dfb46b5137129955a95c7982f3f5cb55e602e066
[linux-2.6.git] / include / linux / reiserfs_fs.h
1 /*
2  * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3  */
4
5                                 /* this file has an amazingly stupid
6                                    name, yura please fix it to be
7                                    reiserfs.h, and merge all the rest
8                                    of our .h files that are in this
9                                    directory into it.  */
10
11
12 #ifndef _LINUX_REISER_FS_H
13 #define _LINUX_REISER_FS_H
14
15 #include <linux/types.h>
16 #ifdef __KERNEL__
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/workqueue.h>
20 #include <asm/unaligned.h>
21 #include <linux/bitops.h>
22 #include <linux/proc_fs.h>
23 #include <linux/smp_lock.h>
24 #include <linux/buffer_head.h>
25 #include <linux/reiserfs_fs_i.h>
26 #include <linux/reiserfs_fs_sb.h>
27 #endif
28
29 /*
30  *  include/linux/reiser_fs.h
31  *
32  *  Reiser File System constants and structures
33  *
34  */
35
36 /* in reading the #defines, it may help to understand that they employ
37    the following abbreviations:
38
39    B = Buffer
40    I = Item header
41    H = Height within the tree (should be changed to LEV)
42    N = Number of the item in the node
43    STAT = stat data
44    DEH = Directory Entry Header
45    EC = Entry Count
46    E = Entry number
47    UL = Unsigned Long
48    BLKH = BLocK Header
49    UNFM = UNForMatted node
50    DC = Disk Child
51    P = Path
52
53    These #defines are named by concatenating these abbreviations,
54    where first comes the arguments, and last comes the return value,
55    of the macro.
56
57 */
58
59 #define USE_INODE_GENERATION_COUNTER
60
61 #define REISERFS_PREALLOCATE
62 #define DISPLACE_NEW_PACKING_LOCALITIES
63 #define PREALLOCATION_SIZE 9
64
65 /* n must be power of 2 */
66 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
67
68 // to be ok for alpha and others we have to align structures to 8 byte
69 // boundary.
70 // FIXME: do not change 4 by anything else: there is code which relies on that
71 #define ROUND_UP(x) _ROUND_UP(x,8LL)
72
73 /* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
74 ** messages.
75 */
76 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 
77
78 /* assertions handling */
79
80 /** always check a condition and panic if it's false. */
81 #define RASSERT( cond, format, args... )                                        \
82 if( !( cond ) )                                                                 \
83   reiserfs_panic( 0, "reiserfs[%i]: assertion " #cond " failed at "     \
84                   __FILE__ ":%i:%s: " format "\n",              \
85                   in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
86
87 #if defined( CONFIG_REISERFS_CHECK )
88 #define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
89 #else
90 #define RFALSE( cond, format, args... ) do {;} while( 0 )
91 #endif
92
93 #define CONSTF __attribute_const__
94 /*
95  * Disk Data Structures
96  */
97
98 /***************************************************************************/
99 /*                             SUPER BLOCK                                 */
100 /***************************************************************************/
101
102 /*
103  * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
104  * the version in RAM is part of a larger structure containing fields never written to disk.
105  */
106 #define UNSET_HASH 0 // read_super will guess about, what hash names
107                      // in directories were sorted with
108 #define TEA_HASH  1
109 #define YURA_HASH 2
110 #define R5_HASH   3
111 #define DEFAULT_HASH R5_HASH
112
113
114 struct journal_params {
115     __u32 jp_journal_1st_block;       /* where does journal start from on its
116                                        * device */
117     __u32 jp_journal_dev;             /* journal device st_rdev */
118     __u32 jp_journal_size;            /* size of the journal */
119     __u32 jp_journal_trans_max;       /* max number of blocks in a transaction. */
120     __u32 jp_journal_magic;           /* random value made on fs creation (this
121                                        * was sb_journal_block_count) */
122     __u32 jp_journal_max_batch;       /* max number of blocks to batch into a
123                                        * trans */
124     __u32 jp_journal_max_commit_age;  /* in seconds, how old can an async
125                                        * commit be */
126     __u32 jp_journal_max_trans_age;   /* in seconds, how old can a transaction
127                                        * be */
128 };
129
130 /* this is the super from 3.5.X, where X >= 10 */
131 struct reiserfs_super_block_v1
132 {
133     __u32 s_block_count;           /* blocks count         */
134     __u32 s_free_blocks;           /* free blocks count    */
135     __u32 s_root_block;            /* root block number    */
136     struct journal_params s_journal;
137     __u16 s_blocksize;             /* block size */
138     __u16 s_oid_maxsize;           /* max size of object id array, see
139                                     * get_objectid() commentary  */
140     __u16 s_oid_cursize;           /* current size of object id array */
141     __u16 s_umount_state;          /* this is set to 1 when filesystem was
142                                     * umounted, to 2 - when not */    
143     char s_magic[10];              /* reiserfs magic string indicates that
144                                     * file system is reiserfs:
145                                     * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
146     __u16 s_fs_state;              /* it is set to used by fsck to mark which
147                                     * phase of rebuilding is done */
148     __u32 s_hash_function_code;    /* indicate, what hash function is being use
149                                     * to sort names in a directory*/
150     __u16 s_tree_height;           /* height of disk tree */
151     __u16 s_bmap_nr;               /* amount of bitmap blocks needed to address
152                                     * each block of file system */
153     __u16 s_version;               /* this field is only reliable on filesystem
154                                     * with non-standard journal */
155     __u16 s_reserved_for_journal;  /* size in blocks of journal area on main
156                                     * device, we need to keep after
157                                     * making fs with non-standard journal */    
158 } __attribute__ ((__packed__));
159
160 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
161
162 /* this is the on disk super block */
163 struct reiserfs_super_block
164 {
165     struct reiserfs_super_block_v1 s_v1;
166     __u32 s_inode_generation;
167     __u32 s_flags;                  /* Right now used only by inode-attributes, if enabled */
168     unsigned char s_uuid[16];       /* filesystem unique identifier */
169     unsigned char s_label[16];      /* filesystem volume label */
170     char s_unused[88] ;             /* zero filled by mkreiserfs and
171                                      * reiserfs_convert_objectid_map_v1()
172                                      * so any additions must be updated
173                                      * there as well. */
174 }  __attribute__ ((__packed__));
175
176 #define SB_SIZE (sizeof(struct reiserfs_super_block))
177
178 #define REISERFS_VERSION_1 0
179 #define REISERFS_VERSION_2 2
180
181
182 // on-disk super block fields converted to cpu form
183 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
184 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
185 #define SB_BLOCKSIZE(s) \
186         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
187 #define SB_BLOCK_COUNT(s) \
188         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
189 #define SB_FREE_BLOCKS(s) \
190         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
191 #define SB_REISERFS_MAGIC(s) \
192         (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
193 #define SB_ROOT_BLOCK(s) \
194         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
195 #define SB_TREE_HEIGHT(s) \
196         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
197 #define SB_REISERFS_STATE(s) \
198         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
199 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
200 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
201
202 #define PUT_SB_BLOCK_COUNT(s, val) \
203    do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
204 #define PUT_SB_FREE_BLOCKS(s, val) \
205    do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
206 #define PUT_SB_ROOT_BLOCK(s, val) \
207    do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
208 #define PUT_SB_TREE_HEIGHT(s, val) \
209    do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
210 #define PUT_SB_REISERFS_STATE(s, val) \
211    do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 
212 #define PUT_SB_VERSION(s, val) \
213    do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
214 #define PUT_SB_BMAP_NR(s, val) \
215    do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
216
217
218 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
219 #define SB_ONDISK_JOURNAL_SIZE(s) \
220          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
221 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
222          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
223 #define SB_ONDISK_JOURNAL_DEVICE(s) \
224          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
225 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
226          le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
227
228 #define is_block_in_log_or_reserved_area(s, block) \
229          block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
230          && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
231          ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
232          SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 
233
234
235
236                                 /* used by gcc */
237 #define REISERFS_SUPER_MAGIC 0x52654973
238                                 /* used by file system utilities that
239                                    look at the superblock, etc. */
240 #define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
241 #define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
242 #define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"
243
244 extern const char reiserfs_3_5_magic_string[];
245 extern const char reiserfs_3_6_magic_string[];
246 extern const char reiserfs_jr_magic_string[];
247
248 int is_reiserfs_3_5 (struct reiserfs_super_block * rs);
249 int is_reiserfs_3_6 (struct reiserfs_super_block * rs);
250 int is_reiserfs_jr (struct reiserfs_super_block * rs);
251
252 /* ReiserFS leaves the first 64k unused, so that partition labels have
253    enough space.  If someone wants to write a fancy bootloader that
254    needs more than 64k, let us know, and this will be increased in size.
255    This number must be larger than than the largest block size on any
256    platform, or code will break.  -Hans */
257 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
258 #define REISERFS_FIRST_BLOCK unused_define
259 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
260
261 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
262 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
263
264 // reiserfs internal error code (used by search_by_key adn fix_nodes))
265 #define CARRY_ON      0
266 #define REPEAT_SEARCH -1
267 #define IO_ERROR      -2
268 #define NO_DISK_SPACE -3
269 #define NO_BALANCING_NEEDED  (-4)
270 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
271
272 typedef __u32 b_blocknr_t;
273 typedef __u32 unp_t;
274
275 struct unfm_nodeinfo {
276     unp_t unfm_nodenum;
277     unsigned short unfm_freespace;
278 };
279
280 /* there are two formats of keys: 3.5 and 3.6
281  */
282 #define KEY_FORMAT_3_5 0
283 #define KEY_FORMAT_3_6 1
284
285 /* there are two stat datas */
286 #define STAT_DATA_V1 0
287 #define STAT_DATA_V2 1
288
289
290 static inline struct reiserfs_inode_info *REISERFS_I(struct inode *inode)
291 {
292         return container_of(inode, struct reiserfs_inode_info, vfs_inode);
293 }
294
295 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
296 {
297         return sb->s_fs_info;
298 }
299
300 /** this says about version of key of all items (but stat data) the
301     object consists of */
302 #define get_inode_item_key_version( inode )                                    \
303     ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
304
305 #define set_inode_item_key_version( inode, version )                           \
306          ({ if((version)==KEY_FORMAT_3_6)                                      \
307                 REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
308             else                                                               \
309                 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
310
311 #define get_inode_sd_version(inode)                                            \
312     ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
313
314 #define set_inode_sd_version(inode, version)                                   \
315          ({ if((version)==STAT_DATA_V2)                                        \
316                 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
317             else                                                               \
318                 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
319
320 /* This is an aggressive tail suppression policy, I am hoping it
321    improves our benchmarks. The principle behind it is that percentage
322    space saving is what matters, not absolute space saving.  This is
323    non-intuitive, but it helps to understand it if you consider that the
324    cost to access 4 blocks is not much more than the cost to access 1
325    block, if you have to do a seek and rotate.  A tail risks a
326    non-linear disk access that is significant as a percentage of total
327    time cost for a 4 block file and saves an amount of space that is
328    less significant as a percentage of space, or so goes the hypothesis.
