This repo is obsolete, please see git://git.code.sf.net/p/dummynet/code@master
[ipfw.git] / dummynet2 / ip_fw_dynamic.c
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD: head/sys/netinet/ipfw/ip_fw_dynamic.c 200601 2009-12-16 10:48:40Z luigi $");
28
29 #define        DEB(x)
30 #define        DDB(x) x
31
32 /*
33  * Dynamic rule support for ipfw
34  */
35
36 #if !defined(KLD_MODULE)
37 #include "opt_ipfw.h"
38 #include "opt_ipdivert.h"
39 #include "opt_ipdn.h"
40 #include "opt_inet.h"
41 #ifndef INET
42 #error IPFIREWALL requires INET.
43 #endif /* INET */
44 #endif
45 #include "opt_inet6.h"
46 #include "opt_ipsec.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/kernel.h>
53 #include <sys/lock.h>
54 #include <sys/socket.h>
55 #include <sys/sysctl.h>
56 #include <sys/syslog.h>
57 #include <net/ethernet.h> /* for ETHERTYPE_IP */
58 #include <net/if.h>
59 #include <net/vnet.h>
60
61 #include <netinet/in.h>
62 #include <netinet/ip.h>
63 #include <netinet/ip_var.h>     /* ip_defttl */
64 #include <netinet/ip_fw.h>
65 #include <netinet/ipfw/ip_fw_private.h>
66 #include <netinet/tcp_var.h>
67 #include <netinet/udp.h>
68
69 #include <netinet/ip6.h>        /* IN6_ARE_ADDR_EQUAL */
70 #ifdef INET6
71 #include <netinet6/in6_var.h>
72 #include <netinet6/ip6_var.h>
73 #endif
74
75 #include <machine/in_cksum.h>   /* XXX for in_cksum */
76
77 #ifdef MAC
78 #include <security/mac/mac_framework.h>
79 #endif
80
81 /*
82  * Description of dynamic rules.
83  *
84  * Dynamic rules are stored in lists accessed through a hash table
85  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
86  * be modified through the sysctl variable dyn_buckets which is
87  * updated when the table becomes empty.
88  *
89  * XXX currently there is only one list, ipfw_dyn.
90  *
91  * When a packet is received, its address fields are first masked
92  * with the mask defined for the rule, then hashed, then matched
93  * against the entries in the corresponding list.
94  * Dynamic rules can be used for different purposes:
95  *  + stateful rules;
96  *  + enforcing limits on the number of sessions;
97  *  + in-kernel NAT (not implemented yet)
98  *
99  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
100  * measured in seconds and depending on the flags.
101  *
102  * The total number of dynamic rules is stored in dyn_count.
103  * The max number of dynamic rules is dyn_max. When we reach
104  * the maximum number of rules we do not create anymore. This is
105  * done to avoid consuming too much memory, but also too much
106  * time when searching on each packet (ideally, we should try instead
107  * to put a limit on the length of the list on each bucket...).
108  *
109  * Each dynamic rule holds a pointer to the parent ipfw rule so
110  * we know what action to perform. Dynamic rules are removed when
111  * the parent rule is deleted. XXX we should make them survive.
112  *
113  * There are some limitations with dynamic rules -- we do not
114  * obey the 'randomized match', and we do not do multiple
115  * passes through the firewall. XXX check the latter!!!
116  */
117
118 /*
119  * Static variables followed by global ones
120  */
121 static VNET_DEFINE(ipfw_dyn_rule **, ipfw_dyn_v);
122 static VNET_DEFINE(u_int32_t, dyn_buckets);
123 static VNET_DEFINE(u_int32_t, curr_dyn_buckets);
124 static VNET_DEFINE(struct callout, ipfw_timeout);
125 #define V_ipfw_dyn_v                    VNET(ipfw_dyn_v)
126 #define V_dyn_buckets                   VNET(dyn_buckets)
127 #define V_curr_dyn_buckets              VNET(curr_dyn_buckets)
128 #define V_ipfw_timeout                  VNET(ipfw_timeout)
129
130 static uma_zone_t ipfw_dyn_rule_zone;
131 #ifndef __FreeBSD__
132 DEFINE_SPINLOCK(ipfw_dyn_mtx);
133 #else
134 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
135 #endif
136
137 #define IPFW_DYN_LOCK_INIT() \
138         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
139 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
140 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
141 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
142 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
143
144 void
145 ipfw_dyn_unlock(void)
146 {
147         IPFW_DYN_UNLOCK();
148 }
149
150 /*
151  * Timeouts for various events in handing dynamic rules.
152  */
153 static VNET_DEFINE(u_int32_t, dyn_ack_lifetime);
154 static VNET_DEFINE(u_int32_t, dyn_syn_lifetime);
155 static VNET_DEFINE(u_int32_t, dyn_fin_lifetime);
156 static VNET_DEFINE(u_int32_t, dyn_rst_lifetime);
157 static VNET_DEFINE(u_int32_t, dyn_udp_lifetime);
158 static VNET_DEFINE(u_int32_t, dyn_short_lifetime);
159
160 #define V_dyn_ack_lifetime              VNET(dyn_ack_lifetime)
161 #define V_dyn_syn_lifetime              VNET(dyn_syn_lifetime)
162 #define V_dyn_fin_lifetime              VNET(dyn_fin_lifetime)
163 #define V_dyn_rst_lifetime              VNET(dyn_rst_lifetime)
164 #define V_dyn_udp_lifetime              VNET(dyn_udp_lifetime)
165 #define V_dyn_short_lifetime            VNET(dyn_short_lifetime)
166
167 /*
168  * Keepalives are sent if dyn_keepalive is set. They are sent every
169  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
170  * seconds of lifetime of a rule.
