07fd6ad98ad5f50e2382b99ab1e273d77f87ac05
[linux-2.6.git] / arch / ppc64 / mm / hugetlbpage.c
1 /*
2  * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  *
6  * Based on the IA-32 version:
7  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8  */
9
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/smp_lock.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/sysctl.h>
19 #include <asm/mman.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlb.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/machdep.h>
25 #include <asm/cputable.h>
26 #include <asm/tlb.h>
27
28 #include <linux/sysctl.h>
29
30 #define HUGEPGDIR_SHIFT         (HPAGE_SHIFT + PAGE_SHIFT - 3)
31 #define HUGEPGDIR_SIZE          (1UL << HUGEPGDIR_SHIFT)
32 #define HUGEPGDIR_MASK          (~(HUGEPGDIR_SIZE-1))
33
34 #define HUGEPTE_INDEX_SIZE      9
35 #define HUGEPGD_INDEX_SIZE      10
36
37 #define PTRS_PER_HUGEPTE        (1 << HUGEPTE_INDEX_SIZE)
38 #define PTRS_PER_HUGEPGD        (1 << HUGEPGD_INDEX_SIZE)
39
40 static inline int hugepgd_index(unsigned long addr)
41 {
42         return (addr & ~REGION_MASK) >> HUGEPGDIR_SHIFT;
43 }
44
45 static pgd_t *hugepgd_offset(struct mm_struct *mm, unsigned long addr)
46 {
47         int index;
48
49         if (! mm->context.huge_pgdir)
50                 return NULL;
51
52
53         index = hugepgd_index(addr);
54         BUG_ON(index >= PTRS_PER_HUGEPGD);
55         return mm->context.huge_pgdir + index;
56 }
57
58 static inline pte_t *hugepte_offset(pgd_t *dir, unsigned long addr)
59 {
60         int index;
61
62         if (pgd_none(*dir))
63                 return NULL;
64
65         index = (addr >> HPAGE_SHIFT) % PTRS_PER_HUGEPTE;
66         return (pte_t *)pgd_page(*dir) + index;
67 }
68
69 static pgd_t *hugepgd_alloc(struct mm_struct *mm, unsigned long addr)
70 {
71         BUG_ON(! in_hugepage_area(mm->context, addr));
72
73         if (! mm->context.huge_pgdir) {
74                 pgd_t *new;
75                 spin_unlock(&mm->page_table_lock);
76                 /* Don't use pgd_alloc(), because we want __GFP_REPEAT */
77                 new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
78                 BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
79                 spin_lock(&mm->page_table_lock);
80
81                 /*
82                  * Because we dropped the lock, we should re-check the
83                  * entry, as somebody else could have populated it..
84                  */
85                 if (mm->context.huge_pgdir)
86                         pgd_free(new);
87                 else
88                         mm->context.huge_pgdir = new;
89         }
90         return hugepgd_offset(mm, addr);
91 }
92
93 static pte_t *hugepte_alloc(struct mm_struct *mm, pgd_t *dir,
94                             unsigned long addr)
95 {
96         if (! pgd_present(*dir)) {
97                 pte_t *new;
98
99                 spin_unlock(&mm->page_table_lock);
100                 new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
101                 BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
102                 spin_lock(&mm->page_table_lock);
103                 /*
104                  * Because we dropped the lock, we should re-check the
105                  * entry, as somebody else could have populated it..
