fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / mm / slab.c
index 34d9e5b..31ea409 100644 (file)
--- a/mm/slab.c
+++ b/mm/slab.c
  * The head array is strictly LIFO and should improve the cache hit rates.
  * On SMP, it additionally reduces the spinlock operations.
  *
- * The c_cpuarray may not be read with enabled local interrupts - 
+ * The c_cpuarray may not be read with enabled local interrupts -
  * it's changed with a smp_call_function().
  *
  * SMP synchronization:
  *  constructors and destructors are called without any locking.
- *  Several members in kmem_cache_t and struct slab never change, they
+ *  Several members in struct kmem_cache and struct slab never change, they
  *     are accessed without any locking.
  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  *     and local interrupts are disabled so slab code is preempt-safe.
  * Further notes from the original documentation:
  *
  * 11 April '97.  Started multi-threading - markhe
- *     The global cache-chain is protected by the semaphore 'cache_chain_sem'.
+ *     The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  *     The sem is only needed when accessing/extending the cache-chain, which
  *     can never happen inside an interrupt (kmem_cache_create(),
  *     kmem_cache_shrink() and kmem_cache_reap()).
  *
  *     At present, each engine can be growing a cache.  This should be blocked.
  *
+ * 15 March 2005. NUMA slab allocator.
+ *     Shai Fultheim <shai@scalex86.org>.
+ *     Shobhit Dayal <shobhit@calsoftinc.com>
+ *     Alok N Kataria <alokk@calsoftinc.com>
+ *     Christoph Lameter <christoph@lameter.com>
+ *
+ *     Modified the slab allocator to be node aware on NUMA systems.
+ *     Each node has its own list of partial, free and full slabs.
+ *     All object allocations for a node occur from node specific slab lists.
  */
 
-#include       <linux/config.h>
 #include       <linux/slab.h>
 #include       <linux/mm.h>
+#include       <linux/poison.h>
 #include       <linux/swap.h>
 #include       <linux/cache.h>
 #include       <linux/interrupt.h>
 #include       <linux/init.h>
 #include       <linux/compiler.h>
+#include       <linux/cpuset.h>
 #include       <linux/seq_file.h>
 #include       <linux/notifier.h>
 #include       <linux/kallsyms.h>
 #include       <linux/cpu.h>
 #include       <linux/sysctl.h>
 #include       <linux/module.h>
+#include       <linux/rcupdate.h>
+#include       <linux/string.h>
+#include       <linux/uaccess.h>
+#include       <linux/nodemask.h>
+#include       <linux/mempolicy.h>
+#include       <linux/mutex.h>
+#include       <linux/fault-inject.h>
+#include       <linux/rtmutex.h>
+#include       <linux/reciprocal_div.h>
 
-#include       <asm/uaccess.h>
 #include       <asm/cacheflush.h>
 #include       <asm/tlbflush.h>
+#include       <asm/page.h>
 
 /*
  * DEBUG       - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 #define        FORCED_DEBUG    0
 #endif
 
-
 /* Shouldn't this be in a header file somewhere? */
 #define        BYTES_PER_WORD          sizeof(void *)
 
 #endif
 
 #ifndef ARCH_KMALLOC_MINALIGN
+/*
+ * Enforce a minimum alignment for the kmalloc caches.
+ * Usually, the kmalloc caches are cache_line_size() aligned, except when
+ * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
+ * Some archs want to perform DMA into kmalloc caches and need a guaranteed
+ * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
+ * Note that this flag disables some debug features.
+ */
 #define ARCH_KMALLOC_MINALIGN 0
 #endif
 
+#ifndef ARCH_SLAB_MINALIGN
+/*
+ * Enforce a minimum alignment for all caches.
+ * Intended for archs that get misalignment faults even for BYTES_PER_WORD
+ * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
+ * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
+ * some debug features.
+ */
+#define ARCH_SLAB_MINALIGN 0
+#endif
+
 #ifndef ARCH_KMALLOC_FLAGS
 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 #endif
 #if DEBUG
 # define CREATE_MASK   (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
                         SLAB_POISON | SLAB_HWCACHE_ALIGN | \
-                        SLAB_NO_REAP | SLAB_CACHE_DMA | \
+                        SLAB_CACHE_DMA | \
                         SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
-                        SLAB_RECLAIM_ACCOUNT | SLAB_PANIC)
+                        SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
+                        SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
 #else
-# define CREATE_MASK   (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
+# define CREATE_MASK   (SLAB_HWCACHE_ALIGN | \
                         SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
-                        SLAB_RECLAIM_ACCOUNT | SLAB_PANIC)
+                        SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
+                        SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
 #endif
 
 /*
  * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  */
 
+typedef unsigned int kmem_bufctl_t;
 #define BUFCTL_END     (((kmem_bufctl_t)(~0U))-0)
 #define BUFCTL_FREE    (((kmem_bufctl_t)(~0U))-1)
-#define        SLAB_LIMIT      (((kmem_bufctl_t)(~0U))-2)
-
-/* Max number of objs-per-slab for caches which use off-slab slabs.
- * Needed to avoid a possible looping condition in cache_grow().
- */
-static unsigned long offslab_limit;
+#define        BUFCTL_ACTIVE   (((kmem_bufctl_t)(~0U))-2)
+#define        SLAB_LIMIT      (((kmem_bufctl_t)(~0U))-3)
 
 /*
  * struct slab
@@ -182,17 +218,39 @@ static unsigned long offslab_limit;
  * Slabs are chained into three list: fully used, partial, fully free slabs.
  */
 struct slab {
-       struct list_head        list;
-       unsigned long           colouroff;
-       void                    *s_mem;         /* including colour offset */
-       unsigned int            inuse;          /* num of objs active in slab */
-       kmem_bufctl_t           free;
+       struct list_head list;
+       unsigned long colouroff;
+       void *s_mem;            /* including colour offset */
+       unsigned int inuse;     /* num of objs active in slab */
+       kmem_bufctl_t free;
+       unsigned short nodeid;
+};
+
+/*
+ * struct slab_rcu
+ *
+ * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
+ * arrange for kmem_freepages to be called via RCU.  This is useful if
+ * we need to approach a kernel structure obliquely, from its address
+ * obtained without the usual locking.  We can lock the structure to
+ * stabilize it and check it's still at the given address, only if we
+ * can be sure that the memory has not been meanwhile reused for some
+ * other kind of object (which our subsystem's lock might corrupt).
+ *
+ * rcu_read_lock before reading the address, then rcu_read_unlock after
+ * taking the spinlock within the structure expected at that address.
+ *
+ * We assume struct slab_rcu can overlay struct slab when destroying.
+ */
+struct slab_rcu {
+       struct rcu_head head;
+       struct kmem_cache *cachep;
+       void *addr;
 };
 
 /*
  * struct array_cache
  *
- * Per cpu structures
  * Purpose:
  * - LIFO ordering, to hand out cache-warm objects from _alloc
  * - reduce the number of linked list operations
@@ -207,108 +265,184 @@ struct array_cache {
        unsigned int limit;
        unsigned int batchcount;
        unsigned int touched;
+       spinlock_t lock;
+       void *entry[0]; /*
+                        * Must have this definition in here for the proper
+                        * alignment of array_cache. Also simplifies accessing
+                        * the entries.
+                        * [0] is for gcc 2.95. It should really be [].
+                        */
 };
 
-/* bootstrap: The caches do not work without cpuarrays anymore,
- * but the cpuarrays are allocated from the generic caches...
+/*
+ * bootstrap: The caches do not work without cpuarrays anymore, but the
+ * cpuarrays are allocated from the generic caches...
  */
 #define BOOT_CPUCACHE_ENTRIES  1
 struct arraycache_init {
        struct array_cache cache;
-       void * entries[BOOT_CPUCACHE_ENTRIES];
+       void *entries[BOOT_CPUCACHE_ENTRIES];
 };
 
 /*
- * The slab lists of all objects.
- * Hopefully reduce the internal fragmentation
- * NUMA: The spinlock could be moved from the kmem_cache_t
- * into this structure, too. Figure out what causes
- * fewer cross-node spinlock operations.
+ * The slab lists for all objects.
  */
 struct kmem_list3 {
-       struct list_head        slabs_partial;  /* partial list first, better asm code */
-       struct list_head        slabs_full;
-       struct list_head        slabs_free;
-       unsigned long   free_objects;
-       int             free_touched;
-       unsigned long   next_reap;
-       struct array_cache      *shared;
+       struct list_head slabs_partial; /* partial list first, better asm code */
+       struct list_head slabs_full;
+       struct list_head slabs_free;
+       unsigned long free_objects;
+       unsigned int free_limit;
+       unsigned int colour_next;       /* Per-node cache coloring */
+       spinlock_t list_lock;
+       struct array_cache *shared;     /* shared per node */
+       struct array_cache **alien;     /* on other nodes */
+       unsigned long next_reap;        /* updated without locking */
+       int free_touched;               /* updated without locking */
 };
 
-#define LIST3_INIT(parent) \
-       { \
-               .slabs_full     = LIST_HEAD_INIT(parent.slabs_full), \
-               .slabs_partial  = LIST_HEAD_INIT(parent.slabs_partial), \
-               .slabs_free     = LIST_HEAD_INIT(parent.slabs_free) \
-       }
-#define list3_data(cachep) \
-       (&(cachep)->lists)
+/*
+ * Need this for bootstrapping a per node allocator.
+ */
+#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
+struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
+#define        CACHE_CACHE 0
+#define        SIZE_AC 1
+#define        SIZE_L3 (1 + MAX_NUMNODES)
+
+static int drain_freelist(struct kmem_cache *cache,
+                       struct kmem_list3 *l3, int tofree);
+static void free_block(struct kmem_cache *cachep, void **objpp, int len,
+                       int node);
+static int enable_cpucache(struct kmem_cache *cachep);
+static void cache_reap(struct work_struct *unused);
+
+/*
+ * This function must be completely optimized away if a constant is passed to
+ * it.  Mostly the same as what is in linux/slab.h except it returns an index.
+ */
+static __always_inline int index_of(const size_t size)
+{
+       extern void __bad_size(void);
+
+       if (__builtin_constant_p(size)) {
+               int i = 0;
+
+#define CACHE(x) \
+       if (size <=x) \
+               return i; \
+       else \
+               i++;
+#include "linux/kmalloc_sizes.h"
+#undef CACHE
+               __bad_size();
+       } else
+               __bad_size();
+       return 0;
+}
+
+static int slab_early_init = 1;
+
+#define INDEX_AC index_of(sizeof(struct arraycache_init))
+#define INDEX_L3 index_of(sizeof(struct kmem_list3))
+
+static void kmem_list3_init(struct kmem_list3 *parent)
+{
+       INIT_LIST_HEAD(&parent->slabs_full);
+       INIT_LIST_HEAD(&parent->slabs_partial);
+       INIT_LIST_HEAD(&parent->slabs_free);
+       parent->shared = NULL;
+       parent->alien = NULL;
+       parent->colour_next = 0;
+       spin_lock_init(&parent->list_lock);
+       parent->free_objects = 0;
+       parent->free_touched = 0;
+}
+
+#define MAKE_LIST(cachep, listp, slab, nodeid)                         \
+       do {                                                            \
+               INIT_LIST_HEAD(listp);                                  \
+               list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
+       } while (0)
 
-/* NUMA: per-node */
-#define list3_data_ptr(cachep, ptr) \
-               list3_data(cachep)
+#define        MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
+       do {                                                            \
+       MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
+       MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
+       MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
+       } while (0)
 
 /*
- * kmem_cache_t
+ * struct kmem_cache
  *
  * manages a cache.
  */
-       
-struct kmem_cache_s {
+
+struct kmem_cache {
 /* 1) per-cpu data, touched during every alloc/free */
-       struct array_cache      *array[NR_CPUS];
-       unsigned int            batchcount;
-       unsigned int            limit;
-/* 2) touched by every alloc & free from the backend */
-       struct kmem_list3       lists;
-       /* NUMA: kmem_3list_t   *nodelists[MAX_NUMNODES] */
-       unsigned int            objsize;
-       unsigned int            flags;  /* constant flags */
-       unsigned int            num;    /* # of objs per slab */
-       unsigned int            free_limit; /* upper limit of objects in the lists */
-       spinlock_t              spinlock;
-
-/* 3) cache_grow/shrink */
+       struct array_cache *array[NR_CPUS];
+/* 2) Cache tunables. Protected by cache_chain_mutex */
+       unsigned int batchcount;
+       unsigned int limit;
+       unsigned int shared;
+
+       unsigned int buffer_size;
+       u32 reciprocal_buffer_size;
+/* 3) touched by every alloc & free from the backend */
+       struct kmem_list3 *nodelists[MAX_NUMNODES];
+
+       unsigned int flags;             /* constant flags */
+       unsigned int num;               /* # of objs per slab */
+
+/* 4) cache_grow/shrink */
        /* order of pgs per slab (2^n) */
-       unsigned int            gfporder;
+       unsigned int gfporder;
 
        /* force GFP flags, e.g. GFP_DMA */
-       unsigned int            gfpflags;
+       gfp_t gfpflags;
 
-       size_t                  colour;         /* cache colouring range */
-       unsigned int            colour_off;     /* colour offset */
-       unsigned int            colour_next;    /* cache colouring */
-       kmem_cache_t            *slabp_cache;
-       unsigned int            slab_size;
-       unsigned int            dflags;         /* dynamic flags */
+       size_t colour;                  /* cache colouring range */
+       unsigned int colour_off;        /* colour offset */
+       struct kmem_cache *slabp_cache;
+       unsigned int slab_size;
+       unsigned int dflags;            /* dynamic flags */
 
        /* constructor func */
-       void (*ctor)(void *, kmem_cache_t *, unsigned long);
+       void (*ctor) (void *, struct kmem_cache *, unsigned long);
 
        /* de-constructor func */
-       void (*dtor)(void *, kmem_cache_t *, unsigned long);
+       void (*dtor) (void *, struct kmem_cache *, unsigned long);
 
-/* 4) cache creation/removal */
-       const char              *name;
-       struct list_head        next;
+/* 5) cache creation/removal */
+       const char *name;
+       struct list_head next;
 
-/* 5) statistics */
+/* 6) statistics */
 #if STATS
-       unsigned long           num_active;
-       unsigned long           num_allocations;
-       unsigned long           high_mark;
-       unsigned long           grown;
-       unsigned long           reaped;
-       unsigned long           errors;
-       unsigned long           max_freeable;
-       atomic_t                allochit;
-       atomic_t                allocmiss;
-       atomic_t                freehit;
-       atomic_t                freemiss;
+       unsigned long num_active;
+       unsigned long num_allocations;
+       unsigned long high_mark;
+       unsigned long grown;
+       unsigned long reaped;
+       unsigned long errors;
+       unsigned long max_freeable;
+       unsigned long node_allocs;
+       unsigned long node_frees;
+       unsigned long node_overflow;
+       atomic_t allochit;
+       atomic_t allocmiss;
+       atomic_t freehit;
+       atomic_t freemiss;
 #endif
 #if DEBUG
-       int                     dbghead;
-       int                     reallen;
+       /*
+        * If debugging is enabled, then the allocator can add additional
+        * fields and/or padding to every object. buffer_size contains the total
+        * object size including these internal fields, the following two
+        * variables contain the offset to the user object and its size.
+        */
+       int obj_offset;
+       int obj_size;
 #endif
 };
 
@@ -316,10 +450,11 @@ struct kmem_cache_s {
 #define        OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 
 #define BATCHREFILL_LIMIT      16
-/* Optimization question: fewer reaps means less 
- * probability for unnessary cpucache drain/refill cycles.
+/*
+ * Optimization question: fewer reaps means less probability for unnessary
+ * cpucache drain/refill cycles.
  *
- * OTHO the cpuarrays can contain lots of objects,
+ * OTOH the cpuarrays can contain lots of objects,
  * which could lock up otherwise freeable slabs.
  */
 #define REAPTIMEOUT_CPUC       (2*HZ)
@@ -330,16 +465,21 @@ struct kmem_cache_s {
 #define        STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 #define        STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 #define        STATS_INC_GROWN(x)      ((x)->grown++)
-#define        STATS_INC_REAPED(x)     ((x)->reaped++)
-#define        STATS_SET_HIGH(x)       do { if ((x)->num_active > (x)->high_mark) \
-                                       (x)->high_mark = (x)->num_active; \
-                               } while (0)
+#define        STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
+#define        STATS_SET_HIGH(x)                                               \
+       do {                                                            \
+               if ((x)->num_active > (x)->high_mark)                   \
+                       (x)->high_mark = (x)->num_active;               \
+       } while (0)
 #define        STATS_INC_ERR(x)        ((x)->errors++)
-#define        STATS_SET_FREEABLE(x, i) \
-                               do { if ((x)->max_freeable < i) \
-                                       (x)->max_freeable = i; \
-                               } while (0)
-
+#define        STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
+#define        STATS_INC_NODEFREES(x)  ((x)->node_frees++)
+#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
+#define        STATS_SET_FREEABLE(x, i)                                        \
+       do {                                                            \
+               if ((x)->max_freeable < i)                              \
+                       (x)->max_freeable = i;                          \
+       } while (0)
 #define STATS_INC_ALLOCHIT(x)  atomic_inc(&(x)->allochit)
 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
 #define STATS_INC_FREEHIT(x)   atomic_inc(&(x)->freehit)
@@ -349,75 +489,71 @@ struct kmem_cache_s {
 #define        STATS_DEC_ACTIVE(x)     do { } while (0)
 #define        STATS_INC_ALLOCED(x)    do { } while (0)
 #define        STATS_INC_GROWN(x)      do { } while (0)
-#define        STATS_INC_REAPED(x)     do { } while (0)
+#define        STATS_ADD_REAPED(x,y)   do { } while (0)
 #define        STATS_SET_HIGH(x)       do { } while (0)
 #define        STATS_INC_ERR(x)        do { } while (0)
-#define        STATS_SET_FREEABLE(x, i) \
-                               do { } while (0)
-
+#define        STATS_INC_NODEALLOCS(x) do { } while (0)
+#define        STATS_INC_NODEFREES(x)  do { } while (0)
+#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
+#define        STATS_SET_FREEABLE(x, i) do { } while (0)
 #define STATS_INC_ALLOCHIT(x)  do { } while (0)
 #define STATS_INC_ALLOCMISS(x) do { } while (0)
 #define STATS_INC_FREEHIT(x)   do { } while (0)
 #define STATS_INC_FREEMISS(x)  do { } while (0)
 #endif
 
-#if DEBUG
-/* Magic nums for obj red zoning.
- * Placed in the first word before and the first word after an obj.
- */
-#define        RED_INACTIVE    0x5A2CF071UL    /* when obj is inactive */
-#define        RED_ACTIVE      0x170FC2A5UL    /* when obj is active */
+#include "slab_vs.h"
 
-/* ...and for poisoning */
-#define        POISON_INUSE    0x5a    /* for use-uninitialised poisoning */
-#define POISON_FREE    0x6b    /* for use-after-free poisoning */
-#define        POISON_END      0xa5    /* end-byte of poisoning */
+#if DEBUG
 
-/* memory layout of objects:
+/*
+ * memory layout of objects:
  * 0           : objp
- * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
+ * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  *             the end of an object is aligned with the end of the real
  *             allocation. Catches writes behind the end of the allocation.
- * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
+ * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  *             redzone word.
- * cachep->dbghead: The real object.
- * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
- * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
+ * cachep->obj_offset: The real object.
+ * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
+ * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
+ *                                     [BYTES_PER_WORD long]
  */
-static int obj_dbghead(kmem_cache_t *cachep)
+static int obj_offset(struct kmem_cache *cachep)
 {
-       return cachep->dbghead;
+       return cachep->obj_offset;
 }
 
-static int obj_reallen(kmem_cache_t *cachep)
+static int obj_size(struct kmem_cache *cachep)
 {
-       return cachep->reallen;
+       return cachep->obj_size;
 }
 
-static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
+static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 {
        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
-       return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
+       return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
 }
 
-static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
+static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 {
        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
        if (cachep->flags & SLAB_STORE_USER)
-               return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD);
-       return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD);
+               return (unsigned long *)(objp + cachep->buffer_size -
+                                        2 * BYTES_PER_WORD);
+       return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
 }
 
-static void **dbg_userword(kmem_cache_t *cachep, void *objp)
+static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 {
        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
-       return (void**)(objp+cachep->objsize-BYTES_PER_WORD);
+       return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
 }
 
 #else
 
-#define obj_dbghead(x)                 0
-#define obj_reallen(cachep)            (cachep->objsize)
+#define obj_offset(x)                  0
+#define obj_size(cachep)               (cachep->buffer_size)
 #define dbg_redzone1(cachep, objp)     ({BUG(); (unsigned long *)NULL;})
 #define dbg_redzone2(cachep, objp)     ({BUG(); (unsigned long *)NULL;})
 #define dbg_userword(cachep, objp)     ({BUG(); (void **)NULL;})
@@ -425,8 +561,8 @@ static void **dbg_userword(kmem_cache_t *cachep, void *objp)
 #endif
 
 /*
- * Maximum size of an obj (in 2^order pages)
- * and absolute limit for the gfp order.
+ * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
+ * order.
  */
 #if defined(CONFIG_LARGE_ALLOCS)
 #define        MAX_OBJ_ORDER   13      /* up to 32Mb */
@@ -446,23 +582,77 @@ static void **dbg_userword(kmem_cache_t *cachep, void *objp)
 #define        BREAK_GFP_ORDER_LO      0
 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
 
-/* Macros for storing/retrieving the cachep and or slab from the
- * global 'mem_map'. These are used to find the slab an obj belongs to.
- * With kfree(), these are used to find the cache which an obj belongs to.
+/*
+ * Functions for storing/retrieving the cachep and or slab from the page
+ * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
+ * these are used to find the cache which an obj belongs to.
+ */
+static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
+{
+       page->lru.next = (struct list_head *)cache;
+}
+
+static inline struct kmem_cache *page_get_cache(struct page *page)
+{
+       if (unlikely(PageCompound(page)))
+               page = (struct page *)page_private(page);
+       BUG_ON(!PageSlab(page));
+       return (struct kmem_cache *)page->lru.next;
+}
+
+static inline void page_set_slab(struct page *page, struct slab *slab)
+{
+       page->lru.prev = (struct list_head *)slab;
+}
+
+static inline struct slab *page_get_slab(struct page *page)
+{
+       if (unlikely(PageCompound(page)))
+               page = (struct page *)page_private(page);
+       BUG_ON(!PageSlab(page));
+       return (struct slab *)page->lru.prev;
+}
+
+static inline struct kmem_cache *virt_to_cache(const void *obj)
+{
+       struct page *page = virt_to_page(obj);
+       return page_get_cache(page);
+}
+
+static inline struct slab *virt_to_slab(const void *obj)
+{
+       struct page *page = virt_to_page(obj);
+       return page_get_slab(page);
+}
+
+static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
+                                unsigned int idx)
+{
+       return slab->s_mem + cache->buffer_size * idx;
+}
+
+/*
+ * We want to avoid an expensive divide : (offset / cache->buffer_size)
+ *   Using the fact that buffer_size is a constant for a particular cache,
+ *   we can replace (offset / cache->buffer_size) by
+ *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
  */
-#define        SET_PAGE_CACHE(pg,x)  ((pg)->lru.next = (struct list_head *)(x))
-#define        GET_PAGE_CACHE(pg)    ((kmem_cache_t *)(pg)->lru.next)
-#define        SET_PAGE_SLAB(pg,x)   ((pg)->lru.prev = (struct list_head *)(x))
-#define        GET_PAGE_SLAB(pg)     ((struct slab *)(pg)->lru.prev)
+static inline unsigned int obj_to_index(const struct kmem_cache *cache,
+                                       const struct slab *slab, void *obj)
+{
+       u32 offset = (obj - slab->s_mem);
+       return reciprocal_divide(offset, cache->reciprocal_buffer_size);
+}
 