171  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
172  * than dyn_keepalive_period.
173  */
174
175 static VNET_DEFINE(u_int32_t, dyn_keepalive_interval);
176 static VNET_DEFINE(u_int32_t, dyn_keepalive_period);
177 static VNET_DEFINE(u_int32_t, dyn_keepalive);
178
179 #define V_dyn_keepalive_interval        VNET(dyn_keepalive_interval)
180 #define V_dyn_keepalive_period          VNET(dyn_keepalive_period)
181 #define V_dyn_keepalive                 VNET(dyn_keepalive)
182
183 static VNET_DEFINE(u_int32_t, dyn_count);       /* # of dynamic rules */
184 static VNET_DEFINE(u_int32_t, dyn_max);         /* max # of dynamic rules */
185
186 #define V_dyn_count                     VNET(dyn_count)
187 #define V_dyn_max                       VNET(dyn_max)
188
189 #ifdef SYSCTL_NODE
190
191 SYSBEGIN(f2)
192
193 SYSCTL_DECL(_net_inet_ip_fw);
194 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
195     CTLFLAG_RW, &VNET_NAME(dyn_buckets), 0,
196     "Number of dyn. buckets");
197 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
198     CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
199     "Current Number of dyn. buckets");
200 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_count,
201     CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
202     "Number of dyn. rules");
203 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_max,
204     CTLFLAG_RW, &VNET_NAME(dyn_max), 0,
205     "Max number of dyn. rules");
206 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
207     CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
208     "Lifetime of dyn. rules for acks");
209 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
210     CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
211     "Lifetime of dyn. rules for syn");
212 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
213     CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
214     "Lifetime of dyn. rules for fin");
215 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
216     CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
217     "Lifetime of dyn. rules for rst");
218 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
219     CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
220     "Lifetime of dyn. rules for UDP");
221 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
222     CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
223     "Lifetime of dyn. rules for other situations");
224 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
225     CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
226     "Enable keepalives for dyn. rules");
227
228 SYSEND
229
230 #endif /* SYSCTL_NODE */
231
232
233 static __inline int
234 hash_packet6(struct ipfw_flow_id *id)
235 {
236         u_int32_t i;
237         i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
238             (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
239             (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
240             (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
241             (id->dst_port) ^ (id->src_port);
242         return i;
243 }
244
245 /*
246  * IMPORTANT: the hash function for dynamic rules must be commutative
247  * in source and destination (ip,port), because rules are bidirectional
248  * and we want to find both in the same bucket.
249  */
250 static __inline int
251 hash_packet(struct ipfw_flow_id *id)
252 {
253         u_int32_t i;
254
255 #ifdef INET6
256         if (IS_IP6_FLOW_ID(id)) 
257                 i = hash_packet6(id);
258         else
259 #endif /* INET6 */
260         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
261         i &= (V_curr_dyn_buckets - 1);
262         return i;
263 }
264
265 static __inline void
266 unlink_dyn_rule_print(struct ipfw_flow_id *id)
267 {
268         struct in_addr da;
269 #ifdef INET6
270         char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
271 #else
272         char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
273 #endif
274
275 #ifdef INET6
276         if (IS_IP6_FLOW_ID(id)) {
277                 ip6_sprintf(src, &id->src_ip6);
278                 ip6_sprintf(dst, &id->dst_ip6);
279         } else
280 #endif
281         {
282                 da.s_addr = htonl(id->src_ip);
283                 inet_ntoa_r(da, src);
284                 da.s_addr = htonl(id->dst_ip);
285                 inet_ntoa_r(da, dst);
286         }
287         printf("ipfw: unlink entry %s %d -> %s %d, %d left\n",
288             src, id->src_port, dst, id->dst_port, V_dyn_count - 1);
289 }
290
291 /**
292  * unlink a dynamic rule from a chain. prev is a pointer to
293  * the previous one, q is a pointer to the rule to delete,
294  * head is a pointer to the head of the queue.
295  * Modifies q and potentially also head.
296  */
297 #define UNLINK_DYN_RULE(prev, head, q) {                                \
298         ipfw_dyn_rule *old_q = q;                                       \
299                                                                         \
300         /* remove a refcount to the parent */                           \
301         if (q->dyn_type == O_LIMIT)                                     \
302                 q->parent->count--;                                     \
303         DEB(unlink_dyn_rule_print(&q->id);)                             \
304         if (prev != NULL)                                               \
305                 prev->next = q = q->next;                               \
306         else                                                            \
307                 head = q = q->next;                                     \
308         V_dyn_count--;                                                  \
309         uma_zfree(ipfw_dyn_rule_zone, old_q); }
310
311 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
312
313 /**
314  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
315  *
316  * If keep_me == NULL, rules are deleted even if not expired,
317  * otherwise only expired rules are removed.
318  *
319  * The value of the second parameter is also used to point to identify
320  * a rule we absolutely do not want to remove (e.g. because we are
321  * holding a reference to it -- this is the case with O_LIMIT_PARENT
322  * rules). The pointer is only used for comparison, so any non-null
323  * value will do.
