return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
 }
-EXPORT_SYMBOL(hugetlb_total_pages);
 
 /*
  * We cannot handle pagefaults against hugetlb pages at all.  They cause
@@ -231,12 +291,542 @@ struct vm_operations_struct hugetlb_vm_ops = {
        .nopage = hugetlb_nopage,
 };
 
-void zap_hugepage_range(struct vm_area_struct *vma,
-                       unsigned long start, unsigned long length)
+static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
+                               int writable)
+{
+       pte_t entry;
+
+       if (writable) {
+               entry =
+                   pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
+       } else {
+               entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
+       }
+       entry = pte_mkyoung(entry);
+       entry = pte_mkhuge(entry);
+
+       return entry;
+}
+
+static void set_huge_ptep_writable(struct vm_area_struct *vma,
+                                  unsigned long address, pte_t *ptep)
+{
+       pte_t entry;
+
+       entry = pte_mkwrite(pte_mkdirty(*ptep));
+       ptep_set_access_flags(vma, address, ptep, entry, 1);
+       update_mmu_cache(vma, address, entry);
+       lazy_mmu_prot_update(entry);
+}
+
+
+int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
+                           struct vm_area_struct *vma)
+{
+       pte_t *src_pte, *dst_pte, entry;
+       struct page *ptepage;
+       unsigned long addr;
+       int cow;
+
+       cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
+
+       for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
+               src_pte = huge_pte_offset(src, addr);
+               if (!src_pte)
+                       continue;
+               dst_pte = huge_pte_alloc(dst, addr);
+               if (!dst_pte)
+                       goto nomem;
+               spin_lock(&dst->page_table_lock);
+               spin_lock(&src->page_table_lock);
+               if (!pte_none(*src_pte)) {
+                       if (cow)
+                               ptep_set_wrprotect(src, addr, src_pte);
+                       entry = *src_pte;
+                       ptepage = pte_page(entry);
+                       get_page(ptepage);
+                       set_huge_pte_at(dst, addr, dst_pte, entry);
+               }
+               spin_unlock(&src->page_table_lock);
+               spin_unlock(&dst->page_table_lock);
+       }
+       return 0;
+
+nomem:
+       return -ENOMEM;
+}
+
+void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
+                           unsigned long end)
 {
        struct mm_struct *mm = vma->vm_mm;
+       unsigned long address;
+       pte_t *ptep;
+       pte_t pte;
+       struct page *page;
+       struct page *tmp;
+       /*
+        * A page gathering list, protected by per file i_mmap_lock. The
+        * lock is used to avoid list corruption from multiple unmapping
+        * of the same page since we are using page->lru.
+        */
+       LIST_HEAD(page_list);
+
+       WARN_ON(!is_vm_hugetlb_page(vma));
+       BUG_ON(start & ~HPAGE_MASK);
+       BUG_ON(end & ~HPAGE_MASK);
 
        spin_lock(&mm->page_table_lock);
-       unmap_hugepage_range(vma, start, start + length);
+       for (address = start; address < end; address += HPAGE_SIZE) {
+               ptep = huge_pte_offset(mm, address);
+               if (!ptep)
+                       continue;
+
+               if (huge_pmd_unshare(mm, &address, ptep))
+                       continue;
+
+               pte = huge_ptep_get_and_clear(mm, address, ptep);
+               if (pte_none(pte))
+                       continue;
+
+               page = pte_page(pte);
+               if (pte_dirty(pte))
+                       set_page_dirty(page);
+               list_add(&page->lru, &page_list);
+       }
+       spin_unlock(&mm->page_table_lock);
+       flush_tlb_range(vma, start, end);
+       list_for_each_entry_safe(page, tmp, &page_list, lru) {
+               list_del(&page->lru);
+               put_page(page);
+       }
+}
+
+void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
+                         unsigned long end)
+{
+       /*
+        * It is undesirable to test vma->vm_file as it should be non-null
+        * for valid hugetlb area. However, vm_file will be NULL in the error
+        * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
+        * do_mmap_pgoff() nullifies vma->vm_file before calling this function
+        * to clean up. Since no pte has actually been setup, it is safe to
+        * do nothing in this case.