106                  */
107                 if (pgd_present(*dir)) {
108                         if (new)
109                                 kmem_cache_free(zero_cache, new);
110                 } else {
111                         struct page *ptepage;
112
113                         if (! new)
114                                 return NULL;
115                         ptepage = virt_to_page(new);
116                         ptepage->mapping = (void *) mm;
117                         ptepage->index = addr & HUGEPGDIR_MASK;
118                         pgd_populate(mm, dir, new);
119                 }
120         }
121
122         return hugepte_offset(dir, addr);
123 }
124
125 static pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
126 {
127         pgd_t *pgd;
128
129         BUG_ON(! in_hugepage_area(mm->context, addr));
130
131         pgd = hugepgd_offset(mm, addr);
132         if (! pgd)
133                 return NULL;
134
135         return hugepte_offset(pgd, addr);
136 }
137
138 static pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
139 {
140         pgd_t *pgd;
141
142         BUG_ON(! in_hugepage_area(mm->context, addr));
143
144         pgd = hugepgd_alloc(mm, addr);
145         if (! pgd)
146                 return NULL;
147
148         return hugepte_alloc(mm, pgd, addr);
149 }
150
151 static void set_huge_pte(struct mm_struct *mm, struct vm_area_struct *vma,
152                          struct page *page, pte_t *ptep, int write_access)
153 {
154         pte_t entry;
155
156         // mm->rss += (HPAGE_SIZE / PAGE_SIZE);
157         vx_rsspages_add(mm, HPAGE_SIZE / PAGE_SIZE);
158         if (write_access) {
159                 entry =
160                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
161         } else {
162                 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
163         }
164         entry = pte_mkyoung(entry);
165         entry = pte_mkhuge(entry);
166
167         set_pte(ptep, entry);
168 }
169
170 /*
171  * This function checks for proper alignment of input addr and len parameters.
172  */
173 int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
174 {
175         if (len & ~HPAGE_MASK)
176                 return -EINVAL;
177         if (addr & ~HPAGE_MASK)
178                 return -EINVAL;
179         if (! (within_hugepage_low_range(addr, len)
180                || within_hugepage_high_range(addr, len)) )
181                 return -EINVAL;
182         return 0;
183 }
184
185 static void flush_segments(void *parm)
186 {
187         u16 segs = (unsigned long) parm;
188         unsigned long i;
189
190         asm volatile("isync" : : : "memory");
191
192         for (i = 0; i < 16; i++) {
193                 if (! (segs & (1U << i)))
194                         continue;
195                 asm volatile("slbie %0" : : "r" (i << SID_SHIFT));
196         }
197
198         asm volatile("isync" : : : "memory");
199 }
200
201 static int prepare_low_seg_for_htlb(struct mm_struct *mm, unsigned long seg)
202 {
203         unsigned long start = seg << SID_SHIFT;
204         unsigned long end = (seg+1) << SID_SHIFT;
205         struct vm_area_struct *vma;
206         unsigned long addr;
207         struct mmu_gather *tlb;
208
209         BUG_ON(seg >= 16);
210
211         /* Check no VMAs are in the region */
212         vma = find_vma(mm, start);
213         if (vma && (vma->vm_start < end))
214                 return -EBUSY;
215
216         /* Clean up any leftover PTE pages in the region */
217         spin_lock(&mm->page_table_lock);
218         tlb = tlb_gather_mmu(mm, 0);
219         for (addr = start; addr < end; addr += PMD_SIZE) {
220                 pgd_t *pgd = pgd_offset(mm, addr);
221                 pmd_t *pmd;
222                 struct page *page;
223                 pte_t *pte;
224                 int i;
225
226                 if (pgd_none(*pgd))
227                         continue;
228                 pmd = pmd_offset(pgd, addr);
229                 if (!pmd || pmd_none(*pmd))
230                         continue;
231                 if (pmd_bad(*pmd)) {
232                         pmd_ERROR(*pmd);
233                         pmd_clear(pmd);
234                         continue;
235                 }
236                 pte = (pte_t *)pmd_page_kernel(*pmd);
237                 /* No VMAs, so there should be no PTEs, check just in case. */
238                 for (i = 0; i < PTRS_PER_PTE; i++) {
239                         BUG_ON(!pte_none(*pte));
240                         pte++;
241                 }
242                 page = pmd_page(*pmd);
243                 pmd_clear(pmd);
244                 mm->nr_ptes--;
245                 dec_page_state(nr_page_table_pages);
246                 pte_free_tlb(tlb, page);
247         }
248         tlb_finish_mmu(tlb, start, end);
249         spin_unlock(&mm->page_table_lock);
250
251         return 0;
252 }
253
254 static int open_low_hpage_segs(struct mm_struct *mm, u16 newsegs)
255 {
256         unsigned long i;
257
258         newsegs &= ~(mm->context.htlb_segs);
259         if (! newsegs)
260                 return 0; /* The segments we want are already open */
261
262         for (i = 0; i < 16; i++)
263                 if ((1 << i) & newsegs)
264                         if (prepare_low_seg_for_htlb(mm, i) != 0)
265                                 return -EBUSY;