324  */
325 static void
326 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
327 {
328         static u_int32_t last_remove = 0;
329
330 #define FORCE (keep_me == NULL)
331
332         ipfw_dyn_rule *prev, *q;
333         int i, pass = 0, max_pass = 0;
334
335         IPFW_DYN_LOCK_ASSERT();
336
337         if (V_ipfw_dyn_v == NULL || V_dyn_count == 0)
338                 return;
339         /* do not expire more than once per second, it is useless */
340         if (!FORCE && last_remove == time_uptime)
341                 return;
342         last_remove = time_uptime;
343
344         /*
345          * because O_LIMIT refer to parent rules, during the first pass only
346          * remove child and mark any pending LIMIT_PARENT, and remove
347          * them in a second pass.
348          */
349 next_pass:
350         for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
351                 for (prev=NULL, q = V_ipfw_dyn_v[i] ; q ; ) {
352                         /*
353                          * Logic can become complex here, so we split tests.
354                          */
355                         if (q == keep_me)
356                                 goto next;
357                         if (rule != NULL && rule != q->rule)
358                                 goto next; /* not the one we are looking for */
359                         if (q->dyn_type == O_LIMIT_PARENT) {
360                                 /*
361                                  * handle parent in the second pass,
362                                  * record we need one.
363                                  */
364                                 max_pass = 1;
365                                 if (pass == 0)
366                                         goto next;
367                                 if (FORCE && q->count != 0 ) {
368                                         /* XXX should not happen! */
369                                         printf("ipfw: OUCH! cannot remove rule,"
370                                              " count %d\n", q->count);
371                                 }
372                         } else {
373                                 if (!FORCE &&
374                                     !TIME_LEQ( q->expire, time_uptime ))
375                                         goto next;
376                         }
377              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
378                      UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
379                      continue;
380              }
381 next:
382                         prev=q;
383                         q=q->next;
384                 }
385         }
386         if (pass++ < max_pass)
387                 goto next_pass;
388 }
389
390 void
391 ipfw_remove_dyn_children(struct ip_fw *rule)
392 {
393         IPFW_DYN_LOCK();
394         remove_dyn_rule(rule, NULL /* force removal */);
395         IPFW_DYN_UNLOCK();
396 }
397
398 /**
399  * lookup a dynamic rule, locked version
400  */
401 static ipfw_dyn_rule *
402 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
403     struct tcphdr *tcp)
404 {
405         /*
406          * stateful ipfw extensions.
407          * Lookup into dynamic session queue
408          */
409 #define MATCH_REVERSE   0
410 #define MATCH_FORWARD   1
411 #define MATCH_NONE      2
412 #define MATCH_UNKNOWN   3
413         int i, dir = MATCH_NONE;
414         ipfw_dyn_rule *prev, *q=NULL;
415
416         IPFW_DYN_LOCK_ASSERT();
417
418         if (V_ipfw_dyn_v == NULL)
419                 goto done;      /* not found */
420         i = hash_packet( pkt );
421         for (prev=NULL, q = V_ipfw_dyn_v[i] ; q != NULL ; ) {
422                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
423                         goto next;
424                 if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
425                         UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
426                         continue;
427                 }
428                 if (pkt->proto == q->id.proto &&
429                     q->dyn_type != O_LIMIT_PARENT) {
430                         if (IS_IP6_FLOW_ID(pkt)) {
431                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
432                                 &(q->id.src_ip6)) &&
433                             IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
434                                 &(q->id.dst_ip6)) &&
435                             pkt->src_port == q->id.src_port &&
436                             pkt->dst_port == q->id.dst_port ) {
437                                 dir = MATCH_FORWARD;
438                                 break;
439                             }
440                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
441                                     &(q->id.dst_ip6)) &&
442                                 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
443                                     &(q->id.src_ip6)) &&
444                                 pkt->src_port == q->id.dst_port &&
445                                 pkt->dst_port == q->id.src_port ) {
446                                     dir = MATCH_REVERSE;
447                                     break;
448                             }
449                         } else {
450                             if (pkt->src_ip == q->id.src_ip &&
451                                 pkt->dst_ip == q->id.dst_ip &&
452                                 pkt->src_port == q->id.src_port &&
453                                 pkt->dst_port == q->id.dst_port ) {
454                                     dir = MATCH_FORWARD;
455                                     break;
456                             }
457                             if (pkt->src_ip == q->id.dst_ip &&
458                                 pkt->dst_ip == q->id.src_ip &&
459                                 pkt->src_port == q->id.dst_port &&
460                                 pkt->dst_port == q->id.src_port ) {
461                                     dir = MATCH_REVERSE;
462                                     break;
463                             }
464                         }
465                 }
466 next:
467                 prev = q;
468                 q = q->next;
469         }
470         if (q == NULL)
471                 goto done; /* q = NULL, not found */
472
473         if ( prev != NULL) { /* found and not in front */
474                 prev->next = q->next;
475                 q->next = V_ipfw_dyn_v[i];
476                 V_ipfw_dyn_v[i] = q;
477         }
478         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
479                 u_char flags = pkt->_flags & (TH_FIN|TH_SYN|TH_RST);
480
481 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
482 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
483                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
484                 switch (q->state) {
485                 case TH_SYN:                            /* opening */
486                         q->expire = time_uptime + V_dyn_syn_lifetime;
487                         break;
488
489                 case BOTH_SYN:                  /* move to established */
490                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
491                 case BOTH_SYN | (TH_FIN << 8) :
492                         if (tcp) {
493 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
494                             u_int32_t ack = ntohl(tcp->th_ack);
495                             if (dir == MATCH_FORWARD) {
496                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
497                                     q->ack_fwd = ack;
498                                 else { /* ignore out-of-sequence */
499                                     break;
500                                 }
501                             } else {
502                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
503                                     q->ack_rev = ack;
504                                 else { /* ignore out-of-sequence */
505                                     break;
506                                 }
507                             }
508                         }
509                         q->expire = time_uptime + V_dyn_ack_lifetime;
510                         break;
511
512                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
513                         if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
514                                 V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
515                         q->expire = time_uptime + V_dyn_fin_lifetime;
516                         break;
517
518                 default:
519 #if 0
520                         /*
521                          * reset or some invalid combination, but can also
522                          * occur if we use keep-state the wrong way.
