This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / net / ipv4 / fib_trie.c
diff --git a/net/ipv4/fib_trie.c b/net/ipv4/fib_trie.c
new file mode 100644 (file)
index 0000000..95a639f
--- /dev/null
@@ -0,0 +1,2525 @@
+/*
+ *   This program is free software; you can redistribute it and/or
+ *   modify it under the terms of the GNU General Public License
+ *   as published by the Free Software Foundation; either version
+ *   2 of the License, or (at your option) any later version.
+ *
+ *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
+ *     & Swedish University of Agricultural Sciences.
+ *
+ *   Jens Laas <jens.laas@data.slu.se> Swedish University of 
+ *     Agricultural Sciences.
+ * 
+ *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
+ *
+ * This work is based on the LPC-trie which is originally descibed in:
+ * 
+ * An experimental study of compression methods for dynamic tries
+ * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
+ * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
+ *
+ *
+ * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
+ * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
+ *
+ * Version:    $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
+ *
+ *
+ * Code from fib_hash has been reused which includes the following header:
+ *
+ *
+ * INET                An implementation of the TCP/IP protocol suite for the LINUX
+ *             operating system.  INET is implemented using the  BSD Socket
+ *             interface as the means of communication with the user level.
+ *
+ *             IPv4 FIB: lookup engine and maintenance routines.
+ *
+ *
+ * Authors:    Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
+ *
+ *             This program is free software; you can redistribute it and/or
+ *             modify it under the terms of the GNU General Public License
+ *             as published by the Free Software Foundation; either version
+ *             2 of the License, or (at your option) any later version.
+ *
+ * Substantial contributions to this work comes from:
+ *
+ *             David S. Miller, <davem@davemloft.net>
+ *             Stephen Hemminger <shemminger@osdl.org>
+ *             Paul E. McKenney <paulmck@us.ibm.com>
+ *             Patrick McHardy <kaber@trash.net>
+ */
+
+#define VERSION "0.407"
+
+#include <linux/config.h>
+#include <asm/uaccess.h>
+#include <asm/system.h>
+#include <asm/bitops.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/mm.h>
+#include <linux/string.h>
+#include <linux/socket.h>
+#include <linux/sockios.h>
+#include <linux/errno.h>
+#include <linux/in.h>
+#include <linux/inet.h>
+#include <linux/inetdevice.h>
+#include <linux/netdevice.h>
+#include <linux/if_arp.h>
+#include <linux/proc_fs.h>
+#include <linux/rcupdate.h>
+#include <linux/skbuff.h>
+#include <linux/netlink.h>
+#include <linux/init.h>
+#include <linux/list.h>
+#include <net/ip.h>
+#include <net/protocol.h>
+#include <net/route.h>
+#include <net/tcp.h>
+#include <net/sock.h>
+#include <net/ip_fib.h>
+#include "fib_lookup.h"
+
+#undef CONFIG_IP_FIB_TRIE_STATS
+#define MAX_STAT_DEPTH 32
+
+#define KEYLENGTH (8*sizeof(t_key))
+#define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
+#define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
+
+typedef unsigned int t_key;
+
+#define T_TNODE 0
+#define T_LEAF  1
+#define NODE_TYPE_MASK 0x1UL
+#define NODE_PARENT(node) \
+       ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
+
+#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
+
+#define NODE_SET_PARENT(node, ptr)             \
+       rcu_assign_pointer((node)->parent,      \
+                          ((unsigned long)(ptr)) | NODE_TYPE(node))
+
+#define IS_TNODE(n) (!(n->parent & T_LEAF))
+#define IS_LEAF(n) (n->parent & T_LEAF)
+
+struct node {
+       t_key key;
+       unsigned long parent;
+};
+
+struct leaf {
+       t_key key;
+       unsigned long parent;
+       struct hlist_head list;
+       struct rcu_head rcu;
+};
+
+struct leaf_info {
+       struct hlist_node hlist;
+       struct rcu_head rcu;
+       int plen;
+       struct list_head falh;
+};
+
+struct tnode {
+       t_key key;
+       unsigned long parent;
+       unsigned short pos:5;           /* 2log(KEYLENGTH) bits needed */
+       unsigned short bits:5;          /* 2log(KEYLENGTH) bits needed */
+       unsigned short full_children;   /* KEYLENGTH bits needed */
+       unsigned short empty_children;  /* KEYLENGTH bits needed */
+       struct rcu_head rcu;
+       struct node *child[0];
+};
+
+#ifdef CONFIG_IP_FIB_TRIE_STATS
+struct trie_use_stats {
+       unsigned int gets;
+       unsigned int backtrack;
+       unsigned int semantic_match_passed;
+       unsigned int semantic_match_miss;
+       unsigned int null_node_hit;
+       unsigned int resize_node_skipped;
+};
+#endif
+
+struct trie_stat {
+       unsigned int totdepth;
+       unsigned int maxdepth;
+       unsigned int tnodes;
+       unsigned int leaves;
+       unsigned int nullpointers;
+       unsigned int nodesizes[MAX_STAT_DEPTH];
+};
+
+struct trie {
+       struct node *trie;
+#ifdef CONFIG_IP_FIB_TRIE_STATS
+       struct trie_use_stats stats;
+#endif
+       int size;
+       unsigned int revision;
+};
+
+static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
+static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
+static struct node *resize(struct trie *t, struct tnode *tn);
+static struct tnode *inflate(struct trie *t, struct tnode *tn);
+static struct tnode *halve(struct trie *t, struct tnode *tn);
+static void tnode_free(struct tnode *tn);
+
+static kmem_cache_t *fn_alias_kmem __read_mostly;
+static struct trie *trie_local = NULL, *trie_main = NULL;
+
+
+/* rcu_read_lock needs to be hold by caller from readside */
+
+static inline struct node *tnode_get_child(struct tnode *tn, int i)
+{
+       BUG_ON(i >= 1 << tn->bits);
+
+       return rcu_dereference(tn->child[i]);
+}
+
+static inline int tnode_child_length(const struct tnode *tn)
+{
+       return 1 << tn->bits;
+}
+
+static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
+{
+       if (offset < KEYLENGTH)
+               return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
+       else
+               return 0;
+}
+
+static inline int tkey_equals(t_key a, t_key b)
+{
+       return a == b;
+}
+
+static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
+{
+       if (bits == 0 || offset >= KEYLENGTH)
+               return 1;
+       bits = bits > KEYLENGTH ? KEYLENGTH : bits;
+       return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
+}
+
+static inline int tkey_mismatch(t_key a, int offset, t_key b)
+{
+       t_key diff = a ^ b;
+       int i = offset;
+
+       if (!diff)
+               return 0;
+       while ((diff << i) >> (KEYLENGTH-1) == 0)
+               i++;
+       return i;
+}
+
+/*
+  To understand this stuff, an understanding of keys and all their bits is 
+  necessary. Every node in the trie has a key associated with it, but not 
+  all of the bits in that key are significant.
+
+  Consider a node 'n' and its parent 'tp'.
+
+  If n is a leaf, every bit in its key is significant. Its presence is 
+  necessitated by path compression, since during a tree traversal (when 
+  searching for a leaf - unless we are doing an insertion) we will completely 
+  ignore all skipped bits we encounter. Thus we need to verify, at the end of 
+  a potentially successful search, that we have indeed been walking the 
+  correct key path.
+
+  Note that we can never "miss" the correct key in the tree if present by 
+  following the wrong path. Path compression ensures that segments of the key 
+  that are the same for all keys with a given prefix are skipped, but the 
+  skipped part *is* identical for each node in the subtrie below the skipped 
+  bit! trie_insert() in this implementation takes care of that - note the 
+  call to tkey_sub_equals() in trie_insert().
+
+  if n is an internal node - a 'tnode' here, the various parts of its key 
+  have many different meanings.
+
+  Example:  
+  _________________________________________________________________
+  | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
+  -----------------------------------------------------------------
+    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15 
+
+  _________________________________________________________________
+  | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
+  -----------------------------------------------------------------
+   16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
+
+  tp->pos = 7
+  tp->bits = 3
+  n->pos = 15
+  n->bits = 4
+
+  First, let's just ignore the bits that come before the parent tp, that is 
+  the bits from 0 to (tp->pos-1). They are *known* but at this point we do 
+  not use them for anything.
+
+  The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
+  index into the parent's child array. That is, they will be used to find 
+  'n' among tp's children.
+
+  The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
+  for the node n.
+
+  All the bits we have seen so far are significant to the node n. The rest 
+  of the bits are really not needed or indeed known in n->key.
+
+  The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 
+  n's child array, and will of course be different for each child.
+  
+
+  The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
+  at this point.