329    -Hans */
330 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
331 (\
332   (!(n_tail_size)) || \
333   (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
334    ( (n_file_size) >= (n_block_size) * 4 ) || \
335    ( ( (n_file_size) >= (n_block_size) * 3 ) && \
336      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
337    ( ( (n_file_size) >= (n_block_size) * 2 ) && \
338      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
339    ( ( (n_file_size) >= (n_block_size) ) && \
340      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
341 )
342
343 /* Another strategy for tails, this one means only create a tail if all the
344    file would fit into one DIRECT item.
345    Primary intention for this one is to increase performance by decreasing
346    seeking.
347 */   
348 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
349 (\
350   (!(n_tail_size)) || \
351   (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
352 )
353
354
355
356 /*
357  * values for s_umount_state field
358  */
359 #define REISERFS_VALID_FS    1
360 #define REISERFS_ERROR_FS    2
361
362 //
363 // there are 5 item types currently
364 //
365 #define TYPE_STAT_DATA 0
366 #define TYPE_INDIRECT 1
367 #define TYPE_DIRECT 2
368 #define TYPE_DIRENTRY 3 
369 #define TYPE_MAXTYPE 3 
370 #define TYPE_ANY 15 // FIXME: comment is required
371
372 /***************************************************************************/
373 /*                       KEY & ITEM HEAD                                   */
374 /***************************************************************************/
375
376 //
377 // directories use this key as well as old files
378 //
379 struct offset_v1 {
380     __u32 k_offset;
381     __u32 k_uniqueness;
382 } __attribute__ ((__packed__));
383
384 struct offset_v2 {
385 #ifdef __LITTLE_ENDIAN
386             /* little endian version */
387             __u64 k_offset:60;
388             __u64 k_type: 4;
389 #else
390             /* big endian version */
391             __u64 k_type: 4;
392             __u64 k_offset:60;
393 #endif
394 } __attribute__ ((__packed__));
395
396 #ifndef __LITTLE_ENDIAN
397 typedef union {
398     struct offset_v2 offset_v2;
399     __u64 linear;
400 } __attribute__ ((__packed__)) offset_v2_esafe_overlay;
401
402 static inline __u16 offset_v2_k_type( const struct offset_v2 *v2 )
403 {
404     offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
405     tmp.linear = le64_to_cpu( tmp.linear );
406     return (tmp.offset_v2.k_type <= TYPE_MAXTYPE)?tmp.offset_v2.k_type:TYPE_ANY;
407 }
408  
409 static inline void set_offset_v2_k_type( struct offset_v2 *v2, int type )
410 {
411     offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
412     tmp->linear = le64_to_cpu(tmp->linear);
413     tmp->offset_v2.k_type = type;
414     tmp->linear = cpu_to_le64(tmp->linear);
415 }
416  
417 static inline loff_t offset_v2_k_offset( const struct offset_v2 *v2 )
418 {
419     offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
420     tmp.linear = le64_to_cpu( tmp.linear );
421     return tmp.offset_v2.k_offset;
422 }
423
424 static inline void set_offset_v2_k_offset( struct offset_v2 *v2, loff_t offset ){
425     offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
426     tmp->linear = le64_to_cpu(tmp->linear);
427     tmp->offset_v2.k_offset = offset;
428     tmp->linear = cpu_to_le64(tmp->linear);
429 }
430 #else
431 # define offset_v2_k_type(v2)           ((v2)->k_type)
432 # define set_offset_v2_k_type(v2,val)   (offset_v2_k_type(v2) = (val))
433 # define offset_v2_k_offset(v2)         ((v2)->k_offset)
434 # define set_offset_v2_k_offset(v2,val) (offset_v2_k_offset(v2) = (val))
435 #endif
436
437 /* Key of an item determines its location in the S+tree, and
438    is composed of 4 components */
439 struct key {
440     __u32 k_dir_id;    /* packing locality: by default parent
441                           directory object id */
442     __u32 k_objectid;  /* object identifier */
443     union {
444         struct offset_v1 k_offset_v1;
445         struct offset_v2 k_offset_v2;
446     } __attribute__ ((__packed__)) u;
447 } __attribute__ ((__packed__));
448
449
450 struct cpu_key {
451     struct key on_disk_key;
452     int version;
453     int key_length; /* 3 in all cases but direct2indirect and
454                        indirect2direct conversion */
455 };
456
457 /* Our function for comparing keys can compare keys of different
458    lengths.  It takes as a parameter the length of the keys it is to
459    compare.  These defines are used in determining what is to be passed
460    to it as that parameter. */
461 #define REISERFS_FULL_KEY_LEN     4
462 #define REISERFS_SHORT_KEY_LEN    2
463
464 /* The result of the key compare */
465 #define FIRST_GREATER 1
466 #define SECOND_GREATER -1
467 #define KEYS_IDENTICAL 0
468 #define KEY_FOUND 1
469 #define KEY_NOT_FOUND 0
470
471 #define KEY_SIZE (sizeof(struct key))
472 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
473
474 /* return values for search_by_key and clones */
475 #define ITEM_FOUND 1
476 #define ITEM_NOT_FOUND 0
477 #define ENTRY_FOUND 1
478 #define ENTRY_NOT_FOUND 0
479 #define DIRECTORY_NOT_FOUND -1
480 #define REGULAR_FILE_FOUND -2
481 #define DIRECTORY_FOUND -3
482 #define BYTE_FOUND 1
483 #define BYTE_NOT_FOUND 0
484 #define FILE_NOT_FOUND -1
485
486 #define POSITION_FOUND 1
487 #define POSITION_NOT_FOUND 0
488
489 // return values for reiserfs_find_entry and search_by_entry_key
490 #define NAME_FOUND 1
491 #define NAME_NOT_FOUND 0
492 #define GOTO_PREVIOUS_ITEM 2
493 #define NAME_FOUND_INVISIBLE 3
494
495 /*  Everything in the filesystem is stored as a set of items.  The
496     item head contains the key of the item, its free space (for
497     indirect items) and specifies the location of the item itself
498     within the block.  */
499
500 struct item_head
501 {
502         /* Everything in the tree is found by searching for it based on
503          * its key.*/
504         struct key ih_key;      
505         union {
506                 /* The free space in the last unformatted node of an
507                    indirect item if this is an indirect item.  This
508                    equals 0xFFFF iff this is a direct item or stat data
509                    item. Note that the key, not this field, is used to
510                    determine the item type, and thus which field this
511                    union contains. */
512                 __u16 ih_free_space_reserved; 
513                 /* Iff this is a directory item, this field equals the
514                    number of directory entries in the directory item. */
515                 __u16 ih_entry_count; 
516         } __attribute__ ((__packed__)) u;
517         __u16 ih_item_len;           /* total size of the item body */
518         __u16 ih_item_location;      /* an offset to the item body
519                                       * within the block */
520         __u16 ih_version;            /* 0 for all old items, 2 for new
521                                         ones. Highest bit is set by fsck
522                                         temporary, cleaned after all
523                                         done */
524 } __attribute__ ((__packed__));
525 /* size of item header     */
526 #define IH_SIZE (sizeof(struct item_head))
527
528 #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
529 #define ih_version(ih)               le16_to_cpu((ih)->ih_version)
530 #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
531 #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
532 #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
533
534 #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
535 #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
536 #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
537 #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
538 #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
539
540
541 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
542
543 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
544 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
545
546 /* these operate on indirect items, where you've got an array of ints
547 ** at a possibly unaligned location.  These are a noop on ia32
548 ** 
549 ** p is the array of __u32, i is the index into the array, v is the value
550 ** to store there.
551 */
552 #define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
553 #define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
554
555 //
556 // in old version uniqueness field shows key type
557 //
558 #define V1_SD_UNIQUENESS 0
559 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
560 #define V1_DIRECT_UNIQUENESS 0xffffffff
561 #define V1_DIRENTRY_UNIQUENESS 500
562 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
563
564 extern void reiserfs_warning (const char * fmt, ...);
565 /* __attribute__( ( format ( printf, 1, 2 ) ) ); */
566
567 //
568 // here are conversion routines
569 //
570 static inline int uniqueness2type (__u32 uniqueness) CONSTF;
571 static inline int uniqueness2type (__u32 uniqueness)
572 {
573     switch ((int)uniqueness) {
574     case V1_SD_UNIQUENESS: return TYPE_STAT_DATA;
575     case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT;
576     case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT;
577     case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY;
578     default:
579             reiserfs_warning( "vs-500: unknown uniqueness %d\n", uniqueness);
580         case V1_ANY_UNIQUENESS:
581             return TYPE_ANY;
582     }
583 }
584
585 static inline __u32 type2uniqueness (int type) CONSTF;
586 static inline __u32 type2uniqueness (int type)
587 {
588     switch (type) {
589     case TYPE_STAT_DATA: return V1_SD_UNIQUENESS;
590     case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS;
591     case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS;
592     case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS;
593     default:
594             reiserfs_warning( "vs-501: unknown type %d\n", type);
595         case TYPE_ANY:
596             return V1_ANY_UNIQUENESS;
597     }
598 }
599
600 //
601 // key is pointer to on disk key which is stored in le, result is cpu,
602 // there is no way to get version of object from key, so, provide
603 // version to these defines
604 //
605 static inline loff_t le_key_k_offset (int version, const struct key * key)
606 {
607     return (version == KEY_FORMAT_3_5) ?