523                          */
524                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
525                                 printf("invalid state: 0x%x\n", q->state);
526 #endif
527                         if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
528                                 V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
529                         q->expire = time_uptime + V_dyn_rst_lifetime;
530                         break;
531                 }
532         } else if (pkt->proto == IPPROTO_UDP) {
533                 q->expire = time_uptime + V_dyn_udp_lifetime;
534         } else {
535                 /* other protocols */
536                 q->expire = time_uptime + V_dyn_short_lifetime;
537         }
538 done:
539         if (match_direction)
540                 *match_direction = dir;
541         return q;
542 }
543
544 ipfw_dyn_rule *
545 ipfw_lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
546     struct tcphdr *tcp)
547 {
548         ipfw_dyn_rule *q;
549
550         IPFW_DYN_LOCK();
551         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
552         if (q == NULL)
553                 IPFW_DYN_UNLOCK();
554         /* NB: return table locked when q is not NULL */
555         return q;
556 }
557
558 static void
559 realloc_dynamic_table(void)
560 {
561         IPFW_DYN_LOCK_ASSERT();
562
563         /*
564          * Try reallocation, make sure we have a power of 2 and do
565          * not allow more than 64k entries. In case of overflow,
566          * default to 1024.
567          */
568
569         if (V_dyn_buckets > 65536)
570                 V_dyn_buckets = 1024;
571         if ((V_dyn_buckets & (V_dyn_buckets-1)) != 0) { /* not a power of 2 */
572                 V_dyn_buckets = V_curr_dyn_buckets; /* reset */
573                 return;
574         }
575         V_curr_dyn_buckets = V_dyn_buckets;
576         if (V_ipfw_dyn_v != NULL)
577                 free(V_ipfw_dyn_v, M_IPFW);
578         for (;;) {
579                 V_ipfw_dyn_v = malloc(V_curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
580                        M_IPFW, M_NOWAIT | M_ZERO);
581                 if (V_ipfw_dyn_v != NULL || V_curr_dyn_buckets <= 2)
582                         break;
583                 V_curr_dyn_buckets /= 2;
584         }
585 }
586
587 /**
588  * Install state of type 'type' for a dynamic session.
589  * The hash table contains two type of rules:
590  * - regular rules (O_KEEP_STATE)
591  * - rules for sessions with limited number of sess per user
592  *   (O_LIMIT). When they are created, the parent is
593  *   increased by 1, and decreased on delete. In this case,
594  *   the third parameter is the parent rule and not the chain.
595  * - "parent" rules for the above (O_LIMIT_PARENT).
596  */
597 static ipfw_dyn_rule *
598 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
599 {
600         ipfw_dyn_rule *r;
601         int i;
602
603         IPFW_DYN_LOCK_ASSERT();
604
605         if (V_ipfw_dyn_v == NULL ||
606             (V_dyn_count == 0 && V_dyn_buckets != V_curr_dyn_buckets)) {
607                 realloc_dynamic_table();
608                 if (V_ipfw_dyn_v == NULL)
609                         return NULL; /* failed ! */
610         }
611         i = hash_packet(id);
612
613         r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
614         if (r == NULL) {
615                 printf ("ipfw: sorry cannot allocate state\n");
616                 return NULL;
617         }
618
619         /* increase refcount on parent, and set pointer */
620         if (dyn_type == O_LIMIT) {
621                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
622                 if ( parent->dyn_type != O_LIMIT_PARENT)
623                         panic("invalid parent");
624                 parent->count++;
625                 r->parent = parent;
626                 rule = parent->rule;
627         }
628
629         r->id = *id;
630         r->expire = time_uptime + V_dyn_syn_lifetime;
631         r->rule = rule;
632         r->dyn_type = dyn_type;
633         r->pcnt = r->bcnt = 0;
634         r->count = 0;
635
636         r->bucket = i;
637         r->next = V_ipfw_dyn_v[i];
638         V_ipfw_dyn_v[i] = r;
639         V_dyn_count++;
640         DEB({
641                 struct in_addr da;
642 #ifdef INET6
643                 char src[INET6_ADDRSTRLEN];
644                 char dst[INET6_ADDRSTRLEN];
645 #else
646                 char src[INET_ADDRSTRLEN];
647                 char dst[INET_ADDRSTRLEN];
648 #endif
649
650 #ifdef INET6
651                 if (IS_IP6_FLOW_ID(&(r->id))) {
652                         ip6_sprintf(src, &r->id.src_ip6);
653                         ip6_sprintf(dst, &r->id.dst_ip6);
654                 } else
655 #endif
656                 {
657                         da.s_addr = htonl(r->id.src_ip);
658                         inet_ntoa_r(da, src);
659                         da.s_addr = htonl(r->id.dst_ip);
660                         inet_ntoa_r(da, dst);
661                 }
662                 printf("ipfw: add dyn entry ty %d %s %d -> %s %d, total %d\n",
663                     dyn_type, src, r->id.src_port, dst, r->id.dst_port,
664                     V_dyn_count);
665         })
666         return r;
667 }
668
669 /**
670  * lookup dynamic parent rule using pkt and rule as search keys.
