8519ee1ee2282da3f6750f0216b867e108bfdc64
[linux-2.6.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/security.h>
33 #include <linux/swap.h>
34 #include <linux/syscalls.h>
35 #include <linux/jiffies.h>
36 #include <linux/futex.h>
37 #include <linux/ptrace.h>
38 #include <linux/mount.h>
39 #include <linux/audit.h>
40 #include <linux/profile.h>
41 #include <linux/rmap.h>
42 #include <linux/acct.h>
43 #include <linux/vs_network.h>
44 #include <linux/vs_limit.h>
45 #include <linux/vs_memory.h>
46
47 #include <asm/pgtable.h>
48 #include <asm/pgalloc.h>
49 #include <asm/uaccess.h>
50 #include <asm/mmu_context.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53
54 /*
55  * Protected counters by write_lock_irq(&tasklist_lock)
56  */
57 unsigned long total_forks;      /* Handle normal Linux uptimes. */
58 int nr_threads;                 /* The idle threads do not count.. */
59
60 int max_threads;                /* tunable limit on nr_threads */
61
62 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
63
64  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
65
66 EXPORT_SYMBOL(tasklist_lock);
67
68 int nr_processes(void)
69 {
70         int cpu;
71         int total = 0;
72
73         for_each_online_cpu(cpu)
74                 total += per_cpu(process_counts, cpu);
75
76         return total;
77 }
78
79 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
80 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
81 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
82 static kmem_cache_t *task_struct_cachep;
83 #endif
84
85 void free_task(struct task_struct *tsk)
86 {
87         free_thread_info(tsk->thread_info);
88         clr_vx_info(&tsk->vx_info);
89         clr_nx_info(&tsk->nx_info);
90         free_task_struct(tsk);
91 }
92 EXPORT_SYMBOL(free_task);
93
94 void __put_task_struct(struct task_struct *tsk)
95 {
96         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
97         WARN_ON(atomic_read(&tsk->usage));
98         WARN_ON(tsk == current);
99
100         if (unlikely(tsk->audit_context))
101                 audit_free(tsk);
102         security_task_free(tsk);
103         free_uid(tsk->user);
104         put_group_info(tsk->group_info);
105
106         if (!profile_handoff_task(tsk))
107                 free_task(tsk);
108 }
109
110 void __init fork_init(unsigned long mempages)
111 {
112 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
113 #ifndef ARCH_MIN_TASKALIGN
114 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
115 #endif
116         /* create a slab on which task_structs can be allocated */
117         task_struct_cachep =
118                 kmem_cache_create("task_struct", sizeof(struct task_struct),
119                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
120 #endif
121
122         /*
123          * The default maximum number of threads is set to a safe
124          * value: the thread structures can take up at most half
125          * of memory.
126          */
127         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
128
129         /*
130          * we need to allow at least 20 threads to boot a system
131          */
132         if(max_threads < 20)
133                 max_threads = 20;
134
135         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
136         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
137 }
138
139 static struct task_struct *dup_task_struct(struct task_struct *orig)
140 {
141         struct task_struct *tsk;
142         struct thread_info *ti;
143
144         prepare_to_copy(orig);
145
146         tsk = alloc_task_struct();
147         if (!tsk)
148                 return NULL;
149
150         ti = alloc_thread_info(tsk);
151         if (!ti) {
152                 free_task_struct(tsk);
153                 return NULL;
154         }
155
156         *ti = *orig->thread_info;
157         *tsk = *orig;
158         tsk->thread_info = ti;
159         ti->task = tsk;
160
161         /* One for us, one for whoever does the "release_task()" (usually parent) */
162         atomic_set(&tsk->usage,2);
163         return tsk;
164 }
165
166 #ifdef CONFIG_MMU
167 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
168 {
169         struct vm_area_struct * mpnt, *tmp, **pprev;
170         struct rb_node **rb_link, *rb_parent;
171         int retval;
172         unsigned long charge;
173         struct mempolicy *pol;
174
175         down_write(&oldmm->mmap_sem);
176         flush_cache_mm(current->mm);
177         mm->locked_vm = 0;
178         mm->mmap = NULL;
179         mm->mmap_cache = NULL;
180         mm->free_area_cache = oldmm->mmap_base;
181         mm->map_count = 0;
182         mm->rss = 0;
183         mm->anon_rss = 0;
184         cpus_clear(mm->cpu_vm_mask);
185         mm->mm_rb = RB_ROOT;
186         rb_link = &mm->mm_rb.rb_node;
187         rb_parent = NULL;
188         pprev = &mm->mmap;
189
190         for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
