linux 2.6.16.38 w/ vs2.0.3-rc1
[linux-2.6.git] / mm / vmscan.c
index ec85f5f..2dac95f 100644 (file)
@@ -21,7 +21,6 @@
 #include <linux/highmem.h>
 #include <linux/file.h>
 #include <linux/writeback.h>
-#include <linux/suspend.h>
 #include <linux/blkdev.h>
 #include <linux/buffer_head.h> /* for try_to_release_page(),
                                        buffer_heads_over_limit */
@@ -31,6 +30,7 @@
 #include <linux/rmap.h>
 #include <linux/topology.h>
 #include <linux/cpu.h>
+#include <linux/cpuset.h>
 #include <linux/notifier.h>
 #include <linux/rwsem.h>
 
@@ -38,8 +38,6 @@
 #include <asm/div64.h>
 
 #include <linux/swapops.h>
-#include <linux/vs_cvirt.h>
-
 
 /* possible outcome of pageout() */
 typedef enum {
@@ -65,16 +63,22 @@ struct scan_control {
 
        unsigned long nr_mapped;        /* From page_state */
 
-       /* How many pages shrink_cache() should reclaim */
-       int nr_to_reclaim;
-
        /* Ask shrink_caches, or shrink_zone to scan at this priority */
        unsigned int priority;
 
        /* This context's GFP mask */
-       unsigned int gfp_mask;
+       gfp_t gfp_mask;
 
        int may_writepage;
+
+       /* Can pages be swapped as part of reclaim? */
+       int may_swap;
+
+       /* This context's SWAP_CLUSTER_MAX. If freeing memory for
+        * suspend, we effectively ignore SWAP_CLUSTER_MAX.
+        * In this context, it doesn't matter that we scan the
+        * whole list at once. */
+       int swap_cluster_max;
 };
 
 /*
@@ -140,7 +144,7 @@ struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
                shrinker->seeks = seeks;
                shrinker->nr = 0;
                down_write(&shrinker_rwsem);
-               list_add(&shrinker->list, &shrinker_list);
+               list_add_tail(&shrinker->list, &shrinker_list);
                up_write(&shrinker_rwsem);
        }
        return shrinker;
@@ -176,28 +180,42 @@ EXPORT_SYMBOL(remove_shrinker);
  * `lru_pages' represents the number of on-LRU pages in all the zones which
  * are eligible for the caller's allocation attempt.  It is used for balancing
  * slab reclaim versus page reclaim.
+ *
+ * Returns the number of slab objects which we shrunk.
  */
-static int shrink_slab(unsigned long scanned, unsigned int gfp_mask,
-                       unsigned long lru_pages)
+int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
 {
        struct shrinker *shrinker;
+       int ret = 0;
 
        if (scanned == 0)
                scanned = SWAP_CLUSTER_MAX;
 
        if (!down_read_trylock(&shrinker_rwsem))
-               return 0;
+               return 1;       /* Assume we'll be able to shrink next time */
 
        list_for_each_entry(shrinker, &shrinker_list, list) {
                unsigned long long delta;
                unsigned long total_scan;
+               unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
 
                delta = (4 * scanned) / shrinker->seeks;
-               delta *= (*shrinker->shrinker)(0, gfp_mask);
+               delta *= max_pass;
                do_div(delta, lru_pages + 1);
                shrinker->nr += delta;
-               if (shrinker->nr < 0)
-                       shrinker->nr = LONG_MAX;        /* It wrapped! */
+               if (shrinker->nr < 0) {
+                       printk(KERN_ERR "%s: nr=%ld\n",
+                                       __FUNCTION__, shrinker->nr);
+                       shrinker->nr = max_pass;
+               }
+
+               /*
+                * Avoid risking looping forever due to too large nr value:
+                * never try to free more than twice the estimate number of
+                * freeable entries.
+                */
+               if (shrinker->nr > max_pass * 2)
+                       shrinker->nr = max_pass * 2;
 
                total_scan = shrinker->nr;
                shrinker->nr = 0;
@@ -205,10 +223,14 @@ static int shrink_slab(unsigned long scanned, unsigned int gfp_mask,
                while (total_scan >= SHRINK_BATCH) {
                        long this_scan = SHRINK_BATCH;
                        int shrink_ret;
+                       int nr_before;
 
+                       nr_before = (*shrinker->shrinker)(0, gfp_mask);
                        shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
                        if (shrink_ret == -1)
                                break;
+                       if (shrink_ret < nr_before)
+                               ret += nr_before - shrink_ret;
                        mod_page_state(slabs_scanned, this_scan);
                        total_scan -= this_scan;
 
@@ -218,7 +240,7 @@ static int shrink_slab(unsigned long scanned, unsigned int gfp_mask,
                shrinker->nr += total_scan;
        }
        up_read(&shrinker_rwsem);
-       return 0;
+       return ret;
 }
 
 /* Called without lock on whether page is mapped, so answer is unstable */
@@ -249,9 +271,7 @@ static inline int is_page_cache_freeable(struct page *page)
 
 static int may_write_to_queue(struct backing_dev_info *bdi)
 {
-       if (current_is_kswapd())
-               return 1;
-       if (current_is_pdflush())       /* This is unlikely, but why not... */
+       if (current->flags & PF_SWAPWRITE)
                return 1;
        if (!bdi_write_congested(bdi))
                return 1;
@@ -309,8 +329,20 @@ static pageout_t pageout(struct page *page, struct address_space *mapping)
         */
        if (!is_page_cache_freeable(page))
                return PAGE_KEEP;
-       if (!mapping)
+       if (!mapping) {
+               /*
+                * Some data journaling orphaned pages can have
+                * page->mapping == NULL while being dirty with clean buffers.
+                */
+               if (PagePrivate(page)) {
+                       if (try_to_free_buffers(page)) {
+                               ClearPageDirty(page);
+                               printk("%s: orphaned page\n", __FUNCTION__);
+                               return PAGE_CLEAN;
+                       }
+               }
                return PAGE_KEEP;
+       }
        if (mapping->a_ops->writepage == NULL)
                return PAGE_ACTIVATE;
        if (!may_write_to_queue(mapping->backing_dev_info))
@@ -329,7 +361,7 @@ static pageout_t pageout(struct page *page, struct address_space *mapping)
                res = mapping->a_ops->writepage(page, &wbc);
                if (res < 0)
                        handle_write_error(mapping, page, res);
-               if (res == WRITEPAGE_ACTIVATE) {
+               if (res == AOP_WRITEPAGE_ACTIVATE) {
                        ClearPageReclaim(page);
                        return PAGE_ACTIVATE;
                }
@@ -344,6 +376,43 @@ static pageout_t pageout(struct page *page, struct address_space *mapping)
        return PAGE_CLEAN;
 }
 