671  * If the lookup fails, then install one.
672  */
673 static ipfw_dyn_rule *
674 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
675 {
676         ipfw_dyn_rule *q;
677         int i;
678
679         IPFW_DYN_LOCK_ASSERT();
680
681         if (V_ipfw_dyn_v) {
682                 int is_v6 = IS_IP6_FLOW_ID(pkt);
683                 i = hash_packet( pkt );
684                 for (q = V_ipfw_dyn_v[i] ; q != NULL ; q=q->next)
685                         if (q->dyn_type == O_LIMIT_PARENT &&
686                             rule== q->rule &&
687                             pkt->proto == q->id.proto &&
688                             pkt->src_port == q->id.src_port &&
689                             pkt->dst_port == q->id.dst_port &&
690                             (
691                                 (is_v6 &&
692                                  IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
693                                         &(q->id.src_ip6)) &&
694                                  IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
695                                         &(q->id.dst_ip6))) ||
696                                 (!is_v6 &&
697                                  pkt->src_ip == q->id.src_ip &&
698                                  pkt->dst_ip == q->id.dst_ip)
699                             )
700                         ) {
701                                 q->expire = time_uptime + V_dyn_short_lifetime;
702                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
703                                 return q;
704                         }
705         }
706         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
707 }
708
709 /**
710  * Install dynamic state for rule type cmd->o.opcode
711  *
712  * Returns 1 (failure) if state is not installed because of errors or because
713  * session limitations are enforced.
714  */
715 int
716 ipfw_install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
717     struct ip_fw_args *args, uint32_t tablearg)
718 {
719         static int last_log;
720         ipfw_dyn_rule *q;
721         struct in_addr da;
722 #ifdef INET6
723         char src[INET6_ADDRSTRLEN + 2], dst[INET6_ADDRSTRLEN + 2];
724 #else
725         char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
726 #endif
727
728         src[0] = '\0';
729         dst[0] = '\0';
730
731         IPFW_DYN_LOCK();
732
733         DEB(
734 #ifdef INET6
735         if (IS_IP6_FLOW_ID(&(args->f_id))) {
736                 ip6_sprintf(src, &args->f_id.src_ip6);
737                 ip6_sprintf(dst, &args->f_id.dst_ip6);
738         } else
739 #endif
740         {
741                 da.s_addr = htonl(args->f_id.src_ip);
742                 inet_ntoa_r(da, src);
743                 da.s_addr = htonl(args->f_id.dst_ip);
744                 inet_ntoa_r(da, dst);
745         }
746         printf("ipfw: %s: type %d %s %u -> %s %u\n",
747             __func__, cmd->o.opcode, src, args->f_id.src_port,
748             dst, args->f_id.dst_port);
749         src[0] = '\0';
750         dst[0] = '\0';
751         )
752
753         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
754
755         if (q != NULL) {        /* should never occur */
756                 if (last_log != time_uptime) {
757                         last_log = time_uptime;
758                         printf("ipfw: %s: entry already present, done\n",
759                             __func__);
760                 }
761                 IPFW_DYN_UNLOCK();
762                 return (0);
763         }
764
765         if (V_dyn_count >= V_dyn_max)
766                 /* Run out of slots, try to remove any expired rule. */
767                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
768
769         if (V_dyn_count >= V_dyn_max) {
770                 if (last_log != time_uptime) {
771                         last_log = time_uptime;
772                         printf("ipfw: %s: Too many dynamic rules\n", __func__);
773                 }
774                 IPFW_DYN_UNLOCK();
775                 return (1);     /* cannot install, notify caller */
776         }
777
778         switch (cmd->o.opcode) {
779         case O_KEEP_STATE:      /* bidir rule */
780                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
781                 break;
782
783         case O_LIMIT: {         /* limit number of sessions */
784                 struct ipfw_flow_id id;
785                 ipfw_dyn_rule *parent;
786                 uint32_t conn_limit;
787                 uint16_t limit_mask = cmd->limit_mask;
788
789                 conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
790                     tablearg : cmd->conn_limit;
791                   
792                 DEB(
793                 if (cmd->conn_limit == IP_FW_TABLEARG)
794                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
795                             "(tablearg)\n", __func__, conn_limit);
796                 else
797                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
798                             __func__, conn_limit);
799                 )
800
801                 id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
802                 id.proto = args->f_id.proto;
803                 id.addr_type = args->f_id.addr_type;
804                 id.fib = M_GETFIB(args->m);
805
806                 if (IS_IP6_FLOW_ID (&(args->f_id))) {
807                         if (limit_mask & DYN_SRC_ADDR)
808                                 id.src_ip6 = args->f_id.src_ip6;
809                         if (limit_mask & DYN_DST_ADDR)
810                                 id.dst_ip6 = args->f_id.dst_ip6;
811                 } else {
812                         if (limit_mask & DYN_SRC_ADDR)
813                                 id.src_ip = args->f_id.src_ip;
814                         if (limit_mask & DYN_DST_ADDR)
815                                 id.dst_ip = args->f_id.dst_ip;
816                 }
817                 if (limit_mask & DYN_SRC_PORT)
818                         id.src_port = args->f_id.src_port;
819                 if (limit_mask & DYN_DST_PORT)
820                         id.dst_port = args->f_id.dst_port;
821                 if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
822                         printf("ipfw: %s: add parent failed\n", __func__);
823                         IPFW_DYN_UNLOCK();
824                         return (1);
825                 }
826
827                 if (parent->count >= conn_limit) {
828                         /* See if we can remove some expired rule. */
829                         remove_dyn_rule(rule, parent);
830                         if (parent->count >= conn_limit) {
831                                 if (V_fw_verbose && last_log != time_uptime) {
832                                         last_log = time_uptime;
833 #ifdef INET6
834                                         /*
835                                          * XXX IPv6 flows are not
836                                          * supported yet.