191                 struct file *file;
192
193                 if (mpnt->vm_flags & VM_DONTCOPY) {
194                         __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
195                                                         -vma_pages(mpnt));
196                         continue;
197                 }
198                 charge = 0;
199                 if (mpnt->vm_flags & VM_ACCOUNT) {
200                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
201                         if (security_vm_enough_memory(len))
202                                 goto fail_nomem;
203                         charge = len;
204                 }
205                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
206                 if (!tmp)
207                         goto fail_nomem;
208                 *tmp = *mpnt;
209                 pol = mpol_copy(vma_policy(mpnt));
210                 retval = PTR_ERR(pol);
211                 if (IS_ERR(pol))
212                         goto fail_nomem_policy;
213                 vma_set_policy(tmp, pol);
214                 tmp->vm_flags &= ~VM_LOCKED;
215                 tmp->vm_mm = mm;
216                 tmp->vm_next = NULL;
217                 anon_vma_link(tmp);
218                 file = tmp->vm_file;
219                 if (file) {
220                         struct inode *inode = file->f_dentry->d_inode;
221                         get_file(file);
222                         if (tmp->vm_flags & VM_DENYWRITE)
223                                 atomic_dec(&inode->i_writecount);
224       
225                         /* insert tmp into the share list, just after mpnt */
226                         spin_lock(&file->f_mapping->i_mmap_lock);
227                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
228                         flush_dcache_mmap_lock(file->f_mapping);
229                         vma_prio_tree_add(tmp, mpnt);
230                         flush_dcache_mmap_unlock(file->f_mapping);
231                         spin_unlock(&file->f_mapping->i_mmap_lock);
232                 }
233
234                 /*
235                  * Link in the new vma and copy the page table entries:
236                  * link in first so that swapoff can see swap entries,
237                  * and try_to_unmap_one's find_vma find the new vma.
238                  */
239                 spin_lock(&mm->page_table_lock);
240                 *pprev = tmp;
241                 pprev = &tmp->vm_next;
242
243                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
244                 rb_link = &tmp->vm_rb.rb_right;
245                 rb_parent = &tmp->vm_rb;
246
247                 mm->map_count++;
248                 retval = copy_page_range(mm, current->mm, tmp);
249                 spin_unlock(&mm->page_table_lock);
250
251                 if (tmp->vm_ops && tmp->vm_ops->open)
252                         tmp->vm_ops->open(tmp);
253
254                 if (retval)
255                         goto out;
256         }
257         retval = 0;
258
259 out:
260         flush_tlb_mm(current->mm);
261         up_write(&oldmm->mmap_sem);
262         return retval;
263 fail_nomem_policy:
264         kmem_cache_free(vm_area_cachep, tmp);
265 fail_nomem:
266         retval = -ENOMEM;
267         vm_unacct_memory(charge);
268         goto out;
269 }
270
271 static inline int mm_alloc_pgd(struct mm_struct * mm)
272 {
273         mm->pgd = pgd_alloc(mm);
274         if (unlikely(!mm->pgd))
275                 return -ENOMEM;
276         return 0;
277 }
278
279 static inline void mm_free_pgd(struct mm_struct * mm)
280 {
281         pgd_free(mm->pgd);
282 }
283 #else
284 #define dup_mmap(mm, oldmm)     (0)
285 #define mm_alloc_pgd(mm)        (0)
286 #define mm_free_pgd(mm)
287 #endif /* CONFIG_MMU */
288
289  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
290
291 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
292 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
293
294 #include <linux/init_task.h>
295
296 static struct mm_struct * mm_init(struct mm_struct * mm)
297 {
298         atomic_set(&mm->mm_users, 1);
299         atomic_set(&mm->mm_count, 1);
300         init_rwsem(&mm->mmap_sem);
301         INIT_LIST_HEAD(&mm->mmlist);
302         mm->core_waiters = 0;
303         mm->nr_ptes = 0;
304         spin_lock_init(&mm->page_table_lock);
305         rwlock_init(&mm->ioctx_list_lock);
306         mm->ioctx_list = NULL;
307         mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
308         mm->free_area_cache = TASK_UNMAPPED_BASE;
309
310         if (likely(!mm_alloc_pgd(mm))) {
311                 mm->def_flags = 0;
312                 set_vx_info(&mm->mm_vx_info, current->vx_info);
313                 return mm;
314         }
315         free_mm(mm);
316         return NULL;
317 }
318
319 /*
320  * Allocate and initialize an mm_struct.