+
+*/
+
+static inline void check_tnode(const struct tnode *tn)
+{
+       WARN_ON(tn && tn->pos+tn->bits > 32);
+}
+
+static int halve_threshold = 25;
+static int inflate_threshold = 50;
+static int halve_threshold_root = 15;
+static int inflate_threshold_root = 25; 
+
+
+static void __alias_free_mem(struct rcu_head *head)
+{
+       struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
+       kmem_cache_free(fn_alias_kmem, fa);
+}
+
+static inline void alias_free_mem_rcu(struct fib_alias *fa)
+{
+       call_rcu(&fa->rcu, __alias_free_mem);
+}
+
+static void __leaf_free_rcu(struct rcu_head *head)
+{
+       kfree(container_of(head, struct leaf, rcu));
+}
+
+static void __leaf_info_free_rcu(struct rcu_head *head)
+{
+       kfree(container_of(head, struct leaf_info, rcu));
+}
+
+static inline void free_leaf_info(struct leaf_info *leaf)
+{
+       call_rcu(&leaf->rcu, __leaf_info_free_rcu);
+}
+
+static struct tnode *tnode_alloc(unsigned int size)
+{
+       struct page *pages;
+
+       if (size <= PAGE_SIZE)
+               return kcalloc(size, 1, GFP_KERNEL);
+
+       pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
+       if (!pages)
+               return NULL;
+
+       return page_address(pages);
+}
+
+static void __tnode_free_rcu(struct rcu_head *head)
+{
+       struct tnode *tn = container_of(head, struct tnode, rcu);
+       unsigned int size = sizeof(struct tnode) +
+               (1 << tn->bits) * sizeof(struct node *);
+
+       if (size <= PAGE_SIZE)
+               kfree(tn);
+       else
+               free_pages((unsigned long)tn, get_order(size));
+}
+
+static inline void tnode_free(struct tnode *tn)
+{
+       if(IS_LEAF(tn)) {
+               struct leaf *l = (struct leaf *) tn;
+               call_rcu_bh(&l->rcu, __leaf_free_rcu);
+       }
+        else
+               call_rcu(&tn->rcu, __tnode_free_rcu);
+}
+
+static struct leaf *leaf_new(void)
+{
+       struct leaf *l = kmalloc(sizeof(struct leaf),  GFP_KERNEL);
+       if (l) {
+               l->parent = T_LEAF;
+               INIT_HLIST_HEAD(&l->list);
+       }
+       return l;
+}
+
+static struct leaf_info *leaf_info_new(int plen)
+{
+       struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
+       if (li) {
+               li->plen = plen;
+               INIT_LIST_HEAD(&li->falh);
+       }
+       return li;
+}
+
+static struct tnode* tnode_new(t_key key, int pos, int bits)
+{
+       int nchildren = 1<<bits;
+       int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
+       struct tnode *tn = tnode_alloc(sz);
+
+       if (tn) {
+               memset(tn, 0, sz);
+               tn->parent = T_TNODE;
+               tn->pos = pos;
+               tn->bits = bits;
+               tn->key = key;
+               tn->full_children = 0;
+               tn->empty_children = 1<<bits;
+       }
+
+       pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
+                (unsigned int) (sizeof(struct node) * 1<<bits));
+       return tn;
+}
+
+/*
+ * Check whether a tnode 'n' is "full", i.e. it is an internal node
+ * and no bits are skipped. See discussion in dyntree paper p. 6
+ */
+
+static inline int tnode_full(const struct tnode *tn, const struct node *n)
+{
+       if (n == NULL || IS_LEAF(n))
+               return 0;
+
+       return ((struct tnode *) n)->pos == tn->pos + tn->bits;
+}
+
+static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
+{
+       tnode_put_child_reorg(tn, i, n, -1);
+}
+
+ /*
+  * Add a child at position i overwriting the old value.
+  * Update the value of full_children and empty_children.
+  */
+
+static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
+{
+       struct node *chi = tn->child[i];
+       int isfull;
+
+       BUG_ON(i >= 1<<tn->bits);
+
+
+       /* update emptyChildren */
+       if (n == NULL && chi != NULL)
+               tn->empty_children++;
+       else if (n != NULL && chi == NULL)
+               tn->empty_children--;
+
+       /* update fullChildren */
+       if (wasfull == -1)
+               wasfull = tnode_full(tn, chi);
+
+       isfull = tnode_full(tn, n);
+       if (wasfull && !isfull)
+               tn->full_children--;
+       else if (!wasfull && isfull)
+               tn->full_children++;
+
+       if (n)
+               NODE_SET_PARENT(n, tn);
+
+       rcu_assign_pointer(tn->child[i], n);
+}
+
+static struct node *resize(struct trie *t, struct tnode *tn)
+{
+       int i;
+       int err = 0;
+       struct tnode *old_tn;
+       int inflate_threshold_use;
+       int halve_threshold_use;
+
+       if (!tn)
+               return NULL;
+
+       pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
+                tn, inflate_threshold, halve_threshold);
+
+       /* No children */
+       if (tn->empty_children == tnode_child_length(tn)) {
+               tnode_free(tn);
+               return NULL;
+       }
+       /* One child */
+       if (tn->empty_children == tnode_child_length(tn) - 1)
+               for (i = 0; i < tnode_child_length(tn); i++) {
+                       struct node *n;
+
+                       n = tn->child[i];
+                       if (!n)
+                               continue;
+
+                       /* compress one level */
+                       NODE_SET_PARENT(n, NULL);
+                       tnode_free(tn);
+                       return n;
+               }
+       /*
+        * Double as long as the resulting node has a number of
+        * nonempty nodes that are above the threshold.
+        */
+
+       /*
+        * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
+        * the Helsinki University of Technology and Matti Tikkanen of Nokia
+        * Telecommunications, page 6:
+        * "A node is doubled if the ratio of non-empty children to all
+        * children in the *doubled* node is at least 'high'."
+        *
+        * 'high' in this instance is the variable 'inflate_threshold'. It
+        * is expressed as a percentage, so we multiply it with
+        * tnode_child_length() and instead of multiplying by 2 (since the
+        * child array will be doubled by inflate()) and multiplying
+        * the left-hand side by 100 (to handle the percentage thing) we
+        * multiply the left-hand side by 50.
+        *
+        * The left-hand side may look a bit weird: tnode_child_length(tn)
+        * - tn->empty_children is of course the number of non-null children
+        * in the current node. tn->full_children is the number of "full"
+        * children, that is non-null tnodes with a skip value of 0.
+        * All of those will be doubled in the resulting inflated tnode, so
+        * we just count them one extra time here.
+        *
+        * A clearer way to write this would be:
+        *
+        * to_be_doubled = tn->full_children;
+        * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
+        *     tn->full_children;
+        *
+        * new_child_length = tnode_child_length(tn) * 2;
+        *
+        * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
+        *      new_child_length;
+        * if (new_fill_factor >= inflate_threshold)
+        *
+        * ...and so on, tho it would mess up the while () loop.
+        *
+        * anyway,
+        * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
+        *      inflate_threshold
+        *
+        * avoid a division:
+        * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
+        *      inflate_threshold * new_child_length
+        *
+        * expand not_to_be_doubled and to_be_doubled, and shorten:
+        * 100 * (tnode_child_length(tn) - tn->empty_children +
+        *    tn->full_children) >= inflate_threshold * new_child_length
+        *
+        * expand new_child_length:
+        * 100 * (tnode_child_length(tn) - tn->empty_children +
+        *    tn->full_children) >=
+        *      inflate_threshold * tnode_child_length(tn) * 2
+        *
+        * shorten again:
+        * 50 * (tn->full_children + tnode_child_length(tn) -
+        *    tn->empty_children) >= inflate_threshold *
+        *    tnode_child_length(tn)
+        *
+        */
+
+       check_tnode(tn);
+
+       /* Keep root node larger  */
+
+       if(!tn->parent)
+               inflate_threshold_use = inflate_threshold_root;
+       else 
+               inflate_threshold_use = inflate_threshold;
+
+       err = 0;
+       while ((tn->full_children > 0 &&
+              50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
+                               inflate_threshold_use * tnode_child_length(tn))) {
+
+               old_tn = tn;
+               tn = inflate(t, tn);
+               if (IS_ERR(tn)) {
+                       tn = old_tn;
+#ifdef CONFIG_IP_FIB_TRIE_STATS
+                       t->stats.resize_node_skipped++;
+#endif
+                       break;
+               }
+       }
+
+       check_tnode(tn);
+
+       /*
+        * Halve as long as the number of empty children in this
+        * node is above threshold.
+        */
+
+
+       /* Keep root node larger  */
+
+       if(!tn->parent)
+               halve_threshold_use = halve_threshold_root;
+       else 
+               halve_threshold_use = halve_threshold;
+
+       err = 0;
+       while (tn->bits > 1 &&
+              100 * (tnode_child_length(tn) - tn->empty_children) <
+              halve_threshold_use * tnode_child_length(tn)) {
+
+               old_tn = tn;
+               tn = halve(t, tn);
+               if (IS_ERR(tn)) {
+                       tn = old_tn;
+#ifdef CONFIG_IP_FIB_TRIE_STATS
+                       t->stats.resize_node_skipped++;
+#endif
+                       break;
+               }
+       }
+
+
+       /* Only one child remains */
+       if (tn->empty_children == tnode_child_length(tn) - 1)
+               for (i = 0; i < tnode_child_length(tn); i++) {
+                       struct node *n;
+
+                       n = tn->child[i];
+                       if (!n)
+                               continue;
+
+                       /* compress one level */
+
+                       NODE_SET_PARENT(n, NULL);
+                       tnode_free(tn);
+                       return n;
+               }
+
+       return (struct node *) tn;
+}
+
+static struct tnode *inflate(struct trie *t, struct tnode *tn)
+{
+       struct tnode *inode;
+       struct tnode *oldtnode = tn;
+       int olen = tnode_child_length(tn);
+       int i;
+
+       pr_debug("In inflate\n");
+
+       tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
+
+       if (!tn)
+               return ERR_PTR(-ENOMEM);
+
+       /*
+        * Preallocate and store tnodes before the actual work so we
+        * don't get into an inconsistent state if memory allocation
+        * fails. In case of failure we return the oldnode and  inflate
+        * of tnode is ignored.
