fedcdeaf3e60cb32bb0b16a993a3e7fc1d0b3d26
[linux-2.6.git] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/capability.h>
14 #include <linux/completion.h>
15 #include <linux/personality.h>
16 #include <linux/tty.h>
17 #include <linux/namespace.h>
18 #include <linux/key.h>
19 #include <linux/security.h>
20 #include <linux/cpu.h>
21 #include <linux/acct.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/ptrace.h>
25 #include <linux/profile.h>
26 #include <linux/mount.h>
27 #include <linux/proc_fs.h>
28 #include <linux/mempolicy.h>
29 #include <linux/cpuset.h>
30 #include <linux/syscalls.h>
31 #include <linux/signal.h>
32 #include <linux/posix-timers.h>
33 #include <linux/cn_proc.h>
34 #include <linux/mutex.h>
35 #include <linux/futex.h>
36 #include <linux/compat.h>
37 #include <linux/pipe_fs_i.h>
38 #include <linux/audit.h> /* for audit_free() */
39 #include <linux/vs_limit.h>
40 #include <linux/vs_context.h>
41 #include <linux/vs_network.h>
42 #include <linux/vs_cvirt.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/pgtable.h>
47 #include <asm/mmu_context.h>
48
49 extern void sem_exit (void);
50 extern struct task_struct *child_reaper;
51
52 int getrusage(struct task_struct *, int, struct rusage __user *);
53
54 static void exit_mm(struct task_struct * tsk);
55
56 static void __unhash_process(struct task_struct *p)
57 {
58         nr_threads--;
59         detach_pid(p, PIDTYPE_PID);
60         if (thread_group_leader(p)) {
61                 detach_pid(p, PIDTYPE_PGID);
62                 detach_pid(p, PIDTYPE_SID);
63
64                 list_del_rcu(&p->tasks);
65                 __get_cpu_var(process_counts)--;
66         }
67         list_del_rcu(&p->thread_group);
68         remove_parent(p);
69 }
70
71 /*
72  * This function expects the tasklist_lock write-locked.
73  */
74 static void __exit_signal(struct task_struct *tsk)
75 {
76         struct signal_struct *sig = tsk->signal;
77         struct sighand_struct *sighand;
78
79         BUG_ON(!sig);
80         BUG_ON(!atomic_read(&sig->count));
81
82         rcu_read_lock();
83         sighand = rcu_dereference(tsk->sighand);
84         spin_lock(&sighand->siglock);
85
86         posix_cpu_timers_exit(tsk);
87         if (atomic_dec_and_test(&sig->count))
88                 posix_cpu_timers_exit_group(tsk);
89         else {
90                 /*
91                  * If there is any task waiting for the group exit
92                  * then notify it:
93                  */
94                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
95                         wake_up_process(sig->group_exit_task);
96                         sig->group_exit_task = NULL;
97                 }
98                 if (tsk == sig->curr_target)
99                         sig->curr_target = next_thread(tsk);
100                 /*
101                  * Accumulate here the counters for all threads but the
102                  * group leader as they die, so they can be added into
103                  * the process-wide totals when those are taken.
104                  * The group leader stays around as a zombie as long
105                  * as there are other threads.  When it gets reaped,
106                  * the exit.c code will add its counts into these totals.
107                  * We won't ever get here for the group leader, since it
108                  * will have been the last reference on the signal_struct.
109                  */
110                 sig->utime = cputime_add(sig->utime, tsk->utime);
111                 sig->stime = cputime_add(sig->stime, tsk->stime);
112                 sig->min_flt += tsk->min_flt;
113                 sig->maj_flt += tsk->maj_flt;
114                 sig->nvcsw += tsk->nvcsw;
115                 sig->nivcsw += tsk->nivcsw;
116                 sig->sched_time += tsk->sched_time;
117                 sig = NULL; /* Marker for below. */
118         }
119
120         __unhash_process(tsk);
121
122         tsk->signal = NULL;
123         tsk->sighand = NULL;
124         spin_unlock(&sighand->siglock);
125         rcu_read_unlock();
126
127         __cleanup_sighand(sighand);
128         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
129         flush_sigqueue(&tsk->pending);
130         if (sig) {
131                 flush_sigqueue(&sig->shared_pending);
132                 __cleanup_signal(sig);
133         }
134 }
135
136 static void delayed_put_task_struct(struct rcu_head *rhp)
137 {
138         put_task_struct(container_of(rhp, struct task_struct, rcu));
139 }
140
141 void release_task(struct task_struct * p)
142 {
143         int zap_leader;
144         task_t *leader;
145         struct dentry *proc_dentry;
146
147 repeat:
148         atomic_dec(&p->user->processes);
149         spin_lock(&p->proc_lock);
150         proc_dentry = proc_pid_unhash(p);
151         write_lock_irq(&tasklist_lock);
152         ptrace_unlink(p);
153         BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
154         __exit_signal(p);
155
156         /*
157          * If we are the last non-leader member of the thread
158          * group, and the leader is zombie, then notify the
159          * group leader's parent process. (if it wants notification.)
160          */
161         zap_leader = 0;
162         leader = p->group_leader;
163         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
164                 BUG_ON(leader->exit_signal == -1);
165                 do_notify_parent(leader, leader->exit_signal);
166                 /*
167                  * If we were the last child thread and the leader has
168                  * exited already, and the leader's parent ignores SIGCHLD,
169                  * then we are the one who should release the leader.
170                  *
171                  * do_notify_parent() will have marked it self-reaping in
172                  * that case.
173                  */
174                 zap_leader = (leader->exit_signal == -1);
175         }
176
177         sched_exit(p);
178         write_unlock_irq(&tasklist_lock);
179         spin_unlock(&p->proc_lock);
180         proc_pid_flush(proc_dentry);
181         release_thread(p);
182         call_rcu(&p->rcu, delayed_put_task_struct);
183
184         p = leader;
185         if (unlikely(zap_leader))
186                 goto repeat;
187 }
188
189 /*
190  * This checks not only the pgrp, but falls back on the pid if no
191  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
192  * without this...
193  */
194 int session_of_pgrp(int pgrp)
195 {
196         struct task_struct *p;
197         int sid = -1;
198
199         read_lock(&tasklist_lock);
200         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
201                 if (p->signal->session > 0) {
202                         sid = p->signal->session;
203                         goto out;
204                 }
205         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
206         p = find_task_by_pid(pgrp);
207         if (p)
208                 sid = p->signal->session;
209 out:
210         read_unlock(&tasklist_lock);
211         
212         return sid;
213 }
214
215 /*
216  * Determine if a process group is "orphaned", according to the POSIX
217  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
218  * by terminal-generated stop signals.  Newly orphaned process groups are
219  * to receive a SIGHUP and a SIGCONT.