+        */
+       if (vma->vm_file) {
+               spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
+               __unmap_hugepage_range(vma, start, end);
+               spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
+       }
+}
+
+static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
+                       unsigned long address, pte_t *ptep, pte_t pte)
+{
+       struct page *old_page, *new_page;
+       int avoidcopy;
+
+       old_page = pte_page(pte);
+
+       /* If no-one else is actually using this page, avoid the copy
+        * and just make the page writable */
+       avoidcopy = (page_count(old_page) == 1);
+       if (avoidcopy) {
+               set_huge_ptep_writable(vma, address, ptep);
+               return VM_FAULT_MINOR;
+       }
+
+       page_cache_get(old_page);
+       new_page = alloc_huge_page(vma, address);
+
+       if (!new_page) {
+               page_cache_release(old_page);
+               return VM_FAULT_OOM;
+       }
+
        spin_unlock(&mm->page_table_lock);
+       copy_huge_page(new_page, old_page, address, vma);
+       spin_lock(&mm->page_table_lock);
+
+       ptep = huge_pte_offset(mm, address & HPAGE_MASK);
+       if (likely(pte_same(*ptep, pte))) {
+               /* Break COW */
+               set_huge_pte_at(mm, address, ptep,
+                               make_huge_pte(vma, new_page, 1));
+               /* Make the old page be freed below */
+               new_page = old_page;
+       }
+       page_cache_release(new_page);
+       page_cache_release(old_page);
+       return VM_FAULT_MINOR;
+}
+
+int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
+                       unsigned long address, pte_t *ptep, int write_access)
+{
+       int ret = VM_FAULT_SIGBUS;
+       unsigned long idx;
+       unsigned long size;
+       struct page *page;
+       struct address_space *mapping;
+       pte_t new_pte;
+
+       mapping = vma->vm_file->f_mapping;
+       idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
+               + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
+
+       /*
+        * Use page lock to guard against racing truncation
+        * before we get page_table_lock.
+        */
+retry:
+       page = find_lock_page(mapping, idx);
+       if (!page) {
+               size = i_size_read(mapping->host) >> HPAGE_SHIFT;
+               if (idx >= size)
+                       goto out;
+               if (hugetlb_get_quota(mapping))
+                       goto out;
+               page = alloc_huge_page(vma, address);
+               if (!page) {
+                       hugetlb_put_quota(mapping);
+                       ret = VM_FAULT_OOM;
+                       goto out;
+               }
+               clear_huge_page(page, address);
+
+               if (vma->vm_flags & VM_SHARED) {
+                       int err;
+
+                       err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
+                       if (err) {
+                               put_page(page);
+                               hugetlb_put_quota(mapping);
+                               if (err == -EEXIST)
+                                       goto retry;
+                               goto out;
+                       }
+               } else
+                       lock_page(page);
+       }
+
+       spin_lock(&mm->page_table_lock);
+       size = i_size_read(mapping->host) >> HPAGE_SHIFT;
+       if (idx >= size)
+               goto backout;
+
+       ret = VM_FAULT_MINOR;
+       if (!pte_none(*ptep))
+               goto backout;
+
+       new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
+                               && (vma->vm_flags & VM_SHARED)));
+       set_huge_pte_at(mm, address, ptep, new_pte);
+
+       if (write_access && !(vma->vm_flags & VM_SHARED)) {
+               /* Optimization, do the COW without a second fault */
+               ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
+       }
+
+       spin_unlock(&mm->page_table_lock);
+       unlock_page(page);
+out:
+       return ret;
+
+backout:
+       spin_unlock(&mm->page_table_lock);
+       hugetlb_put_quota(mapping);
+       unlock_page(page);
+       put_page(page);
+       goto out;
+}
+
+int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+                       unsigned long address, int write_access)
+{
+       pte_t *ptep;
+       pte_t entry;
+       int ret;
+       static DEFINE_MUTEX(hugetlb_instantiation_mutex);
+
+       ptep = huge_pte_alloc(mm, address);
+       if (!ptep)
+               return VM_FAULT_OOM;
+
+       /*
+        * Serialize hugepage allocation and instantiation, so that we don't
+        * get spurious allocation failures if two CPUs race to instantiate
+        * the same page in the page cache.