608         le32_to_cpu( key->u.k_offset_v1.k_offset ) :
609         offset_v2_k_offset( &(key->u.k_offset_v2) );
610 }
611
612 static inline loff_t le_ih_k_offset (const struct item_head * ih)
613 {
614     return le_key_k_offset (ih_version (ih), &(ih->ih_key));
615 }
616
617 static inline loff_t le_key_k_type (int version, const struct key * key)
618 {
619     return (version == KEY_FORMAT_3_5) ?
620         uniqueness2type( le32_to_cpu( key->u.k_offset_v1.k_uniqueness)) :
621         offset_v2_k_type( &(key->u.k_offset_v2) );
622 }
623
624 static inline loff_t le_ih_k_type (const struct item_head * ih)
625 {
626     return le_key_k_type (ih_version (ih), &(ih->ih_key));
627 }
628
629
630 static inline void set_le_key_k_offset (int version, struct key * key, loff_t offset)
631 {
632     (version == KEY_FORMAT_3_5) ?
633         (key->u.k_offset_v1.k_offset = cpu_to_le32 (offset)) : /* jdm check */
634         (set_offset_v2_k_offset( &(key->u.k_offset_v2), offset ));
635 }
636
637
638 static inline void set_le_ih_k_offset (struct item_head * ih, loff_t offset)
639 {
640     set_le_key_k_offset (ih_version (ih), &(ih->ih_key), offset);
641 }
642
643
644 static inline void set_le_key_k_type (int version, struct key * key, int type)
645 {
646     (version == KEY_FORMAT_3_5) ?
647         (key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type2uniqueness(type))):
648         (set_offset_v2_k_type( &(key->u.k_offset_v2), type ));
649 }
650 static inline void set_le_ih_k_type (struct item_head * ih, int type)
651 {
652     set_le_key_k_type (ih_version (ih), &(ih->ih_key), type);
653 }
654
655
656 #define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
657 #define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
658 #define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
659 #define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
660
661 //
662 // item header has version.
663 //
664 #define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
665 #define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
666 #define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
667 #define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
668
669
670
671 //
672 // key is pointer to cpu key, result is cpu
673 //
674 static inline loff_t cpu_key_k_offset (const struct cpu_key * key)
675 {
676     return (key->version == KEY_FORMAT_3_5) ?
677         key->on_disk_key.u.k_offset_v1.k_offset :
678         key->on_disk_key.u.k_offset_v2.k_offset;
679 }
680
681 static inline loff_t cpu_key_k_type (const struct cpu_key * key)
682 {
683     return (key->version == KEY_FORMAT_3_5) ?
684         uniqueness2type (key->on_disk_key.u.k_offset_v1.k_uniqueness) :
685         key->on_disk_key.u.k_offset_v2.k_type;
686 }
687
688 static inline void set_cpu_key_k_offset (struct cpu_key * key, loff_t offset)
689 {
690     (key->version == KEY_FORMAT_3_5) ?
691         (key->on_disk_key.u.k_offset_v1.k_offset = offset) :
692         (key->on_disk_key.u.k_offset_v2.k_offset = offset);
693 }
694
695
696 static inline void set_cpu_key_k_type (struct cpu_key * key, int type)
697 {
698     (key->version == KEY_FORMAT_3_5) ?
699         (key->on_disk_key.u.k_offset_v1.k_uniqueness = type2uniqueness (type)):
700         (key->on_disk_key.u.k_offset_v2.k_type = type);
701 }
702
703
704 static inline void cpu_key_k_offset_dec (struct cpu_key * key)
705 {
706     if (key->version == KEY_FORMAT_3_5)
707         key->on_disk_key.u.k_offset_v1.k_offset --;
708     else
709         key->on_disk_key.u.k_offset_v2.k_offset --;
710 }
711
712
713 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
714 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
715 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
716 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
717
718
719 /* are these used ? */
720 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
721 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
722 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
723 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
724
725
726
727
728
729 #define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
730     ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
731           I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
732
733 /* maximal length of item */ 
734 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
735 #define MIN_ITEM_LEN 1
736
737
738 /* object identifier for root dir */
739 #define REISERFS_ROOT_OBJECTID 2
740 #define REISERFS_ROOT_PARENT_OBJECTID 1
741 extern struct key root_key;
742
743
744
745
746 /* 
747  * Picture represents a leaf of the S+tree
748  *  ______________________________________________________
749  * |      |  Array of     |                   |           |
750  * |Block |  Object-Item  |      F r e e      |  Objects- |
751  * | head |  Headers      |     S p a c e     |   Items   |
752  * |______|_______________|___________________|___________|
753  */
754
755 /* Header of a disk block.  More precisely, header of a formatted leaf
756    or internal node, and not the header of an unformatted node. */
757 struct block_head {       
758   __u16 blk_level;        /* Level of a block in the tree. */
759   __u16 blk_nr_item;      /* Number of keys/items in a block. */
760   __u16 blk_free_space;   /* Block free space in bytes. */
761   __u16 blk_reserved;
762                                 /* dump this in v4/planA */
763   struct key  blk_right_delim_key; /* kept only for compatibility */
764 };
765
766 #define BLKH_SIZE                     (sizeof(struct block_head))
767 #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
768 #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
769 #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
770 #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
771 #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
772 #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
773 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
774 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
775 #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
776 #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
777
778 /*
779  * values for blk_level field of the struct block_head
780  */
781
782 #define FREE_LEVEL 0 /* when node gets removed from the tree its
783                         blk_level is set to FREE_LEVEL. It is then
784                         used to see whether the node is still in the
785                         tree */
786
787 #define DISK_LEAF_NODE_LEVEL  1 /* Leaf node level.*/
788
789 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
790 #define B_BLK_HEAD(p_s_bh)            ((struct block_head *)((p_s_bh)->b_data))
791 /* Number of items that are in buffer. */
792 #define B_NR_ITEMS(p_s_bh)            (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
793 #define B_LEVEL(p_s_bh)               (blkh_level(B_BLK_HEAD(p_s_bh)))
794 #define B_FREE_SPACE(p_s_bh)          (blkh_free_space(B_BLK_HEAD(p_s_bh)))
795
796 #define PUT_B_NR_ITEMS(p_s_bh,val)    do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
797 #define PUT_B_LEVEL(p_s_bh,val)       do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
798 #define PUT_B_FREE_SPACE(p_s_bh,val)  do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
799
800
801 /* Get right delimiting key. -- little endian */
802 #define B_PRIGHT_DELIM_KEY(p_s_bh)   (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))
803
804 /* Does the buffer contain a disk leaf. */
805 #define B_IS_ITEMS_LEVEL(p_s_bh)     (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
806
807 /* Does the buffer contain a disk internal node */
808 #define B_IS_KEYS_LEVEL(p_s_bh)      (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
809                                             && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
810
811
812
813
814 /***************************************************************************/
815 /*                             STAT DATA                                   */
816 /***************************************************************************/
817
818
819 //
820 // old stat data is 32 bytes long. We are going to distinguish new one by
821 // different size
822 //
823 struct stat_data_v1
824 {
825     __u16 sd_mode;      /* file type, permissions */
826     __u16 sd_nlink;     /* number of hard links */
827     __u16 sd_uid;               /* owner */
828     __u16 sd_gid;               /* group */
829     __u32 sd_size;      /* file size */
830     __u32 sd_atime;     /* time of last access */
831     __u32 sd_mtime;     /* time file was last modified  */
832     __u32 sd_ctime;     /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
833     union {
834         __u32 sd_rdev;
835         __u32 sd_blocks;        /* number of blocks file uses */
836     } __attribute__ ((__packed__)) u;
837     __u32 sd_first_direct_byte; /* first byte of file which is stored
838                                    in a direct item: except that if it
839                                    equals 1 it is a symlink and if it
840                                    equals ~(__u32)0 there is no
841                                    direct item.  The existence of this
842                                    field really grates on me. Let's
843                                    replace it with a macro based on
844                                    sd_size and our tail suppression
845                                    policy.  Someday.  -Hans */
846 } __attribute__ ((__packed__));
847
848 #define SD_V1_SIZE              (sizeof(struct stat_data_v1))
849 #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
850 #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
851 #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
852 #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
853 #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
854 #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
855 #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
856 #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
857 #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
858 #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
859 #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
860 #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
861 #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
862 #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
863 #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
864 #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
865 #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
866 #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
867 #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
868 #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
869 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
870 #define sd_v1_first_direct_byte(sdp) \
871                                 (le32_to_cpu((sdp)->sd_first_direct_byte))
872 #define set_sd_v1_first_direct_byte(sdp,v) \
873                                 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
874
875 #include <linux/ext2_fs.h>
876
877 /* inode flags stored in sd_attrs (nee sd_reserved) */
878
879 /* we want common flags to have the same values as in ext2,
880    so chattr(1) will work without problems */
881 #define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
882 #define REISERFS_APPEND_FL    EXT2_APPEND_FL
883 #define REISERFS_SYNC_FL      EXT2_SYNC_FL
884 #define REISERFS_NOATIME_FL   EXT2_NOATIME_FL
885 #define REISERFS_NODUMP_FL    EXT2_NODUMP_FL
886 #define REISERFS_SECRM_FL     EXT2_SECRM_FL
887 #define REISERFS_UNRM_FL      EXT2_UNRM_FL
888 #define REISERFS_COMPR_FL     EXT2_COMPR_FL
889 #define REISERFS_NOTAIL_FL    EXT2_NOTAIL_FL
890
891 /* persistent flags that file inherits from the parent directory */
892 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
893                                 REISERFS_SYNC_FL |      \
894                                 REISERFS_NOATIME_FL |   \
895                                 REISERFS_NODUMP_FL |    \
896                                 REISERFS_SECRM_FL |     \
897                                 REISERFS_COMPR_FL |     \
898                                 REISERFS_NOTAIL_FL )
899
900 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
901    address blocks) */
902 struct stat_data {
903     __u16 sd_mode;      /* file type, permissions */
904     __u16 sd_attrs;     /* persistent inode flags */
905     __u32 sd_nlink;     /* number of hard links */
906     __u64 sd_size;      /* file size */
907     __u32 sd_uid;               /* owner */
908     __u32 sd_gid;               /* group */
909     __u32 sd_atime;     /* time of last access */
910     __u32 sd_mtime;     /* time file was last modified  */
911     __u32 sd_ctime;     /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
912     __u32 sd_blocks;
913     union {
914         __u32 sd_rdev;
915         __u32 sd_generation;
916       //__u32 sd_first_direct_byte; 
917       /* first byte of file which is stored in a
918                                        direct item: except that if it equals 1
919                                        it is a symlink and if it equals
920                                        ~(__u32)0 there is no direct item.  The
921                                        existence of this field really grates
922                                        on me. Let's replace it with a macro
923                                        based on sd_size and our tail
924                                        suppression policy? */
925   } __attribute__ ((__packed__)) u;
926 } __attribute__ ((__packed__));
927 //
928 // this is 44 bytes long
929 //
930 #define SD_SIZE (sizeof(struct stat_data))
931 #define SD_V2_SIZE              SD_SIZE
932 #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
933 #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
934 #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
935 /* sd_reserved */
936 /* set_sd_reserved */
937 #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
938 #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
939 #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
940 #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
941 #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
942 #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
943 #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
944 #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
945 #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
946 #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
947 #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
948 #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
949 #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
950 #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
951 #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
952 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
953 #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
954 #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
955 #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
956 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
957 #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
958 #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
959
960
961 /***************************************************************************/
962 /*                      DIRECTORY STRUCTURE                                */
963 /***************************************************************************/