220  *
221  * "I ask you, have you ever known what it is to be an orphan?"
222  */
223 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
224 {
225         struct task_struct *p;
226         int ret = 1;
227
228         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
229                 if (p == ignored_task
230                                 || p->exit_state
231                                 || p->real_parent->pid == 1)
232                         continue;
233                 if (process_group(p->real_parent) != pgrp
234                             && p->real_parent->signal->session == p->signal->session) {
235                         ret = 0;
236                         break;
237                 }
238         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
239         return ret;     /* (sighing) "Often!" */
240 }
241
242 int is_orphaned_pgrp(int pgrp)
243 {
244         int retval;
245
246         read_lock(&tasklist_lock);
247         retval = will_become_orphaned_pgrp(pgrp, NULL);
248         read_unlock(&tasklist_lock);
249
250         return retval;
251 }
252
253 static int has_stopped_jobs(int pgrp)
254 {
255         int retval = 0;
256         struct task_struct *p;
257
258         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
259                 if (p->state != TASK_STOPPED)
260                         continue;
261
262                 /* If p is stopped by a debugger on a signal that won't
263                    stop it, then don't count p as stopped.  This isn't
264                    perfect but it's a good approximation.  */
265                 if (unlikely (p->ptrace)
266                     && p->exit_code != SIGSTOP
267                     && p->exit_code != SIGTSTP
268                     && p->exit_code != SIGTTOU
269                     && p->exit_code != SIGTTIN)
270                         continue;
271
272                 retval = 1;
273                 break;
274         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
275         return retval;
276 }
277
278 /**
279  * reparent_to_init - Reparent the calling kernel thread to the init task.
280  *
281  * If a kernel thread is launched as a result of a system call, or if
282  * it ever exits, it should generally reparent itself to init so that
283  * it is correctly cleaned up on exit.
284  *
285  * The various task state such as scheduling policy and priority may have
286  * been inherited from a user process, so we reset them to sane values here.
287  *
288  * NOTE that reparent_to_init() gives the caller full capabilities.
289  */
290 static void reparent_to_init(void)
291 {
292         write_lock_irq(&tasklist_lock);
293
294         ptrace_unlink(current);
295         /* Reparent to init */
296         remove_parent(current);
297         /* FIXME: handle vchild_reaper/initpid */
298         current->parent = child_reaper;
299         current->real_parent = child_reaper;
300         add_parent(current);
301
302         /* Set the exit signal to SIGCHLD so we signal init on exit */
303         current->exit_signal = SIGCHLD;
304
305         if ((current->policy == SCHED_NORMAL ||
306                         current->policy == SCHED_BATCH)
307                                 && (task_nice(current) < 0))
308                 set_user_nice(current, 0);
309         /* cpus_allowed? */
310         /* rt_priority? */
311         /* signals? */
312         security_task_reparent_to_init(current);
313         memcpy(current->signal->rlim, init_task.signal->rlim,
314                sizeof(current->signal->rlim));
315         atomic_inc(&(INIT_USER->__count));
316         write_unlock_irq(&tasklist_lock);
317         switch_uid(INIT_USER);
318 }
319
320 void __set_special_pids(pid_t session, pid_t pgrp)
321 {
322         struct task_struct *curr = current->group_leader;
323
324         if (curr->signal->session != session) {
325                 detach_pid(curr, PIDTYPE_SID);
326                 curr->signal->session = session;
327                 attach_pid(curr, PIDTYPE_SID, session);
328         }
329         if (process_group(curr) != pgrp) {
330                 detach_pid(curr, PIDTYPE_PGID);
331                 curr->signal->pgrp = pgrp;
332                 attach_pid(curr, PIDTYPE_PGID, pgrp);
333         }
334 }
335
336 void set_special_pids(pid_t session, pid_t pgrp)
337 {
338         write_lock_irq(&tasklist_lock);
339         __set_special_pids(session, pgrp);
340         write_unlock_irq(&tasklist_lock);
341 }
342
343 /*
344  * Let kernel threads use this to say that they
345  * allow a certain signal (since daemonize() will
346  * have disabled all of them by default).
347  */
348 int allow_signal(int sig)
349 {
350         if (!valid_signal(sig) || sig < 1)
351                 return -EINVAL;
352
353         spin_lock_irq(&current->sighand->siglock);
354         sigdelset(&current->blocked, sig);
355         if (!current->mm) {
356                 /* Kernel threads handle their own signals.
357                    Let the signal code know it'll be handled, so
358                    that they don't get converted to SIGKILL or
359                    just silently dropped */
360                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
361         }
362         recalc_sigpending();
363         spin_unlock_irq(&current->sighand->siglock);
364         return 0;
365 }
366
367 EXPORT_SYMBOL(allow_signal);
368
369 int disallow_signal(int sig)
370 {
371         if (!valid_signal(sig) || sig < 1)
372                 return -EINVAL;
373
374         spin_lock_irq(&current->sighand->siglock);
375         sigaddset(&current->blocked, sig);
376         recalc_sigpending();
377         spin_unlock_irq(&current->sighand->siglock);
378         return 0;
379 }
380
381 EXPORT_SYMBOL(disallow_signal);
382
383 /*
384  *      Put all the gunge required to become a kernel thread without
385  *      attached user resources in one place where it belongs.
386  */
387
388 void daemonize(const char *name, ...)
389 {
390         va_list args;
391         struct fs_struct *fs;
392         sigset_t blocked;
393
394         va_start(args, name);
395         vsnprintf(current->comm, sizeof(current->comm), name, args);
396         va_end(args);
397
398         /*
399          * If we were started as result of loading a module, close all of the
400          * user space pages.  We don't need them, and if we didn't close them
401          * they would be locked into memory.
402          */
403         exit_mm(current);
404
405         set_special_pids(1, 1);
406         mutex_lock(&tty_mutex);
407         current->signal->tty = NULL;
408         mutex_unlock(&tty_mutex);
409
410         /* Block and flush all signals */
411         sigfillset(&blocked);
412         sigprocmask(SIG_BLOCK, &blocked, NULL);
413         flush_signals(current);
414
415         /* Become as one with the init task */
416
417         exit_fs(current);       /* current->fs->count--; */
418         fs = init_task.fs;
419         current->fs = fs;
420         atomic_inc(&fs->count);
421         exit_namespace(current);
422         current->namespace = init_task.namespace;
423         get_namespace(current->namespace);
424         exit_files(current);
425         current->files = init_task.files;
426         atomic_inc(&current->files->count);
427
428         reparent_to_init();
429 }
430
431 EXPORT_SYMBOL(daemonize);
432
433 static void close_files(struct files_struct * files)
434 {
435         int i, j;
436         struct fdtable *fdt;
437
438         j = 0;
439
440         /*
441          * It is safe to dereference the fd table without RCU or
442          * ->file_lock because this is the last reference to the
443          * files structure.