+        */
+
+       for (i = 0; i < olen; i++) {
+               struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
+
+               if (inode &&
+                   IS_TNODE(inode) &&
+                   inode->pos == oldtnode->pos + oldtnode->bits &&
+                   inode->bits > 1) {
+                       struct tnode *left, *right;
+                       t_key m = TKEY_GET_MASK(inode->pos, 1);
+
+                       left = tnode_new(inode->key&(~m), inode->pos + 1,
+                                        inode->bits - 1);
+                       if (!left)
+                               goto nomem;
+
+                       right = tnode_new(inode->key|m, inode->pos + 1,
+                                         inode->bits - 1);
+
+                        if (!right) {
+                               tnode_free(left);
+                               goto nomem;
+                        }
+
+                       put_child(t, tn, 2*i, (struct node *) left);
+                       put_child(t, tn, 2*i+1, (struct node *) right);
+               }
+       }
+
+       for (i = 0; i < olen; i++) {
+               struct node *node = tnode_get_child(oldtnode, i);
+               struct tnode *left, *right;
+               int size, j;
+
+               /* An empty child */
+               if (node == NULL)
+                       continue;
+
+               /* A leaf or an internal node with skipped bits */
+
+               if (IS_LEAF(node) || ((struct tnode *) node)->pos >
+                  tn->pos + tn->bits - 1) {
+                       if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
+                                            1) == 0)
+                               put_child(t, tn, 2*i, node);
+                       else
+                               put_child(t, tn, 2*i+1, node);
+                       continue;
+               }
+
+               /* An internal node with two children */
+               inode = (struct tnode *) node;
+
+               if (inode->bits == 1) {
+                       put_child(t, tn, 2*i, inode->child[0]);
+                       put_child(t, tn, 2*i+1, inode->child[1]);
+
+                       tnode_free(inode);
+                       continue;
+               }
+
+               /* An internal node with more than two children */
+
+               /* We will replace this node 'inode' with two new
+                * ones, 'left' and 'right', each with half of the
+                * original children. The two new nodes will have
+                * a position one bit further down the key and this
+                * means that the "significant" part of their keys
+                * (see the discussion near the top of this file)
+                * will differ by one bit, which will be "0" in
+                * left's key and "1" in right's key. Since we are
+                * moving the key position by one step, the bit that
+                * we are moving away from - the bit at position
+                * (inode->pos) - is the one that will differ between
+                * left and right. So... we synthesize that bit in the
+                * two  new keys.
+                * The mask 'm' below will be a single "one" bit at
+                * the position (inode->pos)
+                */
+
+               /* Use the old key, but set the new significant
+                *   bit to zero.
+                */
+
+               left = (struct tnode *) tnode_get_child(tn, 2*i);
+               put_child(t, tn, 2*i, NULL);
+
+               BUG_ON(!left);
+
+               right = (struct tnode *) tnode_get_child(tn, 2*i+1);
+               put_child(t, tn, 2*i+1, NULL);
+
+               BUG_ON(!right);
+
+               size = tnode_child_length(left);
+               for (j = 0; j < size; j++) {
+                       put_child(t, left, j, inode->child[j]);
+                       put_child(t, right, j, inode->child[j + size]);
+               }
+               put_child(t, tn, 2*i, resize(t, left));
+               put_child(t, tn, 2*i+1, resize(t, right));
+
+               tnode_free(inode);
+       }
+       tnode_free(oldtnode);
+       return tn;
+nomem:
+       {
+               int size = tnode_child_length(tn);
+               int j;
+
+               for (j = 0; j < size; j++)
+                       if (tn->child[j])
+                               tnode_free((struct tnode *)tn->child[j]);
+
+               tnode_free(tn);
+
+               return ERR_PTR(-ENOMEM);
+       }
+}
+
+static struct tnode *halve(struct trie *t, struct tnode *tn)
+{
+       struct tnode *oldtnode = tn;
+       struct node *left, *right;
+       int i;
+       int olen = tnode_child_length(tn);
+
+       pr_debug("In halve\n");
+
+       tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
+
+       if (!tn)
+               return ERR_PTR(-ENOMEM);
+
+       /*
+        * Preallocate and store tnodes before the actual work so we
+        * don't get into an inconsistent state if memory allocation
+        * fails. In case of failure we return the oldnode and halve
+        * of tnode is ignored.
+        */
+
+       for (i = 0; i < olen; i += 2) {
+               left = tnode_get_child(oldtnode, i);
+               right = tnode_get_child(oldtnode, i+1);
+
+               /* Two nonempty children */
+               if (left && right) {
+                       struct tnode *newn;
+
+                       newn = tnode_new(left->key, tn->pos + tn->bits, 1);
+
+                       if (!newn)
+                               goto nomem;
+
+                       put_child(t, tn, i/2, (struct node *)newn);
+               }
+
+       }
+
+       for (i = 0; i < olen; i += 2) {
+               struct tnode *newBinNode;
+
+               left = tnode_get_child(oldtnode, i);
+               right = tnode_get_child(oldtnode, i+1);
+
+               /* At least one of the children is empty */
+               if (left == NULL) {
+                       if (right == NULL)    /* Both are empty */
+                               continue;
+                       put_child(t, tn, i/2, right);
+                       continue;
+               }
+
+               if (right == NULL) {
+                       put_child(t, tn, i/2, left);
+                       continue;
+               }
+
+               /* Two nonempty children */
+               newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
+               put_child(t, tn, i/2, NULL);
+               put_child(t, newBinNode, 0, left);
+               put_child(t, newBinNode, 1, right);
+               put_child(t, tn, i/2, resize(t, newBinNode));
+       }
+       tnode_free(oldtnode);
+       return tn;
+nomem:
+       {
+               int size = tnode_child_length(tn);
+               int j;
+
+               for (j = 0; j < size; j++)
+                       if (tn->child[j])
+                               tnode_free((struct tnode *)tn->child[j]);
+
+               tnode_free(tn);
+
+               return ERR_PTR(-ENOMEM);
+       }
+}
+
+static void trie_init(struct trie *t)
+{
+       if (!t)
+               return;
+
+       t->size = 0;
+       rcu_assign_pointer(t->trie, NULL);
+       t->revision = 0;
+#ifdef CONFIG_IP_FIB_TRIE_STATS
+       memset(&t->stats, 0, sizeof(struct trie_use_stats));
+#endif
+}
+
+/* readside must use rcu_read_lock currently dump routines
+ via get_fa_head and dump */
+
+static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
+{
+       struct hlist_head *head = &l->list;
+       struct hlist_node *node;
+       struct leaf_info *li;
+
+       hlist_for_each_entry_rcu(li, node, head, hlist)
+               if (li->plen == plen)
+                       return li;
+
+       return NULL;
+}
+
+static inline struct list_head * get_fa_head(struct leaf *l, int plen)
+{
+       struct leaf_info *li = find_leaf_info(l, plen);
+
+       if (!li)
+               return NULL;
+
+       return &li->falh;
+}
+
+static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
+{
+        struct leaf_info *li = NULL, *last = NULL;
+        struct hlist_node *node;
+
+        if (hlist_empty(head)) {
+                hlist_add_head_rcu(&new->hlist, head);
+        } else {
+                hlist_for_each_entry(li, node, head, hlist) {
+                        if (new->plen > li->plen)
+                                break;
+
+                        last = li;
+                }
+                if (last)
+                        hlist_add_after_rcu(&last->hlist, &new->hlist);
+                else
+                        hlist_add_before_rcu(&new->hlist, &li->hlist);
+        }
+}
+
+/* rcu_read_lock needs to be hold by caller from readside */
+
+static struct leaf *
+fib_find_node(struct trie *t, u32 key)
+{
+       int pos;
+       struct tnode *tn;
+       struct node *n;
+
+       pos = 0;
+       n = rcu_dereference(t->trie);
+
+       while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
+               tn = (struct tnode *) n;
+
+               check_tnode(tn);
+
+               if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
+                       pos = tn->pos + tn->bits;
+                       n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
+               } else
+                       break;
+       }
+       /* Case we have found a leaf. Compare prefixes */
+
+       if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
+               return (struct leaf *)n;
+
+       return NULL;
+}
+
+static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
+{
+       int wasfull;
+       t_key cindex, key;
+       struct tnode *tp = NULL;
+
+       key = tn->key;
+
+       while (tn != NULL && NODE_PARENT(tn) != NULL) {
+
+               tp = NODE_PARENT(tn);
+               cindex = tkey_extract_bits(key, tp->pos, tp->bits);
+               wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
+               tn = (struct tnode *) resize (t, (struct tnode *)tn);
+               tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
+
+               if (!NODE_PARENT(tn))
+                       break;
+
+               tn = NODE_PARENT(tn);
+       }
+       /* Handle last (top) tnode */
+       if (IS_TNODE(tn))
+               tn = (struct tnode*) resize(t, (struct tnode *)tn);
+
+       return (struct node*) tn;
+}
+
+/* only used from updater-side */
+
+static  struct list_head *
+fib_insert_node(struct trie *t, int *err, u32 key, int plen)
+{
+       int pos, newpos;
+       struct tnode *tp = NULL, *tn = NULL;
+       struct node *n;
+       struct leaf *l;
+       int missbit;
+       struct list_head *fa_head = NULL;
+       struct leaf_info *li;
+       t_key cindex;
+
+       pos = 0;
+       n = t->trie;
+
+       /* If we point to NULL, stop. Either the tree is empty and we should
+        * just put a new leaf in if, or we have reached an empty child slot,
+        * and we should just put our new leaf in that.