964 /* 
965    Picture represents the structure of directory items
966    ________________________________________________
967    |  Array of     |   |     |        |       |   |
968    | directory     |N-1| N-2 | ....   |   1st |0th|
969    | entry headers |   |     |        |       |   |
970    |_______________|___|_____|________|_______|___|
971                     <----   directory entries         ------>
972
973  First directory item has k_offset component 1. We store "." and ".."
974  in one item, always, we never split "." and ".." into differing
975  items.  This makes, among other things, the code for removing
976  directories simpler. */
977 #define SD_OFFSET  0
978 #define SD_UNIQUENESS 0
979 #define DOT_OFFSET 1
980 #define DOT_DOT_OFFSET 2
981 #define DIRENTRY_UNIQUENESS 500
982
983 /* */
984 #define FIRST_ITEM_OFFSET 1
985
986 /*
987    Q: How to get key of object pointed to by entry from entry?  
988
989    A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
990       of object, entry points to */
991
992 /* NOT IMPLEMENTED:   
993    Directory will someday contain stat data of object */
994
995
996
997 struct reiserfs_de_head
998 {
999   __u32 deh_offset;             /* third component of the directory entry key */
1000   __u32 deh_dir_id;             /* objectid of the parent directory of the object, that is referenced
1001                                            by directory entry */
1002   __u32 deh_objectid;           /* objectid of the object, that is referenced by directory entry */
1003   __u16 deh_location;           /* offset of name in the whole item */
1004   __u16 deh_state;              /* whether 1) entry contains stat data (for future), and 2) whether
1005                                            entry is hidden (unlinked) */
1006 } __attribute__ ((__packed__));
1007 #define DEH_SIZE                  sizeof(struct reiserfs_de_head)
1008 #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
1009 #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
1010 #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
1011 #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
1012 #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
1013
1014 #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
1015 #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1016 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1017 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1018 #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
1019
1020 /* empty directory contains two entries "." and ".." and their headers */
1021 #define EMPTY_DIR_SIZE \
1022 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1023
1024 /* old format directories have this size when empty */
1025 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1026
1027 #define DEH_Statdata 0                  /* not used now */
1028 #define DEH_Visible 2
1029
1030 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1031 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1032 #   define ADDR_UNALIGNED_BITS  (3)
1033 #endif
1034
1035 /* These are only used to manipulate deh_state.
1036  * Because of this, we'll use the ext2_ bit routines,
1037  * since they are little endian */
1038 #ifdef ADDR_UNALIGNED_BITS
1039
1040 #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1041 #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1042
1043 #   define set_bit_unaligned(nr, addr)     ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1044 #   define clear_bit_unaligned(nr, addr)   ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1045 #   define test_bit_unaligned(nr, addr)    ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1046
1047 #else
1048
1049 #   define set_bit_unaligned(nr, addr)     ext2_set_bit(nr, addr)
1050 #   define clear_bit_unaligned(nr, addr)   ext2_clear_bit(nr, addr)
1051 #   define test_bit_unaligned(nr, addr)    ext2_test_bit(nr, addr)
1052
1053 #endif
1054
1055 #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1056 #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1057 #define mark_de_visible(deh)        set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1058 #define mark_de_hidden(deh)         clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1059
1060 #define de_with_sd(deh)             test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1061 #define de_visible(deh)             test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1062 #define de_hidden(deh)              !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1063
1064 extern void make_empty_dir_item_v1 (char * body, __u32 dirid, __u32 objid,
1065                                     __u32 par_dirid, __u32 par_objid);
1066 extern void make_empty_dir_item (char * body, __u32 dirid, __u32 objid,
1067                                  __u32 par_dirid, __u32 par_objid);
1068
1069 /* array of the entry headers */
1070  /* get item body */
1071 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1072 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1073
1074 /* length of the directory entry in directory item. This define
1075    calculates length of i-th directory entry using directory entry
1076    locations from dir entry head. When it calculates length of 0-th
1077    directory entry, it uses length of whole item in place of entry
1078    location of the non-existent following entry in the calculation.
1079    See picture above.*/
1080 /*
1081 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1082 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1083 */
1084 static inline int entry_length (const struct buffer_head * bh, 
1085                                                                 const struct item_head * ih, int pos_in_item)
1086 {
1087     struct reiserfs_de_head * deh;
1088
1089     deh = B_I_DEH (bh, ih) + pos_in_item;
1090     if (pos_in_item)
1091         return deh_location(deh-1) - deh_location(deh);
1092
1093     return ih_item_len(ih) - deh_location(deh);
1094 }
1095
1096
1097
1098 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1099 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1100
1101
1102 /* name by bh, ih and entry_num */
1103 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1104
1105 // two entries per block (at least)
1106 #define REISERFS_MAX_NAME(block_size) 255
1107
1108
1109 /* this structure is used for operations on directory entries. It is
1110    not a disk structure. */
1111 /* When reiserfs_find_entry or search_by_entry_key find directory
1112    entry, they return filled reiserfs_dir_entry structure */
1113 struct reiserfs_dir_entry
1114 {
1115   struct buffer_head * de_bh;
1116   int de_item_num;
1117   struct item_head * de_ih;
1118   int de_entry_num;
1119   struct reiserfs_de_head * de_deh;
1120   int de_entrylen;
1121   int de_namelen;
1122   char * de_name;
1123   char * de_gen_number_bit_string;
1124
1125   __u32 de_dir_id;
1126   __u32 de_objectid;
1127
1128   struct cpu_key de_entry_key;
1129 };
1130    
1131 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1132
1133 /* pointer to file name, stored in entry */
1134 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1135
1136 /* length of name */
1137 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1138 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1139
1140
1141
1142 /* hash value occupies bits from 7 up to 30 */
1143 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1144 /* generation number occupies 7 bits starting from 0 up to 6 */
1145 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1146 #define MAX_GENERATION_NUMBER  127
1147
1148 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1149
1150
1151 /*
1152  * Picture represents an internal node of the reiserfs tree
1153  *  ______________________________________________________
1154  * |      |  Array of     |  Array of         |  Free     |
1155  * |block |    keys       |  pointers         | space     |
1156  * | head |      N        |      N+1          |           |
1157  * |______|_______________|___________________|___________|
1158  */
1159
1160 /***************************************************************************/
1161 /*                      DISK CHILD                                         */
1162 /***************************************************************************/
1163 /* Disk child pointer: The pointer from an internal node of the tree
1164    to a node that is on disk. */
1165 struct disk_child {
1166   __u32       dc_block_number;              /* Disk child's block number. */
1167   __u16       dc_size;                      /* Disk child's used space.   */
1168   __u16       dc_reserved;
1169 };
1170
1171 #define DC_SIZE (sizeof(struct disk_child))
1172 #define dc_block_number(dc_p)   (le32_to_cpu((dc_p)->dc_block_number))
1173 #define dc_size(dc_p)           (le16_to_cpu((dc_p)->dc_size))
1174 #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1175 #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1176
1177 /* Get disk child by buffer header and position in the tree node. */
1178 #define B_N_CHILD(p_s_bh,n_pos)  ((struct disk_child *)\
1179 ((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1180
1181 /* Get disk child number by buffer header and position in the tree node. */
1182 #define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1183 #define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1184
1185  /* maximal value of field child_size in structure disk_child */ 
1186  /* child size is the combined size of all items and their headers */
1187 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1188
1189 /* amount of used space in buffer (not including block head) */
1190 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1191
1192 /* max and min number of keys in internal node */
1193 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1194 #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
1195
1196 /***************************************************************************/
1197 /*                      PATH STRUCTURES AND DEFINES                        */
1198 /***************************************************************************/
1199
1200
1201 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1202    key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
1203    does not find them in the cache it reads them from disk.  For each node search_by_key finds using
1204    reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
1205    position of the block_number of the next node if it is looking through an internal node.  If it
1206    is looking through a leaf node bin_search will find the position of the item which has key either
1207    equal to given key, or which is the maximal key less than the given key. */
1208
1209 struct  path_element  {
1210   struct buffer_head *  pe_buffer;    /* Pointer to the buffer at the path in the tree. */
1211   int                   pe_position;  /* Position in the tree node which is placed in the */
1212                                       /* buffer above.                                  */
1213 };
1214
1215 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1216 #define EXTENDED_MAX_HEIGHT         7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1217 #define FIRST_PATH_ELEMENT_OFFSET   2 /* Must be equal to at least 2. */
1218
1219 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1220 #define MAX_FEB_SIZE 6   /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1221
1222
1223
1224 /* We need to keep track of who the ancestors of nodes are.  When we
1225    perform a search we record which nodes were visited while
1226    descending the tree looking for the node we searched for. This list
1227    of nodes is called the path.  This information is used while
1228    performing balancing.  Note that this path information may become
1229    invalid, and this means we must check it when using it to see if it
1230    is still valid. You'll need to read search_by_key and the comments
1231    in it, especially about decrement_counters_in_path(), to understand
1232    this structure.  
1233
1234 Paths make the code so much harder to work with and debug.... An
1235 enormous number of bugs are due to them, and trying to write or modify
1236 code that uses them just makes my head hurt.  They are based on an
1237 excessive effort to avoid disturbing the precious VFS code.:-( The
1238 gods only know how we are going to SMP the code that uses them.