+        */
+       mutex_lock(&hugetlb_instantiation_mutex);
+       entry = *ptep;
+       if (pte_none(entry)) {
+               ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
+               mutex_unlock(&hugetlb_instantiation_mutex);
+               return ret;
+       }
+
+       ret = VM_FAULT_MINOR;
+
+       spin_lock(&mm->page_table_lock);
+       /* Check for a racing update before calling hugetlb_cow */
+       if (likely(pte_same(entry, *ptep)))
+               if (write_access && !pte_write(entry))
+                       ret = hugetlb_cow(mm, vma, address, ptep, entry);
+       spin_unlock(&mm->page_table_lock);
+       mutex_unlock(&hugetlb_instantiation_mutex);
+
+       return ret;
+}
+
+int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
+                       struct page **pages, struct vm_area_struct **vmas,
+                       unsigned long *position, int *length, int i)
+{
+       unsigned long pfn_offset;
+       unsigned long vaddr = *position;
+       int remainder = *length;
+
+       spin_lock(&mm->page_table_lock);
+       while (vaddr < vma->vm_end && remainder) {
+               pte_t *pte;
+               struct page *page;
+
+               /*
+                * Some archs (sparc64, sh*) have multiple pte_ts to
+                * each hugepage.  We have to make * sure we get the
+                * first, for the page indexing below to work.
+                */
+               pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
+
+               if (!pte || pte_none(*pte)) {
+                       int ret;
+
+                       spin_unlock(&mm->page_table_lock);
+                       ret = hugetlb_fault(mm, vma, vaddr, 0);
+                       spin_lock(&mm->page_table_lock);
+                       if (ret == VM_FAULT_MINOR)
+                               continue;
+
+                       remainder = 0;
+                       if (!i)
+                               i = -EFAULT;
+                       break;
+               }
+
+               pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
+               page = pte_page(*pte);
+same_page:
+               if (pages) {
+                       get_page(page);
+                       pages[i] = page + pfn_offset;
+               }
+
+               if (vmas)
+                       vmas[i] = vma;
+
+               vaddr += PAGE_SIZE;
+               ++pfn_offset;
+               --remainder;
+               ++i;
+               if (vaddr < vma->vm_end && remainder &&
+                               pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
+                       /*
+                        * We use pfn_offset to avoid touching the pageframes
+                        * of this compound page.
+                        */
+                       goto same_page;
+               }
+       }
+       spin_unlock(&mm->page_table_lock);
+       *length = remainder;
+       *position = vaddr;
+
+       return i;
+}
+
+void hugetlb_change_protection(struct vm_area_struct *vma,
+               unsigned long address, unsigned long end, pgprot_t newprot)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       unsigned long start = address;
+       pte_t *ptep;
+       pte_t pte;
+
+       BUG_ON(address >= end);
+       flush_cache_range(vma, address, end);
+
+       spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
+       spin_lock(&mm->page_table_lock);
+       for (; address < end; address += HPAGE_SIZE) {
+               ptep = huge_pte_offset(mm, address);
+               if (!ptep)
+                       continue;
+               if (huge_pmd_unshare(mm, &address, ptep))
+                       continue;
+               if (!pte_none(*ptep)) {
+                       pte = huge_ptep_get_and_clear(mm, address, ptep);
+                       pte = pte_mkhuge(pte_modify(pte, newprot));
+                       set_huge_pte_at(mm, address, ptep, pte);
+                       lazy_mmu_prot_update(pte);
+               }
+       }
+       spin_unlock(&mm->page_table_lock);
+       spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
+
+       flush_tlb_range(vma, start, end);
+}
+
+struct file_region {
+       struct list_head link;
+       long from;
+       long to;
+};
+
+static long region_add(struct list_head *head, long f, long t)
+{
+       struct file_region *rg, *nrg, *trg;
+
+       /* Locate the region we are either in or before. */
+       list_for_each_entry(rg, head, link)
+               if (f <= rg->to)
+                       break;
+
+       /* Round our left edge to the current segment if it encloses us. */
+       if (f > rg->from)
+               f = rg->from;
+
+       /* Check for and consume any regions we now overlap with. */
+       nrg = rg;
+       list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
+               if (&rg->link == head)
+                       break;
+               if (rg->from > t)
+                       break;
+
+               /* If this area reaches higher then extend our area to
+                * include it completely.  If this is not the first area
+                * which we intend to reuse, free it. */
+               if (rg->to > t)
+                       t = rg->to;
+               if (rg != nrg) {
+                       list_del(&rg->link);
+                       kfree(rg);
+               }
+       }
+       nrg->from = f;
+       nrg->to = t;
+       return 0;
+}
+
+static long region_chg(struct list_head *head, long f, long t)
+{
+       struct file_region *rg, *nrg;
+       long chg = 0;
+
+       /* Locate the region we are before or in. */
+       list_for_each_entry(rg, head, link)
+               if (f <= rg->to)
+                       break;
+
+       /* If we are below the current region then a new region is required.