+static int remove_mapping(struct address_space *mapping, struct page *page)
+{
+       if (!mapping)
+               return 0;               /* truncate got there first */
+
+       write_lock_irq(&mapping->tree_lock);
+
+       /*
+        * The non-racy check for busy page.  It is critical to check
+        * PageDirty _after_ making sure that the page is freeable and
+        * not in use by anybody.       (pagecache + us == 2)
+        */
+       if (unlikely(page_count(page) != 2))
+               goto cannot_free;
+       smp_rmb();
+       if (unlikely(PageDirty(page)))
+               goto cannot_free;
+
+       if (PageSwapCache(page)) {
+               swp_entry_t swap = { .val = page_private(page) };
+               __delete_from_swap_cache(page);
+               write_unlock_irq(&mapping->tree_lock);
+               swap_free(swap);
+               __put_page(page);       /* The pagecache ref */
+               return 1;
+       }
+
+       __remove_from_page_cache(page);
+       write_unlock_irq(&mapping->tree_lock);
+       __put_page(page);
+       return 1;
+
+cannot_free:
+       write_unlock_irq(&mapping->tree_lock);
+       return 0;
+}
+
 /*
  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
  */
@@ -363,6 +432,8 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc)
                int may_enter_fs;
                int referenced;
 
+               cond_resched();
+
                page = lru_to_page(page_list);
                list_del(&page->lru);
 
@@ -372,6 +443,10 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc)
                BUG_ON(PageActive(page));
 
                sc->nr_scanned++;
+
+               if (!sc->may_swap && page_mapped(page))
+                       goto keep_locked;
+
                /* Double the slab pressure for mapped and swapcache pages */
                if (page_mapped(page) || PageSwapCache(page))
                        sc->nr_scanned++;
@@ -379,7 +454,7 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc)
                if (PageWriteback(page))
                        goto keep_locked;
 
-               referenced = page_referenced(page, 1, sc->priority <= 0);
+               referenced = page_referenced(page, 1);
                /* In active use or really unfreeable?  Activate it. */
                if (referenced && page_mapping_inuse(page))
                        goto activate_locked;
@@ -390,7 +465,9 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc)
                 * Try to allocate it some swap space here.
                 */
                if (PageAnon(page) && !PageSwapCache(page)) {
-                       if (!add_to_swap(page))
+                       if (!sc->may_swap)
+                               goto keep_locked;
+                       if (!add_to_swap(page, GFP_ATOMIC))
                                goto activate_locked;
                }
 #endif /* CONFIG_SWAP */
@@ -404,7 +481,13 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc)
                 * processes. Try to unmap it here.
                 */
                if (page_mapped(page) && mapping) {
-                       switch (try_to_unmap(page)) {
+                       /*
+                        * No unmapping if we do not swap
+                        */
+                       if (!sc->may_swap)
+                               goto keep_locked;
+
+                       switch (try_to_unmap(page, 0)) {
                        case SWAP_FAIL:
                                goto activate_locked;
                        case SWAP_AGAIN:
@@ -419,7 +502,7 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc)
                                goto keep_locked;
                        if (!may_enter_fs)
                                goto keep_locked;
-                       if (laptop_mode && !sc->may_writepage)
+                       if (!sc->may_writepage)
                                goto keep_locked;
 
                        /* Page is dirty, try to write it out here */
@@ -473,35 +556,8 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc)
                                goto free_it;
                }
 
-               if (!mapping)
-                       goto keep_locked;       /* truncate got there first */
-
-               spin_lock_irq(&mapping->tree_lock);
-
-               /*
-                * The non-racy check for busy page.  It is critical to check
-                * PageDirty _after_ making sure that the page is freeable and
-                * not in use by anybody.       (pagecache + us == 2)
-                */
-               if (page_count(page) != 2 || PageDirty(page)) {
-                       spin_unlock_irq(&mapping->tree_lock);
+               if (!remove_mapping(mapping, page))
                        goto keep_locked;
-               }
-
-#ifdef CONFIG_SWAP
-               if (PageSwapCache(page)) {
-                       swp_entry_t swap = { .val = page->private };
-                       __delete_from_swap_cache(page);
-                       spin_unlock_irq(&mapping->tree_lock);
-                       swap_free(swap);
-                       __put_page(page);       /* The pagecache ref */
-                       goto free_it;
-               }
-#endif /* CONFIG_SWAP */
-
-               __remove_from_page_cache(page);
-               spin_unlock_irq(&mapping->tree_lock);
-               __put_page(page);
 
 free_it:
                unlock_page(page);
@@ -527,23 +583,548 @@ keep:
        return reclaimed;
 }
 