444          */
445         fdt = files_fdtable(files);
446         for (;;) {
447                 unsigned long set;
448                 i = j * __NFDBITS;
449                 if (i >= fdt->max_fdset || i >= fdt->max_fds)
450                         break;
451                 set = fdt->open_fds->fds_bits[j++];
452                 while (set) {
453                         if (set & 1) {
454                                 struct file * file = xchg(&fdt->fd[i], NULL);
455                                 if (file)
456                                         filp_close(file, files);
457                                 vx_openfd_dec(i);
458                         }
459                         i++;
460                         set >>= 1;
461                 }
462         }
463 }
464
465 struct files_struct *get_files_struct(struct task_struct *task)
466 {
467         struct files_struct *files;
468
469         task_lock(task);
470         files = task->files;
471         if (files)
472                 atomic_inc(&files->count);
473         task_unlock(task);
474
475         return files;
476 }
477
478 void fastcall put_files_struct(struct files_struct *files)
479 {
480         struct fdtable *fdt;
481
482         if (atomic_dec_and_test(&files->count)) {
483                 close_files(files);
484                 /*
485                  * Free the fd and fdset arrays if we expanded them.
486                  * If the fdtable was embedded, pass files for freeing
487                  * at the end of the RCU grace period. Otherwise,
488                  * you can free files immediately.
489                  */
490                 fdt = files_fdtable(files);
491                 if (fdt == &files->fdtab)
492                         fdt->free_files = files;
493                 else
494                         kmem_cache_free(files_cachep, files);
495                 free_fdtable(fdt);
496         }
497 }
498
499 EXPORT_SYMBOL(put_files_struct);
500
501 static inline void __exit_files(struct task_struct *tsk)
502 {
503         struct files_struct * files = tsk->files;
504
505         if (files) {
506                 task_lock(tsk);
507                 tsk->files = NULL;
508                 task_unlock(tsk);
509                 put_files_struct(files);
510         }
511 }
512
513 void exit_files(struct task_struct *tsk)
514 {
515         __exit_files(tsk);
516 }
517
518 static inline void __put_fs_struct(struct fs_struct *fs)
519 {
520         /* No need to hold fs->lock if we are killing it */
521         if (atomic_dec_and_test(&fs->count)) {
522                 dput(fs->root);
523                 mntput(fs->rootmnt);
524                 dput(fs->pwd);
525                 mntput(fs->pwdmnt);
526                 if (fs->altroot) {
527                         dput(fs->altroot);
528                         mntput(fs->altrootmnt);
529                 }
530                 kmem_cache_free(fs_cachep, fs);
531         }
532 }
533
534 void put_fs_struct(struct fs_struct *fs)
535 {
536         __put_fs_struct(fs);
537 }
538
539 static inline void __exit_fs(struct task_struct *tsk)
540 {
541         struct fs_struct * fs = tsk->fs;
542
543         if (fs) {
544                 task_lock(tsk);
545                 tsk->fs = NULL;
546                 task_unlock(tsk);
547                 __put_fs_struct(fs);
548         }
549 }
550
551 void exit_fs(struct task_struct *tsk)
552 {
553         __exit_fs(tsk);
554 }
555
556 EXPORT_SYMBOL_GPL(exit_fs);
557
558 /*
559  * Turn us into a lazy TLB process if we
560  * aren't already..
561  */
562 static void exit_mm(struct task_struct * tsk)
563 {
564         struct mm_struct *mm = tsk->mm;
565
566         mm_release(tsk, mm);
567         if (!mm)
568                 return;
569         /*
570          * Serialize with any possible pending coredump.
571          * We must hold mmap_sem around checking core_waiters
572          * and clearing tsk->mm.  The core-inducing thread
573          * will increment core_waiters for each thread in the
574          * group with ->mm != NULL.
575          */
576         down_read(&mm->mmap_sem);
577         if (mm->core_waiters) {
578                 up_read(&mm->mmap_sem);
579                 down_write(&mm->mmap_sem);
580                 if (!--mm->core_waiters)
581                         complete(mm->core_startup_done);
582                 up_write(&mm->mmap_sem);
583
584                 wait_for_completion(&mm->core_done);
585                 down_read(&mm->mmap_sem);
586         }
587         atomic_inc(&mm->mm_count);
588         if (mm != tsk->active_mm) BUG();
589         /* more a memory barrier than a real lock */
590         task_lock(tsk);
591         tsk->mm = NULL;
592         up_read(&mm->mmap_sem);
593         enter_lazy_tlb(mm, current);
594         task_unlock(tsk);
595         mmput(mm);
596 }
597
598 static inline void choose_new_parent(task_t *p, task_t *reaper)
599 {
600         /* check for reaper context */
601         vxwprintk((p->xid != reaper->xid) && (reaper != child_reaper),
602                 "rogue reaper: %p[%d,#%u] <> %p[%d,#%u]",
603                 p, p->pid, p->xid, reaper, reaper->pid, reaper->xid);
604
605         /*
606          * Make sure we're not reparenting to ourselves and that
607          * the parent is not a zombie.
608          */
609         BUG_ON(p == reaper || reaper->exit_state);
610         p->real_parent = reaper;
611 }
612
613 static void reparent_thread(task_t *p, task_t *father, int traced)
614 {
615         /* We don't want people slaying init.  */
616         if (p->exit_signal != -1)
617                 p->exit_signal = SIGCHLD;
618
619         if (p->pdeath_signal)
620                 /* We already hold the tasklist_lock here.  */
621                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
622
623         /* Move the child from its dying parent to the new one.  */
624         if (unlikely(traced)) {
625                 /* Preserve ptrace links if someone else is tracing this child.  */
626                 list_del_init(&p->ptrace_list);
627                 if (p->parent != p->real_parent)
628                         list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
629         } else {
630                 /* If this child is being traced, then we're the one tracing it
631                  * anyway, so let go of it.
632                  */
633                 p->ptrace = 0;
634                 remove_parent(p);
635                 p->parent = p->real_parent;
636                 add_parent(p);
637
638                 /* If we'd notified the old parent about this child's death,
639                  * also notify the new parent.
640                  */
641                 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
642                     thread_group_empty(p))
643                         do_notify_parent(p, p->exit_signal);
644                 else if (p->state == TASK_TRACED) {
645                         /*
646                          * If it was at a trace stop, turn it into
647                          * a normal stop since it's no longer being
648                          * traced.