321  */
322 struct mm_struct * mm_alloc(void)
323 {
324         struct mm_struct * mm;
325
326         mm = allocate_mm();
327         if (mm) {
328                 memset(mm, 0, sizeof(*mm));
329                 mm = mm_init(mm);
330         }
331         return mm;
332 }
333
334 /*
335  * Called when the last reference to the mm
336  * is dropped: either by a lazy thread or by
337  * mmput. Free the page directory and the mm.
338  */
339 void fastcall __mmdrop(struct mm_struct *mm)
340 {
341         BUG_ON(mm == &init_mm);
342         mm_free_pgd(mm);
343         destroy_context(mm);
344         clr_vx_info(&mm->mm_vx_info);
345         free_mm(mm);
346 }
347
348 /*
349  * Decrement the use count and release all resources for an mm.
350  */
351 void mmput(struct mm_struct *mm)
352 {
353         if (atomic_dec_and_test(&mm->mm_users)) {
354                 exit_aio(mm);
355                 exit_mmap(mm);
356                 if (!list_empty(&mm->mmlist)) {
357                         spin_lock(&mmlist_lock);
358                         list_del(&mm->mmlist);
359                         spin_unlock(&mmlist_lock);
360                 }
361                 put_swap_token(mm);
362                 mmdrop(mm);
363         }
364 }
365 EXPORT_SYMBOL_GPL(mmput);
366
367 /**
368  * get_task_mm - acquire a reference to the task's mm
369  *
370  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
371  * this kernel workthread has transiently adopted a user mm with use_mm,
372  * to do its AIO) is not set and if so returns a reference to it, after
373  * bumping up the use count.  User must release the mm via mmput()
374  * after use.  Typically used by /proc and ptrace.
375  */
376 struct mm_struct *get_task_mm(struct task_struct *task)
377 {
378         struct mm_struct *mm;
379
380         task_lock(task);
381         mm = task->mm;
382         if (mm) {
383                 if (task->flags & PF_BORROWED_MM)
384                         mm = NULL;
385                 else
386                         atomic_inc(&mm->mm_users);
387         }
388         task_unlock(task);
389         return mm;
390 }
391 EXPORT_SYMBOL_GPL(get_task_mm);
392
393 /* Please note the differences between mmput and mm_release.
394  * mmput is called whenever we stop holding onto a mm_struct,
395  * error success whatever.
396  *
397  * mm_release is called after a mm_struct has been removed
398  * from the current process.
399  *
400  * This difference is important for error handling, when we
401  * only half set up a mm_struct for a new process and need to restore
402  * the old one.  Because we mmput the new mm_struct before
403  * restoring the old one. . .
404  * Eric Biederman 10 January 1998
405  */
406 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
407 {
408         struct completion *vfork_done = tsk->vfork_done;
409
410         /* Get rid of any cached register state */
411         deactivate_mm(tsk, mm);
412
413         /* notify parent sleeping on vfork() */
414         if (vfork_done) {
415                 tsk->vfork_done = NULL;
416                 complete(vfork_done);
417         }
418         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
419                 u32 __user * tidptr = tsk->clear_child_tid;
420                 tsk->clear_child_tid = NULL;
421
422                 /*
423                  * We don't check the error code - if userspace has
424                  * not set up a proper pointer then tough luck.