-/* These are the default caches for kmalloc. Custom caches can have other sizes. */
+/*
+ * These are the default caches for kmalloc. Custom caches can have other sizes.
+ */
 struct cache_sizes malloc_sizes[] = {
 #define CACHE(x) { .cs_size = (x) },
 #include <linux/kmalloc_sizes.h>
-       { 0, }
+       CACHE(ULONG_MAX)
 #undef CACHE
 };
-
 EXPORT_SYMBOL(malloc_sizes);
 
 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
@@ -474,354 +664,939 @@ struct cache_names {
 static struct cache_names __initdata cache_names[] = {
 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
 #include <linux/kmalloc_sizes.h>
-       { NULL, }
+       {NULL,}
 #undef CACHE
 };
 
-struct arraycache_init initarray_cache __initdata = { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
-struct arraycache_init initarray_generic __initdata = { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
+static struct arraycache_init initarray_cache __initdata =
+    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
+static struct arraycache_init initarray_generic =
+    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 
 /* internal cache of cache description objs */
-static kmem_cache_t cache_cache = {
-       .lists          = LIST3_INIT(cache_cache.lists),
-       .batchcount     = 1,
-       .limit          = BOOT_CPUCACHE_ENTRIES,
-       .objsize        = sizeof(kmem_cache_t),
-       .flags          = SLAB_NO_REAP,
-       .spinlock       = SPIN_LOCK_UNLOCKED,
-       .name           = "kmem_cache",
+static struct kmem_cache cache_cache = {
+       .batchcount = 1,
+       .limit = BOOT_CPUCACHE_ENTRIES,
+       .shared = 1,
+       .buffer_size = sizeof(struct kmem_cache),
+       .name = "kmem_cache",
 #if DEBUG
-       .reallen        = sizeof(kmem_cache_t),
+       .obj_size = sizeof(struct kmem_cache),
 #endif
 };
 
-/* Guard access to the cache-chain. */
-static struct semaphore        cache_chain_sem;
+#define BAD_ALIEN_MAGIC 0x01020304ul
 
-struct list_head cache_chain;
+#ifdef CONFIG_LOCKDEP
 
 /*
- * vm_enough_memory() looks at this to determine how many
- * slab-allocated pages are possibly freeable under pressure
+ * Slab sometimes uses the kmalloc slabs to store the slab headers
+ * for other slabs "off slab".
+ * The locking for this is tricky in that it nests within the locks
+ * of all other slabs in a few places; to deal with this special
+ * locking we put on-slab caches into a separate lock-class.
  *
- * SLAB_RECLAIM_ACCOUNT turns this on per-slab
+ * We set lock class for alien array caches which are up during init.
+ * The lock annotation will be lost if all cpus of a node goes down and
+ * then comes back up during hotplug
+ */
+static struct lock_class_key on_slab_l3_key;
+static struct lock_class_key on_slab_alc_key;
+
+static inline void init_lock_keys(void)
+
+{
+       int q;
+       struct cache_sizes *s = malloc_sizes;
+
+       while (s->cs_size != ULONG_MAX) {
+               for_each_node(q) {
+                       struct array_cache **alc;
+                       int r;
+                       struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
+                       if (!l3 || OFF_SLAB(s->cs_cachep))
+                               continue;
+                       lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
+                       alc = l3->alien;
+                       /*
+                        * FIXME: This check for BAD_ALIEN_MAGIC
+                        * should go away when common slab code is taught to
+                        * work even without alien caches.
+                        * Currently, non NUMA code returns BAD_ALIEN_MAGIC
+                        * for alloc_alien_cache,
+                        */
+                       if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
+                               continue;
+                       for_each_node(r) {
+                               if (alc[r])
+                                       lockdep_set_class(&alc[r]->lock,
+                                            &on_slab_alc_key);
+                       }
+               }
+               s++;
+       }
+}
+#else
+static inline void init_lock_keys(void)
+{
+}
+#endif
+
+/*
+ * 1. Guard access to the cache-chain.
+ * 2. Protect sanity of cpu_online_map against cpu hotplug events
  */
-atomic_t slab_reclaim_pages;
-EXPORT_SYMBOL(slab_reclaim_pages);
+static DEFINE_MUTEX(cache_chain_mutex);
+static struct list_head cache_chain;
 
 /*
  * chicken and egg problem: delay the per-cpu array allocation
  * until the general caches are up.
  */
-enum {
+static enum {
        NONE,
-       PARTIAL,
+       PARTIAL_AC,
+       PARTIAL_L3,
        FULL
 } g_cpucache_up;
 
-static DEFINE_PER_CPU(struct timer_list, reap_timers);
+/*
+ * used by boot code to determine if it can use slab based allocator
+ */
+int slab_is_available(void)
+{
+       return g_cpucache_up == FULL;
+}
 
-static void reap_timer_fnc(unsigned long data);
-static void free_block(kmem_cache_t* cachep, void** objpp, int len);
-static void enable_cpucache (kmem_cache_t *cachep);
+static DEFINE_PER_CPU(struct delayed_work, reap_work);
 
-static inline void ** ac_entry(struct array_cache *ac)
+static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 {
-       return (void**)(ac+1);
+       return cachep->array[smp_processor_id()];
 }
 
-static inline struct array_cache *ac_data(kmem_cache_t *cachep)
+static inline struct kmem_cache *__find_general_cachep(size_t size,
+                                                       gfp_t gfpflags)
 {
-       return cachep->array[smp_processor_id()];
+       struct cache_sizes *csizep = malloc_sizes;
+
+#if DEBUG
+       /* This happens if someone tries to call
+        * kmem_cache_create(), or __kmalloc(), before
+        * the generic caches are initialized.
+        */
+       BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
+#endif
+       while (size > csizep->cs_size)
+               csizep++;
+
+       /*
+        * Really subtle: The last entry with cs->cs_size==ULONG_MAX
+        * has cs_{dma,}cachep==NULL. Thus no special case
+        * for large kmalloc calls required.
+        */
+       if (unlikely(gfpflags & GFP_DMA))
+               return csizep->cs_dmacachep;
+       return csizep->cs_cachep;
 }
 
-/* Cal the num objs, wastage, and bytes left over for a given slab size. */
-static void cache_estimate (unsigned long gfporder, size_t size, size_t align,
-                int flags, size_t *left_over, unsigned int *num)
+static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
 {
-       int i;
-       size_t wastage = PAGE_SIZE<<gfporder;
-       size_t extra = 0;
-       size_t base = 0;
+       return __find_general_cachep(size, gfpflags);
+}
 
-       if (!(flags & CFLGS_OFF_SLAB)) {
-               base = sizeof(struct slab);
-               extra = sizeof(kmem_bufctl_t);
-       }
-       i = 0;
-       while (i*size + ALIGN(base+i*extra, align) <= wastage)
-               i++;
-       if (i > 0)
-               i--;
+static size_t slab_mgmt_size(size_t nr_objs, size_t align)
+{
+       return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
+}
+
+/*
+ * Calculate the number of objects and left-over bytes for a given buffer size.
+ */
+static void cache_estimate(unsigned long gfporder, size_t buffer_size,
+                          size_t align, int flags, size_t *left_over,
+                          unsigned int *num)
+{
+       int nr_objs;
+       size_t mgmt_size;
+       size_t slab_size = PAGE_SIZE << gfporder;
+
+       /*
+        * The slab management structure can be either off the slab or
+        * on it. For the latter case, the memory allocated for a
+        * slab is used for:
+        *
+        * - The struct slab
+        * - One kmem_bufctl_t for each object
+        * - Padding to respect alignment of @align
+        * - @buffer_size bytes for each object
+        *
+        * If the slab management structure is off the slab, then the
+        * alignment will already be calculated into the size. Because
+        * the slabs are all pages aligned, the objects will be at the
+        * correct alignment when allocated.
+        */
+       if (flags & CFLGS_OFF_SLAB) {
+               mgmt_size = 0;
+               nr_objs = slab_size / buffer_size;
 
-       if (i > SLAB_LIMIT)
-               i = SLAB_LIMIT;
+               if (nr_objs > SLAB_LIMIT)
+                       nr_objs = SLAB_LIMIT;
+       } else {
+               /*
+                * Ignore padding for the initial guess. The padding
+                * is at most @align-1 bytes, and @buffer_size is at
+                * least @align. In the worst case, this result will
+                * be one greater than the number of objects that fit
+                * into the memory allocation when taking the padding
+                * into account.
+                */
+               nr_objs = (slab_size - sizeof(struct slab)) /
+                         (buffer_size + sizeof(kmem_bufctl_t));
+
+               /*
+                * This calculated number will be either the right
+                * amount, or one greater than what we want.
+                */
+               if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
+                      > slab_size)
+                       nr_objs--;
 
-       *num = i;
-       wastage -= i*size;
-       wastage -= ALIGN(base+i*extra, align);
-       *left_over = wastage;
+               if (nr_objs > SLAB_LIMIT)
+                       nr_objs = SLAB_LIMIT;
+
+               mgmt_size = slab_mgmt_size(nr_objs, align);
+       }
+       *num = nr_objs;
+       *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
 }
 
 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
 
-static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
+static void __slab_error(const char *function, struct kmem_cache *cachep,
+                       char *msg)
 {
        printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
-               function, cachep->name, msg);
+              function, cachep->name, msg);
        dump_stack();
 }
 
 /*
- * Start the reap timer running on the target CPU.  We run at around 1 to 2Hz.
- * Add the CPU number into the expiry time to minimize the possibility of the
- * CPUs getting into lockstep and contending for the global cache chain lock.
+ * By default on NUMA we use alien caches to stage the freeing of
+ * objects allocated from other nodes. This causes massive memory
+ * inefficiencies when using fake NUMA setup to split memory into a
+ * large number of small nodes, so it can be disabled on the command
+ * line
+  */
+
+static int use_alien_caches __read_mostly = 1;
+static int __init noaliencache_setup(char *s)
+{
+       use_alien_caches = 0;
+       return 1;
+}
+__setup("noaliencache", noaliencache_setup);
+
+#ifdef CONFIG_NUMA
+/*
+ * Special reaping functions for NUMA systems called from cache_reap().
+ * These take care of doing round robin flushing of alien caches (containing
+ * objects freed on different nodes from which they were allocated) and the
+ * flushing of remote pcps by calling drain_node_pages.
  */
-static void __devinit start_cpu_timer(int cpu)
+static DEFINE_PER_CPU(unsigned long, reap_node);
+
+static void init_reap_node(int cpu)
 {
-       struct timer_list *rt = &per_cpu(reap_timers, cpu);
+       int node;
 
-       if (rt->function == NULL) {
-               init_timer(rt);
-               rt->expires = jiffies + HZ + 3*cpu;
-               rt->data = cpu;
-               rt->function = reap_timer_fnc;
-               add_timer_on(rt, cpu);
-       }
+       node = next_node(cpu_to_node(cpu), node_online_map);
+       if (node == MAX_NUMNODES)
+               node = first_node(node_online_map);
+
+       per_cpu(reap_node, cpu) = node;
 }
 
-#ifdef CONFIG_HOTPLUG_CPU
-static void stop_cpu_timer(int cpu)
+static void next_reap_node(void)
 {
-       struct timer_list *rt = &per_cpu(reap_timers, cpu);
+       int node = __get_cpu_var(reap_node);
 
-       if (rt->function) {
-               del_timer_sync(rt);
-               WARN_ON(timer_pending(rt));
-               rt->function = NULL;
-       }
+       /*
+        * Also drain per cpu pages on remote zones
+        */
+       if (node != numa_node_id())
+               drain_node_pages(node);
+
+       node = next_node(node, node_online_map);
+       if (unlikely(node >= MAX_NUMNODES))
+               node = first_node(node_online_map);
+       __get_cpu_var(reap_node) = node;
 }
+
+#else
+#define init_reap_node(cpu) do { } while (0)
+#define next_reap_node(void) do { } while (0)
 #endif
 
-static struct array_cache *alloc_arraycache(int cpu, int entries, int batchcount)
+/*
+ * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
+ * via the workqueue/eventd.
+ * Add the CPU number into the expiration time to minimize the possibility of
+ * the CPUs getting into lockstep and contending for the global cache chain
+ * lock.
+ */
+static void __devinit start_cpu_timer(int cpu)
 {
-       int memsize = sizeof(void*)*entries+sizeof(struct array_cache);
-       struct array_cache *nc = NULL;
+       struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
 
-       if (cpu != -1) {
-               nc = kmem_cache_alloc_node(kmem_find_general_cachep(memsize,
-                                       GFP_KERNEL), cpu_to_node(cpu));
+       /*
+        * When this gets called from do_initcalls via cpucache_init(),
+        * init_workqueues() has already run, so keventd will be setup
+        * at that time.
+        */
+       if (keventd_up() && reap_work->work.func == NULL) {
+               init_reap_node(cpu);
+               INIT_DELAYED_WORK(reap_work, cache_reap);
+               schedule_delayed_work_on(cpu, reap_work,
+                                       __round_jiffies_relative(HZ, cpu));
        }
-       if (!nc)
-               nc = kmalloc(memsize, GFP_KERNEL);
+}
+
+static struct array_cache *alloc_arraycache(int node, int entries,
+                                           int batchcount)
+{
+       int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
+       struct array_cache *nc = NULL;
+
+       nc = kmalloc_node(memsize, GFP_KERNEL, node);
        if (nc) {
                nc->avail = 0;
                nc->limit = entries;
                nc->batchcount = batchcount;
                nc->touched = 0;
+               spin_lock_init(&nc->lock);
        }
        return nc;
 }
 
-static int __devinit cpuup_callback(struct notifier_block *nfb,
-                                 unsigned long action,
-                                 void *hcpu)
+/*
+ * Transfer objects in one arraycache to another.
+ * Locking must be handled by the caller.
+ *
+ * Return the number of entries transferred.
+ */
+static int transfer_objects(struct array_cache *to,
+               struct array_cache *from, unsigned int max)
 {
-       long cpu = (long)hcpu;
-       kmem_cache_t* cachep;
+       /* Figure out how many entries to transfer */
+       int nr = min(min(from->avail, max), to->limit - to->avail);
 
-       switch (action) {
-       case CPU_UP_PREPARE:
-               down(&cache_chain_sem);
-               list_for_each_entry(cachep, &cache_chain, next) {
-                       struct array_cache *nc;
+       if (!nr)
+               return 0;
 
-                       nc = alloc_arraycache(cpu, cachep->limit, cachep->batchcount);
-                       if (!nc)
-                               goto bad;
+       memcpy(to->entry + to->avail, from->entry + from->avail -nr,
+                       sizeof(void *) *nr);
 
-                       spin_lock_irq(&cachep->spinlock);
-                       cachep->array[cpu] = nc;
-                       cachep->free_limit = (1+num_online_cpus())*cachep->batchcount
-                                               + cachep->num;
-                       spin_unlock_irq(&cachep->spinlock);
+       from->avail -= nr;
+       to->avail += nr;
+       to->touched = 1;
+       return nr;
+}
 
-               }
-               up(&cache_chain_sem);
-               break;
-       case CPU_ONLINE:
-               start_cpu_timer(cpu);
-               break;
-#ifdef CONFIG_HOTPLUG_CPU
-       case CPU_DEAD:
-               stop_cpu_timer(cpu);
-               /* fall thru */
-       case CPU_UP_CANCELED:
-               down(&cache_chain_sem);
+#ifndef CONFIG_NUMA
 
-               list_for_each_entry(cachep, &cache_chain, next) {
-                       struct array_cache *nc;
+#define drain_alien_cache(cachep, alien) do { } while (0)
+#define reap_alien(cachep, l3) do { } while (0)
 
-                       spin_lock_irq(&cachep->spinlock);
-                       /* cpu is dead; no one can alloc from it. */
-                       nc = cachep->array[cpu];
-                       cachep->array[cpu] = NULL;
-                       cachep->free_limit -= cachep->batchcount;
-                       free_block(cachep, ac_entry(nc), nc->avail);
-                       spin_unlock_irq(&cachep->spinlock);
-                       kfree(nc);
-               }
-               up(&cache_chain_sem);
-               break;
-#endif
-       }
-       return NOTIFY_OK;
-bad:
-       up(&cache_chain_sem);
-       return NOTIFY_BAD;
+static inline struct array_cache **alloc_alien_cache(int node, int limit)
+{
+       return (struct array_cache **)BAD_ALIEN_MAGIC;
 }
 
-static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
+static inline void free_alien_cache(struct array_cache **ac_ptr)
+{
+}
 
-/* Initialisation.
- * Called after the gfp() functions have been enabled, and before smp_init().
- */
-void __init kmem_cache_init(void)
+static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 {
-       size_t left_over;
-       struct cache_sizes *sizes;
-       struct cache_names *names;
+       return 0;
+}
 
-       /*
-        * Fragmentation resistance on low memory - only use bigger
-        * page orders on machines with more than 32MB of memory.
-        */
-       if (num_physpages > (32 << 20) >> PAGE_SHIFT)
-               slab_break_gfp_order = BREAK_GFP_ORDER_HI;
+static inline void *alternate_node_alloc(struct kmem_cache *cachep,
+               gfp_t flags)
+{
+       return NULL;
+}
 
-       
-       /* Bootstrap is tricky, because several objects are allocated
-        * from caches that do not exist yet:
-        * 1) initialize the cache_cache cache: it contains the kmem_cache_t
-        *    structures of all caches, except cache_cache itself: cache_cache
-        *    is statically allocated.
-        *    Initially an __init data area is used for the head array, it's
-        *    replaced with a kmalloc allocated array at the end of the bootstrap.
-        * 2) Create the first kmalloc cache.
-        *    The kmem_cache_t for the new cache is allocated normally. An __init
-        *    data area is used for the head array.
-        * 3) Create the remaining kmalloc caches, with minimally sized head arrays.
-        * 4) Replace the __init data head arrays for cache_cache and the first
-        *    kmalloc cache with kmalloc allocated arrays.
-        * 5) Resize the head arrays of the kmalloc caches to their final sizes.
-        */
+static inline void *____cache_alloc_node(struct kmem_cache *cachep,
+                gfp_t flags, int nodeid)
+{
+       return NULL;
+}
 
-       /* 1) create the cache_cache */
-       init_MUTEX(&cache_chain_sem);
-       INIT_LIST_HEAD(&cache_chain);
-       list_add(&cache_cache.next, &cache_chain);
-       cache_cache.colour_off = cache_line_size();
-       cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
+#else  /* CONFIG_NUMA */
 
-       cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
+static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
+static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 
-       cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
-                               &left_over, &cache_cache.num);
-       if (!cache_cache.num)
-               BUG();
+static struct array_cache **alloc_alien_cache(int node, int limit)
+{
+       struct array_cache **ac_ptr;
+       int memsize = sizeof(void *) * MAX_NUMNODES;
+       int i;
 
-       cache_cache.colour = left_over/cache_cache.colour_off;
-       cache_cache.colour_next = 0;
-       cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) +
-                               sizeof(struct slab), cache_line_size());
+       if (limit > 1)
+               limit = 12;
+       ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
+       if (ac_ptr) {
+               for_each_node(i) {
+                       if (i == node || !node_online(i)) {
+                               ac_ptr[i] = NULL;
+                               continue;
+                       }
+                       ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
+                       if (!ac_ptr[i]) {
+                               for (i--; i <= 0; i--)
+                                       kfree(ac_ptr[i]);
+                               kfree(ac_ptr);
+                               return NULL;
+                       }
+               }
+       }
+       return ac_ptr;
+}
 
-       /* 2+3) create the kmalloc caches */
-       sizes = malloc_sizes;
-       names = cache_names;
+static void free_alien_cache(struct array_cache **ac_ptr)
+{
+       int i;
 
-       while (sizes->cs_size) {
-               /* For performance, all the general caches are L1 aligned.
-                * This should be particularly beneficial on SMP boxes, as it
-                * eliminates "false sharing".
-                * Note for systems short on memory removing the alignment will
-                * allow tighter packing of the smaller caches. */
-               sizes->cs_cachep = kmem_cache_create(names->name,
-                       sizes->cs_size, ARCH_KMALLOC_MINALIGN,
-                       (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
-
-               /* Inc off-slab bufctl limit until the ceiling is hit. */
-               if (!(OFF_SLAB(sizes->cs_cachep))) {
-                       offslab_limit = sizes->cs_size-sizeof(struct slab);
-                       offslab_limit /= sizeof(kmem_bufctl_t);
-               }
+       if (!ac_ptr)
+               return;
+       for_each_node(i)
+           kfree(ac_ptr[i]);
+       kfree(ac_ptr);
+}
 
-               sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
-                       sizes->cs_size, ARCH_KMALLOC_MINALIGN,
-                       (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC),
-                       NULL, NULL);
+static void __drain_alien_cache(struct kmem_cache *cachep,
+                               struct array_cache *ac, int node)
+{
+       struct kmem_list3 *rl3 = cachep->nodelists[node];
 