649                          */
650                         ptrace_untrace(p);
651                 }
652         }
653
654         /*
655          * process group orphan check
656          * Case ii: Our child is in a different pgrp
657          * than we are, and it was the only connection
658          * outside, so the child pgrp is now orphaned.
659          */
660         if ((process_group(p) != process_group(father)) &&
661             (p->signal->session == father->signal->session)) {
662                 int pgrp = process_group(p);
663
664                 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
665                         __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
666                         __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
667                 }
668         }
669 }
670
671 /*
672  * When we die, we re-parent all our children.
673  * Try to give them to another thread in our thread
674  * group, and if no such member exists, give it to
675  * the global child reaper process (ie "init")
676  */
677 static void forget_original_parent(struct task_struct * father,
678                                           struct list_head *to_release)
679 {
680         struct task_struct *p, *reaper = father;
681         struct list_head *_p, *_n;
682
683         do {
684                 reaper = next_thread(reaper);
685                 if (reaper == father) {
686                         reaper = vx_child_reaper(father);
687                         break;
688                 }
689         } while (reaper->exit_state);
690
691         /*
692          * There are only two places where our children can be:
693          *
694          * - in our child list
695          * - in our ptraced child list
696          *
697          * Search them and reparent children.
698          */
699         list_for_each_safe(_p, _n, &father->children) {
700                 int ptrace;
701                 p = list_entry(_p,struct task_struct,sibling);
702
703                 ptrace = p->ptrace;
704
705                 /* if father isn't the real parent, then ptrace must be enabled */
706                 BUG_ON(father != p->real_parent && !ptrace);
707
708                 if (father == p->real_parent) {
709                         /* reparent with a reaper, real father it's us */
710                         choose_new_parent(p, vx_child_reaper(p));
711                         reparent_thread(p, father, 0);
712                 } else {
713                         /* reparent ptraced task to its real parent */
714                         __ptrace_unlink (p);
715                         if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
716                             thread_group_empty(p))
717                                 do_notify_parent(p, p->exit_signal);
718                 }
719
720                 /*
721                  * if the ptraced child is a zombie with exit_signal == -1
722                  * we must collect it before we exit, or it will remain
723                  * zombie forever since we prevented it from self-reap itself
724                  * while it was being traced by us, to be able to see it in wait4.
725                  */
726                 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
727                         list_add(&p->ptrace_list, to_release);
728         }
729         list_for_each_safe(_p, _n, &father->ptrace_children) {
730                 p = list_entry(_p,struct task_struct,ptrace_list);
731                 /* check for reaper context */
732                 choose_new_parent(p, reaper);
733                 reparent_thread(p, father, 1);
734         }
735 }
736
737 /*
738  * Send signals to all our closest relatives so that they know
739  * to properly mourn us..
740  */
741 static void exit_notify(struct task_struct *tsk)
742 {
743         int state;
744         struct task_struct *t;
745         struct list_head ptrace_dead, *_p, *_n;
746
747         if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
748             && !thread_group_empty(tsk)) {
749                 /*
750                  * This occurs when there was a race between our exit
751                  * syscall and a group signal choosing us as the one to
752                  * wake up.  It could be that we are the only thread
753                  * alerted to check for pending signals, but another thread
754                  * should be woken now to take the signal since we will not.
755                  * Now we'll wake all the threads in the group just to make
756                  * sure someone gets all the pending signals.
757                  */
758                 read_lock(&tasklist_lock);
759                 spin_lock_irq(&tsk->sighand->siglock);
760                 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
761                         if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
762                                 recalc_sigpending_tsk(t);
763                                 if (signal_pending(t))
764                                         signal_wake_up(t, 0);
765                         }
766                 spin_unlock_irq(&tsk->sighand->siglock);
767                 read_unlock(&tasklist_lock);
768         }
769
770         write_lock_irq(&tasklist_lock);
771
772         /*
773          * This does two things:
774          *
775          * A.  Make init inherit all the child processes
776          * B.  Check to see if any process groups have become orphaned
777          *      as a result of our exiting, and if they have any stopped
778          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
779          */
780
781         INIT_LIST_HEAD(&ptrace_dead);
782         forget_original_parent(tsk, &ptrace_dead);
783         BUG_ON(!list_empty(&tsk->children));
784         BUG_ON(!list_empty(&tsk->ptrace_children));
785
786         /*
787          * Check to see if any process groups have become orphaned
788          * as a result of our exiting, and if they have any stopped
789          * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
790          *
791          * Case i: Our father is in a different pgrp than we are
792          * and we were the only connection outside, so our pgrp
793          * is about to become orphaned.
794          */
795          
796         t = tsk->real_parent;
797         
798         if ((process_group(t) != process_group(tsk)) &&
799             (t->signal->session == tsk->signal->session) &&
800             will_become_orphaned_pgrp(process_group(tsk), tsk) &&
801             has_stopped_jobs(process_group(tsk))) {
802                 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
803                 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
804         }
805
806         /* Let father know we died 
807          *
808          * Thread signals are configurable, but you aren't going to use
809          * that to send signals to arbitary processes. 
810          * That stops right now.
811          *
812          * If the parent exec id doesn't match the exec id we saved
813          * when we started then we know the parent has changed security
814          * domain.
815          *
816          * If our self_exec id doesn't match our parent_exec_id then
817          * we have changed execution domain as these two values started
818          * the same after a fork.
819          *      
820          */
821         
822         if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
823             ( tsk->parent_exec_id != t->self_exec_id  ||
824               tsk->self_exec_id != tsk->parent_exec_id)
825             && !capable(CAP_KILL))
826                 tsk->exit_signal = SIGCHLD;
827
828
829         /* If something other than our normal parent is ptracing us, then
830          * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
831          * only has special meaning to our real parent.
832          */
833         if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
834                 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
835                 do_notify_parent(tsk, signal);
836         } else if (tsk->ptrace) {
837                 do_notify_parent(tsk, SIGCHLD);
838         }
839
840         state = EXIT_ZOMBIE;
841         if (tsk->exit_signal == -1 &&
842             (likely(tsk->ptrace == 0) ||
843              unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
844                 state = EXIT_DEAD;
845         tsk->exit_state = state;
846
847         write_unlock_irq(&tasklist_lock);
848
849         list_for_each_safe(_p, _n, &ptrace_dead) {
850                 list_del_init(_p);
851                 t = list_entry(_p,struct task_struct,ptrace_list);
852                 release_task(t);
853         }
854
855         /* If the process is dead, release it - nobody will wait for it */
856         if (state == EXIT_DEAD)
857                 release_task(tsk);
858 }
859
860 fastcall NORET_TYPE void do_exit(long code)
861 {
862         struct task_struct *tsk = current;
863         int group_dead;
864
865         profile_task_exit(tsk);
866
867         WARN_ON(atomic_read(&tsk->fs_excl));
868
869         if (unlikely(in_interrupt()))
870                 panic("Aiee, killing interrupt handler!");
871         if (unlikely(!tsk->pid))
872                 panic("Attempted to kill the idle task!");
873         if (unlikely(tsk == child_reaper))
874                 panic("Attempted to kill init!");
875
876         if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
877                 current->ptrace_message = code;
878                 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
879         }
880
881         /*
882          * We're taking recursive faults here in do_exit. Safest is to just
883          * leave this task alone and wait for reboot.