+#ifdef CONFIG_MIGRATION
+static inline void move_to_lru(struct page *page)
+{
+       list_del(&page->lru);
+       if (PageActive(page)) {
+               /*
+                * lru_cache_add_active checks that
+                * the PG_active bit is off.
+                */
+               ClearPageActive(page);
+               lru_cache_add_active(page);
+       } else {
+               lru_cache_add(page);
+       }
+       put_page(page);
+}
+
 /*
- * zone->lru_lock is heavily contented.  We relieve it by quickly privatising
- * a batch of pages and working on them outside the lock.  Any pages which were
- * not freed will be added back to the LRU.
+ * Add isolated pages on the list back to the LRU.
  *
- * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
+ * returns the number of pages put back.
+ */
+int putback_lru_pages(struct list_head *l)
+{
+       struct page *page;
+       struct page *page2;
+       int count = 0;
+
+       list_for_each_entry_safe(page, page2, l, lru) {
+               move_to_lru(page);
+               count++;
+       }
+       return count;
+}
+
+/*
+ * Non migratable page
+ */
+int fail_migrate_page(struct page *newpage, struct page *page)
+{
+       return -EIO;
+}
+EXPORT_SYMBOL(fail_migrate_page);
+
+/*
+ * swapout a single page
+ * page is locked upon entry, unlocked on exit
+ */
+static int swap_page(struct page *page)
+{
+       struct address_space *mapping = page_mapping(page);
+
+       if (page_mapped(page) && mapping)
+               if (try_to_unmap(page, 1) != SWAP_SUCCESS)
+                       goto unlock_retry;
+
+       if (PageDirty(page)) {
+               /* Page is dirty, try to write it out here */
+               switch(pageout(page, mapping)) {
+               case PAGE_KEEP:
+               case PAGE_ACTIVATE:
+                       goto unlock_retry;
+
+               case PAGE_SUCCESS:
+                       goto retry;
+
+               case PAGE_CLEAN:
+                       ; /* try to free the page below */
+               }
+       }
+
+       if (PagePrivate(page)) {
+               if (!try_to_release_page(page, GFP_KERNEL) ||
+                   (!mapping && page_count(page) == 1))
+                       goto unlock_retry;
+       }
+
+       if (remove_mapping(mapping, page)) {
+               /* Success */
+               unlock_page(page);
+               return 0;
+       }
+
+unlock_retry:
+       unlock_page(page);
+
+retry:
+       return -EAGAIN;
+}
+EXPORT_SYMBOL(swap_page);
+
+/*
+ * Page migration was first developed in the context of the memory hotplug
+ * project. The main authors of the migration code are:
+ *
+ * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
+ * Hirokazu Takahashi <taka@valinux.co.jp>
+ * Dave Hansen <haveblue@us.ibm.com>
+ * Christoph Lameter <clameter@sgi.com>
+ */
+
+/*
+ * Remove references for a page and establish the new page with the correct
+ * basic settings to be able to stop accesses to the page.
+ */
+int migrate_page_remove_references(struct page *newpage,
+                               struct page *page, int nr_refs)
+{
+       struct address_space *mapping = page_mapping(page);
+       struct page **radix_pointer;
+
+       /*
+        * Avoid doing any of the following work if the page count
+        * indicates that the page is in use or truncate has removed
+        * the page.
+        */
+       if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
+               return -EAGAIN;
+
+       /*
+        * Establish swap ptes for anonymous pages or destroy pte
+        * maps for files.
+        *
+        * In order to reestablish file backed mappings the fault handlers
+        * will take the radix tree_lock which may then be used to stop
+        * processses from accessing this page until the new page is ready.
+        *
+        * A process accessing via a swap pte (an anonymous page) will take a
+        * page_lock on the old page which will block the process until the
+        * migration attempt is complete. At that time the PageSwapCache bit
+        * will be examined. If the page was migrated then the PageSwapCache
+        * bit will be clear and the operation to retrieve the page will be
+        * retried which will find the new page in the radix tree. Then a new
+        * direct mapping may be generated based on the radix tree contents.
+        *
+        * If the page was not migrated then the PageSwapCache bit
+        * is still set and the operation may continue.
+        */
+       if (try_to_unmap(page, 1) == SWAP_FAIL)
+               /* A vma has VM_LOCKED set -> Permanent failure */
+               return -EPERM;
+
+       /*
+        * Give up if we were unable to remove all mappings.
+        */
+       if (page_mapcount(page))
+               return -EAGAIN;
+
+       write_lock_irq(&mapping->tree_lock);
+
+       radix_pointer = (struct page **)radix_tree_lookup_slot(
+                                               &mapping->page_tree,
+                                               page_index(page));
+
+       if (!page_mapping(page) || page_count(page) != nr_refs ||
+                       *radix_pointer != page) {
+               write_unlock_irq(&mapping->tree_lock);
+               return -EAGAIN;
+       }
+
+       /*
+        * Now we know that no one else is looking at the page.
+        *
+        * Certain minimal information about a page must be available
+        * in order for other subsystems to properly handle the page if they
+        * find it through the radix tree update before we are finished
+        * copying the page.
+        */
+       get_page(newpage);
+       newpage->index = page->index;
+       newpage->mapping = page->mapping;
+       if (PageSwapCache(page)) {
+               SetPageSwapCache(newpage);
+               set_page_private(newpage, page_private(page));
+       }
+
+       *radix_pointer = newpage;
+       __put_page(page);
+       write_unlock_irq(&mapping->tree_lock);
+
+       return 0;
+}
+EXPORT_SYMBOL(migrate_page_remove_references);
+
+/*
+ * Copy the page to its new location
+ */
+void migrate_page_copy(struct page *newpage, struct page *page)
+{
+       copy_highpage(newpage, page);
+
+       if (PageError(page))
+               SetPageError(newpage);
+       if (PageReferenced(page))
+               SetPageReferenced(newpage);
+       if (PageUptodate(page))
+               SetPageUptodate(newpage);
+       if (PageActive(page))
+               SetPageActive(newpage);
+       if (PageChecked(page))
+               SetPageChecked(newpage);
+       if (PageMappedToDisk(page))
+               SetPageMappedToDisk(newpage);
+
+       if (PageDirty(page)) {
+               clear_page_dirty_for_io(page);
+               set_page_dirty(newpage);
+       }
+
+       ClearPageSwapCache(page);
+       ClearPageActive(page);
+       ClearPagePrivate(page);
+       set_page_private(page, 0);
+       page->mapping = NULL;
+
+       /*
+        * If any waiters have accumulated on the new page then
+        * wake them up.
+        */
+       if (PageWriteback(newpage))
+               end_page_writeback(newpage);
+}
+EXPORT_SYMBOL(migrate_page_copy);
+
+/*
+ * Common logic to directly migrate a single page suitable for
+ * pages that do not use PagePrivate.
+ *
+ * Pages are locked upon entry and exit.
+ */
+int migrate_page(struct page *newpage, struct page *page)
+{
+       int rc;
+
+       BUG_ON(PageWriteback(page));    /* Writeback must be complete */
+
+       rc = migrate_page_remove_references(newpage, page, 2);
+
+       if (rc)
+               return rc;
+
+       migrate_page_copy(newpage, page);
+
+       /*
+        * Remove auxiliary swap entries and replace
+        * them with real ptes.
+        *
+        * Note that a real pte entry will allow processes that are not
+        * waiting on the page lock to use the new page via the page tables
+        * before the new page is unlocked.
+        */
+       remove_from_swap(newpage);
+       return 0;
+}
+EXPORT_SYMBOL(migrate_page);
+
+/*
+ * migrate_pages
+ *
+ * Two lists are passed to this function. The first list
+ * contains the pages isolated from the LRU to be migrated.
+ * The second list contains new pages that the pages isolated
+ * can be moved to. If the second list is NULL then all
+ * pages are swapped out.
+ *
+ * The function returns after 10 attempts or if no pages
+ * are movable anymore because to has become empty
+ * or no retryable pages exist anymore.
+ *
+ * Return: Number of pages not migrated when "to" ran empty.
+ */
+int migrate_pages(struct list_head *from, struct list_head *to,
+                 struct list_head *moved, struct list_head *failed)
+{
+       int retry;
+       int nr_failed = 0;
+       int pass = 0;
+       struct page *page;
+       struct page *page2;
+       int swapwrite = current->flags & PF_SWAPWRITE;
+       int rc;
+
+       if (!swapwrite)
+               current->flags |= PF_SWAPWRITE;
+
+redo:
+       retry = 0;
+