837                                          */
838                                         if (IS_IP6_FLOW_ID(&(args->f_id))) {
839                                                 char ip6buf[INET6_ADDRSTRLEN];
840                                                 snprintf(src, sizeof(src),
841                                                     "[%s]", ip6_sprintf(ip6buf,
842                                                         &args->f_id.src_ip6));
843                                                 snprintf(dst, sizeof(dst),
844                                                     "[%s]", ip6_sprintf(ip6buf,
845                                                         &args->f_id.dst_ip6));
846                                         } else
847 #endif
848                                         {
849                                                 da.s_addr =
850                                                     htonl(args->f_id.src_ip);
851                                                 inet_ntoa_r(da, src);
852                                                 da.s_addr =
853                                                     htonl(args->f_id.dst_ip);
854                                                 inet_ntoa_r(da, dst);
855                                         }
856                                         log(LOG_SECURITY | LOG_DEBUG,
857                                             "ipfw: %d %s %s:%u -> %s:%u, %s\n",
858                                             parent->rule->rulenum,
859                                             "drop session",
860                                             src, (args->f_id.src_port),
861                                             dst, (args->f_id.dst_port),
862                                             "too many entries");
863                                 }
864                                 IPFW_DYN_UNLOCK();
865                                 return (1);
866                         }
867                 }
868                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
869                 break;
870         }
871         default:
872                 printf("ipfw: %s: unknown dynamic rule type %u\n",
873                     __func__, cmd->o.opcode);
874                 IPFW_DYN_UNLOCK();
875                 return (1);
876         }
877
878         /* XXX just set lifetime */
879         lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
880
881         IPFW_DYN_UNLOCK();
882         return (0);
883 }
884
885 /*
886  * Generate a TCP packet, containing either a RST or a keepalive.
887  * When flags & TH_RST, we are sending a RST packet, because of a
888  * "reset" action matched the packet.
889  * Otherwise we are sending a keepalive, and flags & TH_
890  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
891  * so that MAC can label the reply appropriately.
892  */
893 struct mbuf *
894 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
895     u_int32_t ack, int flags)
896 {
897         struct mbuf *m = NULL;          /* stupid compiler */
898         int len, dir;
899         struct ip *h = NULL;            /* stupid compiler */
900 #ifdef INET6
901         struct ip6_hdr *h6 = NULL;
902 #endif
903         struct tcphdr *th = NULL;
904
905         MGETHDR(m, M_DONTWAIT, MT_DATA);
906         if (m == NULL)
907                 return (NULL);
908
909         M_SETFIB(m, id->fib);
910 #ifdef MAC
911         if (replyto != NULL)
912                 mac_netinet_firewall_reply(replyto, m);
913         else
914                 mac_netinet_firewall_send(m);
915 #else
916         (void)replyto;          /* don't warn about unused arg */
917 #endif
918
919         switch (id->addr_type) {
920         case 4:
921                 len = sizeof(struct ip) + sizeof(struct tcphdr);
922                 break;
923 #ifdef INET6
924         case 6:
925                 len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
926                 break;
927 #endif
928         default:
929                 /* XXX: log me?!? */
930                 FREE_PKT(m);
931                 return (NULL);
932         }
933         dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
934
935         m->m_data += max_linkhdr;
936         m->m_flags |= M_SKIP_FIREWALL;
937         m->m_pkthdr.len = m->m_len = len;