884          */
885         if (unlikely(tsk->flags & PF_EXITING)) {
886                 printk(KERN_ALERT
887                         "Fixing recursive fault but reboot is needed!\n");
888                 if (tsk->io_context)
889                         exit_io_context();
890                 set_current_state(TASK_UNINTERRUPTIBLE);
891                 schedule();
892         }
893
894         tsk->flags |= PF_EXITING;
895
896         if (unlikely(in_atomic()))
897                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
898                                 current->comm, current->pid,
899                                 preempt_count());
900
901         acct_update_integrals(tsk);
902         if (tsk->mm) {
903                 update_hiwater_rss(tsk->mm);
904                 update_hiwater_vm(tsk->mm);
905         }
906         group_dead = atomic_dec_and_test(&tsk->signal->live);
907         if (group_dead) {
908                 hrtimer_cancel(&tsk->signal->real_timer);
909                 exit_itimers(tsk->signal);
910                 acct_process(code);
911                 if (current->tux_info) {
912 #ifdef CONFIG_TUX_DEBUG
913                         printk("Possibly unexpected TUX-thread exit(%ld) at %p?\n",
914                                 code, __builtin_return_address(0));
915 #endif
916                         current->tux_exit();
917                 }
918         }
919         if (unlikely(tsk->robust_list))
920                 exit_robust_list(tsk);
921 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
922         if (unlikely(tsk->compat_robust_list))
923                 compat_exit_robust_list(tsk);
924 #endif
925         if (unlikely(tsk->audit_context))
926                 audit_free(tsk);
927         exit_mm(tsk);
928
929         exit_sem(tsk);
930         __exit_files(tsk);
931         __exit_fs(tsk);
932         exit_namespace(tsk);
933         exit_vx_info(tsk, code);
934         exit_nx_info(tsk);
935         exit_thread();
936         cpuset_exit(tsk);
937         exit_keys(tsk);
938
939         if (group_dead && tsk->signal->leader)
940                 disassociate_ctty(1);
941
942         module_put(task_thread_info(tsk)->exec_domain->module);
943         if (tsk->binfmt)
944                 module_put(tsk->binfmt->module);
945
946         tsk->exit_code = code;
947         proc_exit_connector(tsk);
948         exit_notify(tsk);
949 #ifdef CONFIG_NUMA
950         mpol_free(tsk->mempolicy);
951         tsk->mempolicy = NULL;
952 #endif
953         /*
954          * If DEBUG_MUTEXES is on, make sure we are holding no locks:
955          */
956         mutex_debug_check_no_locks_held(tsk);
957
958         if (tsk->io_context)
959                 exit_io_context();
960
961         if (tsk->splice_pipe)
962                 __free_pipe_info(tsk->splice_pipe);
963
964         /* PF_DEAD causes final put_task_struct after we schedule. */
965         preempt_disable();
966         BUG_ON(tsk->flags & PF_DEAD);
967         tsk->flags |= PF_DEAD;
968
969         schedule();
970         BUG();
971         /* Avoid "noreturn function does return".  */
972         for (;;) ;
973 }
974
975 EXPORT_SYMBOL_GPL(do_exit);
976
977 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
978 {
979         if (comp)
980                 complete(comp);
981         
982         do_exit(code);
983 }
984
985 EXPORT_SYMBOL(complete_and_exit);
986
987 asmlinkage long sys_exit(int error_code)
988 {
989         do_exit((error_code&0xff)<<8);
990 }
991
992 /*
993  * Take down every thread in the group.  This is called by fatal signals
994  * as well as by sys_exit_group (below).
995  */
996 NORET_TYPE void
997 do_group_exit(int exit_code)
998 {
999         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1000
1001         if (current->signal->flags & SIGNAL_GROUP_EXIT)
1002                 exit_code = current->signal->group_exit_code;
1003         else if (!thread_group_empty(current)) {
1004                 struct signal_struct *const sig = current->signal;
1005                 struct sighand_struct *const sighand = current->sighand;
1006                 spin_lock_irq(&sighand->siglock);
1007                 if (sig->flags & SIGNAL_GROUP_EXIT)
1008                         /* Another thread got here before we took the lock.  */
1009                         exit_code = sig->group_exit_code;
1010                 else {
1011                         sig->group_exit_code = exit_code;
1012                         zap_other_threads(current);
1013                 }
1014                 spin_unlock_irq(&sighand->siglock);
1015         }
1016
1017         do_exit(exit_code);
1018         /* NOTREACHED */
1019 }
1020
1021 /*
1022  * this kills every thread in the thread group. Note that any externally
1023  * wait4()-ing process will get the correct exit code - even if this
1024  * thread is not the thread group leader.
1025  */
1026 asmlinkage void sys_exit_group(int error_code)
1027 {
1028         do_group_exit((error_code & 0xff) << 8);
1029 }
1030
1031 static int eligible_child(pid_t pid, int options, task_t *p)
1032 {
1033         if (pid > 0) {
1034                 if (p->pid != pid)
1035                         return 0;
1036         } else if (!pid) {
1037                 if (process_group(p) != process_group(current))
1038                         return 0;
1039         } else if (pid != -1) {
1040                 if (process_group(p) != -pid)
1041                         return 0;
1042         }
1043
1044         /*
1045          * Do not consider detached threads that are
1046          * not ptraced:
1047          */
1048         if (p->exit_signal == -1 && !p->ptrace)
1049                 return 0;
1050
1051         /* Wait for all children (clone and not) if __WALL is set;
1052          * otherwise, wait for clone children *only* if __WCLONE is
1053          * set; otherwise, wait for non-clone children *only*.  (Note:
1054          * A "clone" child here is one that reports to its parent
1055          * using a signal other than SIGCHLD.) */
1056         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1057             && !(options & __WALL))
1058                 return 0;
1059         /*
1060          * Do not consider thread group leaders that are
1061          * in a non-empty thread group:
1062          */
1063         if (current->tgid != p->tgid && delay_group_leader(p))
1064                 return 2;
1065
1066         if (security_task_wait(p))
1067                 return 0;
1068
1069         return 1;
1070 }
1071
1072 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
1073                                int why, int status,
1074                                struct siginfo __user *infop,
1075                                struct rusage __user *rusagep)
1076 {
1077         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1078         put_task_struct(p);
1079         if (!retval)
1080                 retval = put_user(SIGCHLD, &infop->si_signo);
1081         if (!retval)
1082                 retval = put_user(0, &infop->si_errno);
1083         if (!retval)
1084                 retval = put_user((short)why, &infop->si_code);
1085         if (!retval)
1086                 retval = put_user(pid, &infop->si_pid);
1087         if (!retval)
1088                 retval = put_user(uid, &infop->si_uid);
1089         if (!retval)
1090                 retval = put_user(status, &infop->si_status);
1091         if (!retval)
1092                 retval = pid;
1093         return retval;
1094 }
1095
1096 /*
1097  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1098  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1099  * the lock and this task is uninteresting.  If we return nonzero, we have
1100  * released the lock and the system call should return.