+       list_for_each_entry_safe(page, page2, from, lru) {
+               struct page *newpage = NULL;
+               struct address_space *mapping;
+
+               cond_resched();
+
+               rc = 0;
+               if (page_count(page) == 1)
+                       /* page was freed from under us. So we are done. */
+                       goto next;
+
+               if (to && list_empty(to))
+                       break;
+
+               /*
+                * Skip locked pages during the first two passes to give the
+                * functions holding the lock time to release the page. Later we
+                * use lock_page() to have a higher chance of acquiring the
+                * lock.
+                */
+               rc = -EAGAIN;
+               if (pass > 2)
+                       lock_page(page);
+               else
+                       if (TestSetPageLocked(page))
+                               goto next;
+
+               /*
+                * Only wait on writeback if we have already done a pass where
+                * we we may have triggered writeouts for lots of pages.
+                */
+               if (pass > 0) {
+                       wait_on_page_writeback(page);
+               } else {
+                       if (PageWriteback(page))
+                               goto unlock_page;
+               }
+
+               /*
+                * Anonymous pages must have swap cache references otherwise
+                * the information contained in the page maps cannot be
+                * preserved.
+                */
+               if (PageAnon(page) && !PageSwapCache(page)) {
+                       if (!add_to_swap(page, GFP_KERNEL)) {
+                               rc = -ENOMEM;
+                               goto unlock_page;
+                       }
+               }
+
+               if (!to) {
+                       rc = swap_page(page);
+                       goto next;
+               }
+
+               newpage = lru_to_page(to);
+               lock_page(newpage);
+
+               /*
+                * Pages are properly locked and writeback is complete.
+                * Try to migrate the page.
+                */
+               mapping = page_mapping(page);
+               if (!mapping)
+                       goto unlock_both;
+
+               if (mapping->a_ops->migratepage) {
+                       /*
+                        * Most pages have a mapping and most filesystems
+                        * should provide a migration function. Anonymous
+                        * pages are part of swap space which also has its
+                        * own migration function. This is the most common
+                        * path for page migration.
+                        */
+                       rc = mapping->a_ops->migratepage(newpage, page);
+                       goto unlock_both;
+                }
+
+               /* Make sure the dirty bit is up to date */
+               if (try_to_unmap(page, 1) == SWAP_FAIL) {
+                       rc = -EPERM;
+                       goto unlock_both;
+               }
+
+               if (page_mapcount(page)) {
+                       rc = -EAGAIN;
+                       goto unlock_both;
+               }
+
+               /*
+                * Default handling if a filesystem does not provide
+                * a migration function. We can only migrate clean
+                * pages so try to write out any dirty pages first.
+                */
+               if (PageDirty(page)) {
+                       switch (pageout(page, mapping)) {
+                       case PAGE_KEEP:
+                       case PAGE_ACTIVATE:
+                               goto unlock_both;
+
+                       case PAGE_SUCCESS:
+                               unlock_page(newpage);
+                               goto next;
+
+                       case PAGE_CLEAN:
+                               ; /* try to migrate the page below */
+                       }
+                }
+
+               /*
+                * Buffers are managed in a filesystem specific way.
+                * We must have no buffers or drop them.
+                */
+               if (!page_has_buffers(page) ||
+                   try_to_release_page(page, GFP_KERNEL)) {
+                       rc = migrate_page(newpage, page);
+                       goto unlock_both;
+               }
+
+               /*
+                * On early passes with mapped pages simply
+                * retry. There may be a lock held for some
+                * buffers that may go away. Later
+                * swap them out.
+                */
+               if (pass > 4) {
+                       /*
+                        * Persistently unable to drop buffers..... As a
+                        * measure of last resort we fall back to
+                        * swap_page().
+                        */
+                       unlock_page(newpage);
+                       newpage = NULL;
+                       rc = swap_page(page);
+                       goto next;
+               }
+
+unlock_both:
+               unlock_page(newpage);
+
+unlock_page:
+               unlock_page(page);
+
+next:
+               if (rc == -EAGAIN) {
+                       retry++;
+               } else if (rc) {
+                       /* Permanent failure */
+                       list_move(&page->lru, failed);
+                       nr_failed++;
+               } else {
+                       if (newpage) {
+                               /* Successful migration. Return page to LRU */
+                               move_to_lru(newpage);
+                       }
+                       list_move(&page->lru, moved);
+               }
+       }
+       if (retry && pass++ < 10)
+               goto redo;
+
+       if (!swapwrite)
+               current->flags &= ~PF_SWAPWRITE;
+
+       return nr_failed + retry;
+}
+
+/*
+ * Isolate one page from the LRU lists and put it on the
+ * indicated list with elevated refcount.
+ *
+ * Result:
+ *  0 = page not on LRU list
+ *  1 = page removed from LRU list and added to the specified list.
+ */
+int isolate_lru_page(struct page *page)
+{
+       int ret = 0;
+
+       if (PageLRU(page)) {
+               struct zone *zone = page_zone(page);
+               spin_lock_irq(&zone->lru_lock);
+               if (TestClearPageLRU(page)) {
+                       ret = 1;
+                       get_page(page);
+                       if (PageActive(page))
+                               del_page_from_active_list(zone, page);
+                       else
+                               del_page_from_inactive_list(zone, page);
+               }
+               spin_unlock_irq(&zone->lru_lock);
+       }
+
+       return ret;
+}
+#endif
+
+/*
+ * zone->lru_lock is heavily contended.  Some of the functions that
+ * shrink the lists perform better by taking out a batch of pages
+ * and working on them outside the LRU lock.
+ *
+ * For pagecache intensive workloads, this function is the hottest
+ * spot in the kernel (apart from copy_*_user functions).
+ *
+ * Appropriate locks must be held before calling this function.
+ *
+ * @nr_to_scan:        The number of pages to look through on the list.
+ * @src:       The LRU list to pull pages off.
+ * @dst:       The temp list to put pages on to.
+ * @scanned:   The number of pages that were scanned.
  *
- * For pagecache intensive workloads, the first loop here is the hottest spot
- * in the kernel (apart from the copy_*_user functions).
+ * returns how many pages were moved onto *@dst.
+ */
+static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
+                            struct list_head *dst, int *scanned)
+{
+       int nr_taken = 0;
+       struct page *page;
+       int scan = 0;
+
+       while (scan++ < nr_to_scan && !list_empty(src)) {
+               page = lru_to_page(src);
+               prefetchw_prev_lru_page(page, src, flags);
+
+               if (!TestClearPageLRU(page))
+                       BUG();
+               list_del(&page->lru);
+               if (get_page_testone(page)) {
+                       /*
+                        * It is being freed elsewhere
+                        */
+                       __put_page(page);
+                       SetPageLRU(page);
+                       list_add(&page->lru, src);
+                       continue;
+               } else {
+                       list_add(&page->lru, dst);
+                       nr_taken++;
+               }
+       }
+
+       *scanned = scan;
+       return nr_taken;
+}
+
+/*
+ * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
  */
 static void shrink_cache(struct zone *zone, struct scan_control *sc)
 {
        LIST_HEAD(page_list);
        struct pagevec pvec;
        int max_scan = sc->nr_to_scan;
-       struct list_head *inactive_list = &zone->inactive_list;
-       struct list_head *active_list = &zone->active_list;
 