+        * If we point to a T_TNODE, check if it matches our key. Note that
+        * a T_TNODE might be skipping any number of bits - its 'pos' need
+        * not be the parent's 'pos'+'bits'!
+        *
+        * If it does match the current key, get pos/bits from it, extract
+        * the index from our key, push the T_TNODE and walk the tree.
+        *
+        * If it doesn't, we have to replace it with a new T_TNODE.
+        *
+        * If we point to a T_LEAF, it might or might not have the same key
+        * as we do. If it does, just change the value, update the T_LEAF's
+        * value, and return it.
+        * If it doesn't, we need to replace it with a T_TNODE.
+        */
+
+       while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
+               tn = (struct tnode *) n;
+
+               check_tnode(tn);
+
+               if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
+                       tp = tn;
+                       pos = tn->pos + tn->bits;
+                       n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
+
+                       BUG_ON(n && NODE_PARENT(n) != tn);
+               } else
+                       break;
+       }
+
+       /*
+        * n  ----> NULL, LEAF or TNODE
+        *
+        * tp is n's (parent) ----> NULL or TNODE
+        */
+
+       BUG_ON(tp && IS_LEAF(tp));
+
+       /* Case 1: n is a leaf. Compare prefixes */
+
+       if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
+               struct leaf *l = (struct leaf *) n;
+
+               li = leaf_info_new(plen);
+
+               if (!li) {
+                       *err = -ENOMEM;
+                       goto err;
+               }
+
+               fa_head = &li->falh;
+               insert_leaf_info(&l->list, li);
+               goto done;
+       }
+       t->size++;
+       l = leaf_new();
+
+       if (!l) {
+               *err = -ENOMEM;
+               goto err;
+       }
+
+       l->key = key;
+       li = leaf_info_new(plen);
+
+       if (!li) {
+               tnode_free((struct tnode *) l);
+               *err = -ENOMEM;
+               goto err;
+       }
+
+       fa_head = &li->falh;
+       insert_leaf_info(&l->list, li);
+
+       if (t->trie && n == NULL) {
+               /* Case 2: n is NULL, and will just insert a new leaf */
+
+               NODE_SET_PARENT(l, tp);
+
+               cindex = tkey_extract_bits(key, tp->pos, tp->bits);
+               put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
+       } else {
+               /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
+               /*
+                *  Add a new tnode here
+                *  first tnode need some special handling
+                */
+
+               if (tp)
+                       pos = tp->pos+tp->bits;
+               else
+                       pos = 0;
+
+               if (n) {
+                       newpos = tkey_mismatch(key, pos, n->key);
+                       tn = tnode_new(n->key, newpos, 1);
+               } else {
+                       newpos = 0;
+                       tn = tnode_new(key, newpos, 1); /* First tnode */
+               }
+
+               if (!tn) {
+                       free_leaf_info(li);
+                       tnode_free((struct tnode *) l);
+                       *err = -ENOMEM;
+                       goto err;
+               }
+
+               NODE_SET_PARENT(tn, tp);
+
+               missbit = tkey_extract_bits(key, newpos, 1);
+               put_child(t, tn, missbit, (struct node *)l);
+               put_child(t, tn, 1-missbit, n);
+
+               if (tp) {
+                       cindex = tkey_extract_bits(key, tp->pos, tp->bits);
+                       put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
+               } else {
+                       rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
+                       tp = tn;
+               }
+       }
+
+       if (tp && tp->pos + tp->bits > 32)
+               printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
+                      tp, tp->pos, tp->bits, key, plen);
+
+       /* Rebalance the trie */
+
+       rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
+done:
+       t->revision++;
+err:
+       return fa_head;
+}
+
+static int
+fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
+              struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
+{
+       struct trie *t = (struct trie *) tb->tb_data;
+       struct fib_alias *fa, *new_fa;
+       struct list_head *fa_head = NULL;
+       struct fib_info *fi;
+       int plen = r->rtm_dst_len;
+       int type = r->rtm_type;
+       u8 tos = r->rtm_tos;
+       u32 key, mask;
+       int err;
+       struct leaf *l;
+
+       if (plen > 32)
+               return -EINVAL;
+
+       key = 0;
+       if (rta->rta_dst)
+               memcpy(&key, rta->rta_dst, 4);
+
+       key = ntohl(key);
+
+       pr_debug("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);
+
+       mask = ntohl(inet_make_mask(plen));
+
+       if (key & ~mask)
+               return -EINVAL;
+
+       key = key & mask;
+
+       fi = fib_create_info(r, rta, nlhdr, &err);
+
+       if (!fi)
+               goto err;
+
+       l = fib_find_node(t, key);
+       fa = NULL;
+
+       if (l) {
+               fa_head = get_fa_head(l, plen);
+               fa = fib_find_alias(fa_head, tos, fi->fib_priority);
+       }
+
+       /* Now fa, if non-NULL, points to the first fib alias
+        * with the same keys [prefix,tos,priority], if such key already
+        * exists or to the node before which we will insert new one.
+        *
+        * If fa is NULL, we will need to allocate a new one and
+        * insert to the head of f.
+        *
+        * If f is NULL, no fib node matched the destination key
+        * and we need to allocate a new one of those as well.
+        */
+
+       if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
+               struct fib_alias *fa_orig;
+
+               err = -EEXIST;
+               if (nlhdr->nlmsg_flags & NLM_F_EXCL)
+                       goto out;
+
+               if (nlhdr->nlmsg_flags & NLM_F_REPLACE) {
+                       struct fib_info *fi_drop;
+                       u8 state;
+
+                       err = -ENOBUFS;
+                       new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
+                       if (new_fa == NULL)
+                               goto out;
+
+                       fi_drop = fa->fa_info;
+                       new_fa->fa_tos = fa->fa_tos;
+                       new_fa->fa_info = fi;
+                       new_fa->fa_type = type;
+                       new_fa->fa_scope = r->rtm_scope;
+                       state = fa->fa_state;
+                       new_fa->fa_state &= ~FA_S_ACCESSED;
+
+                       list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
+                       alias_free_mem_rcu(fa);
+
+                       fib_release_info(fi_drop);
+                       if (state & FA_S_ACCESSED)
+                               rt_cache_flush(-1);
+
+                       goto succeeded;
+               }
+               /* Error if we find a perfect match which
+                * uses the same scope, type, and nexthop
+                * information.
+                */
+               fa_orig = fa;
+               list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
+                       if (fa->fa_tos != tos)
+                               break;
+                       if (fa->fa_info->fib_priority != fi->fib_priority)
+                               break;
+                       if (fa->fa_type == type &&
+                           fa->fa_scope == r->rtm_scope &&
+                           fa->fa_info == fi) {
+                               goto out;
+                       }
+               }
+               if (!(nlhdr->nlmsg_flags & NLM_F_APPEND))
+                       fa = fa_orig;
+       }
+       err = -ENOENT;
+       if (!(nlhdr->nlmsg_flags & NLM_F_CREATE))
+               goto out;
+
+       err = -ENOBUFS;
+       new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
+       if (new_fa == NULL)
+               goto out;
+
+       new_fa->fa_info = fi;
+       new_fa->fa_tos = tos;
+       new_fa->fa_type = type;
+       new_fa->fa_scope = r->rtm_scope;
+       new_fa->fa_state = 0;
+       /*
+        * Insert new entry to the list.