1101  */
1102 static int wait_task_zombie(task_t *p, int noreap,
1103                             struct siginfo __user *infop,
1104                             int __user *stat_addr, struct rusage __user *ru)
1105 {
1106         unsigned long state;
1107         int retval;
1108         int status;
1109
1110         if (unlikely(noreap)) {
1111                 pid_t pid = p->pid;
1112                 uid_t uid = p->uid;
1113                 int exit_code = p->exit_code;
1114                 int why, status;
1115
1116                 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1117                         return 0;
1118                 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1119                         return 0;
1120                 get_task_struct(p);
1121                 read_unlock(&tasklist_lock);
1122                 if ((exit_code & 0x7f) == 0) {
1123                         why = CLD_EXITED;
1124                         status = exit_code >> 8;
1125                 } else {
1126                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1127                         status = exit_code & 0x7f;
1128                 }
1129                 return wait_noreap_copyout(p, pid, uid, why,
1130                                            status, infop, ru);
1131         }
1132
1133         /*
1134          * Try to move the task's state to DEAD
1135          * only one thread is allowed to do this:
1136          */
1137         state = xchg(&p->exit_state, EXIT_DEAD);
1138         if (state != EXIT_ZOMBIE) {
1139                 BUG_ON(state != EXIT_DEAD);
1140                 return 0;
1141         }
1142         if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1143                 /*
1144                  * This can only happen in a race with a ptraced thread
1145                  * dying on another processor.
1146                  */
1147                 return 0;
1148         }
1149
1150         if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1151                 struct signal_struct *psig;
1152                 struct signal_struct *sig;
1153
1154                 /*
1155                  * The resource counters for the group leader are in its
1156                  * own task_struct.  Those for dead threads in the group
1157                  * are in its signal_struct, as are those for the child
1158                  * processes it has previously reaped.  All these
1159                  * accumulate in the parent's signal_struct c* fields.
1160                  *
1161                  * We don't bother to take a lock here to protect these
1162                  * p->signal fields, because they are only touched by
1163                  * __exit_signal, which runs with tasklist_lock
1164                  * write-locked anyway, and so is excluded here.  We do
1165                  * need to protect the access to p->parent->signal fields,
1166                  * as other threads in the parent group can be right
1167                  * here reaping other children at the same time.
1168                  */
1169                 spin_lock_irq(&p->parent->sighand->siglock);
1170                 psig = p->parent->signal;
1171                 sig = p->signal;
1172                 psig->cutime =
1173                         cputime_add(psig->cutime,
1174                         cputime_add(p->utime,
1175                         cputime_add(sig->utime,
1176                                     sig->cutime)));
1177                 psig->cstime =
1178                         cputime_add(psig->cstime,
1179                         cputime_add(p->stime,
1180                         cputime_add(sig->stime,
1181                                     sig->cstime)));
1182                 psig->cmin_flt +=
1183                         p->min_flt + sig->min_flt + sig->cmin_flt;
1184                 psig->cmaj_flt +=
1185                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1186                 psig->cnvcsw +=
1187                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1188                 psig->cnivcsw +=
1189                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1190                 spin_unlock_irq(&p->parent->sighand->siglock);
1191         }
1192
1193         /*
1194          * Now we are sure this task is interesting, and no other
1195          * thread can reap it because we set its state to EXIT_DEAD.
1196          */
1197         read_unlock(&tasklist_lock);
1198
1199         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1200         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1201                 ? p->signal->group_exit_code : p->exit_code;
1202         if (!retval && stat_addr)
1203                 retval = put_user(status, stat_addr);
1204         if (!retval && infop)
1205                 retval = put_user(SIGCHLD, &infop->si_signo);
1206         if (!retval && infop)
1207                 retval = put_user(0, &infop->si_errno);
1208         if (!retval && infop) {
1209                 int why;
1210
1211                 if ((status & 0x7f) == 0) {
1212                         why = CLD_EXITED;
1213                         status >>= 8;
1214                 } else {
1215                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1216                         status &= 0x7f;
1217                 }
1218                 retval = put_user((short)why, &infop->si_code);
1219                 if (!retval)
1220                         retval = put_user(status, &infop->si_status);
1221         }
1222         if (!retval && infop)
1223                 retval = put_user(p->pid, &infop->si_pid);
1224         if (!retval && infop)
1225                 retval = put_user(p->uid, &infop->si_uid);
1226         if (retval) {
1227                 // TODO: is this safe?
1228                 p->exit_state = EXIT_ZOMBIE;
1229                 return retval;
1230         }
1231         retval = p->pid;
1232         if (p->real_parent != p->parent) {
1233                 write_lock_irq(&tasklist_lock);
1234                 /* Double-check with lock held.  */
1235                 if (p->real_parent != p->parent) {
1236                         __ptrace_unlink(p);
1237                         // TODO: is this safe?
1238                         p->exit_state = EXIT_ZOMBIE;
1239                         /*
1240                          * If this is not a detached task, notify the parent.
1241                          * If it's still not detached after that, don't release
1242                          * it now.
1243                          */
1244                         if (p->exit_signal != -1) {
1245                                 do_notify_parent(p, p->exit_signal);
1246                                 if (p->exit_signal != -1)
1247                                         p = NULL;
1248                         }
1249                 }
1250                 write_unlock_irq(&tasklist_lock);
1251         }
1252         if (p != NULL)
1253                 release_task(p);
1254         BUG_ON(!retval);
1255         return retval;
1256 }
1257
1258 /*
1259  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1260  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1261  * the lock and this task is uninteresting.  If we return nonzero, we have
1262  * released the lock and the system call should return.