-               sizes++;
-               names++;
-       }
+       if (ac->avail) {
+               spin_lock(&rl3->list_lock);
+               /*
+                * Stuff objects into the remote nodes shared array first.
+                * That way we could avoid the overhead of putting the objects
+                * into the free lists and getting them back later.
+                */
+               if (rl3->shared)
+                       transfer_objects(rl3->shared, ac, ac->limit);
+
+               free_block(cachep, ac->entry, ac->avail, node);
+               ac->avail = 0;
+               spin_unlock(&rl3->list_lock);
+       }
+}
+
+/*
+ * Called from cache_reap() to regularly drain alien caches round robin.
+ */
+static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
+{
+       int node = __get_cpu_var(reap_node);
+
+       if (l3->alien) {
+               struct array_cache *ac = l3->alien[node];
+
+               if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
+                       __drain_alien_cache(cachep, ac, node);
+                       spin_unlock_irq(&ac->lock);
+               }
+       }
+}
+
+static void drain_alien_cache(struct kmem_cache *cachep,
+                               struct array_cache **alien)
+{
+       int i = 0;
+       struct array_cache *ac;
+       unsigned long flags;
+
+       for_each_online_node(i) {
+               ac = alien[i];
+               if (ac) {
+                       spin_lock_irqsave(&ac->lock, flags);
+                       __drain_alien_cache(cachep, ac, i);
+                       spin_unlock_irqrestore(&ac->lock, flags);
+               }
+       }
+}
+
+static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
+{
+       struct slab *slabp = virt_to_slab(objp);
+       int nodeid = slabp->nodeid;
+       struct kmem_list3 *l3;
+       struct array_cache *alien = NULL;
+       int node;
+
+       node = numa_node_id();
+
+       /*
+        * Make sure we are not freeing a object from another node to the array
+        * cache on this cpu.
+        */
+       if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
+               return 0;
+
+       l3 = cachep->nodelists[node];
+       STATS_INC_NODEFREES(cachep);
+       if (l3->alien && l3->alien[nodeid]) {
+               alien = l3->alien[nodeid];
+               spin_lock(&alien->lock);
+               if (unlikely(alien->avail == alien->limit)) {
+                       STATS_INC_ACOVERFLOW(cachep);
+                       __drain_alien_cache(cachep, alien, nodeid);
+               }
+               alien->entry[alien->avail++] = objp;
+               spin_unlock(&alien->lock);
+       } else {
+               spin_lock(&(cachep->nodelists[nodeid])->list_lock);
+               free_block(cachep, &objp, 1, nodeid);
+               spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
+       }
+       return 1;
+}
+#endif
+
+static int __cpuinit cpuup_callback(struct notifier_block *nfb,
+                                   unsigned long action, void *hcpu)
+{
+       long cpu = (long)hcpu;
+       struct kmem_cache *cachep;
+       struct kmem_list3 *l3 = NULL;
+       int node = cpu_to_node(cpu);
+       int memsize = sizeof(struct kmem_list3);
+
+       switch (action) {
+       case CPU_UP_PREPARE:
+               mutex_lock(&cache_chain_mutex);
+               /*
+                * We need to do this right in the beginning since
+                * alloc_arraycache's are going to use this list.
+                * kmalloc_node allows us to add the slab to the right
+                * kmem_list3 and not this cpu's kmem_list3
+                */
+
+               list_for_each_entry(cachep, &cache_chain, next) {
+                       /*
+                        * Set up the size64 kmemlist for cpu before we can
+                        * begin anything. Make sure some other cpu on this
+                        * node has not already allocated this
+                        */
+                       if (!cachep->nodelists[node]) {
+                               l3 = kmalloc_node(memsize, GFP_KERNEL, node);
+                               if (!l3)
+                                       goto bad;
+                               kmem_list3_init(l3);
+                               l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
+                                   ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
+
+                               /*
+                                * The l3s don't come and go as CPUs come and
+                                * go.  cache_chain_mutex is sufficient
+                                * protection here.
+                                */
+                               cachep->nodelists[node] = l3;
+                       }
+
+                       spin_lock_irq(&cachep->nodelists[node]->list_lock);
+                       cachep->nodelists[node]->free_limit =
+                               (1 + nr_cpus_node(node)) *
+                               cachep->batchcount + cachep->num;
+                       spin_unlock_irq(&cachep->nodelists[node]->list_lock);
+               }
+
+               /*
+                * Now we can go ahead with allocating the shared arrays and
+                * array caches
+                */
+               list_for_each_entry(cachep, &cache_chain, next) {
+                       struct array_cache *nc;
+                       struct array_cache *shared;
+                       struct array_cache **alien = NULL;
+
+                       nc = alloc_arraycache(node, cachep->limit,
+                                               cachep->batchcount);
+                       if (!nc)
+                               goto bad;
+                       shared = alloc_arraycache(node,
+                                       cachep->shared * cachep->batchcount,
+                                       0xbaadf00d);
+                       if (!shared)
+                               goto bad;
+
+                       if (use_alien_caches) {
+                                alien = alloc_alien_cache(node, cachep->limit);
+                                if (!alien)
+                                        goto bad;
+                        }
+                       cachep->array[cpu] = nc;
+                       l3 = cachep->nodelists[node];
+                       BUG_ON(!l3);
+
+                       spin_lock_irq(&l3->list_lock);
+                       if (!l3->shared) {
+                               /*
+                                * We are serialised from CPU_DEAD or
+                                * CPU_UP_CANCELLED by the cpucontrol lock
+                                */
+                               l3->shared = shared;
+                               shared = NULL;
+                       }
+#ifdef CONFIG_NUMA
+                       if (!l3->alien) {
+                               l3->alien = alien;
+                               alien = NULL;
+                       }
+#endif
+                       spin_unlock_irq(&l3->list_lock);
+                       kfree(shared);
+                       free_alien_cache(alien);
+               }
+               break;
+       case CPU_ONLINE:
+               mutex_unlock(&cache_chain_mutex);
+               start_cpu_timer(cpu);
+               break;
+#ifdef CONFIG_HOTPLUG_CPU
+       case CPU_DOWN_PREPARE:
+               mutex_lock(&cache_chain_mutex);
+               break;
+       case CPU_DOWN_FAILED:
+               mutex_unlock(&cache_chain_mutex);
+               break;
+       case CPU_DEAD:
+               /*
+                * Even if all the cpus of a node are down, we don't free the
+                * kmem_list3 of any cache. This to avoid a race between
+                * cpu_down, and a kmalloc allocation from another cpu for
+                * memory from the node of the cpu going down.  The list3
+                * structure is usually allocated from kmem_cache_create() and
+                * gets destroyed at kmem_cache_destroy().
+                */
+               /* fall thru */
+#endif
+       case CPU_UP_CANCELED:
+               list_for_each_entry(cachep, &cache_chain, next) {
+                       struct array_cache *nc;
+                       struct array_cache *shared;
+                       struct array_cache **alien;
+                       cpumask_t mask;
+
+                       mask = node_to_cpumask(node);
+                       /* cpu is dead; no one can alloc from it. */
+                       nc = cachep->array[cpu];
+                       cachep->array[cpu] = NULL;
+                       l3 = cachep->nodelists[node];
+
+                       if (!l3)
+                               goto free_array_cache;
+
+                       spin_lock_irq(&l3->list_lock);
+
+                       /* Free limit for this kmem_list3 */
+                       l3->free_limit -= cachep->batchcount;
+                       if (nc)
+                               free_block(cachep, nc->entry, nc->avail, node);
+
+                       if (!cpus_empty(mask)) {
+                               spin_unlock_irq(&l3->list_lock);
+                               goto free_array_cache;
+                       }
+
+                       shared = l3->shared;
+                       if (shared) {
+                               free_block(cachep, l3->shared->entry,
+                                          l3->shared->avail, node);
+                               l3->shared = NULL;
+                       }
+
+                       alien = l3->alien;
+                       l3->alien = NULL;
+
+                       spin_unlock_irq(&l3->list_lock);
+
+                       kfree(shared);
+                       if (alien) {
+                               drain_alien_cache(cachep, alien);
+                               free_alien_cache(alien);
+                       }
+free_array_cache:
+                       kfree(nc);
+               }
+               /*
+                * In the previous loop, all the objects were freed to
+                * the respective cache's slabs,  now we can go ahead and
+                * shrink each nodelist to its limit.
+                */
+               list_for_each_entry(cachep, &cache_chain, next) {
+                       l3 = cachep->nodelists[node];
+                       if (!l3)
+                               continue;
+                       drain_freelist(cachep, l3, l3->free_objects);
+               }
+               mutex_unlock(&cache_chain_mutex);
+               break;
+       }
+       return NOTIFY_OK;
+bad:
+       return NOTIFY_BAD;
+}
+
+static struct notifier_block __cpuinitdata cpucache_notifier = {
+       &cpuup_callback, NULL, 0
+};
+
+/*
+ * swap the static kmem_list3 with kmalloced memory
+ */
+static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
+                       int nodeid)
+{
+       struct kmem_list3 *ptr;
+
+       ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
+       BUG_ON(!ptr);
+
+       local_irq_disable();
+       memcpy(ptr, list, sizeof(struct kmem_list3));
+       /*
+        * Do not assume that spinlocks can be initialized via memcpy:
+        */
+       spin_lock_init(&ptr->list_lock);
+
+       MAKE_ALL_LISTS(cachep, ptr, nodeid);
+       cachep->nodelists[nodeid] = ptr;
+       local_irq_enable();
+}
+
+/*
+ * Initialisation.  Called after the page allocator have been initialised and
+ * before smp_init().
+ */
+void __init kmem_cache_init(void)
+{
+       size_t left_over;
+       struct cache_sizes *sizes;
+       struct cache_names *names;
+       int i;
+       int order;
+       int node;
+
+       for (i = 0; i < NUM_INIT_LISTS; i++) {
+               kmem_list3_init(&initkmem_list3[i]);
+               if (i < MAX_NUMNODES)
+                       cache_cache.nodelists[i] = NULL;
+       }
+
+       /*
+        * Fragmentation resistance on low memory - only use bigger
+        * page orders on machines with more than 32MB of memory.
+        */
+       if (num_physpages > (32 << 20) >> PAGE_SHIFT)
+               slab_break_gfp_order = BREAK_GFP_ORDER_HI;
+
+       /* Bootstrap is tricky, because several objects are allocated
+        * from caches that do not exist yet:
+        * 1) initialize the cache_cache cache: it contains the struct
+        *    kmem_cache structures of all caches, except cache_cache itself:
+        *    cache_cache is statically allocated.
+        *    Initially an __init data area is used for the head array and the
+        *    kmem_list3 structures, it's replaced with a kmalloc allocated
+        *    array at the end of the bootstrap.
+        * 2) Create the first kmalloc cache.
+        *    The struct kmem_cache for the new cache is allocated normally.
+        *    An __init data area is used for the head array.
+        * 3) Create the remaining kmalloc caches, with minimally sized
+        *    head arrays.
+        * 4) Replace the __init data head arrays for cache_cache and the first
+        *    kmalloc cache with kmalloc allocated arrays.
+        * 5) Replace the __init data for kmem_list3 for cache_cache and
+        *    the other cache's with kmalloc allocated memory.
+        * 6) Resize the head arrays of the kmalloc caches to their final sizes.
+        */
+
+       node = numa_node_id();
+
+       /* 1) create the cache_cache */
+       INIT_LIST_HEAD(&cache_chain);
+       list_add(&cache_cache.next, &cache_chain);
+       cache_cache.colour_off = cache_line_size();
+       cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
+       cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
+
+       cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
+                                       cache_line_size());
+       cache_cache.reciprocal_buffer_size =
+               reciprocal_value(cache_cache.buffer_size);
+
+       for (order = 0; order < MAX_ORDER; order++) {
+               cache_estimate(order, cache_cache.buffer_size,
+                       cache_line_size(), 0, &left_over, &cache_cache.num);
+               if (cache_cache.num)
+                       break;
+       }
+       BUG_ON(!cache_cache.num);
+       cache_cache.gfporder = order;
+       cache_cache.colour = left_over / cache_cache.colour_off;
+       cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
+                                     sizeof(struct slab), cache_line_size());
+
+       /* 2+3) create the kmalloc caches */
+       sizes = malloc_sizes;
+       names = cache_names;
+
+       /*
+        * Initialize the caches that provide memory for the array cache and the
+        * kmem_list3 structures first.  Without this, further allocations will
+        * bug.
+        */
+
+       sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
+                                       sizes[INDEX_AC].cs_size,
+                                       ARCH_KMALLOC_MINALIGN,
+                                       ARCH_KMALLOC_FLAGS|SLAB_PANIC,
+                                       NULL, NULL);
+
+       if (INDEX_AC != INDEX_L3) {
+               sizes[INDEX_L3].cs_cachep =
+                       kmem_cache_create(names[INDEX_L3].name,
+                               sizes[INDEX_L3].cs_size,
+                               ARCH_KMALLOC_MINALIGN,
+                               ARCH_KMALLOC_FLAGS|SLAB_PANIC,
+                               NULL, NULL);
+       }
+
+       slab_early_init = 0;
+
+       while (sizes->cs_size != ULONG_MAX) {
+               /*
+                * For performance, all the general caches are L1 aligned.
+                * This should be particularly beneficial on SMP boxes, as it
+                * eliminates "false sharing".
+                * Note for systems short on memory removing the alignment will
+                * allow tighter packing of the smaller caches.
+                */
+               if (!sizes->cs_cachep) {
+                       sizes->cs_cachep = kmem_cache_create(names->name,
+                                       sizes->cs_size,
+                                       ARCH_KMALLOC_MINALIGN,
+                                       ARCH_KMALLOC_FLAGS|SLAB_PANIC,
+                                       NULL, NULL);
+               }
+
+               sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
+                                       sizes->cs_size,
+                                       ARCH_KMALLOC_MINALIGN,
+                                       ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
+                                               SLAB_PANIC,
+                                       NULL, NULL);
+               sizes++;
+               names++;
+       }
        /* 4) Replace the bootstrap head arrays */
        {
-               void * ptr;
-               
+               struct array_cache *ptr;
+
                ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
+
                local_irq_disable();
-               BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
-               memcpy(ptr, ac_data(&cache_cache), sizeof(struct arraycache_init));
+               BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
+               memcpy(ptr, cpu_cache_get(&cache_cache),
+                      sizeof(struct arraycache_init));
+               /*
+                * Do not assume that spinlocks can be initialized via memcpy:
+                */
+               spin_lock_init(&ptr->lock);
+
                cache_cache.array[smp_processor_id()] = ptr;
                local_irq_enable();
-       
+
                ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
+
                local_irq_disable();
-               BUG_ON(ac_data(malloc_sizes[0].cs_cachep) != &initarray_generic.cache);
-               memcpy(ptr, ac_data(malloc_sizes[0].cs_cachep),
-                               sizeof(struct arraycache_init));
-               malloc_sizes[0].cs_cachep->array[smp_processor_id()] = ptr;
+               BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
+                      != &initarray_generic.cache);
+               memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
+                      sizeof(struct arraycache_init));
+               /*
+                * Do not assume that spinlocks can be initialized via memcpy:
+                */
+               spin_lock_init(&ptr->lock);
+
+               malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
+                   ptr;
                local_irq_enable();
        }
+       /* 5) Replace the bootstrap kmem_list3's */
+       {
+               int nid;
+
+               /* Replace the static kmem_list3 structures for the boot cpu */
+               init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
+
+               for_each_online_node(nid) {
+                       init_list(malloc_sizes[INDEX_AC].cs_cachep,
+                                 &initkmem_list3[SIZE_AC + nid], nid);
+
+                       if (INDEX_AC != INDEX_L3) {
+                               init_list(malloc_sizes[INDEX_L3].cs_cachep,
+                                         &initkmem_list3[SIZE_L3 + nid], nid);
+                       }
+               }
+       }
 
-       /* 5) resize the head arrays to their final sizes */
+       /* 6) resize the head arrays to their final sizes */
        {
-               kmem_cache_t *cachep;
-               down(&cache_chain_sem);
+               struct kmem_cache *cachep;
+               mutex_lock(&cache_chain_mutex);
                list_for_each_entry(cachep, &cache_chain, next)
-                       enable_cpucache(cachep);
-               up(&cache_chain_sem);
+                       if (enable_cpucache(cachep))
+                               BUG();
+               mutex_unlock(&cache_chain_mutex);
        }
 
+       /* Annotate slab for lockdep -- annotate the malloc caches */
+       init_lock_keys();
+
+
        /* Done! */
        g_cpucache_up = FULL;
 
-       /* Register a cpu startup notifier callback
-        * that initializes ac_data for all new cpus
+       /*
+        * Register a cpu startup notifier callback that initializes
+        * cpu_cache_get for all new cpus
         */
        register_cpu_notifier(&cpucache_notifier);
-       
 
-       /* The reap timers are started later, with a module init call:
-        * That part of the kernel is not yet operational.
+       /*
+        * The reap timers are started later, with a module init call: That part
+        * of the kernel is not yet operational.
         */
 }
 
-int __init cpucache_init(void)
+static int __init cpucache_init(void)
 {
        int cpu;
 
-       /* 
-        * Register the timers that return unneeded
-        * pages to gfp.
+       /*
+        * Register the timers that return unneeded pages to the page allocator
         */
-       for (cpu = 0; cpu < NR_CPUS; cpu++) {
-               if (cpu_online(cpu))
-                       start_cpu_timer(cpu);
-       }
-
+       for_each_online_cpu(cpu)
+               start_cpu_timer(cpu);
        return 0;
 }
-
 __initcall(cpucache_init);
 
 /*
@@ -831,74 +1606,90 @@ __initcall(cpucache_init);
  * did not request dmaable memory, we might get it, but that
  * would be relatively rare and ignorable.
  */
-static void *kmem_getpages(kmem_cache_t *cachep, int flags, int nodeid)
+static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 {
        struct page *page;
-       void *addr;
+       int nr_pages;
        int i;
 
+#ifndef CONFIG_MMU
+       /*
+        * Nommu uses slab's for process anonymous memory allocations, and thus
+        * requires __GFP_COMP to properly refcount higher order allocations
+        */
+       flags |= __GFP_COMP;
+#endif
+
        flags |= cachep->gfpflags;
-       if (likely(nodeid == -1)) {
-               addr = (void*)__get_free_pages(flags, cachep->gfporder);
-               if (!addr)
-                       return NULL;
-               page = virt_to_page(addr);
-       } else {
-               page = alloc_pages_node(nodeid, flags, cachep->gfporder);
-               if (!page)
-                       return NULL;
-               addr = page_address(page);
-       }
 
-       i = (1 << cachep->gfporder);
+       page = alloc_pages_node(nodeid, flags, cachep->gfporder);
+       if (!page)
+               return NULL;
+
+       nr_pages = (1 << cachep->gfporder);
        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
-               atomic_add(i, &slab_reclaim_pages);
-       add_page_state(nr_slab, i);
-       while (i--) {
-               SetPageSlab(page);
-               page++;
-       }
-       return addr;
+               add_zone_page_state(page_zone(page),
+                       NR_SLAB_RECLAIMABLE, nr_pages);
+       else
+               add_zone_page_state(page_zone(page),
+                       NR_SLAB_UNRECLAIMABLE, nr_pages);
+       for (i = 0; i < nr_pages; i++)
+               __SetPageSlab(page + i);
+       return page_address(page);
 }
 
 /*
  * Interface to system's page release.
  */
-static void kmem_freepages(kmem_cache_t *cachep, void *addr)
+static void kmem_freepages(struct kmem_cache *cachep, void *addr)
 {
-       unsigned long i = (1<<cachep->gfporder);
+       unsigned long i = (1 << cachep->gfporder);
        struct page *page = virt_to_page(addr);
        const unsigned long nr_freed = i;
 
+       if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
+               sub_zone_page_state(page_zone(page),
+                               NR_SLAB_RECLAIMABLE, nr_freed);
+       else
+               sub_zone_page_state(page_zone(page),
+                               NR_SLAB_UNRECLAIMABLE, nr_freed);
        while (i--) {
-               if (!TestClearPageSlab(page))
-                       BUG();
+               BUG_ON(!PageSlab(page));
+               __ClearPageSlab(page);
                page++;
        }
-       sub_page_state(nr_slab, nr_freed);
        if (current->reclaim_state)
                current->reclaim_state->reclaimed_slab += nr_freed;
        free_pages((unsigned long)addr, cachep->gfporder);
-       if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 
-               atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
+}
+
+static void kmem_rcu_free(struct rcu_head *head)
+{
+       struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
+       struct kmem_cache *cachep = slab_rcu->cachep;
+
+       kmem_freepages(cachep, slab_rcu->addr);
+       if (OFF_SLAB(cachep))
+               kmem_cache_free(cachep->slabp_cache, slab_rcu);
 }
 
 #if DEBUG
 
 #ifdef CONFIG_DEBUG_PAGEALLOC
-static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, unsigned long caller)
+static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
+                           unsigned long caller)
 {
-       int size = obj_reallen(cachep);
+       int size = obj_size(cachep);
 
-       addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
+       addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
 
-       if (size < 5*sizeof(unsigned long))
+       if (size < 5 * sizeof(unsigned long))
                return;
 
-       *addr++=0x12345678;
-       *addr++=caller;
-       *addr++=smp_processor_id();
-       size -= 3*sizeof(unsigned long);
+       *addr++ = 0x12345678;
+       *addr++ = caller;
+       *addr++ = smp_processor_id();
+       size -= 3 * sizeof(unsigned long);
        {
                unsigned long *sptr = &caller;
                unsigned long svalue;
@@ -906,7 +1697,7 @@ static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, unsigned
                while (!kstack_end(sptr)) {
                        svalue = *sptr++;
                        if (kernel_text_address(svalue)) {
-                               *addr++=svalue;
+                               *addr++ = svalue;
                                size -= sizeof(unsigned long);
                                if (size <= sizeof(unsigned long))
                                        break;
@@ -914,33 +1705,55 @@ static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, unsigned
                }
 
        }
-       *addr++=0x87654321;
+       *addr++ = 0x87654321;
 }
 #endif
 
-static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
+static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
 {
-       int size = obj_reallen(cachep);
-       addr = &((char*)addr)[obj_dbghead(cachep)];
+       int size = obj_size(cachep);
+       addr = &((char *)addr)[obj_offset(cachep)];
 
        memset(addr, val, size);
-       *(unsigned char *)(addr+size-1) = POISON_END;
+       *(unsigned char *)(addr + size - 1) = POISON_END;
 }
 
 static void dump_line(char *data, int offset, int limit)
 {
        int i;
+       unsigned char error = 0;
+       int bad_count = 0;
+
        printk(KERN_ERR "%03x:", offset);
-       for (i=0;i<limit;i++) {
-               printk(" %02x", (unsigned char)data[offset+i]);
+       for (i = 0; i < limit; i++) {
+               if (data[offset + i] != POISON_FREE) {
+                       error = data[offset + i];
+                       bad_count++;
+               }
+               printk(" %02x", (unsigned char)data[offset + i]);
        }
        printk("\n");
+
+       if (bad_count == 1) {
+               error ^= POISON_FREE;
+               if (!(error & (error - 1))) {
+                       printk(KERN_ERR "Single bit error detected. Probably "
+                                       "bad RAM.\n");
+#ifdef CONFIG_X86
+                       printk(KERN_ERR "Run memtest86+ or a similar memory "
+                                       "test tool.\n");
+#else
+                       printk(KERN_ERR "Run a memory test tool.\n");
+#endif
+               }
+       }
 }
 #endif
 
-static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
-{
 #if DEBUG
+
+static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
+{
        int i, size;
        char *realobj;
 
@@ -951,51 +1764,52 @@ static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
        }
 
        if (cachep->flags & SLAB_STORE_USER) {
-               printk(KERN_ERR "Last user: [<%p>]", *dbg_userword(cachep, objp));
-               print_symbol("(%s)", (unsigned long)*dbg_userword(cachep, objp));
+               printk(KERN_ERR "Last user: [<%p>]",
+                       *dbg_userword(cachep, objp));
+               print_symbol("(%s)",
+                               (unsigned long)*dbg_userword(cachep, objp));
                printk("\n");
        }
-       realobj = (char*)objp+obj_dbghead(cachep);
-       size = obj_reallen(cachep);
-       for (i=0; i<size && lines;i+=16, lines--) {
+       realobj = (char *)objp + obj_offset(cachep);
+       size = obj_size(cachep);
+       for (i = 0; i < size && lines; i += 16, lines--) {
                int limit;
                limit = 16;
-               if (i+limit > size)
-                       limit = size-i;
+               if (i + limit > size)
+                       limit = size - i;
                dump_line(realobj, i, limit);
        }
-#endif
 }
 