+        */
+
+       if (!fa_head) {
+               fa_head = fib_insert_node(t, &err, key, plen);
+               err = 0;
+               if (err)
+                       goto out_free_new_fa;
+       }
+
+       list_add_tail_rcu(&new_fa->fa_list,
+                         (fa ? &fa->fa_list : fa_head));
+
+       rt_cache_flush(-1);
+       rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req);
+succeeded:
+       return 0;
+
+out_free_new_fa:
+       kmem_cache_free(fn_alias_kmem, new_fa);
+out:
+       fib_release_info(fi);
+err:
+       return err;
+}
+
+
+/* should be called with rcu_read_lock */
+static inline int check_leaf(struct trie *t, struct leaf *l,
+                            t_key key, int *plen, const struct flowi *flp,
+                            struct fib_result *res)
+{
+       int err, i;
+       t_key mask;
+       struct leaf_info *li;
+       struct hlist_head *hhead = &l->list;
+       struct hlist_node *node;
+
+       hlist_for_each_entry_rcu(li, node, hhead, hlist) {
+               i = li->plen;
+               mask = ntohl(inet_make_mask(i));
+               if (l->key != (key & mask))
+                       continue;
+
+               if ((err = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) <= 0) {
+                       *plen = i;
+#ifdef CONFIG_IP_FIB_TRIE_STATS
+                       t->stats.semantic_match_passed++;
+#endif
+                       return err;
+               }
+#ifdef CONFIG_IP_FIB_TRIE_STATS
+               t->stats.semantic_match_miss++;
+#endif
+       }
+       return 1;
+}
+
+static int
+fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
+{
+       struct trie *t = (struct trie *) tb->tb_data;
+       int plen, ret = 0;
+       struct node *n;
+       struct tnode *pn;
+       int pos, bits;
+       t_key key = ntohl(flp->fl4_dst);
+       int chopped_off;
+       t_key cindex = 0;
+       int current_prefix_length = KEYLENGTH;
+       struct tnode *cn;
+       t_key node_prefix, key_prefix, pref_mismatch;
+       int mp;
+
+       rcu_read_lock();
+
+       n = rcu_dereference(t->trie);
+       if (!n)
+               goto failed;
+
+#ifdef CONFIG_IP_FIB_TRIE_STATS
+       t->stats.gets++;
+#endif
+
+       /* Just a leaf? */
+       if (IS_LEAF(n)) {
+               if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
+                       goto found;
+               goto failed;
+       }
+       pn = (struct tnode *) n;
+       chopped_off = 0;
+
+       while (pn) {
+               pos = pn->pos;
+               bits = pn->bits;
+
+               if (!chopped_off)
+                       cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
+
+               n = tnode_get_child(pn, cindex);
+
+               if (n == NULL) {
+#ifdef CONFIG_IP_FIB_TRIE_STATS
+                       t->stats.null_node_hit++;
+#endif
+                       goto backtrace;
+               }
+
+               if (IS_LEAF(n)) {
+                       if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
+                               goto found;
+                       else
+                               goto backtrace;
+               }
+
+#define HL_OPTIMIZE
+#ifdef HL_OPTIMIZE
+               cn = (struct tnode *)n;
+
+               /*
+                * It's a tnode, and we can do some extra checks here if we
+                * like, to avoid descending into a dead-end branch.
+                * This tnode is in the parent's child array at index
+                * key[p_pos..p_pos+p_bits] but potentially with some bits
+                * chopped off, so in reality the index may be just a
+                * subprefix, padded with zero at the end.
+                * We can also take a look at any skipped bits in this
+                * tnode - everything up to p_pos is supposed to be ok,
+                * and the non-chopped bits of the index (se previous
+                * paragraph) are also guaranteed ok, but the rest is
+                * considered unknown.
+                *
+                * The skipped bits are key[pos+bits..cn->pos].
+                */
+
+               /* If current_prefix_length < pos+bits, we are already doing
+                * actual prefix  matching, which means everything from
+                * pos+(bits-chopped_off) onward must be zero along some
+                * branch of this subtree - otherwise there is *no* valid
+                * prefix present. Here we can only check the skipped
+                * bits. Remember, since we have already indexed into the
+                * parent's child array, we know that the bits we chopped of
+                * *are* zero.
+                */
+
+               /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
+
+               if (current_prefix_length < pos+bits) {
+                       if (tkey_extract_bits(cn->key, current_prefix_length,
+                                               cn->pos - current_prefix_length) != 0 ||
+                           !(cn->child[0]))
+                               goto backtrace;
+               }
+
+               /*
+                * If chopped_off=0, the index is fully validated and we
+                * only need to look at the skipped bits for this, the new,
+                * tnode. What we actually want to do is to find out if
+                * these skipped bits match our key perfectly, or if we will
+                * have to count on finding a matching prefix further down,
+                * because if we do, we would like to have some way of
+                * verifying the existence of such a prefix at this point.
+                */
+
+               /* The only thing we can do at this point is to verify that
+                * any such matching prefix can indeed be a prefix to our
+                * key, and if the bits in the node we are inspecting that
+                * do not match our key are not ZERO, this cannot be true.
+                * Thus, find out where there is a mismatch (before cn->pos)
+                * and verify that all the mismatching bits are zero in the
+                * new tnode's key.
+                */
+
+               /* Note: We aren't very concerned about the piece of the key
+                * that precede pn->pos+pn->bits, since these have already been
+                * checked. The bits after cn->pos aren't checked since these are
+                * by definition "unknown" at this point. Thus, what we want to
+                * see is if we are about to enter the "prefix matching" state,
+                * and in that case verify that the skipped bits that will prevail
+                * throughout this subtree are zero, as they have to be if we are
+                * to find a matching prefix.
+                */
+
+               node_prefix = MASK_PFX(cn->key, cn->pos);
+               key_prefix = MASK_PFX(key, cn->pos);
+               pref_mismatch = key_prefix^node_prefix;
+               mp = 0;
+
+               /* In short: If skipped bits in this node do not match the search
+                * key, enter the "prefix matching" state.directly.
+                */
+               if (pref_mismatch) {
+                       while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
+                               mp++;
+                               pref_mismatch = pref_mismatch <<1;
+                       }
+                       key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
+
+                       if (key_prefix != 0)
+                               goto backtrace;
+
+                       if (current_prefix_length >= cn->pos)
+                               current_prefix_length = mp;
+               }
+#endif
+               pn = (struct tnode *)n; /* Descend */
+               chopped_off = 0;
+               continue;
+
+backtrace:
+               chopped_off++;
+
+               /* As zero don't change the child key (cindex) */
+               while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
+                       chopped_off++;
+
+               /* Decrease current_... with bits chopped off */
+               if (current_prefix_length > pn->pos + pn->bits - chopped_off)
+                       current_prefix_length = pn->pos + pn->bits - chopped_off;
+
+               /*
+                * Either we do the actual chop off according or if we have
+                * chopped off all bits in this tnode walk up to our parent.
+                */
+
+               if (chopped_off <= pn->bits) {
+                       cindex &= ~(1 << (chopped_off-1));
+               } else {
+                       if (NODE_PARENT(pn) == NULL)
+                               goto failed;
+
+                       /* Get Child's index */
+                       cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
+                       pn = NODE_PARENT(pn);
+                       chopped_off = 0;
+
+#ifdef CONFIG_IP_FIB_TRIE_STATS
+                       t->stats.backtrack++;
+#endif
+                       goto backtrace;
+               }
+       }
+failed:
+       ret = 1;
+found:
+       rcu_read_unlock();
+       return ret;
+}
+
+/* only called from updater side */
+static int trie_leaf_remove(struct trie *t, t_key key)
+{
+       t_key cindex;
+       struct tnode *tp = NULL;
+       struct node *n = t->trie;
+       struct leaf *l;
+
+       pr_debug("entering trie_leaf_remove(%p)\n", n);
+
+       /* Note that in the case skipped bits, those bits are *not* checked!
+        * When we finish this, we will have NULL or a T_LEAF, and the
+        * T_LEAF may or may not match our key.
+        */
+
+       while (n != NULL && IS_TNODE(n)) {
+               struct tnode *tn = (struct tnode *) n;
+               check_tnode(tn);
+               n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
+
+               BUG_ON(n && NODE_PARENT(n) != tn);
+       }
+       l = (struct leaf *) n;
+
+       if (!n || !tkey_equals(l->key, key))
+               return 0;
+
+       /*
+        * Key found.