1263  */
1264 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1265                              struct siginfo __user *infop,
1266                              int __user *stat_addr, struct rusage __user *ru)
1267 {
1268         int retval, exit_code;
1269
1270         if (!p->exit_code)
1271                 return 0;
1272         if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1273             p->signal && p->signal->group_stop_count > 0)
1274                 /*
1275                  * A group stop is in progress and this is the group leader.
1276                  * We won't report until all threads have stopped.
1277                  */
1278                 return 0;
1279
1280         /*
1281          * Now we are pretty sure this task is interesting.
1282          * Make sure it doesn't get reaped out from under us while we
1283          * give up the lock and then examine it below.  We don't want to
1284          * keep holding onto the tasklist_lock while we call getrusage and
1285          * possibly take page faults for user memory.
1286          */
1287         get_task_struct(p);
1288         read_unlock(&tasklist_lock);
1289
1290         if (unlikely(noreap)) {
1291                 pid_t pid = p->pid;
1292                 uid_t uid = p->uid;
1293                 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1294
1295                 exit_code = p->exit_code;
1296                 if (unlikely(!exit_code) ||
1297                     unlikely(p->state & TASK_TRACED))
1298                         goto bail_ref;
1299                 return wait_noreap_copyout(p, pid, uid,
1300                                            why, (exit_code << 8) | 0x7f,
1301                                            infop, ru);
1302         }
1303
1304         write_lock_irq(&tasklist_lock);
1305
1306         /*
1307          * This uses xchg to be atomic with the thread resuming and setting
1308          * it.  It must also be done with the write lock held to prevent a
1309          * race with the EXIT_ZOMBIE case.
1310          */
1311         exit_code = xchg(&p->exit_code, 0);
1312         if (unlikely(p->exit_state)) {
1313                 /*
1314                  * The task resumed and then died.  Let the next iteration
1315                  * catch it in EXIT_ZOMBIE.  Note that exit_code might
1316                  * already be zero here if it resumed and did _exit(0).
1317                  * The task itself is dead and won't touch exit_code again;
1318                  * other processors in this function are locked out.
1319                  */
1320                 p->exit_code = exit_code;
1321                 exit_code = 0;
1322         }
1323         if (unlikely(exit_code == 0)) {
1324                 /*
1325                  * Another thread in this function got to it first, or it
1326                  * resumed, or it resumed and then died.
1327                  */
1328                 write_unlock_irq(&tasklist_lock);
1329 bail_ref:
1330                 put_task_struct(p);
1331                 /*
1332                  * We are returning to the wait loop without having successfully
1333                  * removed the process and having released the lock. We cannot
1334                  * continue, since the "p" task pointer is potentially stale.
1335                  *
1336                  * Return -EAGAIN, and do_wait() will restart the loop from the
1337                  * beginning. Do _not_ re-acquire the lock.
1338                  */
1339                 return -EAGAIN;
1340         }
1341
1342         /* move to end of parent's list to avoid starvation */
1343         remove_parent(p);
1344         add_parent(p);
1345
1346         write_unlock_irq(&tasklist_lock);
1347
1348         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1349         if (!retval && stat_addr)
1350                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1351         if (!retval && infop)
1352                 retval = put_user(SIGCHLD, &infop->si_signo);
1353         if (!retval && infop)
1354                 retval = put_user(0, &infop->si_errno);
1355         if (!retval && infop)
1356                 retval = put_user((short)((p->ptrace & PT_PTRACED)
1357                                           ? CLD_TRAPPED : CLD_STOPPED),
1358                                   &infop->si_code);
1359         if (!retval && infop)
1360                 retval = put_user(exit_code, &infop->si_status);
1361         if (!retval && infop)
1362                 retval = put_user(p->pid, &infop->si_pid);
1363         if (!retval && infop)
1364                 retval = put_user(p->uid, &infop->si_uid);
1365         if (!retval)
1366                 retval = p->pid;
1367         put_task_struct(p);
1368
1369         BUG_ON(!retval);
1370         return retval;
1371 }
1372
1373 /*
1374  * Handle do_wait work for one task in a live, non-stopped state.
1375  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1376  * the lock and this task is uninteresting.  If we return nonzero, we have
1377  * released the lock and the system call should return.
1378  */
1379 static int wait_task_continued(task_t *p, int noreap,
1380                                struct siginfo __user *infop,
1381                                int __user *stat_addr, struct rusage __user *ru)
1382 {
1383         int retval;
1384         pid_t pid;
1385         uid_t uid;
1386
1387         if (unlikely(!p->signal))
1388                 return 0;
1389
1390         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1391                 return 0;
1392
1393         spin_lock_irq(&p->sighand->siglock);
1394         /* Re-check with the lock held.  */
1395         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1396                 spin_unlock_irq(&p->sighand->siglock);
1397                 return 0;
1398         }
1399         if (!noreap)
1400                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1401         spin_unlock_irq(&p->sighand->siglock);
1402
1403         pid = p->pid;
1404         uid = p->uid;
1405         get_task_struct(p);
1406         read_unlock(&tasklist_lock);
1407
1408         if (!infop) {
1409                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1410                 put_task_struct(p);
1411                 if (!retval && stat_addr)
1412                         retval = put_user(0xffff, stat_addr);
1413                 if (!retval)
1414                         retval = p->pid;
1415         } else {
1416                 retval = wait_noreap_copyout(p, pid, uid,
1417                                              CLD_CONTINUED, SIGCONT,
1418                                              infop, ru);
1419                 BUG_ON(retval == 0);
1420         }
1421
1422         return retval;
1423 }
1424
1425
1426 static inline int my_ptrace_child(struct task_struct *p)
1427 {
1428         if (!(p->ptrace & PT_PTRACED))
1429                 return 0;
1430         if (!(p->ptrace & PT_ATTACHED))
1431                 return 1;
1432         /*
1433          * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1434          * we are the attacher.  If we are the real parent, this is a race
1435          * inside ptrace_attach.  It is waiting for the tasklist_lock,
1436          * which we have to switch the parent links, but has already set
1437          * the flags in p->ptrace.
1438          */
1439         return (p->parent != p->real_parent);
1440 }
1441
1442 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1443                     int __user *stat_addr, struct rusage __user *ru)
1444 {
1445         DECLARE_WAITQUEUE(wait, current);
1446         struct task_struct *tsk;
1447         int flag, retval;
1448
1449         add_wait_queue(&current->signal->wait_chldexit,&wait);
1450 repeat:
1451         /*
1452          * We will set this flag if we see any child that might later
1453          * match our criteria, even if we are not able to reap it yet.