-#if DEBUG
-
-static void check_poison_obj(kmem_cache_t *cachep, void *objp)
+static void check_poison_obj(struct kmem_cache *cachep, void *objp)
 {
        char *realobj;
        int size, i;
        int lines = 0;
 
-       realobj = (char*)objp+obj_dbghead(cachep);
-       size = obj_reallen(cachep);
+       realobj = (char *)objp + obj_offset(cachep);
+       size = obj_size(cachep);
 
-       for (i=0;i<size;i++) {
+       for (i = 0; i < size; i++) {
                char exp = POISON_FREE;
-               if (i == size-1)
+               if (i == size - 1)
                        exp = POISON_END;
                if (realobj[i] != exp) {
                        int limit;
                        /* Mismatch ! */
                        /* Print header */
                        if (lines == 0) {
-                               printk(KERN_ERR "Slab corruption: start=%p, len=%d\n",
-                                               realobj, size);
+                               printk(KERN_ERR
+                                       "Slab corruption: (%s) start=%p, len=%d\n",
+                                       print_tainted(), realobj, size);
                                print_objinfo(cachep, objp, 0);
+                               dump_stack();
                        }
                        /* Hexdump the affected line */
-                       i = (i/16)*16;
+                       i = (i / 16) * 16;
                        limit = 16;
-                       if (i+limit > size)
-                               limit = size-i;
+                       if (i + limit > size)
+                               limit = size - i;
                        dump_line(realobj, i, limit);
                        i += 16;
                        lines++;
@@ -1008,43 +1822,49 @@ static void check_poison_obj(kmem_cache_t *cachep, void *objp)
                /* Print some data about the neighboring objects, if they
                 * exist:
                 */
-               struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp));
-               int objnr;
+               struct slab *slabp = virt_to_slab(objp);
+               unsigned int objnr;
 
-               objnr = (objp-slabp->s_mem)/cachep->objsize;
+               objnr = obj_to_index(cachep, slabp, objp);
                if (objnr) {
-                       objp = slabp->s_mem+(objnr-1)*cachep->objsize;
-                       realobj = (char*)objp+obj_dbghead(cachep);
+                       objp = index_to_obj(cachep, slabp, objnr - 1);
+                       realobj = (char *)objp + obj_offset(cachep);
                        printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
-                                               realobj, size);
+                              realobj, size);
                        print_objinfo(cachep, objp, 2);
                }
-               if (objnr+1 < cachep->num) {
-                       objp = slabp->s_mem+(objnr+1)*cachep->objsize;
-                       realobj = (char*)objp+obj_dbghead(cachep);
+               if (objnr + 1 < cachep->num) {
+                       objp = index_to_obj(cachep, slabp, objnr + 1);
+                       realobj = (char *)objp + obj_offset(cachep);
                        printk(KERN_ERR "Next obj: start=%p, len=%d\n",
-                                               realobj, size);
+                              realobj, size);
                        print_objinfo(cachep, objp, 2);
                }
        }
 }
 #endif
 
-/* Destroy all the objs in a slab, and release the mem back to the system.
- * Before calling the slab must have been unlinked from the cache.
- * The cache-lock is not held/needed.
+#if DEBUG
+/**
+ * slab_destroy_objs - destroy a slab and its objects
+ * @cachep: cache pointer being destroyed
+ * @slabp: slab pointer being destroyed
+ *
+ * Call the registered destructor for each object in a slab that is being
+ * destroyed.
  */
-static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
+static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
 {
-#if DEBUG
        int i;
        for (i = 0; i < cachep->num; i++) {
-               void *objp = slabp->s_mem + cachep->objsize * i;
+               void *objp = index_to_obj(cachep, slabp, i);
 
                if (cachep->flags & SLAB_POISON) {
 #ifdef CONFIG_DEBUG_PAGEALLOC
-                       if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
-                               kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
+                       if (cachep->buffer_size % PAGE_SIZE == 0 &&
+                                       OFF_SLAB(cachep))
+                               kernel_map_pages(virt_to_page(objp),
+                                       cachep->buffer_size / PAGE_SIZE, 1);
                        else
                                check_poison_obj(cachep, objp);
 #else
@@ -1054,27 +1874,215 @@ static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
                if (cachep->flags & SLAB_RED_ZONE) {
                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
                                slab_error(cachep, "start of a freed object "
-                                                       "was overwritten");
+                                          "was overwritten");
                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
                                slab_error(cachep, "end of a freed object "
-                                                       "was overwritten");
+                                          "was overwritten");
                }
                if (cachep->dtor && !(cachep->flags & SLAB_POISON))
-                       (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0);
+                       (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
        }
+}
 #else
+static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
+{
        if (cachep->dtor) {
                int i;
                for (i = 0; i < cachep->num; i++) {
-                       void* objp = slabp->s_mem+cachep->objsize*i;
-                       (cachep->dtor)(objp, cachep, 0);
+                       void *objp = index_to_obj(cachep, slabp, i);
+                       (cachep->dtor) (objp, cachep, 0);
                }
        }
+}
 #endif
-       
-       kmem_freepages(cachep, slabp->s_mem-slabp->colouroff);
-       if (OFF_SLAB(cachep))
-               kmem_cache_free(cachep->slabp_cache, slabp);
+
+/**
+ * slab_destroy - destroy and release all objects in a slab
+ * @cachep: cache pointer being destroyed
+ * @slabp: slab pointer being destroyed
+ *
+ * Destroy all the objs in a slab, and release the mem back to the system.
+ * Before calling the slab must have been unlinked from the cache.  The
+ * cache-lock is not held/needed.
+ */
+static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
+{
+       void *addr = slabp->s_mem - slabp->colouroff;
+
+       slab_destroy_objs(cachep, slabp);
+       if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
+               struct slab_rcu *slab_rcu;
+
+               slab_rcu = (struct slab_rcu *)slabp;
+               slab_rcu->cachep = cachep;
+               slab_rcu->addr = addr;
+               call_rcu(&slab_rcu->head, kmem_rcu_free);
+       } else {
+               kmem_freepages(cachep, addr);
+               if (OFF_SLAB(cachep))
+                       kmem_cache_free(cachep->slabp_cache, slabp);
+       }
+}
+
+/*
+ * For setting up all the kmem_list3s for cache whose buffer_size is same as
+ * size of kmem_list3.
+ */
+static void set_up_list3s(struct kmem_cache *cachep, int index)
+{
+       int node;
+
+       for_each_online_node(node) {
+               cachep->nodelists[node] = &initkmem_list3[index + node];
+               cachep->nodelists[node]->next_reap = jiffies +
+                   REAPTIMEOUT_LIST3 +
+                   ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
+       }
+}
+
+static void __kmem_cache_destroy(struct kmem_cache *cachep)
+{
+       int i;
+       struct kmem_list3 *l3;
+
+       for_each_online_cpu(i)
+           kfree(cachep->array[i]);
+
+       /* NUMA: free the list3 structures */
+       for_each_online_node(i) {
+               l3 = cachep->nodelists[i];
+               if (l3) {
+                       kfree(l3->shared);
+                       free_alien_cache(l3->alien);
+                       kfree(l3);
+               }
+       }
+       kmem_cache_free(&cache_cache, cachep);
+}
+
+
+/**
+ * calculate_slab_order - calculate size (page order) of slabs
+ * @cachep: pointer to the cache that is being created
+ * @size: size of objects to be created in this cache.
+ * @align: required alignment for the objects.
+ * @flags: slab allocation flags
+ *
+ * Also calculates the number of objects per slab.
+ *
+ * This could be made much more intelligent.  For now, try to avoid using
+ * high order pages for slabs.  When the gfp() functions are more friendly
+ * towards high-order requests, this should be changed.
+ */
+static size_t calculate_slab_order(struct kmem_cache *cachep,
+                       size_t size, size_t align, unsigned long flags)
+{
+       unsigned long offslab_limit;
+       size_t left_over = 0;
+       int gfporder;
+
+       for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
+               unsigned int num;
+               size_t remainder;
+
+               cache_estimate(gfporder, size, align, flags, &remainder, &num);
+               if (!num)
+                       continue;
+
+               if (flags & CFLGS_OFF_SLAB) {
+                       /*
+                        * Max number of objs-per-slab for caches which
+                        * use off-slab slabs. Needed to avoid a possible
+                        * looping condition in cache_grow().
+                        */
+                       offslab_limit = size - sizeof(struct slab);
+                       offslab_limit /= sizeof(kmem_bufctl_t);
+
+                       if (num > offslab_limit)
+                               break;
+               }
+
+               /* Found something acceptable - save it away */
+               cachep->num = num;
+               cachep->gfporder = gfporder;
+               left_over = remainder;
+
+               /*
+                * A VFS-reclaimable slab tends to have most allocations
+                * as GFP_NOFS and we really don't want to have to be allocating
+                * higher-order pages when we are unable to shrink dcache.
+                */
+               if (flags & SLAB_RECLAIM_ACCOUNT)
+                       break;
+
+               /*
+                * Large number of objects is good, but very large slabs are
+                * currently bad for the gfp()s.
+                */
+               if (gfporder >= slab_break_gfp_order)
+                       break;
+
+               /*
+                * Acceptable internal fragmentation?
+                */
+               if (left_over * 8 <= (PAGE_SIZE << gfporder))
+                       break;
+       }
+       return left_over;
+}
+
+static int setup_cpu_cache(struct kmem_cache *cachep)
+{
+       if (g_cpucache_up == FULL)
+               return enable_cpucache(cachep);
+
+       if (g_cpucache_up == NONE) {
+               /*
+                * Note: the first kmem_cache_create must create the cache
+                * that's used by kmalloc(24), otherwise the creation of
+                * further caches will BUG().
+                */
+               cachep->array[smp_processor_id()] = &initarray_generic.cache;
+
+               /*
+                * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
+                * the first cache, then we need to set up all its list3s,
+                * otherwise the creation of further caches will BUG().
+                */
+               set_up_list3s(cachep, SIZE_AC);
+               if (INDEX_AC == INDEX_L3)
+                       g_cpucache_up = PARTIAL_L3;
+               else
+                       g_cpucache_up = PARTIAL_AC;
+       } else {
+               cachep->array[smp_processor_id()] =
+                       kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
+
+               if (g_cpucache_up == PARTIAL_AC) {
+                       set_up_list3s(cachep, SIZE_L3);
+                       g_cpucache_up = PARTIAL_L3;
+               } else {
+                       int node;
+                       for_each_online_node(node) {
+                               cachep->nodelists[node] =
+                                   kmalloc_node(sizeof(struct kmem_list3),
+                                               GFP_KERNEL, node);
+                               BUG_ON(!cachep->nodelists[node]);
+                               kmem_list3_init(cachep->nodelists[node]);
+                       }
+               }
+       }
+       cachep->nodelists[numa_node_id()]->next_reap =
+                       jiffies + REAPTIMEOUT_LIST3 +
+                       ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
+
+       cpu_cache_get(cachep)->avail = 0;
+       cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
+       cpu_cache_get(cachep)->batchcount = 1;
+       cpu_cache_get(cachep)->touched = 0;
+       cachep->batchcount = 1;
+       cachep->limit = BOOT_CPUCACHE_ENTRIES;
+       return 0;
 }
 
 /**
@@ -1092,9 +2100,8 @@ static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
  * and the @dtor is run before the pages are handed back.
  *
  * @name must be valid until the cache is destroyed. This implies that
- * the module calling this has to destroy the cache before getting 
- * unloaded.
- * 
+ * the module calling this has to destroy the cache before getting unloaded.
+ *
  * The flags are
  *
  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
@@ -1103,43 +2110,66 @@ static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  * for buffer overruns.
  *
- * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
- * memory pressure.
- *
  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  * cacheline.  This can be beneficial if you're counting cycles as closely
  * as davem.
  */
-kmem_cache_t *
+struct kmem_cache *
 kmem_cache_create (const char *name, size_t size, size_t align,
-       unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
-       void (*dtor)(void*, kmem_cache_t *, unsigned long))
+       unsigned long flags,
+       void (*ctor)(void*, struct kmem_cache *, unsigned long),
+       void (*dtor)(void*, struct kmem_cache *, unsigned long))
 {
-       size_t left_over, slab_size;
-       kmem_cache_t *cachep = NULL;
+       size_t left_over, slab_size, ralign;
+       struct kmem_cache *cachep = NULL, *pc;
 
        /*
         * Sanity checks... these are all serious usage bugs.
         */
-       if ((!name) ||
-               in_interrupt() ||
-               (size < BYTES_PER_WORD) ||
-               (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
-               (dtor && !ctor)) {
-                       printk(KERN_ERR "%s: Early error in slab %s\n",
-                                       __FUNCTION__, name);
-                       BUG();
+       if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
+           (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
+               printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
+                               name);
+               BUG();
+       }
+
+       /*
+        * We use cache_chain_mutex to ensure a consistent view of
+        * cpu_online_map as well.  Please see cpuup_callback
+        */
+       mutex_lock(&cache_chain_mutex);
+
+       list_for_each_entry(pc, &cache_chain, next) {
+               char tmp;
+               int res;
+
+               /*
+                * This happens when the module gets unloaded and doesn't
+                * destroy its slab cache and no-one else reuses the vmalloc
+                * area of the module.  Print a warning.
+                */
+               res = probe_kernel_address(pc->name, tmp);
+               if (res) {
+                       printk("SLAB: cache with size %d has lost its name\n",
+                              pc->buffer_size);
+                       continue;
                }
 
+               if (!strcmp(pc->name, name)) {
+                       printk("kmem_cache_create: duplicate cache %s\n", name);
+                       dump_stack();
+                       goto oops;
+               }
+       }
+
 #if DEBUG
        WARN_ON(strchr(name, ' '));     /* It confuses parsers */
        if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
                /* No constructor, but inital state check requested */
                printk(KERN_ERR "%s: No con, but init state check "
-                               "requested - %s\n", __FUNCTION__, name);
+                      "requested - %s\n", __FUNCTION__, name);
                flags &= ~SLAB_DEBUG_INITIAL;
        }
-
 #if FORCED_DEBUG
        /*
         * Enable redzoning and last user accounting, except for caches with
@@ -1147,81 +2177,111 @@ kmem_cache_create (const char *name, size_t size, size_t align,
         * above the next power of two: caches with object sizes just above a
         * power of two have a significant amount of internal fragmentation.
         */
-       if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD)))
-               flags |= SLAB_RED_ZONE|SLAB_STORE_USER;
-       flags |= SLAB_POISON;
+       if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
+               flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
+       if (!(flags & SLAB_DESTROY_BY_RCU))
+               flags |= SLAB_POISON;
 #endif
+       if (flags & SLAB_DESTROY_BY_RCU)
+               BUG_ON(flags & SLAB_POISON);
 #endif
+       if (flags & SLAB_DESTROY_BY_RCU)
+               BUG_ON(dtor);
+
        /*
-        * Always checks flags, a caller might be expecting debug
-        * support which isn't available.
+        * Always checks flags, a caller might be expecting debug support which
+        * isn't available.
         */
-       if (flags & ~CREATE_MASK)
-               BUG();
+       BUG_ON(flags & ~CREATE_MASK);
+
+       /*
+        * Check that size is in terms of words.  This is needed to avoid
+        * unaligned accesses for some archs when redzoning is used, and makes
+        * sure any on-slab bufctl's are also correctly aligned.
+        */
+       if (size & (BYTES_PER_WORD - 1)) {
+               size += (BYTES_PER_WORD - 1);
+               size &= ~(BYTES_PER_WORD - 1);
+       }
+
+       /* calculate the final buffer alignment: */
 
-       if (align) {
-               /* combinations of forced alignment and advanced debugging is
-                * not yet implemented.
+       /* 1) arch recommendation: can be overridden for debug */
+       if (flags & SLAB_HWCACHE_ALIGN) {
+               /*
+                * Default alignment: as specified by the arch code.  Except if
+                * an object is really small, then squeeze multiple objects into
+                * one cacheline.
                 */
-               flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
+               ralign = cache_line_size();
+               while (size <= ralign / 2)
+                       ralign /= 2;
        } else {
-               if (flags & SLAB_HWCACHE_ALIGN) {
-                       /* Default alignment: as specified by the arch code.
-                        * Except if an object is really small, then squeeze multiple
-                        * into one cacheline.
-                        */
-                       align = cache_line_size();
-                       while (size <= align/2)
-                               align /= 2;
-               } else {
-                       align = BYTES_PER_WORD;
-               }
+               ralign = BYTES_PER_WORD;
        }
 
+       /*
+        * Redzoning and user store require word alignment. Note this will be
+        * overridden by architecture or caller mandated alignment if either
+        * is greater than BYTES_PER_WORD.
+        */
+       if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
+               ralign = BYTES_PER_WORD;
+
+       /* 2) arch mandated alignment */
+       if (ralign < ARCH_SLAB_MINALIGN) {
+               ralign = ARCH_SLAB_MINALIGN;
+       }
+       /* 3) caller mandated alignment */
+       if (ralign < align) {
+               ralign = align;
+       }
+       /* disable debug if necessary */
+       if (ralign > BYTES_PER_WORD)
+               flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
+       /*
+        * 4) Store it.
+        */
+       align = ralign;
+
        /* Get cache's description obj. */
-       cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
+       cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
        if (!cachep)
-               goto opps;
-       memset(cachep, 0, sizeof(kmem_cache_t));
+               goto oops;
 
-       /* Check that size is in terms of words.  This is needed to avoid
-        * unaligned accesses for some archs when redzoning is used, and makes
-        * sure any on-slab bufctl's are also correctly aligned.
-        */
-       if (size & (BYTES_PER_WORD-1)) {
-               size += (BYTES_PER_WORD-1);
-               size &= ~(BYTES_PER_WORD-1);
-       }
-       
 #if DEBUG
-       cachep->reallen = size;
+       cachep->obj_size = size;
 
+       /*
+        * Both debugging options require word-alignment which is calculated
+        * into align above.
+        */
        if (flags & SLAB_RED_ZONE) {
-               /* redzoning only works with word aligned caches */
-               align = BYTES_PER_WORD;
-
                /* add space for red zone words */
-               cachep->dbghead += BYTES_PER_WORD;
-               size += 2*BYTES_PER_WORD;
+               cachep->obj_offset += BYTES_PER_WORD;
+               size += 2 * BYTES_PER_WORD;
        }
        if (flags & SLAB_STORE_USER) {
-               /* user store requires word alignment and
-                * one word storage behind the end of the real
-                * object.
+               /* user store requires one word storage behind the end of
+                * the real object.
                 */
-               align = BYTES_PER_WORD;
                size += BYTES_PER_WORD;
        }
 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
-       if (size > 128 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
-               cachep->dbghead += PAGE_SIZE - size;
+       if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
+           && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
+               cachep->obj_offset += PAGE_SIZE - size;
                size = PAGE_SIZE;
        }
 #endif
 #endif
 
-       /* Determine if the slab management is 'on' or 'off' slab. */
-       if (size >= (PAGE_SIZE>>3))
+       /*
+        * Determine if the slab management is 'on' or 'off' slab.
+        * (bootstrapping cannot cope with offslab caches so don't do
+        * it too early on.)
+        */
+       if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
                /*
                 * Size is large, assume best to place the slab management obj
                 * off-slab (should allow better packing of objs).
@@ -1230,64 +2290,16 @@ kmem_cache_create (const char *name, size_t size, size_t align,
 
        size = ALIGN(size, align);
 
-       if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
-               /*
-                * A VFS-reclaimable slab tends to have most allocations
-                * as GFP_NOFS and we really don't want to have to be allocating
-                * higher-order pages when we are unable to shrink dcache.
-                */
-               cachep->gfporder = 0;
-               cache_estimate(cachep->gfporder, size, align, flags,
-                                       &left_over, &cachep->num);
-       } else {
-               /*
-                * Calculate size (in pages) of slabs, and the num of objs per
-                * slab.  This could be made much more intelligent.  For now,
-                * try to avoid using high page-orders for slabs.  When the
-                * gfp() funcs are more friendly towards high-order requests,
-                * this should be changed.
-                */
-               do {
-                       unsigned int break_flag = 0;
-cal_wastage:
-                       cache_estimate(cachep->gfporder, size, align, flags,
-                                               &left_over, &cachep->num);
-                       if (break_flag)
-                               break;
-                       if (cachep->gfporder >= MAX_GFP_ORDER)
-                               break;
-                       if (!cachep->num)
-                               goto next;
-                       if (flags & CFLGS_OFF_SLAB &&
-                                       cachep->num > offslab_limit) {
-                               /* This num of objs will cause problems. */
-                               cachep->gfporder--;
-                               break_flag++;
-                               goto cal_wastage;
-                       }
-
-                       /*
-                        * Large num of objs is good, but v. large slabs are
-                        * currently bad for the gfp()s.
-                        */
-                       if (cachep->gfporder >= slab_break_gfp_order)
-                               break;
-
-                       if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
-                               break;  /* Acceptable internal fragmentation. */
-next:
-                       cachep->gfporder++;
-               } while (1);
-       }
+       left_over = calculate_slab_order(cachep, size, align, flags);
 
        if (!cachep->num) {
                printk("kmem_cache_create: couldn't create cache %s.\n", name);
                kmem_cache_free(&cache_cache, cachep);
                cachep = NULL;
-               goto opps;
+               goto oops;
        }
-       slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t)
-                               + sizeof(struct slab), align);
+       slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
+                         + sizeof(struct slab), align);
 
        /*
         * If the slab has been placed off-slab, and we have enough space then
@@ -1300,99 +2312,51 @@ next:
 
        if (flags & CFLGS_OFF_SLAB) {
                /* really off slab. No need for manual alignment */
-               slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab);
+               slab_size =
+                   cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
        }
 
        cachep->colour_off = cache_line_size();
        /* Offset must be a multiple of the alignment. */
        if (cachep->colour_off < align)
                cachep->colour_off = align;
-       cachep->colour = left_over/cachep->colour_off;
+       cachep->colour = left_over / cachep->colour_off;
        cachep->slab_size = slab_size;
        cachep->flags = flags;
        cachep->gfpflags = 0;
        if (flags & SLAB_CACHE_DMA)
                cachep->gfpflags |= GFP_DMA;
-       spin_lock_init(&cachep->spinlock);
-       cachep->objsize = size;
-       /* NUMA */
-       INIT_LIST_HEAD(&cachep->lists.slabs_full);
-       INIT_LIST_HEAD(&cachep->lists.slabs_partial);
-       INIT_LIST_HEAD(&cachep->lists.slabs_free);
-
-       if (flags & CFLGS_OFF_SLAB)
-               cachep->slabp_cache = kmem_find_general_cachep(slab_size,0);
+       cachep->buffer_size = size;
+       cachep->reciprocal_buffer_size = reciprocal_value(size);
+
+       if (flags & CFLGS_OFF_SLAB) {
+               cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
+               /*
+                * This is a possibility for one of the malloc_sizes caches.
+                * But since we go off slab only for object size greater than
+                * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
+                * this should not happen at all.
+                * But leave a BUG_ON for some lucky dude.
+                */
+               BUG_ON(!cachep->slabp_cache);
+       }
        cachep->ctor = ctor;
        cachep->dtor = dtor;
        cachep->name = name;
 