+        * Remove the leaf and rebalance the tree
+        */
+
+       t->revision++;
+       t->size--;
+
+       preempt_disable();
+       tp = NODE_PARENT(n);
+       tnode_free((struct tnode *) n);
+
+       if (tp) {
+               cindex = tkey_extract_bits(key, tp->pos, tp->bits);
+               put_child(t, (struct tnode *)tp, cindex, NULL);
+               rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
+       } else
+               rcu_assign_pointer(t->trie, NULL);
+       preempt_enable();
+
+       return 1;
+}
+
+static int
+fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
+               struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
+{
+       struct trie *t = (struct trie *) tb->tb_data;
+       u32 key, mask;
+       int plen = r->rtm_dst_len;
+       u8 tos = r->rtm_tos;
+       struct fib_alias *fa, *fa_to_delete;
+       struct list_head *fa_head;
+       struct leaf *l;
+       struct leaf_info *li;
+
+
+       if (plen > 32)
+               return -EINVAL;
+
+       key = 0;
+       if (rta->rta_dst)
+               memcpy(&key, rta->rta_dst, 4);
+
+       key = ntohl(key);
+       mask = ntohl(inet_make_mask(plen));
+
+       if (key & ~mask)
+               return -EINVAL;
+
+       key = key & mask;
+       l = fib_find_node(t, key);
+
+       if (!l)
+               return -ESRCH;
+
+       fa_head = get_fa_head(l, plen);
+       fa = fib_find_alias(fa_head, tos, 0);
+
+       if (!fa)
+               return -ESRCH;
+
+       pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
+
+       fa_to_delete = NULL;
+       fa_head = fa->fa_list.prev;
+
+       list_for_each_entry(fa, fa_head, fa_list) {
+               struct fib_info *fi = fa->fa_info;
+
+               if (fa->fa_tos != tos)
+                       break;
+
+               if ((!r->rtm_type ||
+                    fa->fa_type == r->rtm_type) &&
+                   (r->rtm_scope == RT_SCOPE_NOWHERE ||
+                    fa->fa_scope == r->rtm_scope) &&
+                   (!r->rtm_protocol ||
+                    fi->fib_protocol == r->rtm_protocol) &&
+                   fib_nh_match(r, nlhdr, rta, fi) == 0) {
+                       fa_to_delete = fa;
+                       break;
+               }
+       }
+
+       if (!fa_to_delete)
+               return -ESRCH;
+
+       fa = fa_to_delete;
+       rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);
+
+       l = fib_find_node(t, key);
+       li = find_leaf_info(l, plen);
+
+       list_del_rcu(&fa->fa_list);
+
+       if (list_empty(fa_head)) {
+               hlist_del_rcu(&li->hlist);
+               free_leaf_info(li);
+       }
+
+       if (hlist_empty(&l->list))
+               trie_leaf_remove(t, key);
+
+       if (fa->fa_state & FA_S_ACCESSED)
+               rt_cache_flush(-1);
+
+       fib_release_info(fa->fa_info);
+       alias_free_mem_rcu(fa);
+       return 0;
+}
+
+static int trie_flush_list(struct trie *t, struct list_head *head)
+{
+       struct fib_alias *fa, *fa_node;
+       int found = 0;
+
+       list_for_each_entry_safe(fa, fa_node, head, fa_list) {
+               struct fib_info *fi = fa->fa_info;
+
+               if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
+                       list_del_rcu(&fa->fa_list);
+                       fib_release_info(fa->fa_info);
+                       alias_free_mem_rcu(fa);
+                       found++;
+               }
+       }
+       return found;
+}
+
+static int trie_flush_leaf(struct trie *t, struct leaf *l)
+{
+       int found = 0;
+       struct hlist_head *lih = &l->list;
+       struct hlist_node *node, *tmp;
+       struct leaf_info *li = NULL;
+
+       hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
+               found += trie_flush_list(t, &li->falh);
+
+               if (list_empty(&li->falh)) {
+                       hlist_del_rcu(&li->hlist);
+                       free_leaf_info(li);
+               }
+       }
+       return found;
+}
+
+/* rcu_read_lock needs to be hold by caller from readside */
+
+static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
+{
+       struct node *c = (struct node *) thisleaf;
+       struct tnode *p;
+       int idx;
+       struct node *trie = rcu_dereference(t->trie);
+
+       if (c == NULL) {
+               if (trie == NULL)
+                       return NULL;
+
+               if (IS_LEAF(trie))          /* trie w. just a leaf */
+                       return (struct leaf *) trie;
+
+               p = (struct tnode*) trie;  /* Start */
+       } else
+               p = (struct tnode *) NODE_PARENT(c);
+
+       while (p) {
+               int pos, last;
+
+               /*  Find the next child of the parent */
+               if (c)
+                       pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
+               else
+                       pos = 0;
+
+               last = 1 << p->bits;
+               for (idx = pos; idx < last ; idx++) {
+                       c = rcu_dereference(p->child[idx]);
+
+                       if (!c)
+                               continue;
+
+                       /* Decend if tnode */
+                       while (IS_TNODE(c)) {
+                               p = (struct tnode *) c;
+                               idx = 0;
+
+                               /* Rightmost non-NULL branch */
+                               if (p && IS_TNODE(p))
+                                       while (!(c = rcu_dereference(p->child[idx]))
+                                              && idx < (1<<p->bits)) idx++;
+
+                               /* Done with this tnode? */
+                               if (idx >= (1 << p->bits) || !c)
+                                       goto up;
+                       }
+                       return (struct leaf *) c;
+               }
+up:
+               /* No more children go up one step  */
+               c = (struct node *) p;
+               p = (struct tnode *) NODE_PARENT(p);
+       }
+       return NULL; /* Ready. Root of trie */
+}
+
+static int fn_trie_flush(struct fib_table *tb)
+{
+       struct trie *t = (struct trie *) tb->tb_data;
+       struct leaf *ll = NULL, *l = NULL;
+       int found = 0, h;
+
+       t->revision++;
+
+       for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
+               found += trie_flush_leaf(t, l);
+
+               if (ll && hlist_empty(&ll->list))
+                       trie_leaf_remove(t, ll->key);
+               ll = l;
+       }
+
+       if (ll && hlist_empty(&ll->list))
+               trie_leaf_remove(t, ll->key);
+
+       pr_debug("trie_flush found=%d\n", found);
+       return found;
+}
+
+static int trie_last_dflt = -1;
+
+static void
+fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
+{
+       struct trie *t = (struct trie *) tb->tb_data;
+       int order, last_idx;
+       struct fib_info *fi = NULL;
+       struct fib_info *last_resort;
+       struct fib_alias *fa = NULL;
+       struct list_head *fa_head;
+       struct leaf *l;
+
+       last_idx = -1;
+       last_resort = NULL;
+       order = -1;
+
+       rcu_read_lock();
+
+       l = fib_find_node(t, 0);
+       if (!l)
+               goto out;
+
+       fa_head = get_fa_head(l, 0);
+       if (!fa_head)
+               goto out;
+
+       if (list_empty(fa_head))
+               goto out;
+
+       list_for_each_entry_rcu(fa, fa_head, fa_list) {
+               struct fib_info *next_fi = fa->fa_info;
+
+               if (fa->fa_scope != res->scope ||
+                   fa->fa_type != RTN_UNICAST)
+                       continue;
+
+               if (next_fi->fib_priority > res->fi->fib_priority)
+                       break;
+               if (!next_fi->fib_nh[0].nh_gw ||
+                   next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
+                       continue;
+               fa->fa_state |= FA_S_ACCESSED;
+
+               if (fi == NULL) {
+                       if (next_fi != res->fi)
+                               break;
+               } else if (!fib_detect_death(fi, order, &last_resort,
+                                            &last_idx, &trie_last_dflt)) {
+                       if (res->fi)
+                               fib_info_put(res->fi);
+                       res->fi = fi;
+                       atomic_inc(&fi->fib_clntref);
+                       trie_last_dflt = order;
+                       goto out;
+               }
+               fi = next_fi;
+               order++;
+       }
+       if (order <= 0 || fi == NULL) {
+               trie_last_dflt = -1;
+               goto out;
+       }
+
+       if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
+               if (res->fi)
+                       fib_info_put(res->fi);
+               res->fi = fi;
+               atomic_inc(&fi->fib_clntref);
+               trie_last_dflt = order;
+               goto out;
+       }
+       if (last_idx >= 0) {
+               if (res->fi)
+                       fib_info_put(res->fi);
+               res->fi = last_resort;
+               if (last_resort)
+                       atomic_inc(&last_resort->fib_clntref);
+       }
+       trie_last_dflt = last_idx;
+ out:;
+       rcu_read_unlock();
+}
+
+static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
+                          struct sk_buff *skb, struct netlink_callback *cb)
+{
+       int i, s_i;
+       struct fib_alias *fa;
+
+       u32 xkey = htonl(key);
+
+       s_i = cb->args[3];
+       i = 0;
+
+       /* rcu_read_lock is hold by caller */
+
+       list_for_each_entry_rcu(fa, fah, fa_list) {
+               if (i < s_i) {
+                       i++;
+                       continue;
+               }
+               BUG_ON(!fa->fa_info);
+
+               if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
+                                 cb->nlh->nlmsg_seq,
+                                 RTM_NEWROUTE,