1239 znodes are the way! */
1240
1241
1242 struct  path {
1243   int                   path_length;                            /* Length of the array above.   */
1244   struct  path_element  path_elements[EXTENDED_MAX_HEIGHT];     /* Array of the path elements.  */
1245   int                   pos_in_item;
1246 };
1247
1248 #define pos_in_item(path) ((path)->pos_in_item)
1249
1250 #define INITIALIZE_PATH(var) \
1251 struct path var = {ILLEGAL_PATH_ELEMENT_OFFSET, }
1252
1253 /* Get path element by path and path position. */
1254 #define PATH_OFFSET_PELEMENT(p_s_path,n_offset)  ((p_s_path)->path_elements +(n_offset))
1255
1256 /* Get buffer header at the path by path and path position. */
1257 #define PATH_OFFSET_PBUFFER(p_s_path,n_offset)   (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1258
1259 /* Get position in the element at the path by path and path position. */
1260 #define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1261
1262
1263 #define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1264                                 /* you know, to the person who didn't
1265                                    write this the macro name does not
1266                                    at first suggest what it does.
1267                                    Maybe POSITION_FROM_PATH_END? Or
1268                                    maybe we should just focus on
1269                                    dumping paths... -Hans */
1270 #define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1271
1272
1273 #define PATH_PITEM_HEAD(p_s_path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1274
1275 /* in do_balance leaf has h == 0 in contrast with path structure,
1276    where root has level == 0. That is why we need these defines */
1277 #define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
1278 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)                  /* tb->F[h] or tb->S[0]->b_parent */
1279 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))   
1280 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)               /* tb->S[h]->b_item_order */
1281
1282 #define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1283
1284 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1285 #define get_ih(path) PATH_PITEM_HEAD(path)
1286 #define get_item_pos(path) PATH_LAST_POSITION(path)
1287 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1288 #define item_moved(ih,path) comp_items(ih, path)
1289 #define path_changed(ih,path) comp_items (ih, path)
1290
1291
1292 /***************************************************************************/
1293 /*                       MISC                                              */
1294 /***************************************************************************/
1295
1296 /* Size of pointer to the unformatted node. */
1297 #define UNFM_P_SIZE (sizeof(unp_t))
1298 #define UNFM_P_SHIFT 2
1299
1300 // in in-core inode key is stored on le form
1301 #define INODE_PKEY(inode) ((struct key *)(REISERFS_I(inode)->i_key))
1302
1303 #define MAX_UL_INT 0xffffffff
1304 #define MAX_INT    0x7ffffff
1305 #define MAX_US_INT 0xffff
1306
1307 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1308 #define U32_MAX (~(__u32)0)
1309
1310 static inline loff_t max_reiserfs_offset (struct inode * inode)
1311 {
1312     if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1313         return (loff_t)U32_MAX;
1314
1315     return (loff_t)((~(__u64)0) >> 4);
1316 }
1317
1318
1319 /*#define MAX_KEY_UNIQUENESS    MAX_UL_INT*/
1320 #define MAX_KEY_OBJECTID        MAX_UL_INT
1321
1322
1323 #define MAX_B_NUM  MAX_UL_INT
1324 #define MAX_FC_NUM MAX_US_INT
1325
1326
1327 /* the purpose is to detect overflow of an unsigned short */
1328 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1329
1330
1331 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
1332 #define REISERFS_KERNEL_MEM             0       /* reiserfs kernel memory mode  */
1333 #define REISERFS_USER_MEM               1       /* reiserfs user memory mode            */
1334
1335 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1336 #define get_generation(s) atomic_read (&fs_generation(s))
1337 #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1338 #define __fs_changed(gen,s) (gen != get_generation (s))
1339 #define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1340
1341
1342 /***************************************************************************/
1343 /*                  FIXATE NODES                                           */
1344 /***************************************************************************/
1345
1346 #define VI_TYPE_LEFT_MERGEABLE 1
1347 #define VI_TYPE_RIGHT_MERGEABLE 2
1348
1349 /* To make any changes in the tree we always first find node, that
1350    contains item to be changed/deleted or place to insert a new
1351    item. We call this node S. To do balancing we need to decide what
1352    we will shift to left/right neighbor, or to a new node, where new
1353    item will be etc. To make this analysis simpler we build virtual
1354    node. Virtual node is an array of items, that will replace items of
1355    node S. (For instance if we are going to delete an item, virtual
1356    node does not contain it). Virtual node keeps information about
1357    item sizes and types, mergeability of first and last items, sizes
1358    of all entries in directory item. We use this array of items when
1359    calculating what we can shift to neighbors and how many nodes we
1360    have to have if we do not any shiftings, if we shift to left/right
1361    neighbor or to both. */
1362 struct virtual_item
1363 {
1364     int vi_index; // index in the array of item operations
1365     unsigned short vi_type;     // left/right mergeability
1366     unsigned short vi_item_len;           /* length of item that it will have after balancing */
1367     struct item_head * vi_ih;
1368     const char * vi_item;     // body of item (old or new)
1369     const void * vi_new_data; // 0 always but paste mode
1370     void * vi_uarea;    // item specific area
1371 };
1372
1373
1374 struct virtual_node
1375 {
1376   char * vn_free_ptr;           /* this is a pointer to the free space in the buffer */
1377   unsigned short vn_nr_item;    /* number of items in virtual node */
1378   short vn_size;                /* size of node , that node would have if it has unlimited size and no balancing is performed */
1379   short vn_mode;                /* mode of balancing (paste, insert, delete, cut) */
1380   short vn_affected_item_num; 
1381   short vn_pos_in_item;
1382   struct item_head * vn_ins_ih; /* item header of inserted item, 0 for other modes */
1383   const void * vn_data;
1384   struct virtual_item * vn_vi;  /* array of items (including a new one, excluding item to be deleted) */
1385 };
1386
1387 /* used by directory items when creating virtual nodes */
1388 struct direntry_uarea {
1389     int flags;
1390     __u16 entry_count;
1391     __u16 entry_sizes[1];
1392 } __attribute__ ((__packed__)) ;
1393
1394
1395 /***************************************************************************/
1396 /*                  TREE BALANCE                                           */
1397 /***************************************************************************/
1398
1399 /* This temporary structure is used in tree balance algorithms, and
1400    constructed as we go to the extent that its various parts are
1401    needed.  It contains arrays of nodes that can potentially be
1402    involved in the balancing of node S, and parameters that define how
1403    each of the nodes must be balanced.  Note that in these algorithms
1404    for balancing the worst case is to need to balance the current node
1405    S and the left and right neighbors and all of their parents plus
1406    create a new node.  We implement S1 balancing for the leaf nodes
1407    and S0 balancing for the internal nodes (S1 and S0 are defined in
1408    our papers.)*/
1409
1410 #define MAX_FREE_BLOCK 7        /* size of the array of buffers to free at end of do_balance */
1411
1412 /* maximum number of FEB blocknrs on a single level */
1413 #define MAX_AMOUNT_NEEDED 2
1414
1415 /* someday somebody will prefix every field in this struct with tb_ */
1416 struct tree_balance
1417 {
1418   int tb_mode;
1419   int need_balance_dirty;
1420   struct super_block * tb_sb;
1421   struct reiserfs_transaction_handle *transaction_handle ;
1422   struct path * tb_path;
1423   struct buffer_head * L[MAX_HEIGHT];        /* array of left neighbors of nodes in the path */
1424   struct buffer_head * R[MAX_HEIGHT];        /* array of right neighbors of nodes in the path*/
1425   struct buffer_head * FL[MAX_HEIGHT];       /* array of fathers of the left  neighbors      */
1426   struct buffer_head * FR[MAX_HEIGHT];       /* array of fathers of the right neighbors      */
1427   struct buffer_head * CFL[MAX_HEIGHT];      /* array of common parents of center node and its left neighbor  */
1428   struct buffer_head * CFR[MAX_HEIGHT];      /* array of common parents of center node and its right neighbor */
1429
1430   struct buffer_head * FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1431                                              cur_blknum. */
1432   struct buffer_head * used[MAX_FEB_SIZE];
1433   struct buffer_head * thrown[MAX_FEB_SIZE];
1434   int lnum[MAX_HEIGHT]; /* array of number of items which must be
1435                            shifted to the left in order to balance the
1436                            current node; for leaves includes item that
1437                            will be partially shifted; for internal
1438                            nodes, it is the number of child pointers
1439                            rather than items. It includes the new item
1440                            being created. The code sometimes subtracts
1441                            one to get the number of wholly shifted
1442                            items for other purposes. */
1443   int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1444   int lkey[MAX_HEIGHT];               /* array indexed by height h mapping the key delimiting L[h] and
1445                                                S[h] to its item number within the node CFL[h] */
1446   int rkey[MAX_HEIGHT];               /* substitute r for l in comment above */
1447   int insert_size[MAX_HEIGHT];        /* the number of bytes by we are trying to add or remove from
1448                                                S[h]. A negative value means removing.  */
1449   int blknum[MAX_HEIGHT];             /* number of nodes that will replace node S[h] after
1450                                                balancing on the level h of the tree.  If 0 then S is
1451                                                being deleted, if 1 then S is remaining and no new nodes
1452                                                are being created, if 2 or 3 then 1 or 2 new nodes is
1453                                                being created */
1454
1455   /* fields that are used only for balancing leaves of the tree */
1456   int cur_blknum;       /* number of empty blocks having been already allocated                 */
1457   int s0num;             /* number of items that fall into left most  node when S[0] splits     */
1458   int s1num;             /* number of items that fall into first  new node when S[0] splits     */
1459   int s2num;             /* number of items that fall into second new node when S[0] splits     */
1460   int lbytes;            /* number of bytes which can flow to the left neighbor from the        left    */
1461   /* most liquid item that cannot be shifted from S[0] entirely         */
1462   /* if -1 then nothing will be partially shifted */
1463   int rbytes;            /* number of bytes which will flow to the right neighbor from the right        */
1464   /* most liquid item that cannot be shifted from S[0] entirely         */
1465   /* if -1 then nothing will be partially shifted                           */
1466   int s1bytes;          /* number of bytes which flow to the first  new node when S[0] splits   */
1467                                 /* note: if S[0] splits into 3 nodes, then items do not need to be cut  */
1468   int s2bytes;
1469   struct buffer_head * buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1470   char * vn_buf;                /* kmalloced memory. Used to create
1471                                    virtual node and keep map of
1472                                    dirtied bitmap blocks */
1473   int vn_buf_size;              /* size of the vn_buf */
1474   struct virtual_node * tb_vn;  /* VN starts after bitmap of bitmap blocks */
1475
1476   int fs_gen;                  /* saved value of `reiserfs_generation' counter
1477                                   see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1478 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1479   struct key  key;            /* key pointer, to pass to block allocator or
1480                                  another low-level subsystem */
1481 #endif
1482 } ;
1483
1484 /* These are modes of balancing */
1485
1486 /* When inserting an item. */
1487 #define M_INSERT        'i'
1488 /* When inserting into (directories only) or appending onto an already
1489    existant item. */
1490 #define M_PASTE         'p'
1491 /* When deleting an item. */
1492 #define M_DELETE        'd'
1493 /* When truncating an item or removing an entry from a (directory) item. */
1494 #define M_CUT           'c'
1495
1496 /* used when balancing on leaf level skipped (in reiserfsck) */
1497 #define M_INTERNAL      'n'
1498
1499 /* When further balancing is not needed, then do_balance does not need
1500    to be called. */
1501 #define M_SKIP_BALANCING                's'
1502 #define M_CONVERT       'v'
1503
1504 /* modes of leaf_move_items */
1505 #define LEAF_FROM_S_TO_L 0
1506 #define LEAF_FROM_S_TO_R 1
1507 #define LEAF_FROM_R_TO_L 2
1508 #define LEAF_FROM_L_TO_R 3
1509 #define LEAF_FROM_S_TO_SNEW 4
1510
1511 #define FIRST_TO_LAST 0
1512 #define LAST_TO_FIRST 1
1513
1514 /* used in do_balance for passing parent of node information that has
1515    been gotten from tb struct */
1516 struct buffer_info {
1517     struct tree_balance * tb;
1518     struct buffer_head * bi_bh;
1519     struct buffer_head * bi_parent;
1520     int bi_position;
1521 };
1522
1523
1524 /* there are 4 types of items: stat data, directory item, indirect, direct.