266
267         mm->context.htlb_segs |= newsegs;
268
269         /* update the paca copy of the context struct */
270         get_paca()->context = mm->context;
271
272         /* the context change must make it to memory before the flush,
273          * so that further SLB misses do the right thing. */
274         mb();
275         on_each_cpu(flush_segments, (void *)(unsigned long)newsegs, 0, 1);
276
277         return 0;
278 }
279
280 int prepare_hugepage_range(unsigned long addr, unsigned long len)
281 {
282         if (within_hugepage_high_range(addr, len))
283                 return 0;
284         else if ((addr < 0x100000000UL) && ((addr+len) < 0x100000000UL)) {
285                 int err;
286                 /* Yes, we need both tests, in case addr+len overflows
287                  * 64-bit arithmetic */
288                 err = open_low_hpage_segs(current->mm,
289                                           LOW_ESID_MASK(addr, len));
290                 if (err)
291                         printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
292                                " failed (segs: 0x%04hx)\n", addr, len,
293                                LOW_ESID_MASK(addr, len));
294                 return err;
295         }
296
297         return -EINVAL;
298 }
299
300 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
301                         struct vm_area_struct *vma)
302 {
303         pte_t *src_pte, *dst_pte, entry;
304         struct page *ptepage;
305         unsigned long addr = vma->vm_start;
306         unsigned long end = vma->vm_end;
307         int err = -ENOMEM;
308
309         while (addr < end) {
310                 dst_pte = huge_pte_alloc(dst, addr);
311                 if (!dst_pte)
312                         goto out;
313
314                 src_pte = huge_pte_offset(src, addr);
315                 entry = *src_pte;
316                 
317                 ptepage = pte_page(entry);
318                 get_page(ptepage);
319                 // dst->rss += (HPAGE_SIZE / PAGE_SIZE);
320                 vx_rsspages_add(dst, HPAGE_SIZE / PAGE_SIZE);
321                 set_pte(dst_pte, entry);
322
323                 addr += HPAGE_SIZE;
324         }
325
326         err = 0;
327  out:
328         return err;
329 }
330
331 int
332 follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
333                     struct page **pages, struct vm_area_struct **vmas,
334                     unsigned long *position, int *length, int i)
335 {
336         unsigned long vpfn, vaddr = *position;
337         int remainder = *length;
338
339         WARN_ON(!is_vm_hugetlb_page(vma));
340
341         vpfn = vaddr/PAGE_SIZE;
342         while (vaddr < vma->vm_end && remainder) {
343                 if (pages) {
344                         pte_t *pte;
345                         struct page *page;
346
347                         pte = huge_pte_offset(mm, vaddr);
348
349                         /* hugetlb should be locked, and hence, prefaulted */
350                         WARN_ON(!pte || pte_none(*pte));
351
352                         page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
353
354                         WARN_ON(!PageCompound(page));
355
356                         get_page(page);
357                         pages[i] = page;
358                 }
359
360                 if (vmas)
361                         vmas[i] = vma;
362
363                 vaddr += PAGE_SIZE;
364                 ++vpfn;
365                 --remainder;
366                 ++i;
367         }
368
369         *length = remainder;
370         *position = vaddr;
371
372         return i;
373 }
374
375 struct page *
376 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
377 {
378         pte_t *ptep;
379         struct page *page;
380
381         if (! in_hugepage_area(mm->context, address))
382                 return ERR_PTR(-EINVAL);
383
384         ptep = huge_pte_offset(mm, address);
385         page = pte_page(*ptep);
386         if (page)
387                 page += (address % HPAGE_SIZE) / PAGE_SIZE;
388
389         return page;
390 }
391
392 int pmd_huge(pmd_t pmd)
393 {
394         return 0;
395 }
396
397 struct page *
398 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
399                 pmd_t *pmd, int write)
400 {
401         BUG();
402         return NULL;
403 }
404
405 void unmap_hugepage_range(struct vm_area_struct *vma,
406                           unsigned long start, unsigned long end)
407 {
408         struct mm_struct *mm = vma->vm_mm;
409         unsigned long addr;
410         pte_t *ptep;
411         struct page *page;
412
413         WARN_ON(!is_vm_hugetlb_page(vma));
414         BUG_ON((start % HPAGE_SIZE) != 0);
415         BUG_ON((end % HPAGE_SIZE) != 0);
416
417         for (addr = start; addr < end; addr += HPAGE_SIZE) {
418                 pte_t pte;
419
420                 ptep = huge_pte_offset(mm, addr);
421                 if (!ptep || pte_none(*ptep))
422                         continue;
423
424                 pte = *ptep;
425                 page = pte_page(pte);
426                 pte_clear(ptep);
427
428                 put_page(page);
429         }
430         // mm->rss -= (end - start) >> PAGE_SHIFT;
431         vx_rsspages_sub(mm, (end - start) >> PAGE_SHIFT);
432         flush_tlb_pending();
433 }
434