+                                 tb->tb_id,
+                                 fa->fa_type,
+                                 fa->fa_scope,
+                                 &xkey,
+                                 plen,
+                                 fa->fa_tos,
+                                 fa->fa_info, 0) < 0) {
+                       cb->args[3] = i;
+                       return -1;
+               }
+               i++;
+       }
+       cb->args[3] = i;
+       return skb->len;
+}
+
+static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
+                            struct netlink_callback *cb)
+{
+       int h, s_h;
+       struct list_head *fa_head;
+       struct leaf *l = NULL;
+
+       s_h = cb->args[2];
+
+       for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
+               if (h < s_h)
+                       continue;
+               if (h > s_h)
+                       memset(&cb->args[3], 0,
+                              sizeof(cb->args) - 3*sizeof(cb->args[0]));
+
+               fa_head = get_fa_head(l, plen);
+
+               if (!fa_head)
+                       continue;
+
+               if (list_empty(fa_head))
+                       continue;
+
+               if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
+                       cb->args[2] = h;
+                       return -1;
+               }
+       }
+       cb->args[2] = h;
+       return skb->len;
+}
+
+static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
+{
+       int m, s_m;
+       struct trie *t = (struct trie *) tb->tb_data;
+
+       s_m = cb->args[1];
+
+       rcu_read_lock();
+       for (m = 0; m <= 32; m++) {
+               if (m < s_m)
+                       continue;
+               if (m > s_m)
+                       memset(&cb->args[2], 0,
+                               sizeof(cb->args) - 2*sizeof(cb->args[0]));
+
+               if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
+                       cb->args[1] = m;
+                       goto out;
+               }
+       }
+       rcu_read_unlock();
+       cb->args[1] = m;
+       return skb->len;
+out:
+       rcu_read_unlock();
+       return -1;
+}
+
+/* Fix more generic FIB names for init later */
+
+#ifdef CONFIG_IP_MULTIPLE_TABLES
+struct fib_table * fib_hash_init(int id)
+#else
+struct fib_table * __init fib_hash_init(int id)
+#endif
+{
+       struct fib_table *tb;
+       struct trie *t;
+
+       if (fn_alias_kmem == NULL)
+               fn_alias_kmem = kmem_cache_create("ip_fib_alias",
+                                                 sizeof(struct fib_alias),
+                                                 0, SLAB_HWCACHE_ALIGN,
+                                                 NULL, NULL);
+
+       tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
+                    GFP_KERNEL);
+       if (tb == NULL)
+               return NULL;
+
+       tb->tb_id = id;
+       tb->tb_lookup = fn_trie_lookup;
+       tb->tb_insert = fn_trie_insert;
+       tb->tb_delete = fn_trie_delete;
+       tb->tb_flush = fn_trie_flush;
+       tb->tb_select_default = fn_trie_select_default;
+       tb->tb_dump = fn_trie_dump;
+       memset(tb->tb_data, 0, sizeof(struct trie));
+
+       t = (struct trie *) tb->tb_data;
+
+       trie_init(t);
+
+       if (id == RT_TABLE_LOCAL)
+               trie_local = t;
+       else if (id == RT_TABLE_MAIN)
+               trie_main = t;
+
+       if (id == RT_TABLE_LOCAL)
+               printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
+
+       return tb;
+}
+
+#ifdef CONFIG_PROC_FS
+/* Depth first Trie walk iterator */
+struct fib_trie_iter {
+       struct tnode *tnode;
+       struct trie *trie;
+       unsigned index;
+       unsigned depth;
+};
+
+static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
+{
+       struct tnode *tn = iter->tnode;
+       unsigned cindex = iter->index;
+       struct tnode *p;
+
+       pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
+                iter->tnode, iter->index, iter->depth);
+rescan:
+       while (cindex < (1<<tn->bits)) {
+               struct node *n = tnode_get_child(tn, cindex);
+
+               if (n) {
+                       if (IS_LEAF(n)) {
+                               iter->tnode = tn;
+                               iter->index = cindex + 1;
+                       } else {
+                               /* push down one level */
+                               iter->tnode = (struct tnode *) n;
+                               iter->index = 0;
+                               ++iter->depth;
+                       }
+                       return n;
+               }
+
+               ++cindex;
+       }
+
+       /* Current node exhausted, pop back up */
+       p = NODE_PARENT(tn);
+       if (p) {
+               cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
+               tn = p;
+               --iter->depth;
+               goto rescan;
+       }
+
+       /* got root? */
+       return NULL;
+}
+
+static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
+                                      struct trie *t)
+{
+       struct node *n ;
+
+       if(!t)
+               return NULL;
+
+       n = rcu_dereference(t->trie);
+
+       if(!iter)
+               return NULL;
+
+       if (n && IS_TNODE(n)) {
+               iter->tnode = (struct tnode *) n;
+               iter->trie = t;
+               iter->index = 0;
+               iter->depth = 1;
+               return n;
+       }
+       return NULL;
+}
+
+static void trie_collect_stats(struct trie *t, struct trie_stat *s)
+{
+       struct node *n;
+       struct fib_trie_iter iter;
+
+       memset(s, 0, sizeof(*s));
+
+       rcu_read_lock();
+       for (n = fib_trie_get_first(&iter, t); n;
+            n = fib_trie_get_next(&iter)) {
+               if (IS_LEAF(n)) {
+                       s->leaves++;
+                       s->totdepth += iter.depth;
+                       if (iter.depth > s->maxdepth)
+                               s->maxdepth = iter.depth;
+               } else {
+                       const struct tnode *tn = (const struct tnode *) n;
+                       int i;
+
+                       s->tnodes++;
+                       if(tn->bits < MAX_STAT_DEPTH)
+                               s->nodesizes[tn->bits]++;
+
+                       for (i = 0; i < (1<<tn->bits); i++)
+                               if (!tn->child[i])
+                                       s->nullpointers++;
+               }
+       }
+       rcu_read_unlock();
+}
+
+/*
+ *     This outputs /proc/net/fib_triestats
+ */
+static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
+{
+       unsigned i, max, pointers, bytes, avdepth;
+
+       if (stat->leaves)
+               avdepth = stat->totdepth*100 / stat->leaves;
+       else
+               avdepth = 0;
+
+       seq_printf(seq, "\tAver depth:     %d.%02d\n", avdepth / 100, avdepth % 100 );
+       seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
+
+       seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
+
+       bytes = sizeof(struct leaf) * stat->leaves;
+       seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
+       bytes += sizeof(struct tnode) * stat->tnodes;
+
+       max = MAX_STAT_DEPTH;
+       while (max > 0 && stat->nodesizes[max-1] == 0)
+               max--;
+
+       pointers = 0;
+       for (i = 1; i <= max; i++)
+               if (stat->nodesizes[i] != 0) {
+                       seq_printf(seq, "  %d: %d",  i, stat->nodesizes[i]);
+                       pointers += (1<<i) * stat->nodesizes[i];
+               }
+       seq_putc(seq, '\n');
+       seq_printf(seq, "\tPointers: %d\n", pointers);
+
+       bytes += sizeof(struct node *) * pointers;
+       seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
+       seq_printf(seq, "Total size: %d  kB\n", (bytes + 1023) / 1024);
+
+#ifdef CONFIG_IP_FIB_TRIE_STATS
+       seq_printf(seq, "Counters:\n---------\n");
+       seq_printf(seq,"gets = %d\n", t->stats.gets);
+       seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
+       seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
+       seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
+       seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
+       seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
+#ifdef CLEAR_STATS
+       memset(&(t->stats), 0, sizeof(t->stats));
+#endif
+#endif /*  CONFIG_IP_FIB_TRIE_STATS */
+}
+
+static int fib_triestat_seq_show(struct seq_file *seq, void *v)
+{
+       struct trie_stat *stat;
+
+       stat = kmalloc(sizeof(*stat), GFP_KERNEL);
+       if (!stat)
+               return -ENOMEM;
+
+       seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
+                  sizeof(struct leaf), sizeof(struct tnode));
+
+       if (trie_local) {
+               seq_printf(seq, "Local:\n");
+               trie_collect_stats(trie_local, stat);
+               trie_show_stats(seq, stat);
+       }
+
+       if (trie_main) {
+               seq_printf(seq, "Main:\n");
+               trie_collect_stats(trie_main, stat);
+               trie_show_stats(seq, stat);
+       }
+       kfree(stat);
+
+       return 0;
+}
+
+static int fib_triestat_seq_open(struct inode *inode, struct file *file)
+{
+       return single_open(file, fib_triestat_seq_show, NULL);
+}
+
+static struct file_operations fib_triestat_fops = {
+       .owner  = THIS_MODULE,
+       .open   = fib_triestat_seq_open,
+       .read   = seq_read,
+       .llseek = seq_lseek,
+       .release = single_release,
+};
+
+static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
+                                     loff_t pos)
+{
+       loff_t idx = 0;
+       struct node *n;
+
+       for (n = fib_trie_get_first(iter, trie_local);
+            n; ++idx, n = fib_trie_get_next(iter)) {
+               if (pos == idx)
+                       return n;
+       }
+
+       for (n = fib_trie_get_first(iter, trie_main);