1454          */
1455         flag = 0;
1456         current->state = TASK_INTERRUPTIBLE;
1457         read_lock(&tasklist_lock);
1458         tsk = current;
1459         do {
1460                 struct task_struct *p;
1461                 struct list_head *_p;
1462                 int ret;
1463
1464                 list_for_each(_p,&tsk->children) {
1465                         p = list_entry(_p,struct task_struct,sibling);
1466
1467                         ret = eligible_child(pid, options, p);
1468                         if (!ret)
1469                                 continue;
1470
1471                         switch (p->state) {
1472                         case TASK_TRACED:
1473                                 /*
1474                                  * When we hit the race with PTRACE_ATTACH,
1475                                  * we will not report this child.  But the
1476                                  * race means it has not yet been moved to
1477                                  * our ptrace_children list, so we need to
1478                                  * set the flag here to avoid a spurious ECHILD
1479                                  * when the race happens with the only child.
1480                                  */
1481                                 flag = 1;
1482                                 if (!my_ptrace_child(p))
1483                                         continue;
1484                                 /*FALLTHROUGH*/
1485                         case TASK_STOPPED:
1486                                 /*
1487                                  * It's stopped now, so it might later
1488                                  * continue, exit, or stop again.
1489                                  */
1490                                 flag = 1;
1491                                 if (!(options & WUNTRACED) &&
1492                                     !my_ptrace_child(p))
1493                                         continue;
1494                                 retval = wait_task_stopped(p, ret == 2,
1495                                                            (options & WNOWAIT),
1496                                                            infop,
1497                                                            stat_addr, ru);
1498                                 if (retval == -EAGAIN)
1499                                         goto repeat;
1500                                 if (retval != 0) /* He released the lock.  */
1501                                         goto end;
1502                                 break;
1503                         default:
1504                         // case EXIT_DEAD:
1505                                 if (p->exit_state == EXIT_DEAD)
1506                                         continue;
1507                         // case EXIT_ZOMBIE:
1508                                 if (p->exit_state == EXIT_ZOMBIE) {
1509                                         /*
1510                                          * Eligible but we cannot release
1511                                          * it yet:
1512                                          */
1513                                         if (ret == 2)
1514                                                 goto check_continued;
1515                                         if (!likely(options & WEXITED))
1516                                                 continue;
1517                                         retval = wait_task_zombie(
1518                                                 p, (options & WNOWAIT),
1519                                                 infop, stat_addr, ru);
1520                                         /* He released the lock.  */
1521                                         if (retval != 0)
1522                                                 goto end;
1523                                         break;
1524                                 }
1525 check_continued:
1526                                 /*
1527                                  * It's running now, so it might later
1528                                  * exit, stop, or stop and then continue.
1529                                  */
1530                                 flag = 1;
1531                                 if (!unlikely(options & WCONTINUED))
1532                                         continue;
1533                                 retval = wait_task_continued(
1534                                         p, (options & WNOWAIT),
1535                                         infop, stat_addr, ru);
1536                                 if (retval != 0) /* He released the lock.  */
1537                                         goto end;
1538                                 break;
1539                         }
1540                 }
1541                 if (!flag) {
1542                         list_for_each(_p, &tsk->ptrace_children) {
1543                                 p = list_entry(_p, struct task_struct,
1544                                                 ptrace_list);
1545                                 if (!eligible_child(pid, options, p))
1546                                         continue;
1547                                 flag = 1;
1548                                 break;
1549                         }
1550                 }
1551                 if (options & __WNOTHREAD)
1552                         break;
1553                 tsk = next_thread(tsk);
1554                 if (tsk->signal != current->signal)
1555                         BUG();
1556         } while (tsk != current);
1557
1558         read_unlock(&tasklist_lock);
1559         if (flag) {
1560                 retval = 0;
1561                 if (options & WNOHANG)
1562                         goto end;
1563                 retval = -ERESTARTSYS;
1564                 if (signal_pending(current))
1565                         goto end;
1566                 schedule();
1567                 goto repeat;
1568         }
1569         retval = -ECHILD;
1570 end:
1571         current->state = TASK_RUNNING;
1572         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1573         if (infop) {
1574                 if (retval > 0)
1575                 retval = 0;
1576                 else {
1577                         /*
1578                          * For a WNOHANG return, clear out all the fields
1579                          * we would set so the user can easily tell the
1580                          * difference.
1581                          */
1582                         if (!retval)
1583                                 retval = put_user(0, &infop->si_signo);
1584                         if (!retval)
1585                                 retval = put_user(0, &infop->si_errno);
1586                         if (!retval)
1587                                 retval = put_user(0, &infop->si_code);
1588                         if (!retval)
1589                                 retval = put_user(0, &infop->si_pid);
1590                         if (!retval)
1591                                 retval = put_user(0, &infop->si_uid);
1592                         if (!retval)
1593                                 retval = put_user(0, &infop->si_status);
1594                 }
1595         }
1596         return retval;
1597 }
1598
1599 asmlinkage long sys_waitid(int which, pid_t pid,
1600                            struct siginfo __user *infop, int options,
1601                            struct rusage __user *ru)
1602 {
1603         long ret;
1604
1605         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1606                 return -EINVAL;
1607         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1608                 return -EINVAL;
1609
1610         switch (which) {
1611         case P_ALL:
1612                 pid = -1;
1613                 break;
1614         case P_PID:
1615                 if (pid <= 0)
1616                         return -EINVAL;
1617                 break;
1618         case P_PGID:
1619                 if (pid <= 0)
1620                         return -EINVAL;
1621                 pid = -pid;
1622                 break;
1623         default:
1624                 return -EINVAL;
1625         }
1626
1627         ret = do_wait(pid, options, infop, NULL, ru);
1628
1629         /* avoid REGPARM breakage on x86: */
1630         prevent_tail_call(ret);
1631         return ret;
1632 }
1633
1634 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1635                           int options, struct rusage __user *ru)
1636 {
1637         long ret;
1638
1639         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1640                         __WNOTHREAD|__WCLONE|__WALL))
1641                 return -EINVAL;
1642         ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1643
1644         /* avoid REGPARM breakage on x86: */
1645         prevent_tail_call(ret);
1646         return ret;
1647 }
1648
1649 #ifdef __ARCH_WANT_SYS_WAITPID
1650
1651 /*
1652  * sys_waitpid() remains for compatibility. waitpid() should be
1653  * implemented by calling sys_wait4() from libc.a.
1654  */
1655 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1656 {
1657         return sys_wait4(pid, stat_addr, options, NULL);
1658 }
1659
1660 #endif