938         m->m_pkthdr.rcvif = NULL;
939         bzero(m->m_data, len);
940
941         switch (id->addr_type) {
942         case 4:
943                 h = mtod(m, struct ip *);
944
945                 /* prepare for checksum */
946                 h->ip_p = IPPROTO_TCP;
947                 h->ip_len = htons(sizeof(struct tcphdr));
948                 if (dir) {
949                         h->ip_src.s_addr = htonl(id->src_ip);
950                         h->ip_dst.s_addr = htonl(id->dst_ip);
951                 } else {
952                         h->ip_src.s_addr = htonl(id->dst_ip);
953                         h->ip_dst.s_addr = htonl(id->src_ip);
954                 }
955
956                 th = (struct tcphdr *)(h + 1);
957                 break;
958 #ifdef INET6
959         case 6:
960                 h6 = mtod(m, struct ip6_hdr *);
961
962                 /* prepare for checksum */
963                 h6->ip6_nxt = IPPROTO_TCP;
964                 h6->ip6_plen = htons(sizeof(struct tcphdr));
965                 if (dir) {
966                         h6->ip6_src = id->src_ip6;
967                         h6->ip6_dst = id->dst_ip6;
968                 } else {
969                         h6->ip6_src = id->dst_ip6;
970                         h6->ip6_dst = id->src_ip6;
971                 }
972
973                 th = (struct tcphdr *)(h6 + 1);
974                 break;
975 #endif
976         }
977
978         if (dir) {
979                 th->th_sport = htons(id->src_port);
980                 th->th_dport = htons(id->dst_port);
981         } else {
982                 th->th_sport = htons(id->dst_port);
983                 th->th_dport = htons(id->src_port);
984         }
985         th->th_off = sizeof(struct tcphdr) >> 2;
986
987         if (flags & TH_RST) {
988                 if (flags & TH_ACK) {
989                         th->th_seq = htonl(ack);
990                         th->th_flags = TH_RST;
991                 } else {
992                         if (flags & TH_SYN)
993                                 seq++;
994                         th->th_ack = htonl(seq);
995                         th->th_flags = TH_RST | TH_ACK;
996                 }
997         } else {
998                 /*
999                  * Keepalive - use caller provided sequence numbers
1000                  */
1001                 th->th_seq = htonl(seq);
1002                 th->th_ack = htonl(ack);
1003                 th->th_flags = TH_ACK;
1004         }
1005
1006         switch (id->addr_type) {
1007         case 4:
1008                 th->th_sum = in_cksum(m, len);
1009
1010                 /* finish the ip header */
1011                 h->ip_v = 4;
1012                 h->ip_hl = sizeof(*h) >> 2;
1013                 h->ip_tos = IPTOS_LOWDELAY;
1014                 h->ip_off = 0;
1015                 /* ip_len must be in host format for ip_output */
1016                 h->ip_len = len;
1017                 h->ip_ttl = V_ip_defttl;
1018                 h->ip_sum = 0;
1019                 break;
1020 #ifdef INET6
1021         case 6:
1022                 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
1023                     sizeof(struct tcphdr));
1024
1025                 /* finish the ip6 header */
1026                 h6->ip6_vfc |= IPV6_VERSION;
1027                 h6->ip6_hlim = IPV6_DEFHLIM;
1028                 break;
1029 #endif
1030         }
1031
1032         return (m);
1033 }
1034
1035 /*
1036  * This procedure is only used to handle keepalives. It is invoked
1037  * every dyn_keepalive_period
1038  */
1039  /* dummynet() and ipfw_tick() can't be static in windows */
1040 void
1041 ipfw_tick(void * vnetx) 
1042 {
1043         struct mbuf *m0, *m, *mnext, **mtailp;
1044 #ifdef INET6
1045         struct mbuf *m6, **m6_tailp;
1046 #endif
1047         int i;
1048         ipfw_dyn_rule *q;
1049 #ifdef VIMAGE
1050         struct vnet *vp = vnetx;
1051 #endif
1052
1053         CURVNET_SET(vp);
1054         if (V_dyn_keepalive == 0 || V_ipfw_dyn_v == NULL || V_dyn_count == 0)
1055                 goto done;
1056
1057         /*
1058          * We make a chain of packets to go out here -- not deferring
1059          * until after we drop the IPFW dynamic rule lock would result
1060          * in a lock order reversal with the normal packet input -> ipfw
1061          * call stack.