+        * Subtle, allocate a new region at the position but make it zero
+        * size such that we can guarentee to record the reservation. */
+       if (&rg->link == head || t < rg->from) {
+               nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
+               if (nrg == 0)
+                       return -ENOMEM;
+               nrg->from = f;
+               nrg->to   = f;
+               INIT_LIST_HEAD(&nrg->link);
+               list_add(&nrg->link, rg->link.prev);
+
+               return t - f;
+       }
+
+       /* Round our left edge to the current segment if it encloses us. */
+       if (f > rg->from)
+               f = rg->from;
+       chg = t - f;
+
+       /* Check for and consume any regions we now overlap with. */
+       list_for_each_entry(rg, rg->link.prev, link) {
+               if (&rg->link == head)
+                       break;
+               if (rg->from > t)
+                       return chg;
+
+               /* We overlap with this area, if it extends futher than
+                * us then we must extend ourselves.  Account for its
+                * existing reservation. */
+               if (rg->to > t) {
+                       chg += rg->to - t;
+                       t = rg->to;
+               }
+               chg -= rg->to - rg->from;
+       }
+       return chg;
+}
+
+static long region_truncate(struct list_head *head, long end)
+{
+       struct file_region *rg, *trg;
+       long chg = 0;
+
+       /* Locate the region we are either in or before. */
+       list_for_each_entry(rg, head, link)
+               if (end <= rg->to)
+                       break;
+       if (&rg->link == head)
+               return 0;
+
+       /* If we are in the middle of a region then adjust it. */
+       if (end > rg->from) {
+               chg = rg->to - end;
+               rg->to = end;
+               rg = list_entry(rg->link.next, typeof(*rg), link);
+       }
+
+       /* Drop any remaining regions. */
+       list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
+               if (&rg->link == head)
+                       break;
+               chg += rg->to - rg->from;
+               list_del(&rg->link);
+               kfree(rg);
+       }
+       return chg;
+}
+
+static int hugetlb_acct_memory(long delta)
+{
+       int ret = -ENOMEM;
+
+       spin_lock(&hugetlb_lock);
+       if ((delta + resv_huge_pages) <= free_huge_pages) {
+               resv_huge_pages += delta;
+               ret = 0;
+       }
+       spin_unlock(&hugetlb_lock);
+       return ret;
+}
+
+int hugetlb_reserve_pages(struct inode *inode, long from, long to)
+{
+       long ret, chg;
+
+       chg = region_chg(&inode->i_mapping->private_list, from, to);
+       if (chg < 0)
+               return chg;
+       ret = hugetlb_acct_memory(chg);
+       if (ret < 0)
+               return ret;
+       region_add(&inode->i_mapping->private_list, from, to);
+       return 0;
+}
+
+void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
+{
+       long chg = region_truncate(&inode->i_mapping->private_list, offset);
+       hugetlb_acct_memory(freed - chg);
 }