435 void hugetlb_free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *prev,
436                            unsigned long start, unsigned long end)
437 {
438         /* Because the huge pgtables are only 2 level, they can take
439          * at most around 4M, much less than one hugepage which the
440          * process is presumably entitled to use.  So we don't bother
441          * freeing up the pagetables on unmap, and wait until
442          * destroy_context() to clean up the lot. */
443 }
444
445 int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
446 {
447         struct mm_struct *mm = current->mm;
448         unsigned long addr;
449         int ret = 0;
450
451         WARN_ON(!is_vm_hugetlb_page(vma));
452         BUG_ON((vma->vm_start % HPAGE_SIZE) != 0);
453         BUG_ON((vma->vm_end % HPAGE_SIZE) != 0);
454
455         spin_lock(&mm->page_table_lock);
456         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
457                 unsigned long idx;
458                 pte_t *pte = huge_pte_alloc(mm, addr);
459                 struct page *page;
460
461                 if (!pte) {
462                         ret = -ENOMEM;
463                         goto out;
464                 }
465                 if (! pte_none(*pte))
466                         continue;
467
468                 idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
469                         + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
470                 page = find_get_page(mapping, idx);
471                 if (!page) {
472                         /* charge the fs quota first */
473                         if (hugetlb_get_quota(mapping)) {
474                                 ret = -ENOMEM;
475                                 goto out;
476                         }
477                         page = alloc_huge_page();
478                         if (!page) {
479                                 hugetlb_put_quota(mapping);
480                                 ret = -ENOMEM;
481                                 goto out;
482                         }
483                         ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
484                         if (! ret) {
485                                 unlock_page(page);
486                         } else {
487                                 hugetlb_put_quota(mapping);
488                                 free_huge_page(page);
489                                 goto out;
490                         }
491                 }
492                 set_huge_pte(mm, vma, page, pte, vma->vm_flags & VM_WRITE);
493         }
494 out:
495         spin_unlock(&mm->page_table_lock);
496         return ret;
497 }
498
499 /* Because we have an exclusive hugepage region which lies within the
500  * normal user address space, we have to take special measures to make
501  * non-huge mmap()s evade the hugepage reserved regions. */
502 unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
503                                      unsigned long len, unsigned long pgoff,
504                                      unsigned long flags)
505 {
506         struct mm_struct *mm = current->mm;
507         struct vm_area_struct *vma;
508         unsigned long start_addr;
509
510         if (len > TASK_SIZE)
511                 return -ENOMEM;
512
513         if (addr) {
514                 addr = PAGE_ALIGN(addr);
515                 vma = find_vma(mm, addr);
516                 if (((TASK_SIZE - len) >= addr)
517                     && (!vma || (addr+len) <= vma->vm_start)
518                     && !is_hugepage_only_range(addr,len))
519                         return addr;
520         }
521         start_addr = addr = mm->free_area_cache;
522
523 full_search:
524         vma = find_vma(mm, addr);
525         while (TASK_SIZE - len >= addr) {
526                 BUG_ON(vma && (addr >= vma->vm_end));
527
528                 if (touches_hugepage_low_range(addr, len)) {
529                         addr = ALIGN(addr+1, 1<<SID_SHIFT);
530                         vma = find_vma(mm, addr);
531                         continue;
532                 }
533                 if (touches_hugepage_high_range(addr, len)) {
534                         addr = TASK_HPAGE_END;
535                         vma = find_vma(mm, addr);
536                         continue;
537                 }
538                 if (!vma || addr + len <= vma->vm_start) {
539                         /*
540                          * Remember the place where we stopped the search:
541                          */
542                         mm->free_area_cache = addr + len;
543                         return addr;
544                 }
545                 addr = vma->vm_end;
546                 vma = vma->vm_next;
547         }
548
549         /* Make sure we didn't miss any holes */
550         if (start_addr != TASK_UNMAPPED_BASE) {
551                 start_addr = addr = TASK_UNMAPPED_BASE;
552                 goto full_search;
553         }
554         return -ENOMEM;
555 }
556
557 /*
558  * This mmap-allocator allocates new areas top-down from below the
559  * stack's low limit (the base):
560  *
561  * Because we have an exclusive hugepage region which lies within the
562  * normal user address space, we have to take special measures to make
563  * non-huge mmap()s evade the hugepage reserved regions.