1525 +-------------------+------------+--------------+------------+
1526 |                   |  k_offset  | k_uniqueness | mergeable? |
1527 +-------------------+------------+--------------+------------+
1528 |     stat data     |   0        |      0       |   no       |
1529 +-------------------+------------+--------------+------------+
1530 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       | 
1531 | non 1st directory | hash value |              |   yes      |
1532 |     item          |            |              |            |
1533 +-------------------+------------+--------------+------------+
1534 | indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
1535 +-------------------+------------+--------------+------------+
1536 | direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
1537 +-------------------+------------+--------------+------------+
1538 */
1539
1540 struct item_operations {
1541     int (*bytes_number) (struct item_head * ih, int block_size);
1542     void (*decrement_key) (struct cpu_key *);
1543     int (*is_left_mergeable) (struct key * ih, unsigned long bsize);
1544     void (*print_item) (struct item_head *, char * item);
1545     void (*check_item) (struct item_head *, char * item);
1546
1547     int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 
1548                       int is_affected, int insert_size);
1549     int (*check_left) (struct virtual_item * vi, int free, 
1550                             int start_skip, int end_skip);
1551     int (*check_right) (struct virtual_item * vi, int free);
1552     int (*part_size) (struct virtual_item * vi, int from, int to);
1553     int (*unit_num) (struct virtual_item * vi);
1554     void (*print_vi) (struct virtual_item * vi);
1555 };
1556
1557
1558 extern struct item_operations stat_data_ops, indirect_ops, direct_ops, 
1559   direntry_ops;
1560 extern struct item_operations * item_ops [TYPE_ANY + 1];
1561
1562 #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1563 #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1564 #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1565 #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1566 #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1567 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1568 #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
1569 #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
1570 #define op_unit_num(vi)                              item_ops[(vi)->vi_index]->unit_num (vi)
1571 #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
1572
1573
1574
1575
1576
1577 #define COMP_KEYS comp_keys
1578 #define COMP_SHORT_KEYS comp_short_keys
1579 /*#define keys_of_same_object comp_short_keys*/
1580
1581 /* number of blocks pointed to by the indirect item */
1582 #define I_UNFM_NUM(p_s_ih)      ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1583
1584 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1585 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1586
1587 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1588
1589
1590 /* get the item header */ 
1591 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1592
1593 /* get key */
1594 #define B_N_PDELIM_KEY(bh,item_num) ( (struct key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1595
1596 /* get the key */
1597 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1598
1599 /* get item body */
1600 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1601
1602 /* get the stat data by the buffer header and the item order */
1603 #define B_N_STAT_DATA(bh,nr) \
1604 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1605
1606     /* following defines use reiserfs buffer header and item header */
1607
1608 /* get stat-data */
1609 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1610
1611 // this is 3976 for size==4096
1612 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1613
1614 /* indirect items consist of entries which contain blocknrs, pos
1615    indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1616    blocknr contained by the entry pos points to */
1617 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1618 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1619
1620 struct reiserfs_iget_args {
1621     __u32 objectid ;
1622     __u32 dirid ;
1623 } ;
1624
1625 /***************************************************************************/
1626 /*                    FUNCTION DECLARATIONS                                */
1627 /***************************************************************************/
1628
1629 /*#ifdef __KERNEL__*/
1630 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1631
1632 #define journal_trans_half(blocksize) \
1633         ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1634
1635 /* journal.c see journal.c for all the comments here */
1636
1637 /* first block written in a commit.  */
1638 struct reiserfs_journal_desc {
1639   __u32 j_trans_id ;                    /* id of commit */
1640   __u32 j_len ;                 /* length of commit. len +1 is the commit block */
1641   __u32 j_mount_id ;                            /* mount id of this trans*/
1642   __u32 j_realblock[1] ; /* real locations for each block */
1643 } ;
1644
1645 #define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
1646 #define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
1647 #define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
1648
1649 #define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1650 #define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
1651 #define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1652
1653 /* last block written in a commit */
1654 struct reiserfs_journal_commit {
1655   __u32 j_trans_id ;                    /* must match j_trans_id from the desc block */
1656   __u32 j_len ;                 /* ditto */
1657   __u32 j_realblock[1] ; /* real locations for each block */
1658 } ;
1659
1660 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1661 #define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
1662 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1663
1664 #define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1665 #define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
1666
1667 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1668 ** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
1669 ** and this transaction does not need to be replayed.
1670 */
1671 struct reiserfs_journal_header {
1672   __u32 j_last_flush_trans_id ;         /* id of last fully flushed transaction */
1673   __u32 j_first_unflushed_offset ;      /* offset in the log of where to start replay after a crash */
1674   __u32 j_mount_id ;
1675   /* 12 */ struct journal_params jh_journal;
1676 } ;
1677
1678 /* biggest tunable defines are right here */
1679 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1680 #define JOURNAL_TRANS_MAX_DEFAULT 1024   /* biggest possible single transaction, don't change for now (8/3/99) */
1681 #define JOURNAL_TRANS_MIN_DEFAULT 256
1682 #define JOURNAL_MAX_BATCH_DEFAULT   900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1683 #define JOURNAL_MIN_RATIO 2
1684 #define JOURNAL_MAX_COMMIT_AGE 30 
1685 #define JOURNAL_MAX_TRANS_AGE 30
1686 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1687
1688 /* both of these can be as low as 1, or as high as you want.  The min is the
1689 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1690 ** as needed, and released when transactions are committed.  On release, if 
1691 ** the current number of nodes is > max, the node is freed, otherwise, 
1692 ** it is put on a free list for faster use later.
1693 */
1694 #define REISERFS_MIN_BITMAP_NODES 10 
1695 #define REISERFS_MAX_BITMAP_NODES 100 
1696
1697 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1698 #define JBH_HASH_MASK 8191
1699
1700 #define _jhashfn(sb,block)      \
1701         (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1702          (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1703 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1704
1705 // We need these to make journal.c code more readable
1706 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1707 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1708 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1709
1710 enum reiserfs_bh_state_bits {
1711     BH_JDirty = BH_PrivateStart,
1712     BH_JDirty_wait,
1713     BH_JNew,
1714     BH_JPrepared,
1715     BH_JRestore_dirty,
1716     BH_JTest, // debugging only will go away
1717 };
1718
1719 /*
1720 ** transaction handle which is passed around for all journal calls
1721 */
1722 struct reiserfs_transaction_handle {
1723   struct super_block *t_super ; /* super for this FS when journal_begin was
1724                                    called. saves calls to reiserfs_get_super
1725                                    also used by nested transactions to make
1726                                    sure they are nesting on the right FS
1727                                    _must_ be first in the handle
1728                                 */
1729   int t_refcount;
1730   int t_blocks_logged ;         /* number of blocks this writer has logged */
1731   int t_blocks_allocated ;      /* number of blocks this writer allocated */
1732   unsigned long t_trans_id ;    /* sanity check, equals the current trans id */
1733   void *t_handle_save ;         /* save existing current->journal_info */
1734   int displace_new_blocks:1;    /* if new block allocation occurres, that block
1735                                    should be displaced from others */
1736 } ;
1737
1738 /* used to keep track of ordered and tail writes, attached to the buffer
1739  * head through b_journal_head.