-       /* Don't let CPUs to come and go */
-       lock_cpu_hotplug();
-
-       if (g_cpucache_up == FULL) {
-               enable_cpucache(cachep);
-       } else {
-               if (g_cpucache_up == NONE) {
-                       /* Note: the first kmem_cache_create must create
-                        * the cache that's used by kmalloc(24), otherwise
-                        * the creation of further caches will BUG().
-                        */
-                       cachep->array[smp_processor_id()] = &initarray_generic.cache;
-                       g_cpucache_up = PARTIAL;
-               } else {
-                       cachep->array[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init),GFP_KERNEL);
-               }
-               BUG_ON(!ac_data(cachep));
-               ac_data(cachep)->avail = 0;
-               ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
-               ac_data(cachep)->batchcount = 1;
-               ac_data(cachep)->touched = 0;
-               cachep->batchcount = 1;
-               cachep->limit = BOOT_CPUCACHE_ENTRIES;
-               cachep->free_limit = (1+num_online_cpus())*cachep->batchcount
-                                       + cachep->num;
-       } 
-
-       cachep->lists.next_reap = jiffies + REAPTIMEOUT_LIST3 +
-                                       ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
-
-       /* Need the semaphore to access the chain. */
-       down(&cache_chain_sem);
-       {
-               struct list_head *p;
-               mm_segment_t old_fs;
-
-               old_fs = get_fs();
-               set_fs(KERNEL_DS);
-               list_for_each(p, &cache_chain) {
-                       kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
-                       char tmp;
-                       /* This happens when the module gets unloaded and doesn't
-                          destroy its slab cache and noone else reuses the vmalloc
-                          area of the module. Print a warning. */
-                       if (__get_user(tmp,pc->name)) { 
-                               printk("SLAB: cache with size %d has lost its name\n", 
-                                       pc->objsize); 
-                               continue; 
-                       }       
-                       if (!strcmp(pc->name,name)) { 
-                               printk("kmem_cache_create: duplicate cache %s\n",name); 
-                               up(&cache_chain_sem); 
-                               unlock_cpu_hotplug();
-                               BUG(); 
-                       }       
-               }
-               set_fs(old_fs);
+       if (setup_cpu_cache(cachep)) {
+               __kmem_cache_destroy(cachep);
+               cachep = NULL;
+               goto oops;
        }
 
        /* cache setup completed, link it into the list */
        list_add(&cachep->next, &cache_chain);
-       up(&cache_chain_sem);
-       unlock_cpu_hotplug();
-opps:
+oops:
        if (!cachep && (flags & SLAB_PANIC))
                panic("kmem_cache_create(): failed to create slab `%s'\n",
-                       name);
+                     name);
+       mutex_unlock(&cache_chain_mutex);
        return cachep;
 }
 EXPORT_SYMBOL(kmem_cache_create);
@@ -1408,98 +2372,128 @@ static void check_irq_on(void)
        BUG_ON(irqs_disabled());
 }
 
-static void check_spinlock_acquired(kmem_cache_t *cachep)
+static void check_spinlock_acquired(struct kmem_cache *cachep)
+{
+#ifdef CONFIG_SMP
+       check_irq_off();
+       assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
+#endif
+}
+
+static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
 {
 #ifdef CONFIG_SMP
        check_irq_off();
-       BUG_ON(spin_trylock(&cachep->spinlock));
+       assert_spin_locked(&cachep->nodelists[node]->list_lock);
 #endif
 }
+
 #else
 #define check_irq_off()        do { } while(0)
 #define check_irq_on() do { } while(0)
 #define check_spinlock_acquired(x) do { } while(0)
+#define check_spinlock_acquired_node(x, y) do { } while(0)
 #endif
 
-/*
- * Waits for all CPUs to execute func().
- */
-static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
-{
-       check_irq_on();
-       preempt_disable();
-
-       local_irq_disable();
-       func(arg);
-       local_irq_enable();
-
-       if (smp_call_function(func, arg, 1, 1))
-               BUG();
-
-       preempt_enable();
-}
-
-static void drain_array_locked(kmem_cache_t* cachep,
-                               struct array_cache *ac, int force);
+static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
+                       struct array_cache *ac,
+                       int force, int node);
 
 static void do_drain(void *arg)
 {
-       kmem_cache_t *cachep = (kmem_cache_t*)arg;
+       struct kmem_cache *cachep = arg;
        struct array_cache *ac;
+       int node = numa_node_id();
 
        check_irq_off();
-       ac = ac_data(cachep);
-       spin_lock(&cachep->spinlock);
-       free_block(cachep, &ac_entry(ac)[0], ac->avail);
-       spin_unlock(&cachep->spinlock);
+       ac = cpu_cache_get(cachep);
+       spin_lock(&cachep->nodelists[node]->list_lock);
+       free_block(cachep, ac->entry, ac->avail, node);
+       spin_unlock(&cachep->nodelists[node]->list_lock);
        ac->avail = 0;
 }
 
-static void drain_cpu_caches(kmem_cache_t *cachep)
+static void drain_cpu_caches(struct kmem_cache *cachep)
 {
-       smp_call_function_all_cpus(do_drain, cachep);
+       struct kmem_list3 *l3;
+       int node;
+
+       on_each_cpu(do_drain, cachep, 1, 1);
        check_irq_on();
-       spin_lock_irq(&cachep->spinlock);
-       if (cachep->lists.shared)
-               drain_array_locked(cachep, cachep->lists.shared, 1);
-       spin_unlock_irq(&cachep->spinlock);
-}
+       for_each_online_node(node) {
+               l3 = cachep->nodelists[node];
+               if (l3 && l3->alien)
+                       drain_alien_cache(cachep, l3->alien);
+       }
 
+       for_each_online_node(node) {
+               l3 = cachep->nodelists[node];
+               if (l3)
+                       drain_array(cachep, l3, l3->shared, 1, node);
+       }
+}
 
-/* NUMA shrink all list3s */
-static int __cache_shrink(kmem_cache_t *cachep)
+/*
+ * Remove slabs from the list of free slabs.
+ * Specify the number of slabs to drain in tofree.
+ *
+ * Returns the actual number of slabs released.
+ */
+static int drain_freelist(struct kmem_cache *cache,
+                       struct kmem_list3 *l3, int tofree)
 {
+       struct list_head *p;
+       int nr_freed;
        struct slab *slabp;
-       int ret;
-
-       drain_cpu_caches(cachep);
-
-       check_irq_on();
-       spin_lock_irq(&cachep->spinlock);
 
-       for(;;) {
-               struct list_head *p;
+       nr_freed = 0;
+       while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
 
-               p = cachep->lists.slabs_free.prev;
-               if (p == &cachep->lists.slabs_free)
-                       break;
+               spin_lock_irq(&l3->list_lock);
+               p = l3->slabs_free.prev;
+               if (p == &l3->slabs_free) {
+                       spin_unlock_irq(&l3->list_lock);
+                       goto out;
+               }
 
-               slabp = list_entry(cachep->lists.slabs_free.prev, struct slab, list);
+               slabp = list_entry(p, struct slab, list);
 #if DEBUG
-               if (slabp->inuse)
-                       BUG();
+               BUG_ON(slabp->inuse);
 #endif
                list_del(&slabp->list);
+               /*
+                * Safe to drop the lock. The slab is no longer linked
+                * to the cache.
+                */
+               l3->free_objects -= cache->num;
+               spin_unlock_irq(&l3->list_lock);
+               slab_destroy(cache, slabp);
+               nr_freed++;
+       }
+out:
+       return nr_freed;
+}
+
+/* Called with cache_chain_mutex held to protect against cpu hotplug */
+static int __cache_shrink(struct kmem_cache *cachep)
+{
+       int ret = 0, i = 0;
+       struct kmem_list3 *l3;
+
+       drain_cpu_caches(cachep);
+
+       check_irq_on();
+       for_each_online_node(i) {
+               l3 = cachep->nodelists[i];
+               if (!l3)
+                       continue;
 
-               cachep->lists.free_objects -= cachep->num;
-               spin_unlock_irq(&cachep->spinlock);
-               slab_destroy(cachep, slabp);
-               spin_lock_irq(&cachep->spinlock);
+               drain_freelist(cachep, l3, l3->free_objects);
+
+               ret += !list_empty(&l3->slabs_full) ||
+                       !list_empty(&l3->slabs_partial);
        }
-       ret = !list_empty(&cachep->lists.slabs_full) ||
-               !list_empty(&cachep->lists.slabs_partial);
-       spin_unlock_irq(&cachep->spinlock);
-       return ret;
+       return (ret ? 1 : 0);
 }
 
 /**
@@ -1509,22 +2503,23 @@ static int __cache_shrink(kmem_cache_t *cachep)
  * Releases as many slabs as possible for a cache.
  * To help debugging, a zero exit status indicates all slabs were released.
  */
-int kmem_cache_shrink(kmem_cache_t *cachep)
+int kmem_cache_shrink(struct kmem_cache *cachep)
 {
-       if (!cachep || in_interrupt())
-               BUG();
+       int ret;
+       BUG_ON(!cachep || in_interrupt());
 
-       return __cache_shrink(cachep);
+       mutex_lock(&cache_chain_mutex);
+       ret = __cache_shrink(cachep);
+       mutex_unlock(&cache_chain_mutex);
+       return ret;
 }
-
 EXPORT_SYMBOL(kmem_cache_shrink);
 
 /**
  * kmem_cache_destroy - delete a cache
  * @cachep: the cache to destroy
  *
- * Remove a kmem_cache_t object from the slab cache.
- * Returns 0 on success.
+ * Remove a struct kmem_cache object from the slab cache.
  *
  * It is expected this function will be called by a module when it is
  * unloaded.  This will remove the cache completely, and avoid a duplicate
@@ -1536,85 +2531,77 @@ EXPORT_SYMBOL(kmem_cache_shrink);
  * The caller must guarantee that noone will allocate memory from the cache
  * during the kmem_cache_destroy().
  */
-int kmem_cache_destroy (kmem_cache_t * cachep)
+void kmem_cache_destroy(struct kmem_cache *cachep)
 {
-       int i;
-
-       if (!cachep || in_interrupt())
-               BUG();
-
-       /* Don't let CPUs to come and go */
-       lock_cpu_hotplug();
+       BUG_ON(!cachep || in_interrupt());
 
        /* Find the cache in the chain of caches. */
-       down(&cache_chain_sem);
+       mutex_lock(&cache_chain_mutex);
        /*
         * the chain is never empty, cache_cache is never destroyed
         */
        list_del(&cachep->next);
-       up(&cache_chain_sem);
-
        if (__cache_shrink(cachep)) {
                slab_error(cachep, "Can't free all objects");
-               down(&cache_chain_sem);
-               list_add(&cachep->next,&cache_chain);
-               up(&cache_chain_sem);
-               unlock_cpu_hotplug();
-               return 1;
+               list_add(&cachep->next, &cache_chain);
+               mutex_unlock(&cache_chain_mutex);
+               return;
        }
 
-       /* no cpu_online check required here since we clear the percpu
-        * array on cpu offline and set this to NULL.
-        */
-       for (i = 0; i < NR_CPUS; i++)
-               kfree(cachep->array[i]);
-
-       /* NUMA: free the list3 structures */
-       kfree(cachep->lists.shared);
-       cachep->lists.shared = NULL;
-       kmem_cache_free(&cache_cache, cachep);
+       if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
+               synchronize_rcu();
 
-       unlock_cpu_hotplug();
-
-       return 0;
+       __kmem_cache_destroy(cachep);
+       mutex_unlock(&cache_chain_mutex);
 }
-
 EXPORT_SYMBOL(kmem_cache_destroy);
 
-/* Get the memory for a slab management obj. */
-static struct slab* alloc_slabmgmt (kmem_cache_t *cachep,
-                       void *objp, int colour_off, int local_flags)
+/*
+ * Get the memory for a slab management obj.
+ * For a slab cache when the slab descriptor is off-slab, slab descriptors
+ * always come from malloc_sizes caches.  The slab descriptor cannot
+ * come from the same cache which is getting created because,
+ * when we are searching for an appropriate cache for these
+ * descriptors in kmem_cache_create, we search through the malloc_sizes array.
+ * If we are creating a malloc_sizes cache here it would not be visible to
+ * kmem_find_general_cachep till the initialization is complete.
+ * Hence we cannot have slabp_cache same as the original cache.
+ */
+static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
+                                  int colour_off, gfp_t local_flags,
+                                  int nodeid)
 {
        struct slab *slabp;
-       
+
        if (OFF_SLAB(cachep)) {
                /* Slab management obj is off-slab. */
-               slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
+               slabp = kmem_cache_alloc_node(cachep->slabp_cache,
+                                             local_flags & ~GFP_THISNODE, nodeid);
                if (!slabp)
                        return NULL;
        } else {
-               slabp = objp+colour_off;
+               slabp = objp + colour_off;
                colour_off += cachep->slab_size;
        }
        slabp->inuse = 0;
        slabp->colouroff = colour_off;
-       slabp->s_mem = objp+colour_off;
-
+       slabp->s_mem = objp + colour_off;
+       slabp->nodeid = nodeid;
        return slabp;
 }
 
 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
 {
-       return (kmem_bufctl_t *)(slabp+1);
+       return (kmem_bufctl_t *) (slabp + 1);
 }
 
-static void cache_init_objs (kmem_cache_t * cachep,
-                       struct slab * slabp, unsigned long ctor_flags)
+static void cache_init_objs(struct kmem_cache *cachep,
+                           struct slab *slabp, unsigned long ctor_flags)
 {
        int i;
 
        for (i = 0; i < cachep->num; i++) {
-               void* objp = slabp->s_mem+cachep->objsize*i;
+               void *objp = index_to_obj(cachep, slabp, i);
 #if DEBUG
                /* need to poison the objs? */
                if (cachep->flags & SLAB_POISON)
@@ -1627,81 +2614,128 @@ static void cache_init_objs (kmem_cache_t * cachep,
                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
                }
                /*
-                * Constructors are not allowed to allocate memory from
-                * the same cache which they are a constructor for.
-                * Otherwise, deadlock. They must also be threaded.
+                * Constructors are not allowed to allocate memory from the same
+                * cache which they are a constructor for.  Otherwise, deadlock.
+                * They must also be threaded.
                 */
                if (cachep->ctor && !(cachep->flags & SLAB_POISON))
-                       cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags);
+                       cachep->ctor(objp + obj_offset(cachep), cachep,
+                                    ctor_flags);
 
                if (cachep->flags & SLAB_RED_ZONE) {
                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
                                slab_error(cachep, "constructor overwrote the"
-                                                       " end of an object");
+                                          " end of an object");
                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
                                slab_error(cachep, "constructor overwrote the"
-                                                       " start of an object");
+                                          " start of an object");
                }
-               if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
-                       kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
+               if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
+                           OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
+                       kernel_map_pages(virt_to_page(objp),
+                                        cachep->buffer_size / PAGE_SIZE, 0);
 #else
                if (cachep->ctor)
                        cachep->ctor(objp, cachep, ctor_flags);
 #endif
-               slab_bufctl(slabp)[i] = i+1;
+               slab_bufctl(slabp)[i] = i + 1;
        }
-       slab_bufctl(slabp)[i-1] = BUFCTL_END;
+       slab_bufctl(slabp)[i - 1] = BUFCTL_END;
        slabp->free = 0;
 }
 
-static void kmem_flagcheck(kmem_cache_t *cachep, int flags)
+static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
 {
-       if (flags & SLAB_DMA) {
-               if (!(cachep->gfpflags & GFP_DMA))
-                       BUG();
-       } else {
-               if (cachep->gfpflags & GFP_DMA)
-                       BUG();
+       if (flags & GFP_DMA)
+               BUG_ON(!(cachep->gfpflags & GFP_DMA));
+       else
+               BUG_ON(cachep->gfpflags & GFP_DMA);
+}
+
+static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
+                               int nodeid)
+{
+       void *objp = index_to_obj(cachep, slabp, slabp->free);
+       kmem_bufctl_t next;
+
+       slabp->inuse++;
+       next = slab_bufctl(slabp)[slabp->free];
+#if DEBUG
+       slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
+       WARN_ON(slabp->nodeid != nodeid);
+#endif
+       slabp->free = next;
+
+       return objp;
+}
+
+static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
+                               void *objp, int nodeid)
+{
+       unsigned int objnr = obj_to_index(cachep, slabp, objp);
+
+#if DEBUG
+       /* Verify that the slab belongs to the intended node */
+       WARN_ON(slabp->nodeid != nodeid);
+
+       if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
+               printk(KERN_ERR "slab: double free detected in cache "
+                               "'%s', objp %p\n", cachep->name, objp);
+               BUG();
        }
+#endif
+       slab_bufctl(slabp)[objnr] = slabp->free;
+       slabp->free = objnr;
+       slabp->inuse--;
 }
 
-static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
+/*
+ * Map pages beginning at addr to the given cache and slab. This is required
+ * for the slab allocator to be able to lookup the cache and slab of a
+ * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
+ */
+static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
+                          void *addr)
 {
-       int i;
+       int nr_pages;
        struct page *page;
 
-       /* Nasty!!!!!! I hope this is OK. */
-       i = 1 << cachep->gfporder;
-       page = virt_to_page(objp);
+       page = virt_to_page(addr);
+
+       nr_pages = 1;
+       if (likely(!PageCompound(page)))
+               nr_pages <<= cache->gfporder;
+
        do {
-               SET_PAGE_CACHE(page, cachep);
-               SET_PAGE_SLAB(page, slabp);
+               page_set_cache(page, cache);
+               page_set_slab(page, slab);
                page++;
-       } while (--i);
+       } while (--nr_pages);
 }
 
 /*
  * Grow (by 1) the number of slabs within a cache.  This is called by
  * kmem_cache_alloc() when there are no active objs left in a cache.
  */
-static int cache_grow (kmem_cache_t * cachep, int flags)
+static int cache_grow(struct kmem_cache *cachep,
+               gfp_t flags, int nodeid, void *objp)
 {
-       struct slab     *slabp;
-       void            *objp;
-       size_t           offset;
-       int              local_flags;
-       unsigned long    ctor_flags;
+       struct slab *slabp;
+       size_t offset;
+       gfp_t local_flags;
+       unsigned long ctor_flags;
+       struct kmem_list3 *l3;
 
-       /* Be lazy and only check for valid flags here,
-        * keeping it out of the critical path in kmem_cache_alloc().
+       /*
+        * Be lazy and only check for valid flags here,  keeping it out of the
+        * critical path in kmem_cache_alloc().
         */
-       if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
-               BUG();
-       if (flags & SLAB_NO_GROW)
+       BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
+       if (flags & __GFP_NO_GROW)
                return 0;
 
        ctor_flags = SLAB_CTOR_CONSTRUCTOR;
-       local_flags = (flags & SLAB_LEVEL_MASK);
+       local_flags = (flags & GFP_LEVEL_MASK);
        if (!(local_flags & __GFP_WAIT))
                /*
                 * Not allowed to sleep.  Need to tell a constructor about
@@ -1709,18 +2743,19 @@ static int cache_grow (kmem_cache_t * cachep, int flags)
                 */
                ctor_flags |= SLAB_CTOR_ATOMIC;
 
-       /* About to mess with non-constant members - lock. */
+       /* Take the l3 list lock to change the colour_next on this node */
        check_irq_off();
-       spin_lock(&cachep->spinlock);
+       l3 = cachep->nodelists[nodeid];
+       spin_lock(&l3->list_lock);
 
        /* Get colour for the slab, and cal the next value. */
-       offset = cachep->colour_next;
-       cachep->colour_next++;
-       if (cachep->colour_next >= cachep->colour)
-               cachep->colour_next = 0;
-       offset *= cachep->colour_off;
+       offset = l3->colour_next;
+       l3->colour_next++;
+       if (l3->colour_next >= cachep->colour)
+               l3->colour_next = 0;
+       spin_unlock(&l3->list_lock);
 
-       spin_unlock(&cachep->spinlock);
+       offset *= cachep->colour_off;
 
        if (local_flags & __GFP_WAIT)
                local_irq_enable();
@@ -1733,29 +2768,36 @@ static int cache_grow (kmem_cache_t * cachep, int flags)
         */
        kmem_flagcheck(cachep, flags);
 
-
-       /* Get mem for the objs. */
-       if (!(objp = kmem_getpages(cachep, flags, -1)))
+       /*
+        * Get mem for the objs.  Attempt to allocate a physical page from
+        * 'nodeid'.
+        */
+       if (!objp)
+               objp = kmem_getpages(cachep, flags, nodeid);
+       if (!objp)
                goto failed;
 
        /* Get slab management. */
-       if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
+       slabp = alloc_slabmgmt(cachep, objp, offset,
+                       local_flags & ~GFP_THISNODE, nodeid);
+       if (!slabp)
                goto opps1;
 
-       set_slab_attr(cachep, slabp, objp);
+       slabp->nodeid = nodeid;
+       slab_map_pages(cachep, slabp, objp);
 
        cache_init_objs(cachep, slabp, ctor_flags);
 
        if (local_flags & __GFP_WAIT)
                local_irq_disable();
        check_irq_off();
-       spin_lock(&cachep->spinlock);
+       spin_lock(&l3->list_lock);
 
        /* Make slab active. */
-       list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free));
+       list_add_tail(&slabp->list, &(l3->slabs_free));
        STATS_INC_GROWN(cachep);
-       list3_data(cachep)->free_objects += cachep->num;
-       spin_unlock(&cachep->spinlock);
+       l3->free_objects += cachep->num;
+       spin_unlock(&l3->list_lock);
        return 1;
 opps1:
        kmem_freepages(cachep, objp);
@@ -1779,72 +2821,89 @@ static void kfree_debugcheck(const void *objp)
 
        if (!virt_addr_valid(objp)) {
                printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
-                       (unsigned long)objp);   
-               BUG();  
+                      (unsigned long)objp);
+               BUG();
        }
        page = virt_to_page(objp);
        if (!PageSlab(page)) {
-               printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
+               printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
+                      (unsigned long)objp);
                BUG();
        }
 }
 
-static void *cache_free_debugcheck (kmem_cache_t * cachep, void * objp, void *caller)
+static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
+{
+       unsigned long redzone1, redzone2;
+
+       redzone1 = *dbg_redzone1(cache, obj);
+       redzone2 = *dbg_redzone2(cache, obj);
+
+       /*
+        * Redzone is ok.
+        */
+       if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
+               return;
+
+       if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
+               slab_error(cache, "double free detected");
+       else
+               slab_error(cache, "memory outside object was overwritten");
+
+       printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
+                       obj, redzone1, redzone2);
+}
+
+static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
+                                  void *caller)
 {
        struct page *page;
        unsigned int objnr;
        struct slab *slabp;
 
-       objp -= obj_dbghead(cachep);
+       objp -= obj_offset(cachep);
        kfree_debugcheck(objp);
        page = virt_to_page(objp);
 