        pagevec_init(&pvec, 1);
 
@@ -551,50 +1132,32 @@ static void shrink_cache(struct zone *zone, struct scan_control *sc)
        spin_lock_irq(&zone->lru_lock);
        while (max_scan > 0) {
                struct page *page;
-               int nr_taken = 0;
-               int nr_scan = 0;
+               int nr_taken;
+               int nr_scan;
                int nr_freed;
 
-               while (nr_scan++ < SWAP_CLUSTER_MAX &&
-                               !list_empty(inactive_list)) {
-                       page = lru_to_page(inactive_list);
-
-                       prefetchw_prev_lru_page(page,
-                                               inactive_list, flags);
-
-                       if (!TestClearPageLRU(page))
-                               BUG();
-                       list_del(&page->lru);
-                       if (get_page_testone(page)) {
-                               /*
-                                * It is being freed elsewhere
-                                */
-                               __put_page(page);
-                               SetPageLRU(page);
-                               list_add(&page->lru, inactive_list);
-                               continue;
-                       }
-                       list_add(&page->lru, &page_list);
-                       nr_taken++;
-               }
+               nr_taken = isolate_lru_pages(sc->swap_cluster_max,
+                                            &zone->inactive_list,
+                                            &page_list, &nr_scan);
                zone->nr_inactive -= nr_taken;
+               zone->pages_scanned += nr_scan;
                spin_unlock_irq(&zone->lru_lock);
 
                if (nr_taken == 0)
                        goto done;
 
                max_scan -= nr_scan;
-               if (current_is_kswapd())
-                       mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
-               else
-                       mod_page_state_zone(zone, pgscan_direct, nr_scan);
                nr_freed = shrink_list(&page_list, sc);
-               if (current_is_kswapd())
-                       mod_page_state(kswapd_steal, nr_freed);
-               mod_page_state_zone(zone, pgsteal, nr_freed);
-               sc->nr_to_reclaim -= nr_freed;
 
-               spin_lock_irq(&zone->lru_lock);
+               local_irq_disable();
+               if (current_is_kswapd()) {
+                       __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
+                       __mod_page_state(kswapd_steal, nr_freed);
+               } else
+                       __mod_page_state_zone(zone, pgscan_direct, nr_scan);
+               __mod_page_state_zone(zone, pgsteal, nr_freed);
+
+               spin_lock(&zone->lru_lock);
                /*
                 * Put back any unfreeable pages.
                 */
@@ -603,13 +1166,10 @@ static void shrink_cache(struct zone *zone, struct scan_control *sc)
                        if (TestSetPageLRU(page))
                                BUG();
                        list_del(&page->lru);
-                       if (PageActive(page)) {
-                               zone->nr_active++;
-                               list_add(&page->lru, active_list);
-                       } else {
-                               zone->nr_inactive++;
-                               list_add(&page->lru, inactive_list);
-                       }
+                       if (PageActive(page))
+                               add_page_to_active_list(zone, page);
+                       else
+                               add_page_to_inactive_list(zone, page);
                        if (!pagevec_add(&pvec, page)) {
                                spin_unlock_irq(&zone->lru_lock);
                                __pagevec_release(&pvec);
@@ -644,7 +1204,7 @@ refill_inactive_zone(struct zone *zone, struct scan_control *sc)
 {
        int pgmoved;
        int pgdeactivate = 0;
-       int pgscanned = 0;
+       int pgscanned;
        int nr_pages = sc->nr_to_scan;
        LIST_HEAD(l_hold);      /* The pages which were snipped off */
        LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
@@ -652,79 +1212,64 @@ refill_inactive_zone(struct zone *zone, struct scan_control *sc)
        struct page *page;
        struct pagevec pvec;
        int reclaim_mapped = 0;
-       long mapped_ratio;
-       long distress;
-       long swap_tendency;
-       struct list_head *active_list = &zone->active_list;
-       struct list_head *inactive_list = &zone->inactive_list;
+
+       if (unlikely(sc->may_swap)) {
+               long mapped_ratio;
+               long distress;
+               long swap_tendency;
+
+               /*
+                * `distress' is a measure of how much trouble we're having
+                * reclaiming pages.  0 -> no problems.  100 -> great trouble.
+                */
+               distress = 100 >> zone->prev_priority;
+
+               /*
+                * The point of this algorithm is to decide when to start
+                * reclaiming mapped memory instead of just pagecache.  Work out
+                * how much memory
+                * is mapped.
+                */
+               mapped_ratio = (sc->nr_mapped * 100) / total_memory;
+
+               /*
+                * Now decide how much we really want to unmap some pages.  The
+                * mapped ratio is downgraded - just because there's a lot of
+                * mapped memory doesn't necessarily mean that page reclaim
+                * isn't succeeding.
+                *
+                * The distress ratio is important - we don't want to start
+                * going oom.
+                *
+                * A 100% value of vm_swappiness overrides this algorithm
+                * altogether.
+                */
+               swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
+
+               /*
+                * Now use this metric to decide whether to start moving mapped
+                * memory onto the inactive list.
+                */
+               if (swap_tendency >= 100)
+                       reclaim_mapped = 1;
+       }
 
        lru_add_drain();
-       pgmoved = 0;
        spin_lock_irq(&zone->lru_lock);
-       while (pgscanned < nr_pages && !list_empty(active_list)) {
-               page = lru_to_page(active_list);
-               prefetchw_prev_lru_page(page, active_list, flags);
-               if (!TestClearPageLRU(page))
-                       BUG();
-               list_del(&page->lru);
-               if (get_page_testone(page)) {
-                       /*
-                        * It was already free!  release_pages() or put_page()
-                        * are about to remove it from the LRU and free it. So
-                        * put the refcount back and put the page back on the
-                        * LRU
-                        */
-                       __put_page(page);
-                       SetPageLRU(page);
-                       list_add(&page->lru, active_list);
-               } else {
-                       list_add(&page->lru, &l_hold);
-                       pgmoved++;
-               }
-               pgscanned++;
-       }
+       pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
+                                   &l_hold, &pgscanned);
        zone->pages_scanned += pgscanned;
        zone->nr_active -= pgmoved;
        spin_unlock_irq(&zone->lru_lock);
 