1740  */
1741 struct reiserfs_jh {
1742     struct reiserfs_journal_list *jl;
1743     struct buffer_head *bh;
1744     struct list_head list;
1745 };
1746
1747 void reiserfs_free_jh(struct buffer_head *bh);
1748 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1749 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1750 int journal_mark_dirty(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh) ;
1751
1752 static inline int reiserfs_transaction_running(struct super_block *s) {
1753     struct reiserfs_transaction_handle *th = current->journal_info ;
1754     if (th && th->t_super == s)
1755         return 1 ;
1756     if (th && th->t_super == NULL)
1757         BUG();
1758     return 0 ;
1759 }
1760
1761 int reiserfs_async_progress_wait(struct super_block *s);
1762
1763 struct reiserfs_transaction_handle *
1764 reiserfs_persistent_transaction(struct super_block *, int count);
1765 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1766 int reiserfs_commit_page(struct inode *inode, struct page *page,
1767                 unsigned from, unsigned to);
1768 int reiserfs_flush_old_commits(struct super_block *);
1769 void reiserfs_commit_for_inode(struct inode *) ;
1770 void reiserfs_update_inode_transaction(struct inode *) ;
1771 void reiserfs_wait_on_write_block(struct super_block *s) ;
1772 void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ;
1773 void reiserfs_allow_writes(struct super_block *s) ;
1774 void reiserfs_check_lock_depth(char *caller) ;
1775 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait) ;
1776 void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh) ;
1777 int journal_init(struct super_block *, const char * j_dev_name, int old_format, unsigned int) ;
1778 int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ;
1779 int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ;
1780 int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1781 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1782 int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, b_blocknr_t blocknr) ;
1783 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ;
1784 int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr, int searchall, b_blocknr_t *next) ;
1785 int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1786
1787 int buffer_journaled(const struct buffer_head *bh) ;
1788 int mark_buffer_journal_new(struct buffer_head *bh) ;
1789 int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ;
1790
1791                                 /* why is this kerplunked right here? */
1792 static inline int reiserfs_buffer_prepared(const struct buffer_head *bh) {
1793   if (bh && test_bit(BH_JPrepared, &bh->b_state))
1794     return 1 ;
1795   else
1796     return 0 ;
1797 }
1798
1799 /* buffer was journaled, waiting to get to disk */
1800 static inline int buffer_journal_dirty(const struct buffer_head *bh) {
1801   if (bh)
1802     return test_bit(BH_JDirty_wait, &bh->b_state) ;
1803   else
1804     return 0 ;
1805 }
1806 static inline int mark_buffer_notjournal_dirty(struct buffer_head *bh) {
1807   if (bh)
1808     clear_bit(BH_JDirty_wait, &bh->b_state) ;
1809   return 0 ;
1810 }
1811 static inline int mark_buffer_notjournal_new(struct buffer_head *bh) {
1812   if (bh) {
1813     clear_bit(BH_JNew, &bh->b_state) ;
1814   }
1815   return 0 ;
1816 }
1817
1818 void add_save_link (struct reiserfs_transaction_handle * th,
1819                                         struct inode * inode, int truncate);
1820 void remove_save_link (struct inode * inode, int truncate);
1821
1822 /* objectid.c */
1823 __u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th);
1824 void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release);
1825 int reiserfs_convert_objectid_map_v1(struct super_block *) ;
1826
1827 /* stree.c */
1828 int B_IS_IN_TREE(const struct buffer_head *);
1829 extern inline void copy_short_key (void * to, const void * from);
1830 extern void copy_item_head(struct item_head * p_v_to,
1831                                                                   const struct item_head * p_v_from);
1832
1833 // first key is in cpu form, second - le
1834 extern int comp_keys (const struct key * le_key,
1835                              const struct cpu_key * cpu_key);
1836 extern int  comp_short_keys (const struct key * le_key,
1837                                     const struct cpu_key * cpu_key);
1838 extern void le_key2cpu_key (struct cpu_key * to, const struct key * from);
1839
1840 // both are cpu keys
1841 extern  int comp_cpu_keys (const struct cpu_key *, const struct cpu_key *);
1842 extern int comp_short_cpu_keys (const struct cpu_key *,
1843                                        const struct cpu_key *);
1844 extern void cpu_key2cpu_key (struct cpu_key *, const struct cpu_key *);
1845
1846 // both are in le form
1847 extern int comp_le_keys (const struct key *, const struct key *);
1848 extern int comp_short_le_keys (const struct key *, const struct key *);
1849
1850 //
1851 // get key version from on disk key - kludge
1852 //
1853 static inline int le_key_version (const struct key * key)
1854 {
1855     int type;
1856     
1857     type = offset_v2_k_type( &(key->u.k_offset_v2));
1858     if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY)
1859         return KEY_FORMAT_3_5;
1860
1861     return KEY_FORMAT_3_6;
1862         
1863 }
1864
1865
1866 static inline void copy_key (struct key *to, const struct key *from)
1867 {
1868     memcpy (to, from, KEY_SIZE);
1869 }
1870
1871
1872 int comp_items (const struct item_head * stored_ih, const struct path * p_s_path);
1873 const struct key * get_rkey (const struct path * p_s_chk_path, 
1874                                                          const struct super_block  * p_s_sb);
1875 inline int bin_search (const void * p_v_key, const void * p_v_base, 
1876                                            int p_n_num, int p_n_width, int * p_n_pos);
1877 int search_by_key (struct super_block *, const struct cpu_key *, 
1878                                    struct path *, int);
1879 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1880 int search_for_position_by_key (struct super_block * p_s_sb, 
1881                                                                 const struct cpu_key * p_s_cpu_key, 
1882                                                                 struct path * p_s_search_path);
1883 extern void decrement_bcount (struct buffer_head * p_s_bh);
1884 void decrement_counters_in_path (struct path * p_s_search_path);
1885 void pathrelse (struct path * p_s_search_path);
1886 int reiserfs_check_path(struct path *p) ;
1887 void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path);
1888
1889 int reiserfs_insert_item (struct reiserfs_transaction_handle *th, 
1890                           struct path * path, 
1891                           const struct cpu_key * key,
1892                           struct item_head * ih, const char * body);
1893
1894 int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
1895                               struct path * path,
1896                               const struct cpu_key * key,
1897                               const char * body, int paste_size);
1898
1899 int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
1900                             struct path * path,
1901                             struct cpu_key * key,
1902                             struct inode * inode,
1903                             struct page *page,
1904                             loff_t new_file_size);
1905
1906 int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
1907                           struct path * path, 
1908                           const struct cpu_key * key,
1909                           struct inode * inode, 
1910                           struct buffer_head  * p_s_un_bh);
1911
1912 void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
1913                                                                 struct key * key);
1914 void reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode);
1915 void reiserfs_do_truncate (struct reiserfs_transaction_handle *th, 
1916                            struct  inode * p_s_inode, struct page *, 
1917                            int update_timestamps);
1918
1919 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1920 #define file_size(inode) ((inode)->i_size)
1921 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1922
1923 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1924 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1925
1926 void padd_item (char * item, int total_length, int length);
1927
1928 /* inode.c */
1929 void restart_transaction(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *path);
1930 void reiserfs_read_locked_inode(struct inode * inode, struct reiserfs_iget_args *args) ;
1931 int reiserfs_find_actor(struct inode * inode, void *p) ;
1932 int reiserfs_init_locked_inode(struct inode * inode, void *p) ;
1933 void reiserfs_delete_inode (struct inode * inode);
1934 void reiserfs_write_inode (struct inode * inode, int) ;
1935 struct dentry *reiserfs_get_dentry(struct super_block *, void *) ;
1936 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 *data,
1937                                      int len, int fhtype,
1938                                   int (*acceptable)(void *contect, struct dentry *de),
1939                                   void *context) ;
1940 int reiserfs_encode_fh( struct dentry *dentry, __u32 *data, int *lenp, 
1941                                                 int connectable );
1942
1943 int reiserfs_prepare_write(struct file *, struct page *, unsigned, unsigned) ;
1944 void reiserfs_truncate_file(struct inode *, int update_timestamps) ;
1945 void make_cpu_key (struct cpu_key * cpu_key, struct inode * inode, loff_t offset,
1946                    int type, int key_length);
1947 void make_le_item_head (struct item_head * ih, const struct cpu_key * key, 
1948                         int version,
1949                         loff_t offset, int type, int length, int entry_count);
1950 struct inode * reiserfs_iget (struct super_block * s, 
1951                               const struct cpu_key * key);
1952
1953
1954 int reiserfs_new_inode (struct reiserfs_transaction_handle *th, 
1955                                    struct inode * dir, int mode, 
1956                                    const char * symname, loff_t i_size,
1957                                    struct dentry *dentry, struct inode *inode);
1958 int reiserfs_sync_inode (struct reiserfs_transaction_handle *th, struct inode * inode);
1959 void reiserfs_update_sd (struct reiserfs_transaction_handle *th, struct inode * inode);
1960
1961 void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode );
1962 void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs );
1963
1964 /* namei.c */
1965 void set_de_name_and_namelen (struct reiserfs_dir_entry * de);
1966 int search_by_entry_key (struct super_block * sb, const struct cpu_key * key, 
1967                          struct path * path, 
1968                          struct reiserfs_dir_entry * de);
1969 struct dentry *reiserfs_get_parent(struct dentry *) ;
1970 /* procfs.c */
1971
1972 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
1973 #define REISERFS_PROC_INFO
1974 #else
1975 #undef REISERFS_PROC_INFO
1976 #endif
1977
1978 int reiserfs_proc_info_init( struct super_block *sb );
1979 int reiserfs_proc_info_done( struct super_block *sb );
1980 struct proc_dir_entry *reiserfs_proc_register_global( char *name, 
1981                                                                                                           read_proc_t *func );
1982 void reiserfs_proc_unregister_global( const char *name );
1983 int reiserfs_proc_info_global_init( void );
1984 int reiserfs_proc_info_global_done( void );
1985 int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset,
1986                                                                          int count, int *eof, void *data );
1987
1988 #if defined( REISERFS_PROC_INFO )
1989
1990 #define PROC_EXP( e )   e
1991
1992 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
1993 #define PROC_INFO_MAX( sb, field, value )                                                               \
1994     __PINFO( sb ).field =                                                                                               \
1995         max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
1996 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
1997 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
1998 #define PROC_INFO_BH_STAT( sb, bh, level )                                                      \
1999     PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );                                              \
2000     PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );      \
2001     PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2002 #else
2003 #define PROC_EXP( e )
2004 #define VOID_V ( ( void ) 0 )
2005 #define PROC_INFO_MAX( sb, field, value ) VOID_V
2006 #define PROC_INFO_INC( sb, field ) VOID_V
2007 #define PROC_INFO_ADD( sb, field, val ) VOID_V
2008 #define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
2009 #endif
2010
2011 /* dir.c */
2012 extern struct inode_operations reiserfs_dir_inode_operations;
2013 extern struct file_operations reiserfs_dir_operations;
2014
2015 /* tail_conversion.c */
2016 int direct2indirect (struct reiserfs_transaction_handle *, struct inode *, struct path *, struct buffer_head *, loff_t);
2017 int indirect2direct (struct reiserfs_transaction_handle *, struct inode *, struct page *, struct path *, const struct cpu_key *, loff_t, char *);
2018 void reiserfs_unmap_buffer(struct buffer_head *) ;
2019
2020
2021 /* file.c */
2022 extern struct inode_operations reiserfs_file_inode_operations;
2023 extern struct file_operations reiserfs_file_operations;
2024 extern struct address_space_operations reiserfs_address_space_operations ;
2025
2026 /* fix_nodes.c */
2027 #ifdef CONFIG_REISERFS_CHECK
2028 void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s);
2029 void reiserfs_kfree (const void * vp, size_t size, struct super_block * s);
2030 #else
2031 static inline void *reiserfs_kmalloc(size_t size, int flags,
2032                                         struct super_block *s)
2033 {
2034         return kmalloc(size, flags);
2035 }
2036
2037 static inline void reiserfs_kfree(const void *vp, size_t size,
2038                                         struct super_block *s)
2039 {
2040         kfree(vp);
2041 }
2042 #endif
2043
2044 int fix_nodes (int n_op_mode, struct tree_balance * p_s_tb, 
2045                struct item_head * p_s_ins_ih, const void *);
2046 void unfix_nodes (struct tree_balance *);
2047 void free_buffers_in_tb (struct tree_balance * p_s_tb);
2048
2049
2050 /* prints.c */
2051 void reiserfs_panic (struct super_block * s, const char * fmt, ...)