-       if (GET_PAGE_CACHE(page) != cachep) {
-               printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n",
-                               GET_PAGE_CACHE(page),cachep);
-               printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
-               printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name);
-               WARN_ON(1);
-       }
-       slabp = GET_PAGE_SLAB(page);
+       slabp = page_get_slab(page);
 
        if (cachep->flags & SLAB_RED_ZONE) {
-               if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
-                       slab_error(cachep, "double free, or memory outside"
-                                               " object was overwritten");
-                       printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
-                                       objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
-               }
+               verify_redzone_free(cachep, objp);
                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
        }
        if (cachep->flags & SLAB_STORE_USER)
                *dbg_userword(cachep, objp) = caller;
 
-       objnr = (objp-slabp->s_mem)/cachep->objsize;
+       objnr = obj_to_index(cachep, slabp, objp);
 
        BUG_ON(objnr >= cachep->num);
-       BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
+       BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
 
        if (cachep->flags & SLAB_DEBUG_INITIAL) {
-               /* Need to call the slab's constructor so the
-                * caller can perform a verify of its state (debugging).
-                * Called without the cache-lock held.
+               /*
+                * Need to call the slab's constructor so the caller can
+                * perform a verify of its state (debugging).  Called without
+                * the cache-lock held.
                 */
-               cachep->ctor(objp+obj_dbghead(cachep),
-                                       cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
+               cachep->ctor(objp + obj_offset(cachep),
+                            cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
        }
        if (cachep->flags & SLAB_POISON && cachep->dtor) {
                /* we want to cache poison the object,
                 * call the destruction callback
                 */
-               cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
+               cachep->dtor(objp + obj_offset(cachep), cachep, 0);
        }
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+       slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
+#endif
        if (cachep->flags & SLAB_POISON) {
 #ifdef CONFIG_DEBUG_PAGEALLOC
-               if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
+               if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
                        store_stackinfo(cachep, objp, (unsigned long)caller);
-                       kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
+                       kernel_map_pages(virt_to_page(objp),
+                                        cachep->buffer_size / PAGE_SIZE, 0);
                } else {
                        poison_obj(cachep, objp, POISON_FREE);
                }
@@ -1855,27 +2914,28 @@ static void *cache_free_debugcheck (kmem_cache_t * cachep, void * objp, void *ca
        return objp;
 }
 
-static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
+static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
 {
-       int i;
+       kmem_bufctl_t i;
        int entries = 0;
-       
-       check_spinlock_acquired(cachep);
+
        /* Check slab's freelist to see if this obj is there. */
        for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
                entries++;
-               if (entries > cachep->num || i < 0 || i >= cachep->num)
+               if (entries > cachep->num || i >= cachep->num)
                        goto bad;
        }
        if (entries != cachep->num - slabp->inuse) {
-               int i;
 bad:
-               printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
-                               cachep->name, cachep->num, slabp, slabp->inuse);
-               for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) {
-                       if ((i%16)==0)
+               printk(KERN_ERR "slab: Internal list corruption detected in "
+                               "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
+                       cachep->name, cachep->num, slabp, slabp->inuse);
+               for (i = 0;
+                    i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
+                    i++) {
+                       if (i % 16 == 0)
                                printk("\n%03x:", i);
-                       printk(" %02x", ((unsigned char*)slabp)[i]);
+                       printk(" %02x", ((unsigned char *)slabp)[i]);
                }
                printk("\n");
                BUG();
@@ -1887,40 +2947,36 @@ bad:
 #define check_slabp(x,y) do { } while(0)
 #endif
 
-static void* cache_alloc_refill(kmem_cache_t* cachep, int flags)
+static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
 {
        int batchcount;
        struct kmem_list3 *l3;
        struct array_cache *ac;
+       int node;
+
+       node = numa_node_id();
 
        check_irq_off();
-       ac = ac_data(cachep);
+       ac = cpu_cache_get(cachep);
 retry:
        batchcount = ac->batchcount;
        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
-               /* if there was little recent activity on this
-                * cache, then perform only a partial refill.
-                * Otherwise we could generate refill bouncing.
+               /*
+                * If there was little recent activity on this cache, then
+                * perform only a partial refill.  Otherwise we could generate
+                * refill bouncing.
                 */
                batchcount = BATCHREFILL_LIMIT;
        }
-       l3 = list3_data(cachep);
+       l3 = cachep->nodelists[node];
+
+       BUG_ON(ac->avail > 0 || !l3);
+       spin_lock(&l3->list_lock);
+
+       /* See if we can refill from the shared array */
+       if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
+               goto alloc_done;
 
-       BUG_ON(ac->avail > 0);
-       spin_lock(&cachep->spinlock);
-       if (l3->shared) {
-               struct array_cache *shared_array = l3->shared;
-               if (shared_array->avail) {
-                       if (batchcount > shared_array->avail)
-                               batchcount = shared_array->avail;
-                       shared_array->avail -= batchcount;
-                       ac->avail = batchcount;
-                       memcpy(ac_entry(ac), &ac_entry(shared_array)[shared_array->avail],
-                                       sizeof(void*)*batchcount);
-                       shared_array->touched = 1;
-                       goto alloc_done;
-               }
-       }
        while (batchcount > 0) {
                struct list_head *entry;
                struct slab *slabp;
@@ -1937,20 +2993,12 @@ retry:
                check_slabp(cachep, slabp);
                check_spinlock_acquired(cachep);
                while (slabp->inuse < cachep->num && batchcount--) {
-                       kmem_bufctl_t next;
                        STATS_INC_ALLOCED(cachep);
                        STATS_INC_ACTIVE(cachep);
                        STATS_SET_HIGH(cachep);
 
-                       /* get obj pointer */
-                       ac_entry(ac)[ac->avail++] = slabp->s_mem + slabp->free*cachep->objsize;
-
-                       slabp->inuse++;
-                       next = slab_bufctl(slabp)[slabp->free];
-#if DEBUG
-                       slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
-#endif
-                       slabp->free = next;
+                       ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
+                                                           node);
                }
                check_slabp(cachep, slabp);
 
@@ -1965,26 +3013,26 @@ retry:
 must_grow:
        l3->free_objects -= ac->avail;
 alloc_done:
-       spin_unlock(&cachep->spinlock);
+       spin_unlock(&l3->list_lock);
 
        if (unlikely(!ac->avail)) {
                int x;
-               x = cache_grow(cachep, flags);
-               
-               // cache_grow can reenable interrupts, then ac could change.
-               ac = ac_data(cachep);
-               if (!x && ac->avail == 0)       // no objects in sight? abort
+               x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
+
+               /* cache_grow can reenable interrupts, then ac could change. */
+               ac = cpu_cache_get(cachep);
+               if (!x && ac->avail == 0)       /* no objects in sight? abort */
                        return NULL;
 
-               if (!ac->avail)         // objects refilled by interrupt?
+               if (!ac->avail)         /* objects refilled by interrupt? */
                        goto retry;
        }
        ac->touched = 1;
-       return ac_entry(ac)[--ac->avail];
+       return ac->entry[--ac->avail];
 }
 
-static inline void
-cache_alloc_debugcheck_before(kmem_cache_t *cachep, int flags)
+static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
+                                               gfp_t flags)
 {
        might_sleep_if(flags & __GFP_WAIT);
 #if DEBUG
@@ -1993,16 +3041,16 @@ cache_alloc_debugcheck_before(kmem_cache_t *cachep, int flags)
 }
 
 #if DEBUG
-static void *
-cache_alloc_debugcheck_after(kmem_cache_t *cachep,
-                       unsigned long flags, void *objp, void *caller)
+static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
+                               gfp_t flags, void *objp, void *caller)
 {
-       if (!objp)      
+       if (!objp)
                return objp;
-       if (cachep->flags & SLAB_POISON) {
+       if (cachep->flags & SLAB_POISON) {
 #ifdef CONFIG_DEBUG_PAGEALLOC
-               if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
-                       kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
+               if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
+                       kernel_map_pages(virt_to_page(objp),
+                                        cachep->buffer_size / PAGE_SIZE, 1);
                else
                        check_poison_obj(cachep, objp);
 #else
@@ -2014,143 +3062,417 @@ cache_alloc_debugcheck_after(kmem_cache_t *cachep,
                *dbg_userword(cachep, objp) = caller;
 
        if (cachep->flags & SLAB_RED_ZONE) {
-               if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
+               if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
+                               *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
                        slab_error(cachep, "double free, or memory outside"
                                                " object was overwritten");
-                       printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
-                                       objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
+                       printk(KERN_ERR
+                               "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
+                               objp, *dbg_redzone1(cachep, objp),
+                               *dbg_redzone2(cachep, objp));
                }
                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
        }
-       objp += obj_dbghead(cachep);
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+       {
+               struct slab *slabp;
+               unsigned objnr;
+
+               slabp = page_get_slab(virt_to_page(objp));
+               objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
+               slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
+       }
+#endif
+       objp += obj_offset(cachep);
        if (cachep->ctor && cachep->flags & SLAB_POISON) {
-               unsigned long   ctor_flags = SLAB_CTOR_CONSTRUCTOR;
+               unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
 
                if (!(flags & __GFP_WAIT))
                        ctor_flags |= SLAB_CTOR_ATOMIC;
 
                cachep->ctor(objp, cachep, ctor_flags);
-       }       
+       }
+#if ARCH_SLAB_MINALIGN
+       if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
+               printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
+                      objp, ARCH_SLAB_MINALIGN);
+       }
+#endif
        return objp;
 }
 #else
 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
 #endif
 
+#ifdef CONFIG_FAILSLAB
+
+static struct failslab_attr {
+
+       struct fault_attr attr;
+
+       u32 ignore_gfp_wait;
+#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
+       struct dentry *ignore_gfp_wait_file;
+#endif
+
+} failslab = {
+       .attr = FAULT_ATTR_INITIALIZER,
+       .ignore_gfp_wait = 1,
+};
 
-static inline void * __cache_alloc (kmem_cache_t *cachep, int flags)
+static int __init setup_failslab(char *str)
 {
-       unsigned long save_flags;
-       void* objp;
+       return setup_fault_attr(&failslab.attr, str);
+}
+__setup("failslab=", setup_failslab);
+
+static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
+{
+       if (cachep == &cache_cache)
+               return 0;
+       if (flags & __GFP_NOFAIL)
+               return 0;
+       if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
+               return 0;
+
+       return should_fail(&failslab.attr, obj_size(cachep));
+}
+
+#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
+
+static int __init failslab_debugfs(void)
+{
+       mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
+       struct dentry *dir;
+       int err;
+
+               err = init_fault_attr_dentries(&failslab.attr, "failslab");
+       if (err)
+               return err;
+       dir = failslab.attr.dentries.dir;
+
+       failslab.ignore_gfp_wait_file =
+               debugfs_create_bool("ignore-gfp-wait", mode, dir,
+                                     &failslab.ignore_gfp_wait);
+
+       if (!failslab.ignore_gfp_wait_file) {
+               err = -ENOMEM;
+               debugfs_remove(failslab.ignore_gfp_wait_file);
+               cleanup_fault_attr_dentries(&failslab.attr);
+       }
+
+       return err;
+}
+
+late_initcall(failslab_debugfs);
+
+#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
+
+#else /* CONFIG_FAILSLAB */
+
+static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
+{
+       return 0;
+}
+
+#endif /* CONFIG_FAILSLAB */
+
+static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
+{
+       void *objp;
        struct array_cache *ac;
 
-       cache_alloc_debugcheck_before(cachep, flags);
+       check_irq_off();
 
-       local_irq_save(save_flags);
-       ac = ac_data(cachep);
+       if (should_failslab(cachep, flags))
+               return NULL;
+
+       ac = cpu_cache_get(cachep);
        if (likely(ac->avail)) {
                STATS_INC_ALLOCHIT(cachep);
                ac->touched = 1;
-               objp = ac_entry(ac)[--ac->avail];
+               objp = ac->entry[--ac->avail];
        } else {
                STATS_INC_ALLOCMISS(cachep);
                objp = cache_alloc_refill(cachep, flags);
        }
+       return objp;
+}
+
+static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
+                                               gfp_t flags, void *caller)
+{
+       unsigned long save_flags;
+       void *objp = NULL;
+
+       cache_alloc_debugcheck_before(cachep, flags);
+
+       local_irq_save(save_flags);
+
+       if (unlikely(NUMA_BUILD &&
+                       current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
+               objp = alternate_node_alloc(cachep, flags);
+
+       if (!objp)
+               objp = ____cache_alloc(cachep, flags);
+       /*
+        * We may just have run out of memory on the local node.
+        * ____cache_alloc_node() knows how to locate memory on other nodes
+        */
+       if (NUMA_BUILD && !objp)
+               objp = ____cache_alloc_node(cachep, flags, numa_node_id());
+
+       vx_slab_alloc(cachep, flags);
        local_irq_restore(save_flags);
-       objp = cache_alloc_debugcheck_after(cachep, flags, objp, __builtin_return_address(0));
+       objp = cache_alloc_debugcheck_after(cachep, flags, objp,
+                                           caller);
+       prefetchw(objp);
        return objp;
 }
 
-/* 
- * NUMA: different approach needed if the spinlock is moved into
- * the l3 structure
+#ifdef CONFIG_NUMA
+/*
+ * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
+ *
+ * If we are in_interrupt, then process context, including cpusets and
+ * mempolicy, may not apply and should not be used for allocation policy.
  */
+static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
+{
+       int nid_alloc, nid_here;
+
+       if (in_interrupt() || (flags & __GFP_THISNODE))
+               return NULL;
+       nid_alloc = nid_here = numa_node_id();
+       if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
+               nid_alloc = cpuset_mem_spread_node();
+       else if (current->mempolicy)
+               nid_alloc = slab_node(current->mempolicy);
+       if (nid_alloc != nid_here)
+               return ____cache_alloc_node(cachep, flags, nid_alloc);
+       return NULL;
+}
 
-static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects)
+/*
+ * Fallback function if there was no memory available and no objects on a
+ * certain node and fall back is permitted. First we scan all the
+ * available nodelists for available objects. If that fails then we
+ * perform an allocation without specifying a node. This allows the page
+ * allocator to do its reclaim / fallback magic. We then insert the
+ * slab into the proper nodelist and then allocate from it.
+ */
+void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
 {
-       int i;
+       struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
+                                       ->node_zonelists[gfp_zone(flags)];
+       struct zone **z;
+       void *obj = NULL;
+       int nid;
+       gfp_t local_flags = (flags & GFP_LEVEL_MASK);
+
+retry:
+       /*
+        * Look through allowed nodes for objects available
+        * from existing per node queues.
+        */
+       for (z = zonelist->zones; *z && !obj; z++) {
+               nid = zone_to_nid(*z);
+
+               if (cpuset_zone_allowed_hardwall(*z, flags) &&
+                       cache->nodelists[nid] &&
+                       cache->nodelists[nid]->free_objects)
+                               obj = ____cache_alloc_node(cache,
+                                       flags | GFP_THISNODE, nid);
+       }
+
+       if (!obj && !(flags & __GFP_NO_GROW)) {
+               /*
+                * This allocation will be performed within the constraints
+                * of the current cpuset / memory policy requirements.
+                * We may trigger various forms of reclaim on the allowed
+                * set and go into memory reserves if necessary.
+                */
+               if (local_flags & __GFP_WAIT)
+                       local_irq_enable();
+               kmem_flagcheck(cache, flags);
+               obj = kmem_getpages(cache, flags, -1);
+               if (local_flags & __GFP_WAIT)
+                       local_irq_disable();
+               if (obj) {
+                       /*
+                        * Insert into the appropriate per node queues
+                        */
+                       nid = page_to_nid(virt_to_page(obj));
+                       if (cache_grow(cache, flags, nid, obj)) {
+                               obj = ____cache_alloc_node(cache,
+                                       flags | GFP_THISNODE, nid);
+                               if (!obj)
+                                       /*
+                                        * Another processor may allocate the
+                                        * objects in the slab since we are
+                                        * not holding any locks.
+                                        */
+                                       goto retry;
+                       } else {
+                               /* cache_grow already freed obj */
+                               obj = NULL;
+                       }
+               }
+       }
+       return obj;
+}
+
+/*
+ * A interface to enable slab creation on nodeid
+ */
+static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
+                               int nodeid)
+{
+       struct list_head *entry;
+       struct slab *slabp;
+       struct kmem_list3 *l3;
+       void *obj;
+       int x;
+
+       l3 = cachep->nodelists[nodeid];
+       BUG_ON(!l3);
+
+retry:
+       check_irq_off();
+       spin_lock(&l3->list_lock);
+       entry = l3->slabs_partial.next;
+       if (entry == &l3->slabs_partial) {
+               l3->free_touched = 1;
+               entry = l3->slabs_free.next;
+               if (entry == &l3->slabs_free)
+                       goto must_grow;
+       }
+
+       slabp = list_entry(entry, struct slab, list);
+       check_spinlock_acquired_node(cachep, nodeid);
+       check_slabp(cachep, slabp);
+
+       STATS_INC_NODEALLOCS(cachep);
+       STATS_INC_ACTIVE(cachep);
+       STATS_SET_HIGH(cachep);
+
+       BUG_ON(slabp->inuse == cachep->num);
+
+       obj = slab_get_obj(cachep, slabp, nodeid);
+       check_slabp(cachep, slabp);
+       vx_slab_alloc(cachep, flags);
+       l3->free_objects--;
+       /* move slabp to correct slabp list: */
+       list_del(&slabp->list);
+
+       if (slabp->free == BUFCTL_END)
+               list_add(&slabp->list, &l3->slabs_full);
+       else
+               list_add(&slabp->list, &l3->slabs_partial);
+
+       spin_unlock(&l3->list_lock);
+       goto done;
+
+must_grow:
+       spin_unlock(&l3->list_lock);
+       x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
+       if (x)
+               goto retry;
+
+       if (!(flags & __GFP_THISNODE))
+               /* Unable to grow the cache. Fall back to other nodes. */
+               return fallback_alloc(cachep, flags);
 
-       check_spinlock_acquired(cachep);
+       return NULL;
+
+done:
+       return obj;
+}
+#endif
 
-       /* NUMA: move add into loop */
-       cachep->lists.free_objects += nr_objects;
+/*
+ * Caller needs to acquire correct kmem_list's list_lock
+ */
+static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
+                      int node)
+{
+       int i;
+       struct kmem_list3 *l3;
 
        for (i = 0; i < nr_objects; i++) {
                void *objp = objpp[i];
                struct slab *slabp;
-               unsigned int objnr;
 
-               slabp = GET_PAGE_SLAB(virt_to_page(objp));
+               slabp = virt_to_slab(objp);
+               l3 = cachep->nodelists[node];
                list_del(&slabp->list);
-               objnr = (objp - slabp->s_mem) / cachep->objsize;
+               check_spinlock_acquired_node(cachep, node);
                check_slabp(cachep, slabp);
-#if DEBUG
-               if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
-                       printk(KERN_ERR "slab: double free detected in cache '%s', objp %p.\n",
-                                               cachep->name, objp);
-                       BUG();
-               }
-#endif
-               slab_bufctl(slabp)[objnr] = slabp->free;
-               slabp->free = objnr;
+               slab_put_obj(cachep, slabp, objp, node);
                STATS_DEC_ACTIVE(cachep);
-               slabp->inuse--;
+               l3->free_objects++;
                check_slabp(cachep, slabp);
 
                /* fixup slab chains */
                if (slabp->inuse == 0) {
-                       if (cachep->lists.free_objects > cachep->free_limit) {
-                               cachep->lists.free_objects -= cachep->num;
+                       if (l3->free_objects > l3->free_limit) {
+                               l3->free_objects -= cachep->num;
+                               /* No need to drop any previously held
+                                * lock here, even if we have a off-slab slab
+                                * descriptor it is guaranteed to come from
+                                * a different cache, refer to comments before
+                                * alloc_slabmgmt.
+                                */
                                slab_destroy(cachep, slabp);
                        } else {
-                               list_add(&slabp->list,
-                               &list3_data_ptr(cachep, objp)->slabs_free);
+                               list_add(&slabp->list, &l3->slabs_free);
                        }
                } else {
                        /* Unconditionally move a slab to the end of the
                         * partial list on free - maximum time for the
                         * other objects to be freed, too.
                         */
-                       list_add_tail(&slabp->list,
-                               &list3_data_ptr(cachep, objp)->slabs_partial);
+                       list_add_tail(&slabp->list, &l3->slabs_partial);
                }
        }
 }
 
-static void cache_flusharray (kmem_cache_t* cachep, struct array_cache *ac)
+static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
 {
        int batchcount;
+       struct kmem_list3 *l3;
+       int node = numa_node_id();
 
        batchcount = ac->batchcount;
 #if DEBUG
        BUG_ON(!batchcount || batchcount > ac->avail);
 #endif
        check_irq_off();
-       spin_lock(&cachep->spinlock);
-       if (cachep->lists.shared) {
-               struct array_cache *shared_array = cachep->lists.shared;
-               int max = shared_array->limit-shared_array->avail;
+       l3 = cachep->nodelists[node];
+       spin_lock(&l3->list_lock);
+       if (l3->shared) {
+               struct array_cache *shared_array = l3->shared;
+               int max = shared_array->limit - shared_array->avail;
                if (max) {
                        if (batchcount > max)
                                batchcount = max;
-                       memcpy(&ac_entry(shared_array)[shared_array->avail],
-                                       &ac_entry(ac)[0],
-                                       sizeof(void*)*batchcount);
+                       memcpy(&(shared_array->entry[shared_array->avail]),
+                              ac->entry, sizeof(void *) * batchcount);
                        shared_array->avail += batchcount;
                        goto free_done;
                }
        }
 
-       free_block(cachep, &ac_entry(ac)[0], batchcount);
+       free_block(cachep, ac->entry, batchcount, node);
 free_done:
 #if STATS
        {
                int i = 0;
                struct list_head *p;
 
-               p = list3_data(cachep)->slabs_free.next;
-               while (p != &(list3_data(cachep)->slabs_free)) {
+               p = l3->slabs_free.next;
+               while (p != &(l3->slabs_free)) {
                        struct slab *slabp;
 
                        slabp = list_entry(p, struct slab, list);
@@ -2162,34 +3484,34 @@ free_done:
                STATS_SET_FREEABLE(cachep, i);
        }
 #endif
-       spin_unlock(&cachep->spinlock);
+       spin_unlock(&l3->list_lock);
        ac->avail -= batchcount;
-       memmove(&ac_entry(ac)[0], &ac_entry(ac)[batchcount],
-                       sizeof(void*)*ac->avail);
+       memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
 }
 
 /*
- * __cache_free
- * Release an obj back to its cache. If the obj has a constructed
- * state, it must be in this state _before_ it is released.
- *
- * Called with disabled ints.
+ * Release an obj back to its cache. If the obj has a constructed state, it must
+ * be in this state _before_ it is released.  Called with disabled ints.
  */
-static inline void __cache_free (kmem_cache_t *cachep, void* objp)
+static inline void __cache_free(struct kmem_cache *cachep, void *objp)
 {
-       struct array_cache *ac = ac_data(cachep);
+       struct array_cache *ac = cpu_cache_get(cachep);
 
        check_irq_off();
        objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
+       vx_slab_free(cachep);
+
+       if (cache_free_alien(cachep, objp))
+               return;
 
        if (likely(ac->avail < ac->limit)) {
                STATS_INC_FREEHIT(cachep);
-               ac_entry(ac)[ac->avail++] = objp;
+               ac->entry[ac->avail++] = objp;
                return;
        } else {
                STATS_INC_FREEMISS(cachep);
                cache_flusharray(cachep, ac);
-               ac_entry(ac)[ac->avail++] = objp;
+               ac->entry[ac->avail++] = objp;
        }
 }
 