-       /*
-        * `distress' is a measure of how much trouble we're having reclaiming
-        * pages.  0 -> no problems.  100 -> great trouble.
-        */
-       distress = 100 >> zone->prev_priority;
-
-       /*
-        * The point of this algorithm is to decide when to start reclaiming
-        * mapped memory instead of just pagecache.  Work out how much memory
-        * is mapped.
-        */
-       mapped_ratio = (sc->nr_mapped * 100) / total_memory;
-
-       /*
-        * Now decide how much we really want to unmap some pages.  The mapped
-        * ratio is downgraded - just because there's a lot of mapped memory
-        * doesn't necessarily mean that page reclaim isn't succeeding.
-        *
-        * The distress ratio is important - we don't want to start going oom.
-        *
-        * A 100% value of vm_swappiness overrides this algorithm altogether.
-        */
-       swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
-
-       /*
-        * Now use this metric to decide whether to start moving mapped memory
-        * onto the inactive list.
-        */
-       if (swap_tendency >= 100)
-               reclaim_mapped = 1;
-
        while (!list_empty(&l_hold)) {
+               cond_resched();
                page = lru_to_page(&l_hold);
                list_del(&page->lru);
                if (page_mapped(page)) {
                        if (!reclaim_mapped ||
                            (total_swap_pages == 0 && PageAnon(page)) ||
-                           page_referenced(page, 0, sc->priority <= 0)) {
+                           page_referenced(page, 0)) {
                                list_add(&page->lru, &l_active);
                                continue;
                        }
@@ -742,7 +1287,7 @@ refill_inactive_zone(struct zone *zone, struct scan_control *sc)
                        BUG();
                if (!TestClearPageActive(page))
                        BUG();
-               list_move(&page->lru, inactive_list);
+               list_move(&page->lru, &zone->inactive_list);
                pgmoved++;
                if (!pagevec_add(&pvec, page)) {
                        zone->nr_inactive += pgmoved;
@@ -770,7 +1315,7 @@ refill_inactive_zone(struct zone *zone, struct scan_control *sc)
                if (TestSetPageLRU(page))
                        BUG();
                BUG_ON(!PageActive(page));
-               list_move(&page->lru, active_list);
+               list_move(&page->lru, &zone->active_list);
                pgmoved++;
                if (!pagevec_add(&pvec, page)) {
                        zone->nr_active += pgmoved;
@@ -781,11 +1326,13 @@ refill_inactive_zone(struct zone *zone, struct scan_control *sc)
                }
        }
        zone->nr_active += pgmoved;
-       spin_unlock_irq(&zone->lru_lock);
-       pagevec_release(&pvec);
+       spin_unlock(&zone->lru_lock);
+
+       __mod_page_state_zone(zone, pgrefill, pgscanned);
+       __mod_page_state(pgdeactivate, pgdeactivate);
+       local_irq_enable();
 
-       mod_page_state_zone(zone, pgrefill, pgscanned);
-       mod_page_state(pgdeactivate, pgdeactivate);
+       pagevec_release(&pvec);
 }
 
 /*
@@ -797,43 +1344,45 @@ shrink_zone(struct zone *zone, struct scan_control *sc)
        unsigned long nr_active;
        unsigned long nr_inactive;
 
+       atomic_inc(&zone->reclaim_in_progress);
+
        /*
         * Add one to `nr_to_scan' just to make sure that the kernel will
         * slowly sift through the active list.
         */
        zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
        nr_active = zone->nr_scan_active;
-       if (nr_active >= SWAP_CLUSTER_MAX)
+       if (nr_active >= sc->swap_cluster_max)
                zone->nr_scan_active = 0;
        else
                nr_active = 0;
 
        zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
        nr_inactive = zone->nr_scan_inactive;
-       if (nr_inactive >= SWAP_CLUSTER_MAX)
+       if (nr_inactive >= sc->swap_cluster_max)
                zone->nr_scan_inactive = 0;
        else
                nr_inactive = 0;
 
-       sc->nr_to_reclaim = SWAP_CLUSTER_MAX;
-
        while (nr_active || nr_inactive) {
                if (nr_active) {
                        sc->nr_to_scan = min(nr_active,
-                                       (unsigned long)SWAP_CLUSTER_MAX);
+                                       (unsigned long)sc->swap_cluster_max);
                        nr_active -= sc->nr_to_scan;
                        refill_inactive_zone(zone, sc);
                }
 
                if (nr_inactive) {
                        sc->nr_to_scan = min(nr_inactive,
-                                       (unsigned long)SWAP_CLUSTER_MAX);
+                                       (unsigned long)sc->swap_cluster_max);
                        nr_inactive -= sc->nr_to_scan;
                        shrink_cache(zone, sc);
-                       if (sc->nr_to_reclaim <= 0)
-                               break;
                }
        }
+
+       throttle_vm_writeout();
+
+       atomic_dec(&zone->reclaim_in_progress);
 }
 
 /*
@@ -860,7 +1409,10 @@ shrink_caches(struct zone **zones, struct scan_control *sc)
        for (i = 0; zones[i] != NULL; i++) {
                struct zone *zone = zones[i];
 
-               if (zone->present_pages == 0)
+               if (!populated_zone(zone))
+                       continue;
+
+               if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
                        continue;
 
                zone->temp_priority = sc->priority;
@@ -887,8 +1439,7 @@ shrink_caches(struct zone **zones, struct scan_control *sc)
  * holds filesystem locks which prevent writeout this might not work, and the
  * allocation attempt will fail.
  */
-int try_to_free_pages(struct zone **zones,
-               unsigned int gfp_mask, unsigned int order)
+int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
 {
        int priority;
        int ret = 0;
@@ -899,13 +1450,17 @@ int try_to_free_pages(struct zone **zones,
        int i;
 
        sc.gfp_mask = gfp_mask;
-       sc.may_writepage = 0;
+       sc.may_writepage = !laptop_mode;
+       sc.may_swap = 1;
 
        inc_page_state(allocstall);
 
        for (i = 0; zones[i] != NULL; i++) {
                struct zone *zone = zones[i];
 