+            n; ++idx, n = fib_trie_get_next(iter)) {
+               if (pos == idx)
+                       return n;
+       }
+       return NULL;
+}
+
+static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
+{
+       rcu_read_lock();
+       if (*pos == 0)
+               return SEQ_START_TOKEN;
+       return fib_trie_get_idx(seq->private, *pos - 1);
+}
+
+static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+       struct fib_trie_iter *iter = seq->private;
+       void *l = v;
+
+       ++*pos;
+       if (v == SEQ_START_TOKEN)
+               return fib_trie_get_idx(iter, 0);
+
+       v = fib_trie_get_next(iter);
+       BUG_ON(v == l);
+       if (v)
+               return v;
+
+       /* continue scan in next trie */
+       if (iter->trie == trie_local)
+               return fib_trie_get_first(iter, trie_main);
+
+       return NULL;
+}
+
+static void fib_trie_seq_stop(struct seq_file *seq, void *v)
+{
+       rcu_read_unlock();
+}
+
+static void seq_indent(struct seq_file *seq, int n)
+{
+       while (n-- > 0) seq_puts(seq, "   ");
+}
+
+static inline const char *rtn_scope(enum rt_scope_t s)
+{
+       static char buf[32];
+
+       switch(s) {
+       case RT_SCOPE_UNIVERSE: return "universe";
+       case RT_SCOPE_SITE:     return "site";
+       case RT_SCOPE_LINK:     return "link";
+       case RT_SCOPE_HOST:     return "host";
+       case RT_SCOPE_NOWHERE:  return "nowhere";
+       default:
+               snprintf(buf, sizeof(buf), "scope=%d", s);
+               return buf;
+       }
+}
+
+static const char *rtn_type_names[__RTN_MAX] = {
+       [RTN_UNSPEC] = "UNSPEC",
+       [RTN_UNICAST] = "UNICAST",
+       [RTN_LOCAL] = "LOCAL",
+       [RTN_BROADCAST] = "BROADCAST",
+       [RTN_ANYCAST] = "ANYCAST",
+       [RTN_MULTICAST] = "MULTICAST",
+       [RTN_BLACKHOLE] = "BLACKHOLE",
+       [RTN_UNREACHABLE] = "UNREACHABLE",
+       [RTN_PROHIBIT] = "PROHIBIT",
+       [RTN_THROW] = "THROW",
+       [RTN_NAT] = "NAT",
+       [RTN_XRESOLVE] = "XRESOLVE",
+};
+
+static inline const char *rtn_type(unsigned t)
+{
+       static char buf[32];
+
+       if (t < __RTN_MAX && rtn_type_names[t])
+               return rtn_type_names[t];
+       snprintf(buf, sizeof(buf), "type %d", t);
+       return buf;
+}
+
+/* Pretty print the trie */
+static int fib_trie_seq_show(struct seq_file *seq, void *v)
+{
+       const struct fib_trie_iter *iter = seq->private;
+       struct node *n = v;
+
+       if (v == SEQ_START_TOKEN)
+               return 0;
+
+       if (IS_TNODE(n)) {
+               struct tnode *tn = (struct tnode *) n;
+               t_key prf = ntohl(MASK_PFX(tn->key, tn->pos));
+
+               if (!NODE_PARENT(n)) {
+                       if (iter->trie == trie_local)
+                               seq_puts(seq, "<local>:\n");
+                       else
+                               seq_puts(seq, "<main>:\n");
+               } 
+               seq_indent(seq, iter->depth-1);
+               seq_printf(seq, "  +-- %d.%d.%d.%d/%d %d %d %d\n",
+                          NIPQUAD(prf), tn->pos, tn->bits, tn->full_children, 
+                          tn->empty_children);
+               
+       } else {
+               struct leaf *l = (struct leaf *) n;
+               int i;
+               u32 val = ntohl(l->key);
+
+               seq_indent(seq, iter->depth);
+               seq_printf(seq, "  |-- %d.%d.%d.%d\n", NIPQUAD(val));
+               for (i = 32; i >= 0; i--) {
+                       struct leaf_info *li = find_leaf_info(l, i);
+                       if (li) {
+                               struct fib_alias *fa;
+                               list_for_each_entry_rcu(fa, &li->falh, fa_list) {
+                                       seq_indent(seq, iter->depth+1);
+                                       seq_printf(seq, "  /%d %s %s", i,
+                                                  rtn_scope(fa->fa_scope),
+                                                  rtn_type(fa->fa_type));
+                                       if (fa->fa_tos)
+                                               seq_printf(seq, "tos =%d\n",
+                                                          fa->fa_tos);
+                                       seq_putc(seq, '\n');
+                               }
+                       }
+               }
+       }
+
+       return 0;
+}
+
+static struct seq_operations fib_trie_seq_ops = {
+       .start  = fib_trie_seq_start,
+       .next   = fib_trie_seq_next,
+       .stop   = fib_trie_seq_stop,
+       .show   = fib_trie_seq_show,
+};
+
+static int fib_trie_seq_open(struct inode *inode, struct file *file)
+{
+       struct seq_file *seq;
+       int rc = -ENOMEM;
+       struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
+
+       if (!s)
+               goto out;
+
+       rc = seq_open(file, &fib_trie_seq_ops);
+       if (rc)
+               goto out_kfree;
+
+       seq          = file->private_data;
+       seq->private = s;
+       memset(s, 0, sizeof(*s));
+out:
+       return rc;
+out_kfree:
+       kfree(s);
+       goto out;
+}
+
+static struct file_operations fib_trie_fops = {
+       .owner  = THIS_MODULE,
+       .open   = fib_trie_seq_open,
+       .read   = seq_read,
+       .llseek = seq_lseek,
+       .release = seq_release_private,
+};
+
+static unsigned fib_flag_trans(int type, u32 mask, const struct fib_info *fi)
+{
+       static unsigned type2flags[RTN_MAX + 1] = {
+               [7] = RTF_REJECT, [8] = RTF_REJECT,
+       };
+       unsigned flags = type2flags[type];
+
+       if (fi && fi->fib_nh->nh_gw)
+               flags |= RTF_GATEWAY;
+       if (mask == 0xFFFFFFFF)
+               flags |= RTF_HOST;
+       flags |= RTF_UP;
+       return flags;
+}
+
+/*
+ *     This outputs /proc/net/route.
+ *     The format of the file is not supposed to be changed
+ *     and needs to be same as fib_hash output to avoid breaking
+ *     legacy utilities
+ */
+static int fib_route_seq_show(struct seq_file *seq, void *v)
+{
+       const struct fib_trie_iter *iter = seq->private;
+       struct leaf *l = v;
+       int i;
+       char bf[128];
+
+       if (v == SEQ_START_TOKEN) {
+               seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
+                          "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
+                          "\tWindow\tIRTT");
+               return 0;
+       }
+
+       if (iter->trie == trie_local)
+               return 0;
+       if (IS_TNODE(l))
+               return 0;
+
+       for (i=32; i>=0; i--) {
+               struct leaf_info *li = find_leaf_info(l, i);
+               struct fib_alias *fa;
+               u32 mask, prefix;
+
+               if (!li)
+                       continue;
+
+               mask = inet_make_mask(li->plen);
+               prefix = htonl(l->key);
+
+               list_for_each_entry_rcu(fa, &li->falh, fa_list) {
+                       const struct fib_info *fi = fa->fa_info;
+                       unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
+
+                       if (fa->fa_type == RTN_BROADCAST
+                           || fa->fa_type == RTN_MULTICAST)
+                               continue;
+
+                       if (fi)
+                               snprintf(bf, sizeof(bf),
+                                        "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
+                                        fi->fib_dev ? fi->fib_dev->name : "*",
+                                        prefix,
+                                        fi->fib_nh->nh_gw, flags, 0, 0,
+                                        fi->fib_priority,
+                                        mask,
+                                        (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
+                                        fi->fib_window,
+                                        fi->fib_rtt >> 3);
+                       else
+                               snprintf(bf, sizeof(bf),
+                                        "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
+                                        prefix, 0, flags, 0, 0, 0,
+                                        mask, 0, 0, 0);
+
+                       seq_printf(seq, "%-127s\n", bf);
+               }
+       }
+
+       return 0;
+}
+
+static struct seq_operations fib_route_seq_ops = {
+       .start  = fib_trie_seq_start,
+       .next   = fib_trie_seq_next,
+       .stop   = fib_trie_seq_stop,
+       .show   = fib_route_seq_show,
+};
+
+static int fib_route_seq_open(struct inode *inode, struct file *file)
+{
+       struct seq_file *seq;
+       int rc = -ENOMEM;
+       struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
+
+       if (!s)
+               goto out;
+
+       rc = seq_open(file, &fib_route_seq_ops);
+       if (rc)
+               goto out_kfree;
+
+       seq          = file->private_data;
+       seq->private = s;
+       memset(s, 0, sizeof(*s));
+out:
+       return rc;
+out_kfree:
+       kfree(s);
+       goto out;
+}
+
+static struct file_operations fib_route_fops = {
+       .owner  = THIS_MODULE,
+       .open   = fib_route_seq_open,
+       .read   = seq_read,
+       .llseek = seq_lseek,
+       .release = seq_release_private,
+};
+
+int __init fib_proc_init(void)
+{
+       if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops))
+               goto out1;
+
+       if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops))
+               goto out2;
+
+       if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops))
+               goto out3;
+
+       return 0;
+
+out3:
+       proc_net_remove("fib_triestat");
+out2:
+       proc_net_remove("fib_trie");
+out1:
+       return -ENOMEM;
+}
+
+void __init fib_proc_exit(void)
+{
+       proc_net_remove("fib_trie");
+       proc_net_remove("fib_triestat");
+       proc_net_remove("route");
+}
+
+#endif /* CONFIG_PROC_FS */