@@ -2201,13 +3523,29 @@ static inline void __cache_free (kmem_cache_t *cachep, void* objp)
  * Allocate an object from this cache.  The flags are only relevant
  * if the cache has no available objects.
  */
-void * kmem_cache_alloc (kmem_cache_t *cachep, int flags)
+void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 {
-       return __cache_alloc(cachep, flags);
+       return __cache_alloc(cachep, flags, __builtin_return_address(0));
 }
-
 EXPORT_SYMBOL(kmem_cache_alloc);
 
+/**
+ * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
+ * @cache: The cache to allocate from.
+ * @flags: See kmalloc().
+ *
+ * Allocate an object from this cache and set the allocated memory to zero.
+ * The flags are only relevant if the cache has no available objects.
+ */
+void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
+{
+       void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
+       if (ret)
+               memset(ret, 0, obj_size(cache));
+       return ret;
+}
+EXPORT_SYMBOL(kmem_cache_zalloc);
+
 /**
  * kmem_ptr_validate - check if an untrusted pointer might
  *     be a slab entry.
@@ -2222,12 +3560,12 @@ EXPORT_SYMBOL(kmem_cache_alloc);
  *
  * Currently only used for dentry validation.
  */
-int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
+int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
 {
-       unsigned long addr = (unsigned long) ptr;
+       unsigned long addr = (unsigned long)ptr;
        unsigned long min_addr = PAGE_OFFSET;
-       unsigned long align_mask = BYTES_PER_WORD-1;
-       unsigned long size = cachep->objsize;
+       unsigned long align_mask = BYTES_PER_WORD - 1;
+       unsigned long size = cachep->buffer_size;
        struct page *page;
 
        if (unlikely(addr < min_addr))
@@ -2243,175 +3581,148 @@ int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
        page = virt_to_page(ptr);
        if (unlikely(!PageSlab(page)))
                goto out;
-       if (unlikely(GET_PAGE_CACHE(page) != cachep))
+       if (unlikely(page_get_cache(page) != cachep))
                goto out;
        return 1;
 out:
        return 0;
 }
 
+#ifdef CONFIG_NUMA
 /**
  * kmem_cache_alloc_node - Allocate an object on the specified node
  * @cachep: The cache to allocate from.
  * @flags: See kmalloc().
  * @nodeid: node number of the target node.
+ * @caller: return address of caller, used for debug information
  *
- * Identical to kmem_cache_alloc, except that this function is slow
- * and can sleep. And it will allocate memory on the given node, which
- * can improve the performance for cpu bound structures.
+ * Identical to kmem_cache_alloc but it will allocate memory on the given
+ * node, which can improve the performance for cpu bound structures.
+ *
+ * Fallback to other node is possible if __GFP_THISNODE is not set.
  */
-void *kmem_cache_alloc_node(kmem_cache_t *cachep, int nodeid)
+static __always_inline void *
+__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
+               int nodeid, void *caller)
 {
-       size_t offset;
-       void *objp;
-       struct slab *slabp;
-       kmem_bufctl_t next;
-
-       /* The main algorithms are not node aware, thus we have to cheat:
-        * We bypass all caches and allocate a new slab.
-        * The following code is a streamlined copy of cache_grow().
-        */
-
-       /* Get colour for the slab, and update the next value. */
-       spin_lock_irq(&cachep->spinlock);
-       offset = cachep->colour_next;
-       cachep->colour_next++;
-       if (cachep->colour_next >= cachep->colour)
-               cachep->colour_next = 0;
-       offset *= cachep->colour_off;
-       spin_unlock_irq(&cachep->spinlock);
-
-       /* Get mem for the objs. */
-       if (!(objp = kmem_getpages(cachep, GFP_KERNEL, nodeid)))
-               goto failed;
-
-       /* Get slab management. */
-       if (!(slabp = alloc_slabmgmt(cachep, objp, offset, GFP_KERNEL)))
-               goto opps1;
+       unsigned long save_flags;
+       void *ptr = NULL;
 
-       set_slab_attr(cachep, slabp, objp);
-       cache_init_objs(cachep, slabp, SLAB_CTOR_CONSTRUCTOR);
+       cache_alloc_debugcheck_before(cachep, flags);
+       local_irq_save(save_flags);
 
-       /* The first object is ours: */
-       objp = slabp->s_mem + slabp->free*cachep->objsize;
-       slabp->inuse++;
-       next = slab_bufctl(slabp)[slabp->free];
-#if DEBUG
-       slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
-#endif
-       slabp->free = next;
+       if (unlikely(nodeid == -1))
+               nodeid = numa_node_id();
 
-       /* add the remaining objects into the cache */
-       spin_lock_irq(&cachep->spinlock);
-       check_slabp(cachep, slabp);
-       STATS_INC_GROWN(cachep);
-       /* Make slab active. */
-       if (slabp->free == BUFCTL_END) {
-               list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_full));
+       if (likely(cachep->nodelists[nodeid])) {
+               if (nodeid == numa_node_id()) {
+                       /*
+                        * Use the locally cached objects if possible.
+                        * However ____cache_alloc does not allow fallback
+                        * to other nodes. It may fail while we still have
+                        * objects on other nodes available.
+                        */
+                       ptr = ____cache_alloc(cachep, flags);
+               }
+               if (!ptr) {
+                       /* ___cache_alloc_node can fall back to other nodes */
+                       ptr = ____cache_alloc_node(cachep, flags, nodeid);
+               }
        } else {
-               list_add_tail(&slabp->list,
-                               &(list3_data(cachep)->slabs_partial));
-               list3_data(cachep)->free_objects += cachep->num-1;
-       }
-       spin_unlock_irq(&cachep->spinlock);
-       objp = cache_alloc_debugcheck_after(cachep, GFP_KERNEL, objp,
-                                       __builtin_return_address(0));
-       return objp;
-opps1:
-       kmem_freepages(cachep, objp);
-failed:
-       return NULL;
+               /* Node not bootstrapped yet */
+               if (!(flags & __GFP_THISNODE))
+                       ptr = fallback_alloc(cachep, flags);
+       }
+
+       local_irq_restore(save_flags);
+       ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
+
+       return ptr;
+}
 
+void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
+{
+       return __cache_alloc_node(cachep, flags, nodeid,
+                       __builtin_return_address(0));
 }
 EXPORT_SYMBOL(kmem_cache_alloc_node);
 
-/**
- * kmalloc - allocate memory
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate.
- *
- * kmalloc is the normal method of allocating memory
- * in the kernel.
- *
- * The @flags argument may be one of:
- *
- * %GFP_USER - Allocate memory on behalf of user.  May sleep.
- *
- * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
- *
- * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
- *
- * Additionally, the %GFP_DMA flag may be set to indicate the memory
- * must be suitable for DMA.  This can mean different things on different
- * platforms.  For example, on i386, it means that the memory must come
- * from the first 16MB.
- */
-void * __kmalloc (size_t size, int flags)
+static __always_inline void *
+__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
 {
-       struct cache_sizes *csizep = malloc_sizes;
+       struct kmem_cache *cachep;
 
-       for (; csizep->cs_size; csizep++) {
-               if (size > csizep->cs_size)
-                       continue;
-#if DEBUG
-               /* This happens if someone tries to call
-                * kmem_cache_create(), or kmalloc(), before
-                * the generic caches are initialized.
-                */
-               BUG_ON(csizep->cs_cachep == NULL);
-#endif
-               return __cache_alloc(flags & GFP_DMA ?
-                        csizep->cs_dmacachep : csizep->cs_cachep, flags);
-       }
-       return NULL;
+       cachep = kmem_find_general_cachep(size, flags);
+       if (unlikely(cachep == NULL))
+               return NULL;
+       return kmem_cache_alloc_node(cachep, flags, node);
 }
 
-EXPORT_SYMBOL(__kmalloc);
+#ifdef CONFIG_DEBUG_SLAB
+void *__kmalloc_node(size_t size, gfp_t flags, int node)
+{
+       return __do_kmalloc_node(size, flags, node,
+                       __builtin_return_address(0));
+}
+EXPORT_SYMBOL(__kmalloc_node);
+
+void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
+               int node, void *caller)
+{
+       return __do_kmalloc_node(size, flags, node, caller);
+}
+EXPORT_SYMBOL(__kmalloc_node_track_caller);
+#else
+void *__kmalloc_node(size_t size, gfp_t flags, int node)
+{
+       return __do_kmalloc_node(size, flags, node, NULL);
+}
+EXPORT_SYMBOL(__kmalloc_node);
+#endif /* CONFIG_DEBUG_SLAB */
+#endif /* CONFIG_NUMA */
 
-#ifdef CONFIG_SMP
 /**
- * __alloc_percpu - allocate one copy of the object for every present
- * cpu in the system, zeroing them.
- * Objects should be dereferenced using per_cpu_ptr/get_cpu_ptr
- * macros only.
- *
+ * __do_kmalloc - allocate memory
  * @size: how many bytes of memory are required.
- * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
+ * @flags: the type of memory to allocate (see kmalloc).
+ * @caller: function caller for debug tracking of the caller
  */
-void *__alloc_percpu(size_t size, size_t align)
+static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
+                                         void *caller)
 {
-       int i;
-       struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
+       struct kmem_cache *cachep;
 
-       if (!pdata)
+       /* If you want to save a few bytes .text space: replace
+        * __ with kmem_.
+        * Then kmalloc uses the uninlined functions instead of the inline
+        * functions.
+        */
+       cachep = __find_general_cachep(size, flags);
+       if (unlikely(cachep == NULL))
                return NULL;
+       return __cache_alloc(cachep, flags, caller);
+}
 
-       for (i = 0; i < NR_CPUS; i++) {
-               if (!cpu_possible(i))
-                       continue;
-               pdata->ptrs[i] = kmem_cache_alloc_node(
-                               kmem_find_general_cachep(size, GFP_KERNEL),
-                               cpu_to_node(i));
-
-               if (!pdata->ptrs[i])
-                       goto unwind_oom;
-               memset(pdata->ptrs[i], 0, size);
-       }
 
-       /* Catch derefs w/o wrappers */
-       return (void *) (~(unsigned long) pdata);
+#ifdef CONFIG_DEBUG_SLAB
+void *__kmalloc(size_t size, gfp_t flags)
+{
+       return __do_kmalloc(size, flags, __builtin_return_address(0));
+}
+EXPORT_SYMBOL(__kmalloc);
 
-unwind_oom:
-       while (--i >= 0) {
-               if (!cpu_possible(i))
-                       continue;
-               kfree(pdata->ptrs[i]);
-       }
-       kfree(pdata);
-       return NULL;
+void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
+{
+       return __do_kmalloc(size, flags, caller);
 }
+EXPORT_SYMBOL(__kmalloc_track_caller);
 
-EXPORT_SYMBOL(__alloc_percpu);
+#else
+void *__kmalloc(size_t size, gfp_t flags)
+{
+       return __do_kmalloc(size, flags, NULL);
+}
+EXPORT_SYMBOL(__kmalloc);
 #endif
 
 /**
@@ -2422,187 +3733,228 @@ EXPORT_SYMBOL(__alloc_percpu);
  * Free an object which was previously allocated from this
  * cache.
  */
-void kmem_cache_free (kmem_cache_t *cachep, void *objp)
+void kmem_cache_free(struct kmem_cache *cachep, void *objp)
 {
        unsigned long flags;
 
+       BUG_ON(virt_to_cache(objp) != cachep);
+
        local_irq_save(flags);
        __cache_free(cachep, objp);
        local_irq_restore(flags);
 }
-
 EXPORT_SYMBOL(kmem_cache_free);
 
 /**
  * kfree - free previously allocated memory
  * @objp: pointer returned by kmalloc.
  *
+ * If @objp is NULL, no operation is performed.
+ *
  * Don't free memory not originally allocated by kmalloc()
  * or you will run into trouble.
  */
-void kfree (const void *objp)
+void kfree(const void *objp)
 {
-       kmem_cache_t *c;
+       struct kmem_cache *c;
        unsigned long flags;
 
-       if (!objp)
+       if (unlikely(!objp))
                return;
        local_irq_save(flags);
        kfree_debugcheck(objp);
-       c = GET_PAGE_CACHE(virt_to_page(objp));
-       __cache_free(c, (void*)objp);
+       c = virt_to_cache(objp);
+       debug_check_no_locks_freed(objp, obj_size(c));
+       __cache_free(c, (void *)objp);
        local_irq_restore(flags);
 }
-
 EXPORT_SYMBOL(kfree);
 
-#ifdef CONFIG_SMP
-/**
- * free_percpu - free previously allocated percpu memory
- * @objp: pointer returned by alloc_percpu.
- *
- * Don't free memory not originally allocated by alloc_percpu()
- * The complemented objp is to check for that.
- */
-void
-free_percpu(const void *objp)
+unsigned int kmem_cache_size(struct kmem_cache *cachep)
 {
-       int i;
-       struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
-
-       for (i = 0; i < NR_CPUS; i++) {
-               if (!cpu_possible(i))
-                       continue;
-               kfree(p->ptrs[i]);
-       }
+       return obj_size(cachep);
 }
+EXPORT_SYMBOL(kmem_cache_size);
 
-EXPORT_SYMBOL(free_percpu);
-#endif
-
-unsigned int kmem_cache_size(kmem_cache_t *cachep)
+const char *kmem_cache_name(struct kmem_cache *cachep)
 {
-       return obj_reallen(cachep);
+       return cachep->name;
 }
+EXPORT_SYMBOL_GPL(kmem_cache_name);
 
-EXPORT_SYMBOL(kmem_cache_size);
-
-kmem_cache_t * kmem_find_general_cachep (size_t size, int gfpflags)
+/*
+ * This initializes kmem_list3 or resizes varioius caches for all nodes.
+ */
+static int alloc_kmemlist(struct kmem_cache *cachep)
 {
-       struct cache_sizes *csizep = malloc_sizes;
+       int node;
+       struct kmem_list3 *l3;
+       struct array_cache *new_shared;
+       struct array_cache **new_alien = NULL;
+
+       for_each_online_node(node) {
+
+                if (use_alien_caches) {
+                        new_alien = alloc_alien_cache(node, cachep->limit);
+                        if (!new_alien)
+                                goto fail;
+                }
+
+               new_shared = alloc_arraycache(node,
+                               cachep->shared*cachep->batchcount,
+                                       0xbaadf00d);
+               if (!new_shared) {
+                       free_alien_cache(new_alien);
+                       goto fail;
+               }
 
-       /* This function could be moved to the header file, and
-        * made inline so consumers can quickly determine what
-        * cache pointer they require.
-        */
-       for ( ; csizep->cs_size; csizep++) {
-               if (size > csizep->cs_size)
+               l3 = cachep->nodelists[node];
+               if (l3) {
+                       struct array_cache *shared = l3->shared;
+
+                       spin_lock_irq(&l3->list_lock);
+
+                       if (shared)
+                               free_block(cachep, shared->entry,
+                                               shared->avail, node);
+
+                       l3->shared = new_shared;
+                       if (!l3->alien) {
+                               l3->alien = new_alien;
+                               new_alien = NULL;
+                       }
+                       l3->free_limit = (1 + nr_cpus_node(node)) *
+                                       cachep->batchcount + cachep->num;
+                       spin_unlock_irq(&l3->list_lock);
+                       kfree(shared);
+                       free_alien_cache(new_alien);
                        continue;
-               break;
+               }
+               l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
+               if (!l3) {
+                       free_alien_cache(new_alien);
+                       kfree(new_shared);
+                       goto fail;
+               }
+
+               kmem_list3_init(l3);
+               l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
+                               ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
+               l3->shared = new_shared;
+               l3->alien = new_alien;
+               l3->free_limit = (1 + nr_cpus_node(node)) *
+                                       cachep->batchcount + cachep->num;
+               cachep->nodelists[node] = l3;
        }
-       return (gfpflags & GFP_DMA) ? csizep->cs_dmacachep : csizep->cs_cachep;
-}
+       return 0;
 
-EXPORT_SYMBOL(kmem_find_general_cachep);
+fail:
+       if (!cachep->next.next) {
+               /* Cache is not active yet. Roll back what we did */
+               node--;
+               while (node >= 0) {
+                       if (cachep->nodelists[node]) {
+                               l3 = cachep->nodelists[node];
+
+                               kfree(l3->shared);
+                               free_alien_cache(l3->alien);
+                               kfree(l3);
+                               cachep->nodelists[node] = NULL;
+                       }
+                       node--;
+               }
+       }
+       return -ENOMEM;
+}
 
 struct ccupdate_struct {
-       kmem_cache_t *cachep;
+       struct kmem_cache *cachep;
        struct array_cache *new[NR_CPUS];
 };
 
 static void do_ccupdate_local(void *info)
 {
-       struct ccupdate_struct *new = (struct ccupdate_struct *)info;
+       struct ccupdate_struct *new = info;
        struct array_cache *old;
 
        check_irq_off();
-       old = ac_data(new->cachep);
-       
+       old = cpu_cache_get(new->cachep);
+
        new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
        new->new[smp_processor_id()] = old;
 }
 
-
-static int do_tune_cpucache (kmem_cache_t* cachep, int limit, int batchcount, int shared)
+/* Always called with the cache_chain_mutex held */
+static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
+                               int batchcount, int shared)
 {
-       struct ccupdate_struct new;
-       struct array_cache *new_shared;
+       struct ccupdate_struct *new;
        int i;
 
-       memset(&new.new,0,sizeof(new.new));
-       for (i = 0; i < NR_CPUS; i++) {
-               if (cpu_online(i)) {
-                       new.new[i] = alloc_arraycache(i, limit, batchcount);
-                       if (!new.new[i]) {
-                               for (i--; i >= 0; i--) kfree(new.new[i]);
-                               return -ENOMEM;
-                       }
-               } else {
-                       new.new[i] = NULL;
+       new = kzalloc(sizeof(*new), GFP_KERNEL);
+       if (!new)
+               return -ENOMEM;
+
+       for_each_online_cpu(i) {
+               new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
+                                               batchcount);
+               if (!new->new[i]) {
+                       for (i--; i >= 0; i--)
+                               kfree(new->new[i]);
+                       kfree(new);
+                       return -ENOMEM;
                }
        }
-       new.cachep = cachep;
+       new->cachep = cachep;
+
+       on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
 
-       smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
-       
        check_irq_on();
-       spin_lock_irq(&cachep->spinlock);
        cachep->batchcount = batchcount;
        cachep->limit = limit;
-       cachep->free_limit = (1+num_online_cpus())*cachep->batchcount + cachep->num;
-       spin_unlock_irq(&cachep->spinlock);
+       cachep->shared = shared;
 
-       for (i = 0; i < NR_CPUS; i++) {
-               struct array_cache *ccold = new.new[i];
+       for_each_online_cpu(i) {
+               struct array_cache *ccold = new->new[i];
                if (!ccold)
                        continue;
-               spin_lock_irq(&cachep->spinlock);
-               free_block(cachep, ac_entry(ccold), ccold->avail);
-               spin_unlock_irq(&cachep->spinlock);
+               spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
+               free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
+               spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
                kfree(ccold);
        }
-       new_shared = alloc_arraycache(-1, batchcount*shared, 0xbaadf00d);
-       if (new_shared) {
-               struct array_cache *old;
-
-               spin_lock_irq(&cachep->spinlock);
-               old = cachep->lists.shared;
-               cachep->lists.shared = new_shared;
-               if (old)
-                       free_block(cachep, ac_entry(old), old->avail);
-               spin_unlock_irq(&cachep->spinlock);
-               kfree(old);
-       }
-
-       return 0;
+       kfree(new);
+       return alloc_kmemlist(cachep);
 }
 
-
-static void enable_cpucache (kmem_cache_t *cachep)
+/* Called with cache_chain_mutex held always */
+static int enable_cpucache(struct kmem_cache *cachep)
 {
        int err;
        int limit, shared;
 
-       /* The head array serves three purposes:
+       /*
+        * The head array serves three purposes:
         * - create a LIFO ordering, i.e. return objects that are cache-warm
         * - reduce the number of spinlock operations.
-        * - reduce the number of linked list operations on the slab and 
+        * - reduce the number of linked list operations on the slab and
         *   bufctl chains: array operations are cheaper.
         * The numbers are guessed, we should auto-tune as described by
         * Bonwick.
         */
-       if (cachep->objsize > 131072)
+       if (cachep->buffer_size > 131072)
                limit = 1;
-       else if (cachep->objsize > PAGE_SIZE)
+       else if (cachep->buffer_size > PAGE_SIZE)
                limit = 8;
-       else if (cachep->objsize > 1024)
+       else if (cachep->buffer_size > 1024)
                limit = 24;
-       else if (cachep->objsize > 256)
+       else if (cachep->buffer_size > 256)
                limit = 54;
        else
                limit = 120;
 
-       /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
+       /*
+        * CPU bound tasks (e.g. network routing) can exhibit cpu bound
         * allocation behaviour: Most allocs on one cpu, most free operations
         * on another cpu. For these cases, an efficient object passing between
         * cpus is necessary. This is provided by a shared array. The array
@@ -2612,284 +3964,260 @@ static void enable_cpucache (kmem_cache_t *cachep)
         */
        shared = 0;
 #ifdef CONFIG_SMP
-       if (cachep->objsize <= PAGE_SIZE)
+       if (cachep->buffer_size <= PAGE_SIZE)
                shared = 8;
 #endif
 
 #if DEBUG
-       /* With debugging enabled, large batchcount lead to excessively
-        * long periods with disabled local interrupts. Limit the 
-        * batchcount
+       /*
+        * With debugging enabled, large batchcount lead to excessively long
+        * periods with disabled local interrupts. Limit the batchcount
         */
        if (limit > 32)
                limit = 32;
 #endif
-       err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
+       err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
        if (err)
                printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
-                                       cachep->name, -err);
-}
-
-static void drain_array(kmem_cache_t *cachep, struct array_cache *ac)
-{
-       int tofree;
-
-       check_irq_off();
-       if (ac->touched) {
-               ac->touched = 0;
-       } else if (ac->avail) {
-               tofree = (ac->limit+4)/5;
-               if (tofree > ac->avail) {
-                       tofree = (ac->avail+1)/2;
-               }
-               spin_lock(&cachep->spinlock);
-               free_block(cachep, ac_entry(ac), tofree);
-               spin_unlock(&cachep->spinlock);
-               ac->avail -= tofree;
-               memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree],
-                                       sizeof(void*)*ac->avail);
-       }
+                      cachep->name, -err);
+       return err;
 }
 
-static void drain_array_locked(kmem_cache_t *cachep,
-                               struct array_cache *ac, int force)
+/*
+ * Drain an array if it contains any elements taking the l3 lock only if
+ * necessary. Note that the l3 listlock also protects the array_cache
+ * if drain_array() is used on the shared array.
+ */
+void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
+                        struct array_cache *ac, int force, int node)
 {
        int tofree;
 