+               if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
+                       continue;
+
                zone->temp_priority = DEF_PRIORITY;
                lru_pages += zone->nr_active + zone->nr_inactive;
        }
@@ -915,18 +1470,21 @@ int try_to_free_pages(struct zone **zones,
                sc.nr_scanned = 0;
                sc.nr_reclaimed = 0;
                sc.priority = priority;
+               sc.swap_cluster_max = SWAP_CLUSTER_MAX;
+               if (!priority)
+                       disable_swap_token();
                shrink_caches(zones, &sc);
                shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
                if (reclaim_state) {
                        sc.nr_reclaimed += reclaim_state->reclaimed_slab;
                        reclaim_state->reclaimed_slab = 0;
                }
-               if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) {
+               total_scanned += sc.nr_scanned;
+               total_reclaimed += sc.nr_reclaimed;
+               if (total_reclaimed >= sc.swap_cluster_max) {
                        ret = 1;
                        goto out;
                }
-               total_scanned += sc.nr_scanned;
-               total_reclaimed += sc.nr_reclaimed;
 
                /*
                 * Try to write back as many pages as we just scanned.  This
@@ -935,8 +1493,8 @@ int try_to_free_pages(struct zone **zones,
                 * that's undesirable in laptop mode, where we *want* lumpy
                 * writeout.  So in laptop mode, write out the whole world.
                 */
-               if (total_scanned > SWAP_CLUSTER_MAX + SWAP_CLUSTER_MAX/2) {
-                       wakeup_bdflush(laptop_mode ? 0 : total_scanned);
+               if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
+                       wakeup_pdflush(laptop_mode ? 0 : total_scanned);
                        sc.may_writepage = 1;
                }
 
@@ -944,11 +1502,15 @@ int try_to_free_pages(struct zone **zones,
                if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
                        blk_congestion_wait(WRITE, HZ/10);
        }
-       if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY))
-               out_of_memory(gfp_mask);
 out:
-       for (i = 0; zones[i] != 0; i++)
-               zones[i]->prev_priority = zones[i]->temp_priority;
+       for (i = 0; zones[i] != 0; i++) {
+               struct zone *zone = zones[i];
+
+               if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
+                       continue;
+
+               zone->prev_priority = zone->temp_priority;
+       }
        return ret;
 }
 
@@ -977,7 +1539,7 @@ out:
  * the page allocator fallback scheme to ensure that aging of pages is balanced
  * across the zones.
  */
-static int balance_pgdat(pg_data_t *pgdat, int nr_pages)
+static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
 {
        int to_free = nr_pages;
        int all_zones_ok;
@@ -991,7 +1553,8 @@ loop_again:
        total_scanned = 0;
        total_reclaimed = 0;
        sc.gfp_mask = GFP_KERNEL;
-       sc.may_writepage = 0;
+       sc.may_writepage = !laptop_mode;
+       sc.may_swap = 1;
        sc.nr_mapped = read_page_state(nr_mapped);
 
        inc_page_state(pageoutrun);
@@ -1006,6 +1569,10 @@ loop_again:
                int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
                unsigned long lru_pages = 0;
 
+               /* The swap token gets in the way of swapout... */
+               if (!priority)
+                       disable_swap_token();
+
                all_zones_ok = 1;
 
                if (nr_pages == 0) {
@@ -1016,14 +1583,15 @@ loop_again:
                        for (i = pgdat->nr_zones - 1; i >= 0; i--) {
                                struct zone *zone = pgdat->node_zones + i;
 
-                               if (zone->present_pages == 0)
+                               if (!populated_zone(zone))
                                        continue;
 
                                if (zone->all_unreclaimable &&
                                                priority != DEF_PRIORITY)
                                        continue;
 
-                               if (zone->free_pages <= zone->pages_high) {
+                               if (!zone_watermark_ok(zone, order,
+                                               zone->pages_high, 0, 0)) {
                                        end_zone = i;
                                        goto scan;
                                }
@@ -1050,15 +1618,17 @@ scan:
                 */
                for (i = 0; i <= end_zone; i++) {
                        struct zone *zone = pgdat->node_zones + i;
+                       int nr_slab;
 
-                       if (zone->present_pages == 0)
+                       if (!populated_zone(zone))
                                continue;
 
                        if (zone->all_unreclaimable && priority != DEF_PRIORITY)
                                continue;
 
                        if (nr_pages == 0) {    /* Not software suspend */
-                               if (zone->free_pages <= zone->pages_high)
+                               if (!zone_watermark_ok(zone, order,
+                                               zone->pages_high, end_zone, 0))
                                        all_zones_ok = 0;
                        }
                        zone->temp_priority = priority;
@@ -1067,16 +1637,18 @@ scan:
                        sc.nr_scanned = 0;
                        sc.nr_reclaimed = 0;
                        sc.priority = priority;
+                       sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
                        shrink_zone(zone, &sc);
                        reclaim_state->reclaimed_slab = 0;
-                       shrink_slab(sc.nr_scanned, GFP_KERNEL, lru_pages);
+                       nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
+                                               lru_pages);
                        sc.nr_reclaimed += reclaim_state->reclaimed_slab;
                        total_reclaimed += sc.nr_reclaimed;
-                       total_scanned += sc.nr_scanned;
+                       total_scanned += sc.nr_scanned;
                        if (zone->all_unreclaimable)
                                continue;
-                       if (zone->pages_scanned >= (zone->nr_active +
-                                                       zone->nr_inactive) * 4)
+                       if (nr_slab == 0 && zone->pages_scanned >=
+                                   (zone->nr_active + zone->nr_inactive) * 4)
                                zone->all_unreclaimable = 1;
                        /*
                         * If we've done a decent amount of scanning and
@@ -1104,7 +1676,7 @@ scan:
                 * matches the direct reclaim path behaviour in terms of impact
                 * on zone->*_priority.
                 */
-               if (total_reclaimed >= SWAP_CLUSTER_MAX)
+               if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
                        break;
        }
 out:
@@ -1136,6 +1708,7 @@ out:
  */
 static int kswapd(void *p)
 {
+       unsigned long order;
        pg_data_t *pgdat = (pg_data_t*)p;
        struct task_struct *tsk = current;
        DEFINE_WAIT(wait);
@@ -1162,15 +1735,30 @@ static int kswapd(void *p)
         * us from recursively trying to free more memory as we're
         * trying to free the first piece of memory in the first place).
         */
-       tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
+       tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
 