564  */
565 unsigned long
566 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
567                           const unsigned long len, const unsigned long pgoff,
568                           const unsigned long flags)
569 {
570         struct vm_area_struct *vma, *prev_vma;
571         struct mm_struct *mm = current->mm;
572         unsigned long base = mm->mmap_base, addr = addr0;
573         int first_time = 1;
574
575         /* requested length too big for entire address space */
576         if (len > TASK_SIZE)
577                 return -ENOMEM;
578
579         /* dont allow allocations above current base */
580         if (mm->free_area_cache > base)
581                 mm->free_area_cache = base;
582
583         /* requesting a specific address */
584         if (addr) {
585                 addr = PAGE_ALIGN(addr);
586                 vma = find_vma(mm, addr);
587                 if (TASK_SIZE - len >= addr &&
588                                 (!vma || addr + len <= vma->vm_start)
589                                 && !is_hugepage_only_range(addr,len))
590                         return addr;
591         }
592
593 try_again:
594         /* make sure it can fit in the remaining address space */
595         if (mm->free_area_cache < len)
596                 goto fail;
597
598         /* either no address requested or cant fit in requested address hole */
599         addr = (mm->free_area_cache - len) & PAGE_MASK;
600         do {
601 hugepage_recheck:
602                 if (touches_hugepage_low_range(addr, len)) {
603                         addr = (addr & ((~0) << SID_SHIFT)) - len;
604                         goto hugepage_recheck;
605                 } else if (touches_hugepage_high_range(addr, len)) {
606                         addr = TASK_HPAGE_BASE - len;
607                 }
608
609                 /*
610                  * Lookup failure means no vma is above this address,
611                  * i.e. return with success:
612                  */
613                 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
614                         return addr;
615
616                 /*
617                  * new region fits between prev_vma->vm_end and
618                  * vma->vm_start, use it:
619                  */
620                 if (addr+len <= vma->vm_start &&
621                                 (!prev_vma || (addr >= prev_vma->vm_end)))
622                         /* remember the address as a hint for next time */
623                         return (mm->free_area_cache = addr);
624                 else
625                         /* pull free_area_cache down to the first hole */
626                         if (mm->free_area_cache == vma->vm_end)
627                                 mm->free_area_cache = vma->vm_start;
628
629                 /* try just below the current vma->vm_start */
630                 addr = vma->vm_start-len;
631         } while (len <= vma->vm_start);
632
633 fail:
634         /*
635          * if hint left us with no space for the requested
636          * mapping then try again:
637          */
638         if (first_time) {
639                 mm->free_area_cache = base;
640                 first_time = 0;
641                 goto try_again;
642         }
643         /*
644          * A failed mmap() very likely causes application failure,
645          * so fall back to the bottom-up function here. This scenario
646          * can happen with large stack limits and large mmap()
647          * allocations.