1062          */
1063         m0 = NULL;
1064         mtailp = &m0;
1065 #ifdef INET6
1066         m6 = NULL;
1067         m6_tailp = &m6;
1068 #endif
1069         IPFW_DYN_LOCK();
1070         for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1071                 for (q = V_ipfw_dyn_v[i] ; q ; q = q->next ) {
1072                         if (q->dyn_type == O_LIMIT_PARENT)
1073                                 continue;
1074                         if (q->id.proto != IPPROTO_TCP)
1075                                 continue;
1076                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
1077                                 continue;
1078                         if (TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
1079                             q->expire))
1080                                 continue;       /* too early */
1081                         if (TIME_LEQ(q->expire, time_uptime))
1082                                 continue;       /* too late, rule expired */
1083
1084                         m = ipfw_send_pkt(NULL, &(q->id), q->ack_rev - 1,
1085                                 q->ack_fwd, TH_SYN);
1086                         mnext = ipfw_send_pkt(NULL, &(q->id), q->ack_fwd - 1,
1087                                 q->ack_rev, 0);
1088
1089                         switch (q->id.addr_type) {
1090                         case 4:
1091                                 if (m != NULL) {
1092                                         *mtailp = m;
1093                                         mtailp = &(*mtailp)->m_nextpkt;
1094                                 }
1095                                 if (mnext != NULL) {
1096                                         *mtailp = mnext;
1097                                         mtailp = &(*mtailp)->m_nextpkt;
1098                                 }
1099                                 break;
1100 #ifdef INET6
1101                         case 6:
1102                                 if (m != NULL) {
1103                                         *m6_tailp = m;
1104                                         m6_tailp = &(*m6_tailp)->m_nextpkt;
1105                                 }
1106                                 if (mnext != NULL) {
1107                                         *m6_tailp = mnext;
1108                                         m6_tailp = &(*m6_tailp)->m_nextpkt;
1109                                 }
1110                                 break;
1111 #endif
1112                         }
1113
1114                         m = mnext = NULL;
1115                 }
1116         }
1117         IPFW_DYN_UNLOCK();
1118         for (m = mnext = m0; m != NULL; m = mnext) {
1119                 mnext = m->m_nextpkt;
1120                 m->m_nextpkt = NULL;
1121                 ip_output(m, NULL, NULL, 0, NULL, NULL);
1122         }
1123 #ifdef INET6
1124         for (m = mnext = m6; m != NULL; m = mnext) {
1125                 mnext = m->m_nextpkt;
1126                 m->m_nextpkt = NULL;
1127                 ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1128         }
1129 #endif
1130 done:
1131         callout_reset_on(&V_ipfw_timeout, V_dyn_keepalive_period * hz,
1132                       ipfw_tick, vnetx, 0);
1133         CURVNET_RESTORE();
1134 }
1135
1136 void
1137 ipfw_dyn_attach(void)
1138 {
1139         ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
1140             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
1141             UMA_ALIGN_PTR, 0);
1142
1143         IPFW_DYN_LOCK_INIT();
1144 }
1145
1146 void
1147 ipfw_dyn_detach(void)
1148 {
1149         uma_zdestroy(ipfw_dyn_rule_zone);
1150         IPFW_DYN_LOCK_DESTROY();
1151 }
1152
1153 void
1154 ipfw_dyn_init(void)
1155 {
1156         V_ipfw_dyn_v = NULL;
1157         V_dyn_buckets = 256;    /* must be power of 2 */
1158         V_curr_dyn_buckets = 256; /* must be power of 2 */
1159  
1160         V_dyn_ack_lifetime = 300;
1161         V_dyn_syn_lifetime = 20;
1162         V_dyn_fin_lifetime = 1;
1163         V_dyn_rst_lifetime = 1;
1164         V_dyn_udp_lifetime = 10;
1165         V_dyn_short_lifetime = 5;
1166
1167         V_dyn_keepalive_interval = 20;
1168         V_dyn_keepalive_period = 5;
1169         V_dyn_keepalive = 1;    /* do send keepalives */
1170         
1171         V_dyn_max = 4096;       /* max # of dynamic rules */
1172         callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
1173         callout_reset_on(&V_ipfw_timeout, hz, ipfw_tick, curvnet, 0);
1174 }
1175
1176 void
1177 ipfw_dyn_uninit(int pass)
1178 {
1179         if (pass == 0)
1180                 callout_drain(&V_ipfw_timeout);
1181         else {
1182                 if (V_ipfw_dyn_v != NULL)
1183                         free(V_ipfw_dyn_v, M_IPFW);
1184         }
1185 }
1186
1187 int
1188 ipfw_dyn_len(void)
1189 {
1190         return (V_ipfw_dyn_v == NULL) ? 0 :
1191                 (V_dyn_count * sizeof(ipfw_dyn_rule));
1192 }
1193
1194 void
1195 ipfw_get_dynamic(char **pbp, const char *ep)
1196 {
1197         ipfw_dyn_rule *p, *last = NULL;
1198         char *bp;
1199         int i;
1200
1201         if (V_ipfw_dyn_v == NULL)
1202                 return;
1203         bp = *pbp;
1204
1205         IPFW_DYN_LOCK();
1206         for (i = 0 ; i < V_curr_dyn_buckets; i++)
1207                 for (p = V_ipfw_dyn_v[i] ; p != NULL; p = p->next) {
1208                         if (bp + sizeof *p <= ep) {
1209                                 ipfw_dyn_rule *dst =
1210                                         (ipfw_dyn_rule *)bp;
1211                                 bcopy(p, dst, sizeof *p);
1212                                 bcopy(&(p->rule->rulenum), &(dst->rule),
1213                                     sizeof(p->rule->rulenum));
1214                                 /*
1215                                  * store set number into high word of
1216                                  * dst->rule pointer.
1217                                  */
1218                                 bcopy(&(p->rule->set),
1219                                     (char *)&dst->rule +
1220                                     sizeof(p->rule->rulenum),
1221                                     sizeof(p->rule->set));
1222                                 /*
1223                                  * store a non-null value in "next".
1224                                  * The userland code will interpret a
1225                                  * NULL here as a marker
1226                                  * for the last dynamic rule.
1227                                  */
1228                                 bcopy(&dst, &dst->next, sizeof(dst));
1229                                 last = dst;
1230                                 dst->expire =
1231                                     TIME_LEQ(dst->expire, time_uptime) ?
1232                                         0 : dst->expire - time_uptime ;
1233                                 bp += sizeof(ipfw_dyn_rule);
1234                         }
1235                 }
1236         IPFW_DYN_UNLOCK();
1237         if (last != NULL) /* mark last dynamic rule */
1238                 bzero(&last->next, sizeof(last));
1239         *pbp = bp;
1240 }
1241 /* end of file */