+       order = 0;
        for ( ; ; ) {
-               if (current->flags & PF_FREEZE)
-                       refrigerator(PF_FREEZE);
+               unsigned long new_order;
+
+               try_to_freeze();
+
                prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
-               schedule();
+               new_order = pgdat->kswapd_max_order;
+               pgdat->kswapd_max_order = 0;
+               if (order < new_order) {
+                       /*
+                        * Don't sleep if someone wants a larger 'order'
+                        * allocation
+                        */
+                       order = new_order;
+               } else {
+                       schedule();
+                       order = pgdat->kswapd_max_order;
+               }
                finish_wait(&pgdat->kswapd_wait, &wait);
-               balance_pgdat(pgdat, 0);
+
+               balance_pgdat(pgdat, 0, order);
        }
        return 0;
 }
@@ -1178,15 +1766,23 @@ static int kswapd(void *p)
 /*
  * A zone is low on free memory, so wake its kswapd task to service it.
  */
-void wakeup_kswapd(struct zone *zone)
+void wakeup_kswapd(struct zone *zone, int order)
 {
-       if (zone->present_pages == 0)
+       pg_data_t *pgdat;
+
+       if (!populated_zone(zone))
+               return;
+
+       pgdat = zone->zone_pgdat;
+       if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
                return;
-       if (zone->free_pages > zone->pages_low)
+       if (pgdat->kswapd_max_order < order)
+               pgdat->kswapd_max_order = order;
+       if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
                return;
-       if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait))
+       if (!waitqueue_active(&pgdat->kswapd_wait))
                return;
-       wake_up_interruptible(&zone->zone_pgdat->kswapd_wait);
+       wake_up_interruptible(&pgdat->kswapd_wait);
 }
 
 #ifdef CONFIG_PM
@@ -1206,7 +1802,7 @@ int shrink_all_memory(int nr_pages)
        current->reclaim_state = &reclaim_state;
        for_each_pgdat(pgdat) {
                int freed;
-               freed = balance_pgdat(pgdat, nr_to_free);
+               freed = balance_pgdat(pgdat, nr_to_free, 0);
                ret += freed;
                nr_to_free -= freed;
                if (nr_to_free <= 0)
@@ -1254,3 +1850,120 @@ static int __init kswapd_init(void)
 }
 
 module_init(kswapd_init)
+
+#ifdef CONFIG_NUMA
+/*
+ * Zone reclaim mode
+ *
+ * If non-zero call zone_reclaim when the number of free pages falls below
+ * the watermarks.
+ *
+ * In the future we may add flags to the mode. However, the page allocator
+ * should only have to check that zone_reclaim_mode != 0 before calling
+ * zone_reclaim().
+ */
+int zone_reclaim_mode __read_mostly;
+
+#define RECLAIM_OFF 0
+#define RECLAIM_ZONE (1<<0)    /* Run shrink_cache on the zone */
+#define RECLAIM_WRITE (1<<1)   /* Writeout pages during reclaim */
+#define RECLAIM_SWAP (1<<2)    /* Swap pages out during reclaim */
+#define RECLAIM_SLAB (1<<3)    /* Do a global slab shrink if the zone is out of memory */
+
+/*
+ * Mininum time between zone reclaim scans
+ */
+int zone_reclaim_interval __read_mostly = 30*HZ;
+
+/*
+ * Priority for ZONE_RECLAIM. This determines the fraction of pages
+ * of a node considered for each zone_reclaim. 4 scans 1/16th of
+ * a zone.
+ */
+#define ZONE_RECLAIM_PRIORITY 4
+
+/*
+ * Try to free up some pages from this zone through reclaim.
+ */
+int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
+{
+       int nr_pages;
+       struct task_struct *p = current;
+       struct reclaim_state reclaim_state;
+       struct scan_control sc;
+       cpumask_t mask;
+       int node_id;
+
+       if (time_before(jiffies,
+               zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
+                       return 0;
+
+       if (!(gfp_mask & __GFP_WAIT) ||
+               zone->all_unreclaimable ||
+               atomic_read(&zone->reclaim_in_progress) > 0 ||
+               (p->flags & PF_MEMALLOC))
+                       return 0;
+
+       node_id = zone->zone_pgdat->node_id;
+       mask = node_to_cpumask(node_id);
+       if (!cpus_empty(mask) && node_id != numa_node_id())
+               return 0;
+
+       sc.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE);
+       sc.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP);
+       sc.nr_scanned = 0;
+       sc.nr_reclaimed = 0;
+       sc.priority = ZONE_RECLAIM_PRIORITY + 1;
+       sc.nr_mapped = read_page_state(nr_mapped);
+       sc.gfp_mask = gfp_mask;
+
+       disable_swap_token();
+
+       nr_pages = 1 << order;
+       if (nr_pages > SWAP_CLUSTER_MAX)
+               sc.swap_cluster_max = nr_pages;
+       else
+               sc.swap_cluster_max = SWAP_CLUSTER_MAX;
+
+       cond_resched();
+       /*
+        * We need to be able to allocate from the reserves for RECLAIM_SWAP
+        * and we also need to be able to write out pages for RECLAIM_WRITE
+        * and RECLAIM_SWAP.
+        */
+       p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
+       reclaim_state.reclaimed_slab = 0;
+       p->reclaim_state = &reclaim_state;
+
+       /*
+        * Free memory by calling shrink zone with increasing priorities
+        * until we have enough memory freed.
+        */
+       do {
+               sc.priority--;
+               shrink_zone(zone, &sc);
+
+       } while (sc.nr_reclaimed < nr_pages && sc.priority > 0);
+
+       if (sc.nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
+               /*
+                * shrink_slab does not currently allow us to determine
+                * how many pages were freed in the zone. So we just
+                * shake the slab and then go offnode for a single allocation.
+                *
+                * shrink_slab will free memory on all zones and may take
+                * a long time.
+                */
+               shrink_slab(sc.nr_scanned, gfp_mask, order);
+       }
+
+       p->reclaim_state = NULL;
+       current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
+
+       if (sc.nr_reclaimed == 0)
+               zone->last_unsuccessful_zone_reclaim = jiffies;
+
+       return sc.nr_reclaimed >= nr_pages;
+}
+#endif
+