648          */
649         mm->free_area_cache = TASK_UNMAPPED_BASE;
650         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
651         /*
652          * Restore the topdown base:
653          */
654         mm->free_area_cache = base;
655
656         return addr;
657 }
658
659 static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
660 {
661         unsigned long addr = 0;
662         struct vm_area_struct *vma;
663
664         vma = find_vma(current->mm, addr);
665         while (addr + len <= 0x100000000UL) {
666                 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
667
668                 if (! __within_hugepage_low_range(addr, len, segmask)) {
669                         addr = ALIGN(addr+1, 1<<SID_SHIFT);
670                         vma = find_vma(current->mm, addr);
671                         continue;
672                 }
673
674                 if (!vma || (addr + len) <= vma->vm_start)
675                         return addr;
676                 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
677                 /* Depending on segmask this might not be a confirmed
678                  * hugepage region, so the ALIGN could have skipped
679                  * some VMAs */
680                 vma = find_vma(current->mm, addr);
681         }
682
683         return -ENOMEM;
684 }
685
686 static unsigned long htlb_get_high_area(unsigned long len)
687 {
688         unsigned long addr = TASK_HPAGE_BASE;
689         struct vm_area_struct *vma;
690
691         vma = find_vma(current->mm, addr);
692         for (vma = find_vma(current->mm, addr);
693              addr + len <= TASK_HPAGE_END;
694              vma = vma->vm_next) {
695                 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
696                 BUG_ON(! within_hugepage_high_range(addr, len));
697
698                 if (!vma || (addr + len) <= vma->vm_start)
699                         return addr;
700                 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
701                 /* Because we're in a hugepage region, this alignment
702                  * should not skip us over any VMAs */
703         }
704
705         return -ENOMEM;
706 }
707
708 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
709                                         unsigned long len, unsigned long pgoff,
710                                         unsigned long flags)
711 {
712         if (len & ~HPAGE_MASK)
713                 return -EINVAL;
714
715         if (!(cur_cpu_spec->cpu_features & CPU_FTR_16M_PAGE))
716                 return -EINVAL;
717
718         if (test_thread_flag(TIF_32BIT)) {
719                 int lastshift = 0;
720                 u16 segmask, cursegs = current->mm->context.htlb_segs;
721
722                 /* First see if we can do the mapping in the existing
723                  * low hpage segments */
724                 addr = htlb_get_low_area(len, cursegs);
725                 if (addr != -ENOMEM)
726                         return addr;
727
728                 for (segmask = LOW_ESID_MASK(0x100000000UL-len, len);
729                      ! lastshift; segmask >>=1) {
730                         if (segmask & 1)
731                                 lastshift = 1;
732
733                         addr = htlb_get_low_area(len, cursegs | segmask);
734                         if ((addr != -ENOMEM)
735                             && open_low_hpage_segs(current->mm, segmask) == 0)
736                                 return addr;
737                 }
738                 printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
739                        " enough segments\n");
740                 return -ENOMEM;
741         } else {
742                 return htlb_get_high_area(len);
743         }
744 }
745
746 void hugetlb_mm_free_pgd(struct mm_struct *mm)
747 {
748         int i;
749         pgd_t *pgdir;
750
751         spin_lock(&mm->page_table_lock);
752
753         pgdir = mm->context.huge_pgdir;
754         if (! pgdir)
755                 goto out;
756
757         mm->context.huge_pgdir = NULL;
758
759         /* cleanup any hugepte pages leftover */
760         for (i = 0; i < PTRS_PER_HUGEPGD; i++) {
761                 pgd_t *pgd = pgdir + i;
762
763                 if (! pgd_none(*pgd)) {
764                         pte_t *pte = (pte_t *)pgd_page(*pgd);
765                         struct page *ptepage = virt_to_page(pte);
766
767                         ptepage->mapping = NULL;
768
769                         BUG_ON(memcmp(pte, empty_zero_page, PAGE_SIZE));
770                         kmem_cache_free(zero_cache, pte);
771                 }
772                 pgd_clear(pgd);
773         }
774
775         BUG_ON(memcmp(pgdir, empty_zero_page, PAGE_SIZE));
776         kmem_cache_free(zero_cache, pgdir);
777
778  out:
779         spin_unlock(&mm->page_table_lock);
780 }
781
782 int hash_huge_page(struct mm_struct *mm, unsigned long access,
783                    unsigned long ea, unsigned long vsid, int local)
784 {
785         pte_t *ptep;
786         unsigned long va, vpn;
787         int is_write;
788         pte_t old_pte, new_pte;
789         unsigned long hpteflags, prpn;
790         long slot;
791         int err = 1;
792
793         spin_lock(&mm->page_table_lock);
794
795         ptep = huge_pte_offset(mm, ea);
796
797         /* Search the Linux page table for a match with va */
798         va = (vsid << 28) | (ea & 0x0fffffff);
799         vpn = va >> HPAGE_SHIFT;
800
801         /*
802          * If no pte found or not present, send the problem up to
803          * do_page_fault
804          */
805         if (unlikely(!ptep || pte_none(*ptep)))
806                 goto out;
807
808 /*      BUG_ON(pte_bad(*ptep)); */
809
810         /* 
811          * Check the user's access rights to the page.  If access should be
812          * prevented then send the problem up to do_page_fault.