2052 __attribute__ ( ( noreturn ) );/* __attribute__( ( format ( printf, 2, 3 ) ) ) */
2053 void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...);
2054 /* __attribute__( ( format ( printf, 3, 4 ) ) ); */
2055 void print_virtual_node (struct virtual_node * vn);
2056 void print_indirect_item (struct buffer_head * bh, int item_num);
2057 void store_print_tb (struct tree_balance * tb);
2058 void print_cur_tb (char * mes);
2059 void print_de (struct reiserfs_dir_entry * de);
2060 void print_bi (struct buffer_info * bi, char * mes);
2061 #define PRINT_LEAF_ITEMS 1   /* print all items */
2062 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2063 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2064 void print_block (struct buffer_head * bh, ...);
2065 void print_path (struct tree_balance * tb, struct path * path);
2066 void print_bmap (struct super_block * s, int silent);
2067 void print_bmap_block (int i, char * data, int size, int silent);
2068 /*void print_super_block (struct super_block * s, char * mes);*/
2069 void print_objectid_map (struct super_block * s);
2070 void print_block_head (struct buffer_head * bh, char * mes);
2071 void check_leaf (struct buffer_head * bh);
2072 void check_internal (struct buffer_head * bh);
2073 void print_statistics (struct super_block * s);
2074 char * reiserfs_hashname(int code);
2075
2076 /* lbalance.c */
2077 int leaf_move_items (int shift_mode, struct tree_balance * tb, int mov_num, int mov_bytes, struct buffer_head * Snew);
2078 int leaf_shift_left (struct tree_balance * tb, int shift_num, int shift_bytes);
2079 int leaf_shift_right (struct tree_balance * tb, int shift_num, int shift_bytes);
2080 void leaf_delete_items (struct buffer_info * cur_bi, int last_first, int first, int del_num, int del_bytes);
2081 void leaf_insert_into_buf (struct buffer_info * bi, int before, 
2082                            struct item_head * inserted_item_ih, const char * inserted_item_body, int zeros_number);
2083 void leaf_paste_in_buffer (struct buffer_info * bi, int pasted_item_num, 
2084                            int pos_in_item, int paste_size, const char * body, int zeros_number);
2085 void leaf_cut_from_buffer (struct buffer_info * bi, int cut_item_num, int pos_in_item, 
2086                            int cut_size);
2087 void leaf_paste_entries (struct buffer_head * bh, int item_num, int before, 
2088                          int new_entry_count, struct reiserfs_de_head * new_dehs, const char * records, int paste_size);
2089 /* ibalance.c */
2090 int balance_internal (struct tree_balance * , int, int, struct item_head * , 
2091                       struct buffer_head **);
2092
2093 /* do_balance.c */
2094 void do_balance_mark_leaf_dirty (struct tree_balance * tb,
2095                                         struct buffer_head * bh, int flag);
2096 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2097 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2098
2099 void do_balance (struct tree_balance * tb, struct item_head * ih, 
2100                  const char * body, int flag);
2101 void reiserfs_invalidate_buffer (struct tree_balance * tb, struct buffer_head * bh);
2102
2103 int get_left_neighbor_position (struct tree_balance * tb, int h);
2104 int get_right_neighbor_position (struct tree_balance * tb, int h);
2105 void replace_key (struct tree_balance * tb, struct buffer_head *, int, struct buffer_head *, int);
2106 void replace_lkey (struct tree_balance *, int, struct item_head *);
2107 void replace_rkey (struct tree_balance *, int, struct item_head *);
2108 void make_empty_node (struct buffer_info *);
2109 struct buffer_head * get_FEB (struct tree_balance *);
2110
2111 /* bitmap.c */
2112
2113 /* structure contains hints for block allocator, and it is a container for
2114  * arguments, such as node, search path, transaction_handle, etc. */
2115  struct __reiserfs_blocknr_hint {
2116      struct inode * inode;              /* inode passed to allocator, if we allocate unf. nodes */
2117      long block;                        /* file offset, in blocks */
2118      struct key key;
2119      struct path * path;                /* search path, used by allocator to deternine search_start by
2120                                          * various ways */
2121      struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and
2122                                                * bitmap blocks changes  */
2123      b_blocknr_t beg, end;
2124      b_blocknr_t search_start;          /* a field used to transfer search start value (block number)
2125                                          * between different block allocator procedures
2126                                          * (determine_search_start() and others) */
2127     int prealloc_size;                  /* is set in determine_prealloc_size() function, used by underlayed
2128                                          * function that do actual allocation */
2129
2130     int formatted_node:1;               /* the allocator uses different polices for getting disk space for
2131                                          * formatted/unformatted blocks with/without preallocation */
2132     int preallocate:1;
2133 };
2134
2135 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2136
2137 int reiserfs_parse_alloc_options (struct super_block *, char *);
2138 int is_reusable (struct super_block * s, b_blocknr_t block, int bit_value);
2139 void reiserfs_free_block (struct reiserfs_transaction_handle *th, b_blocknr_t);
2140 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int);
2141 extern inline int reiserfs_new_form_blocknrs (struct tree_balance * tb,
2142                                               b_blocknr_t *new_blocknrs, int amount_needed)
2143 {
2144     reiserfs_blocknr_hint_t hint = {
2145         .th = tb->transaction_handle,
2146         .path = tb->tb_path,
2147         .inode = NULL,
2148         .key = tb->key,
2149         .block = 0,
2150         .formatted_node = 1
2151     };
2152     return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0);
2153 }
2154
2155 extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th,
2156                                              struct inode *inode,
2157                                              b_blocknr_t *new_blocknrs,
2158                                              struct path * path, long block)
2159 {
2160     reiserfs_blocknr_hint_t hint = {
2161         .th = th,
2162         .path = path,
2163         .inode = inode,
2164         .block = block,
2165         .formatted_node = 0,
2166         .preallocate = 0
2167     };
2168     return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2169 }
2170
2171 #ifdef REISERFS_PREALLOCATE
2172 extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th,
2173                                              struct inode * inode,
2174                                              b_blocknr_t *new_blocknrs,
2175                                              struct path * path, long block)
2176 {
2177     reiserfs_blocknr_hint_t hint = {
2178         .th = th,
2179         .path = path,
2180         .inode = inode,
2181         .block = block,
2182         .formatted_node = 0,
2183         .preallocate = 1
2184     };
2185     return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2186 }
2187
2188 void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th, 
2189                                 struct inode * inode);
2190 void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th);
2191 #endif
2192 void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks);
2193 void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks);
2194 int reiserfs_can_fit_pages(struct super_block *sb);
2195
2196 /* hashes.c */
2197 __u32 keyed_hash (const signed char *msg, int len);
2198 __u32 yura_hash (const signed char *msg, int len);
2199 __u32 r5_hash (const signed char *msg, int len);
2200
2201 /* the ext2 bit routines adjust for big or little endian as
2202 ** appropriate for the arch, so in our laziness we use them rather
2203 ** than using the bit routines they call more directly.  These
2204 ** routines must be used when changing on disk bitmaps.  */
2205 #define reiserfs_test_and_set_le_bit   ext2_set_bit
2206 #define reiserfs_test_and_clear_le_bit ext2_clear_bit
2207 #define reiserfs_test_le_bit           ext2_test_bit
2208 #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2209
2210 /* sometimes reiserfs_truncate may require to allocate few new blocks
2211    to perform indirect2direct conversion. People probably used to
2212    think, that truncate should work without problems on a filesystem
2213    without free disk space. They may complain that they can not
2214    truncate due to lack of free disk space. This spare space allows us
2215    to not worry about it. 500 is probably too much, but it should be
2216    absolutely safe */
2217 #define SPARE_SPACE 500
2218
2219
2220 /* prototypes from ioctl.c */
2221 int reiserfs_ioctl (struct inode * inode, struct file * filp, 
2222                     unsigned int cmd, unsigned long arg);
2223 int reiserfs_unpack (struct inode * inode, struct file * filp);
2224  
2225 /* ioctl's command */
2226 #define REISERFS_IOC_UNPACK             _IOW(0xCD,1,long)
2227 /* define following flags to be the same as in ext2, so that chattr(1),
2228    lsattr(1) will work with us. */
2229 #define REISERFS_IOC_GETFLAGS           EXT2_IOC_GETFLAGS
2230 #define REISERFS_IOC_SETFLAGS           EXT2_IOC_SETFLAGS
2231 #define REISERFS_IOC_GETVERSION         EXT2_IOC_GETVERSION
2232 #define REISERFS_IOC_SETVERSION         EXT2_IOC_SETVERSION
2233
2234 /* Locking primitives */
2235 /* Right now we are still falling back to (un)lock_kernel, but eventually that
2236    would evolve into real per-fs locks */
2237 #define reiserfs_write_lock( sb ) lock_kernel()
2238 #define reiserfs_write_unlock( sb ) unlock_kernel()
2239                                  
2240 #endif /* _LINUX_REISER_FS_H */
2241
2242