-       check_spinlock_acquired(cachep);
+       if (!ac || !ac->avail)
+               return;
        if (ac->touched && !force) {
                ac->touched = 0;
-       } else if (ac->avail) {
-               tofree = force ? ac->avail : (ac->limit+4)/5;
-               if (tofree > ac->avail) {
-                       tofree = (ac->avail+1)/2;
+       } else {
+               spin_lock_irq(&l3->list_lock);
+               if (ac->avail) {
+                       tofree = force ? ac->avail : (ac->limit + 4) / 5;
+                       if (tofree > ac->avail)
+                               tofree = (ac->avail + 1) / 2;
+                       free_block(cachep, ac->entry, tofree, node);
+                       ac->avail -= tofree;
+                       memmove(ac->entry, &(ac->entry[tofree]),
+                               sizeof(void *) * ac->avail);
                }
-               free_block(cachep, ac_entry(ac), tofree);
-               ac->avail -= tofree;
-               memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree],
-                                       sizeof(void*)*ac->avail);
+               spin_unlock_irq(&l3->list_lock);
        }
 }
 
 /**
  * cache_reap - Reclaim memory from caches.
+ * @unused: unused parameter
  *
- * Called from a timer, every few seconds
+ * Called from workqueue/eventd every few seconds.
  * Purpose:
  * - clear the per-cpu caches for this CPU.
  * - return freeable pages to the main free memory pool.
  *
- * If we cannot acquire the cache chain semaphore then just give up - we'll
- * try again next timer interrupt.
+ * If we cannot acquire the cache chain mutex then just give up - we'll try
+ * again on the next iteration.
  */
-static void cache_reap (void)
+static void cache_reap(struct work_struct *unused)
 {
-       struct list_head *walk;
+       struct kmem_cache *searchp;
+       struct kmem_list3 *l3;
+       int node = numa_node_id();
 
-#if DEBUG
-       BUG_ON(!in_interrupt());
-       BUG_ON(in_irq());
-#endif
-       if (down_trylock(&cache_chain_sem))
+       if (!mutex_trylock(&cache_chain_mutex)) {
+               /* Give up. Setup the next iteration. */
+               schedule_delayed_work(&__get_cpu_var(reap_work),
+                                     round_jiffies_relative(REAPTIMEOUT_CPUC));
                return;
+       }
 
-       list_for_each(walk, &cache_chain) {
-               kmem_cache_t *searchp;
-               struct list_head* p;
-               int tofree;
-               struct slab *slabp;
-
-               searchp = list_entry(walk, kmem_cache_t, next);
-
-               if (searchp->flags & SLAB_NO_REAP)
-                       goto next;
-
+       list_for_each_entry(searchp, &cache_chain, next) {
                check_irq_on();
-               local_irq_disable();
-               drain_array(searchp, ac_data(searchp));
 
-               if(time_after(searchp->lists.next_reap, jiffies))
-                       goto next_irqon;
+               /*
+                * We only take the l3 lock if absolutely necessary and we
+                * have established with reasonable certainty that
+                * we can do some work if the lock was obtained.
+                */
+               l3 = searchp->nodelists[node];
 
-               spin_lock(&searchp->spinlock);
-               if(time_after(searchp->lists.next_reap, jiffies)) {
-                       goto next_unlock;
-               }
-               searchp->lists.next_reap = jiffies + REAPTIMEOUT_LIST3;
+               reap_alien(searchp, l3);
 
-               if (searchp->lists.shared)
-                       drain_array_locked(searchp, searchp->lists.shared, 0);
+               drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
 
-               if (searchp->lists.free_touched) {
-                       searchp->lists.free_touched = 0;
-                       goto next_unlock;
-               }
+               /*
+                * These are racy checks but it does not matter
+                * if we skip one check or scan twice.
+                */
+               if (time_after(l3->next_reap, jiffies))
+                       goto next;
 
-               tofree = (searchp->free_limit+5*searchp->num-1)/(5*searchp->num);
-               do {
-                       p = list3_data(searchp)->slabs_free.next;
-                       if (p == &(list3_data(searchp)->slabs_free))
-                               break;
+               l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
 
-                       slabp = list_entry(p, struct slab, list);
-                       BUG_ON(slabp->inuse);
-                       list_del(&slabp->list);
-                       STATS_INC_REAPED(searchp);
+               drain_array(searchp, l3, l3->shared, 0, node);
 
-                       /* Safe to drop the lock. The slab is no longer
-                        * linked to the cache.
-                        * searchp cannot disappear, we hold
-                        * cache_chain_lock
-                        */
-                       searchp->lists.free_objects -= searchp->num;
-                       spin_unlock_irq(&searchp->spinlock);
-                       slab_destroy(searchp, slabp);
-                       spin_lock_irq(&searchp->spinlock);
-               } while(--tofree > 0);
-next_unlock:
-               spin_unlock(&searchp->spinlock);
-next_irqon:
-               local_irq_enable();
+               if (l3->free_touched)
+                       l3->free_touched = 0;
+               else {
+                       int freed;
+
+                       freed = drain_freelist(searchp, l3, (l3->free_limit +
+                               5 * searchp->num - 1) / (5 * searchp->num));
+                       STATS_ADD_REAPED(searchp, freed);
+               }
 next:
-               ;
+               cond_resched();
        }
        check_irq_on();
-       up(&cache_chain_sem);
-}
-
-/*
- * This is a timer handler.  There is one per CPU.  It is called periodially
- * to shrink this CPU's caches.  Otherwise there could be memory tied up
- * for long periods (or for ever) due to load changes.
- */
-static void reap_timer_fnc(unsigned long cpu)
-{
-       struct timer_list *rt = &__get_cpu_var(reap_timers);
-
-       /* CPU hotplug can drag us off cpu: don't run on wrong CPU */
-       if (!cpu_is_offline(cpu)) {
-               cache_reap();
-               mod_timer(rt, jiffies + REAPTIMEOUT_CPUC + cpu);
-       }
+       mutex_unlock(&cache_chain_mutex);
+       next_reap_node();
+       refresh_cpu_vm_stats(smp_processor_id());
+       /* Set up the next iteration */
+       schedule_delayed_work(&__get_cpu_var(reap_work),
+               round_jiffies_relative(REAPTIMEOUT_CPUC));
 }
 
 #ifdef CONFIG_PROC_FS
 
-static void *s_start(struct seq_file *m, loff_t *pos)
+static void print_slabinfo_header(struct seq_file *m)
 {
-       loff_t n = *pos;
-       struct list_head *p;
-
-       down(&cache_chain_sem);
-       if (!n) {
-               /*
-                * Output format version, so at least we can change it
-                * without _too_ many complaints.
-                */
+       /*
+        * Output format version, so at least we can change it
+        * without _too_ many complaints.
+        */
 #if STATS
-               seq_puts(m, "slabinfo - version: 2.0 (statistics)\n");
+       seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
 #else
-               seq_puts(m, "slabinfo - version: 2.0\n");
+       seq_puts(m, "slabinfo - version: 2.1\n");
 #endif
-               seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
-               seq_puts(m, " : tunables <batchcount> <limit> <sharedfactor>");
-               seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
+       seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
+                "<objperslab> <pagesperslab>");
+       seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
+       seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
 #if STATS
-               seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <freelimit>");
-               seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
+       seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
+                "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
+       seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
 #endif
-               seq_putc(m, '\n');
-       }
+       seq_putc(m, '\n');
+}
+
+static void *s_start(struct seq_file *m, loff_t *pos)
+{
+       loff_t n = *pos;
+       struct list_head *p;
+
+       mutex_lock(&cache_chain_mutex);
+       if (!n)
+               print_slabinfo_header(m);
        p = cache_chain.next;
        while (n--) {
                p = p->next;
                if (p == &cache_chain)
                        return NULL;
        }
-       return list_entry(p, kmem_cache_t, next);
+       return list_entry(p, struct kmem_cache, next);
 }
 
 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
 {
-       kmem_cache_t *cachep = p;
+       struct kmem_cache *cachep = p;
        ++*pos;
-       return cachep->next.next == &cache_chain ? NULL
-               : list_entry(cachep->next.next, kmem_cache_t, next);
+       return cachep->next.next == &cache_chain ?
+               NULL : list_entry(cachep->next.next, struct kmem_cache, next);
 }
 
 static void s_stop(struct seq_file *m, void *p)
 {
-       up(&cache_chain_sem);
+       mutex_unlock(&cache_chain_mutex);
 }
 
 static int s_show(struct seq_file *m, void *p)
 {
-       kmem_cache_t *cachep = p;
-       struct list_head *q;
-       struct slab     *slabp;
-       unsigned long   active_objs;
-       unsigned long   num_objs;
-       unsigned long   active_slabs = 0;
-       unsigned long   num_slabs;
-       const char *name; 
+       struct kmem_cache *cachep = p;
+       struct slab *slabp;
+       unsigned long active_objs;
+       unsigned long num_objs;
+       unsigned long active_slabs = 0;
+       unsigned long num_slabs, free_objects = 0, shared_avail = 0;
+       const char *name;
        char *error = NULL;
+       int node;
+       struct kmem_list3 *l3;
 
-       check_irq_on();
-       spin_lock_irq(&cachep->spinlock);
        active_objs = 0;
        num_slabs = 0;
-       list_for_each(q,&cachep->lists.slabs_full) {
-               slabp = list_entry(q, struct slab, list);
-               if (slabp->inuse != cachep->num && !error)
-                       error = "slabs_full accounting error";
-               active_objs += cachep->num;
-               active_slabs++;
-       }
-       list_for_each(q,&cachep->lists.slabs_partial) {
-               slabp = list_entry(q, struct slab, list);
-               if (slabp->inuse == cachep->num && !error)
-                       error = "slabs_partial inuse accounting error";
-               if (!slabp->inuse && !error)
-                       error = "slabs_partial/inuse accounting error";
-               active_objs += slabp->inuse;
-               active_slabs++;
-       }
-       list_for_each(q,&cachep->lists.slabs_free) {
-               slabp = list_entry(q, struct slab, list);
-               if (slabp->inuse && !error)
-                       error = "slabs_free/inuse accounting error";
-               num_slabs++;
-       }
-       num_slabs+=active_slabs;
-       num_objs = num_slabs*cachep->num;
-       if (num_objs - active_objs != cachep->lists.free_objects && !error)
+       for_each_online_node(node) {
+               l3 = cachep->nodelists[node];
+               if (!l3)
+                       continue;
+
+               check_irq_on();
+               spin_lock_irq(&l3->list_lock);
+
+               list_for_each_entry(slabp, &l3->slabs_full, list) {
+                       if (slabp->inuse != cachep->num && !error)
+                               error = "slabs_full accounting error";
+                       active_objs += cachep->num;
+                       active_slabs++;
+               }
+               list_for_each_entry(slabp, &l3->slabs_partial, list) {
+                       if (slabp->inuse == cachep->num && !error)
+                               error = "slabs_partial inuse accounting error";
+                       if (!slabp->inuse && !error)
+                               error = "slabs_partial/inuse accounting error";
+                       active_objs += slabp->inuse;
+                       active_slabs++;
+               }
+               list_for_each_entry(slabp, &l3->slabs_free, list) {
+                       if (slabp->inuse && !error)
+                               error = "slabs_free/inuse accounting error";
+                       num_slabs++;
+               }
+               free_objects += l3->free_objects;
+               if (l3->shared)
+                       shared_avail += l3->shared->avail;
+
+               spin_unlock_irq(&l3->list_lock);
+       }
+       num_slabs += active_slabs;
+       num_objs = num_slabs * cachep->num;
+       if (num_objs - active_objs != free_objects && !error)
                error = "free_objects accounting error";
 
-       name = cachep->name; 
+       name = cachep->name;
        if (error)
                printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
 
        seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
-               name, active_objs, num_objs, cachep->objsize,
-               cachep->num, (1<<cachep->gfporder));
+                  name, active_objs, num_objs, cachep->buffer_size,
+                  cachep->num, (1 << cachep->gfporder));
        seq_printf(m, " : tunables %4u %4u %4u",
-                       cachep->limit, cachep->batchcount,
-                       cachep->lists.shared->limit/cachep->batchcount);
-       seq_printf(m, " : slabdata %6lu %6lu %6u",
-                       active_slabs, num_slabs, cachep->lists.shared->avail);
+                  cachep->limit, cachep->batchcount, cachep->shared);
+       seq_printf(m, " : slabdata %6lu %6lu %6lu",
+                  active_slabs, num_slabs, shared_avail);
 #if STATS
-       {       /* list3 stats */
+       {                       /* list3 stats */
                unsigned long high = cachep->high_mark;
                unsigned long allocs = cachep->num_allocations;
                unsigned long grown = cachep->grown;
                unsigned long reaped = cachep->reaped;
                unsigned long errors = cachep->errors;
                unsigned long max_freeable = cachep->max_freeable;
-               unsigned long free_limit = cachep->free_limit;
-
-               seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu",
-                               allocs, high, grown, reaped, errors, 
-                               max_freeable, free_limit);
+               unsigned long node_allocs = cachep->node_allocs;
+               unsigned long node_frees = cachep->node_frees;
+               unsigned long overflows = cachep->node_overflow;
+
+               seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
+                               %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
+                               reaped, errors, max_freeable, node_allocs,
+                               node_frees, overflows);
        }
        /* cpu stats */
        {
@@ -2899,11 +4227,10 @@ static int s_show(struct seq_file *m, void *p)
                unsigned long freemiss = atomic_read(&cachep->freemiss);
 
                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
-                       allochit, allocmiss, freehit, freemiss);
+                          allochit, allocmiss, freehit, freemiss);
        }
 #endif
        seq_putc(m, '\n');
-       spin_unlock_irq(&cachep->spinlock);
        return 0;
 }
 
@@ -2921,11 +4248,11 @@ static int s_show(struct seq_file *m, void *p)
  * + further values on SMP and with statistics enabled
  */
 
-struct seq_operations slabinfo_op = {
-       .start  = s_start,
-       .next   = s_next,
-       .stop   = s_stop,
-       .show   = s_show,
+const struct seq_operations slabinfo_op = {
+       .start = s_start,
+       .next = s_next,
+       .stop = s_stop,
+       .show = s_show,
 };
 
 #define MAX_SLABINFO_WRITE 128
@@ -2936,18 +4263,18 @@ struct seq_operations slabinfo_op = {
  * @count: data length
  * @ppos: unused
  */
-ssize_t slabinfo_write(struct file *file, const char __user *buffer,
-                               size_t count, loff_t *ppos)
+ssize_t slabinfo_write(struct file *file, const char __user * buffer,
+                      size_t count, loff_t *ppos)
 {
-       char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
+       char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
        int limit, batchcount, shared, res;
-       struct list_head *p;
-       
+       struct kmem_cache *cachep;
+
        if (count > MAX_SLABINFO_WRITE)
                return -EINVAL;
        if (copy_from_user(&kbuf, buffer, count))
                return -EFAULT;
-       kbuf[MAX_SLABINFO_WRITE] = '\0'; 
+       kbuf[MAX_SLABINFO_WRITE] = '\0';
 
        tmp = strchr(kbuf, ' ');
        if (!tmp)
@@ -2958,111 +4285,192 @@ ssize_t slabinfo_write(struct file *file, const char __user *buffer,
                return -EINVAL;
 
        /* Find the cache in the chain of caches. */
-       down(&cache_chain_sem);
+       mutex_lock(&cache_chain_mutex);
        res = -EINVAL;
-       list_for_each(p,&cache_chain) {
-               kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
-
+       list_for_each_entry(cachep, &cache_chain, next) {
                if (!strcmp(cachep->name, kbuf)) {
-                       if (limit < 1 ||
-                           batchcount < 1 ||
-                           batchcount > limit ||
-                           shared < 0) {
-                               res = -EINVAL;
+                       if (limit < 1 || batchcount < 1 ||
+                                       batchcount > limit || shared < 0) {
+                               res = 0;
                        } else {
-                               res = do_tune_cpucache(cachep, limit, batchcount, shared);
+                               res = do_tune_cpucache(cachep, limit,
+                                                      batchcount, shared);
                        }
                        break;
                }
        }
-       up(&cache_chain_sem);
+       mutex_unlock(&cache_chain_mutex);
        if (res >= 0)
                res = count;
        return res;
 }
-#endif
 
-unsigned int ksize(const void *objp)
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+
+static void *leaks_start(struct seq_file *m, loff_t *pos)
 {
-       kmem_cache_t *c;
-       unsigned long flags;
-       unsigned int size = 0;
+       loff_t n = *pos;
+       struct list_head *p;
 
-       if (likely(objp != NULL)) {
-               local_irq_save(flags);
-               c = GET_PAGE_CACHE(virt_to_page(objp));
-               size = kmem_cache_size(c);
-               local_irq_restore(flags);
+       mutex_lock(&cache_chain_mutex);
+       p = cache_chain.next;
+       while (n--) {
+               p = p->next;
+               if (p == &cache_chain)
+                       return NULL;
        }
+       return list_entry(p, struct kmem_cache, next);
+}
 
-       return size;
+static inline int add_caller(unsigned long *n, unsigned long v)
+{
+       unsigned long *p;
+       int l;
+       if (!v)
+               return 1;
+       l = n[1];
+       p = n + 2;
+       while (l) {
+               int i = l/2;
+               unsigned long *q = p + 2 * i;
+               if (*q == v) {
+                       q[1]++;
+                       return 1;
+               }
+               if (*q > v) {
+                       l = i;
+               } else {
+                       p = q + 2;
+                       l -= i + 1;
+               }
+       }
+       if (++n[1] == n[0])
+               return 0;
+       memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
+       p[0] = v;
+       p[1] = 1;
+       return 1;
 }
 
-void ptrinfo(unsigned long addr)
+static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
 {
-       struct page *page;
+       void *p;
+       int i;
+       if (n[0] == n[1])
+               return;
+       for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
+               if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
+                       continue;
+               if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
+                       return;
+       }
+}
 
-       printk("Dumping data about address %p.\n", (void*)addr);
-       if (!virt_addr_valid((void*)addr)) {
-               printk("virt addr invalid.\n");
+static void show_symbol(struct seq_file *m, unsigned long address)
+{
+#ifdef CONFIG_KALLSYMS
+       char *modname;
+       const char *name;
+       unsigned long offset, size;
+       char namebuf[KSYM_NAME_LEN+1];
+
+       name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
+
+       if (name) {
+               seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
+               if (modname)
+                       seq_printf(m, " [%s]", modname);
                return;
        }
-#ifdef CONFIG_MMU
-       do {
-               pgd_t *pgd = pgd_offset_k(addr);
-               pmd_t *pmd;
-               if (pgd_none(*pgd)) {
-                       printk("No pgd.\n");
-                       break;
-               }
-               pmd = pmd_offset(pgd, addr);
-               if (pmd_none(*pmd)) {
-                       printk("No pmd.\n");
-                       break;
-               }
-#ifdef CONFIG_X86
-               if (pmd_large(*pmd)) {
-                       printk("Large page.\n");
-                       break;
-               }
-#endif
-               printk("normal page, pte_val 0x%llx\n",
-                 (unsigned long long)pte_val(*pte_offset_kernel(pmd, addr)));
-       } while(0);
 #endif
+       seq_printf(m, "%p", (void *)address);
+}
 
-       page = virt_to_page((void*)addr);
-       printk("struct page at %p, flags %08lx\n",
-                       page, (unsigned long)page->flags);
-       if (PageSlab(page)) {
-               kmem_cache_t *c;
-               struct slab *s;
-               unsigned long flags;
-               int objnr;
-               void *objp;
-
-               c = GET_PAGE_CACHE(page);
-               printk("belongs to cache %s.\n",c->name);
-
-               spin_lock_irqsave(&c->spinlock, flags);
-               s = GET_PAGE_SLAB(page);
-               printk("slabp %p with %d inuse objects (from %d).\n",
-                       s, s->inuse, c->num);
-               check_slabp(c,s);
-
-               objnr = (addr-(unsigned long)s->s_mem)/c->objsize;
-               objp = s->s_mem+c->objsize*objnr;
-               printk("points into object no %d, starting at %p, len %d.\n",
-                       objnr, objp, c->objsize);
-               if (objnr >= c->num) {
-                       printk("Bad obj number.\n");
-               } else {
-                       kernel_map_pages(virt_to_page(objp),
-                                       c->objsize/PAGE_SIZE, 1);
+static int leaks_show(struct seq_file *m, void *p)
+{
+       struct kmem_cache *cachep = p;
+       struct slab *slabp;
+       struct kmem_list3 *l3;
+       const char *name;
+       unsigned long *n = m->private;
+       int node;
+       int i;
 
-                       print_objinfo(c, objp, 2);
-               }
-               spin_unlock_irqrestore(&c->spinlock, flags);
+       if (!(cachep->flags & SLAB_STORE_USER))
+               return 0;
+       if (!(cachep->flags & SLAB_RED_ZONE))
+               return 0;
+
+       /* OK, we can do it */
+
+       n[1] = 0;
 
+       for_each_online_node(node) {
+               l3 = cachep->nodelists[node];
+               if (!l3)
+                       continue;
+
+               check_irq_on();
+               spin_lock_irq(&l3->list_lock);
+
+               list_for_each_entry(slabp, &l3->slabs_full, list)
+                       handle_slab(n, cachep, slabp);
+               list_for_each_entry(slabp, &l3->slabs_partial, list)
+                       handle_slab(n, cachep, slabp);
+               spin_unlock_irq(&l3->list_lock);
+       }
+       name = cachep->name;
+       if (n[0] == n[1]) {
+               /* Increase the buffer size */
+               mutex_unlock(&cache_chain_mutex);
+               m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
+               if (!m->private) {
+                       /* Too bad, we are really out */
+                       m->private = n;
+                       mutex_lock(&cache_chain_mutex);
+                       return -ENOMEM;
+               }
+               *(unsigned long *)m->private = n[0] * 2;
+               kfree(n);
+               mutex_lock(&cache_chain_mutex);
+               /* Now make sure this entry will be retried */
+               m->count = m->size;
+               return 0;
+       }
+       for (i = 0; i < n[1]; i++) {
+               seq_printf(m, "%s: %lu ", name, n[2*i+3]);
+               show_symbol(m, n[2*i+2]);
+               seq_putc(m, '\n');
        }
+
+       return 0;
+}
+
+const struct seq_operations slabstats_op = {
+       .start = leaks_start,
+       .next = s_next,
+       .stop = s_stop,
+       .show = leaks_show,
+};
+#endif
+#endif
+
+/**
+ * ksize - get the actual amount of memory allocated for a given object
+ * @objp: Pointer to the object
+ *
+ * kmalloc may internally round up allocations and return more memory
+ * than requested. ksize() can be used to determine the actual amount of
+ * memory allocated. The caller may use this additional memory, even though
+ * a smaller amount of memory was initially specified with the kmalloc call.
+ * The caller must guarantee that objp points to a valid object previously
+ * allocated with either kmalloc() or kmem_cache_alloc(). The object
+ * must not be freed during the duration of the call.
+ */
+unsigned int ksize(const void *objp)
+{
+       if (unlikely(objp == NULL))
+               return 0;
+
+       return obj_size(virt_to_cache(objp));
 }