813          */
814         is_write = access & _PAGE_RW;
815         if (unlikely(is_write && !(pte_val(*ptep) & _PAGE_RW)))
816                 goto out;
817         /*
818          * At this point, we have a pte (old_pte) which can be used to build
819          * or update an HPTE. There are 2 cases:
820          *
821          * 1. There is a valid (present) pte with no associated HPTE (this is 
822          *      the most common case)
823          * 2. There is a valid (present) pte with an associated HPTE. The
824          *      current values of the pp bits in the HPTE prevent access
825          *      because we are doing software DIRTY bit management and the
826          *      page is currently not DIRTY. 
827          */
828
829
830         old_pte = *ptep;
831         new_pte = old_pte;
832
833         hpteflags = 0x2 | (! (pte_val(new_pte) & _PAGE_RW));
834
835         /* Check if pte already has an hpte (case 2) */
836         if (unlikely(pte_val(old_pte) & _PAGE_HASHPTE)) {
837                 /* There MIGHT be an HPTE for this pte */
838                 unsigned long hash, slot;
839
840                 hash = hpt_hash(vpn, 1);
841                 if (pte_val(old_pte) & _PAGE_SECONDARY)
842                         hash = ~hash;
843                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
844                 slot += (pte_val(old_pte) & _PAGE_GROUP_IX) >> 12;
845
846                 if (ppc_md.hpte_updatepp(slot, hpteflags, va, 1, local) == -1)
847                         pte_val(old_pte) &= ~_PAGE_HPTEFLAGS;
848         }
849
850         if (likely(!(pte_val(old_pte) & _PAGE_HASHPTE))) {
851                 unsigned long hash = hpt_hash(vpn, 1);
852                 unsigned long hpte_group;
853
854                 prpn = pte_pfn(old_pte);
855
856 repeat:
857                 hpte_group = ((hash & htab_hash_mask) *
858                               HPTES_PER_GROUP) & ~0x7UL;
859
860                 /* Update the linux pte with the HPTE slot */
861                 pte_val(new_pte) &= ~_PAGE_HPTEFLAGS;
862                 pte_val(new_pte) |= _PAGE_HASHPTE;
863
864                 /* Add in WIMG bits */
865                 /* XXX We should store these in the pte */
866                 hpteflags |= _PAGE_COHERENT;
867
868                 slot = ppc_md.hpte_insert(hpte_group, va, prpn, 0,
869                                           hpteflags, 0, 1);
870
871                 /* Primary is full, try the secondary */
872                 if (unlikely(slot == -1)) {
873                         pte_val(new_pte) |= _PAGE_SECONDARY;
874                         hpte_group = ((~hash & htab_hash_mask) *
875                                       HPTES_PER_GROUP) & ~0x7UL; 
876                         slot = ppc_md.hpte_insert(hpte_group, va, prpn,
877                                                   1, hpteflags, 0, 1);
878                         if (slot == -1) {
879                                 if (mftb() & 0x1)
880                                         hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
881
882                                 ppc_md.hpte_remove(hpte_group);
883                                 goto repeat;
884                         }
885                 }
886
887                 if (unlikely(slot == -2))
888                         panic("hash_huge_page: pte_insert failed\n");
889
890                 pte_val(new_pte) |= (slot<<12) & _PAGE_GROUP_IX;
891
892                 /* 
893                  * No need to use ldarx/stdcx here because all who
894                  * might be updating the pte will hold the
895                  * page_table_lock
896                  */
897                 *ptep = new_pte;
898         }
899
900         err = 0;
901
902  out:
903         spin_unlock(&mm->page_table_lock);
904
905         return err;
906 }