425                  */
426                 put_user(0, tidptr);
427                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
428         }
429 }
430
431 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
432 {
433         struct mm_struct * mm, *oldmm;
434         int retval;
435
436         tsk->min_flt = tsk->maj_flt = 0;
437         tsk->nvcsw = tsk->nivcsw = 0;
438
439         tsk->mm = NULL;
440         tsk->active_mm = NULL;
441
442         /*
443          * Are we cloning a kernel thread?
444          *
445          * We need to steal a active VM for that..
446          */
447         oldmm = current->mm;
448         if (!oldmm)
449                 return 0;
450
451         if (clone_flags & CLONE_VM) {
452                 atomic_inc(&oldmm->mm_users);
453                 mm = oldmm;
454                 /*
455                  * There are cases where the PTL is held to ensure no
456                  * new threads start up in user mode using an mm, which
457                  * allows optimizing out ipis; the tlb_gather_mmu code
458                  * is an example.
459                  */
460                 spin_unlock_wait(&oldmm->page_table_lock);
461                 goto good_mm;
462         }
463
464         retval = -ENOMEM;
465         mm = allocate_mm();
466         if (!mm)
467                 goto fail_nomem;
468
469         /* Copy the current MM stuff.. */
470         memcpy(mm, oldmm, sizeof(*mm));
471         mm->mm_vx_info = NULL;
472         if (!mm_init(mm))
473                 goto fail_nomem;
474
475         if (init_new_context(tsk,mm))
476                 goto fail_nocontext;
477
478         retval = dup_mmap(mm, oldmm);
479         if (retval)
480                 goto free_pt;
481
482         mm->hiwater_rss = mm->rss;
483         mm->hiwater_vm = mm->total_vm;
484
485 good_mm:
486         tsk->mm = mm;
487         tsk->active_mm = mm;
488         return 0;
489
490 free_pt:
491         mmput(mm);
492 fail_nomem:
493         return retval;
494
495 fail_nocontext:
496         /*
497          * If init_new_context() failed, we cannot use mmput() to free the mm
498          * because it calls destroy_context()
499          */
500         clr_vx_info(&mm->mm_vx_info);
501         mm_free_pgd(mm);
502         free_mm(mm);
503         return retval;
504 }
505
506 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
507 {
508         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
509         /* We don't need to lock fs - think why ;-) */
510         if (fs) {
511                 atomic_set(&fs->count, 1);
512                 rwlock_init(&fs->lock);
513                 fs->umask = old->umask;
514                 read_lock(&old->lock);
515                 fs->rootmnt = mntget(old->rootmnt);
516                 fs->root = dget(old->root);
517                 fs->pwdmnt = mntget(old->pwdmnt);
518                 fs->pwd = dget(old->pwd);
519                 if (old->altroot) {
520                         fs->altrootmnt = mntget(old->altrootmnt);
521                         fs->altroot = dget(old->altroot);
522                 } else {
523                         fs->altrootmnt = NULL;
524                         fs->altroot = NULL;
525                 }
526                 read_unlock(&old->lock);
527         }
528         return fs;
529 }
530
531 struct fs_struct *copy_fs_struct(struct fs_struct *old)
532 {
533         return __copy_fs_struct(old);
534 }
535
536 EXPORT_SYMBOL_GPL(copy_fs_struct);
537
538 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
539 {
540         if (clone_flags & CLONE_FS) {
541                 atomic_inc(&current->fs->count);
542                 return 0;
543         }
544         tsk->fs = __copy_fs_struct(current->fs);
545         if (!tsk->fs)
546                 return -ENOMEM;
547         return 0;
548 }
549
550 static int count_open_files(struct files_struct *files, int size)
551 {
552         int i;
553
554         /* Find the last open fd */
555         for (i = size/(8*sizeof(long)); i > 0; ) {
556                 if (files->open_fds->fds_bits[--i])
557                         break;
558         }
559         i = (i+1) * 8 * sizeof(long);
560         return i;
561 }
562
563 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
564 {
565         struct files_struct *oldf, *newf;
566         struct file **old_fds, **new_fds;
567         int open_files, size, i, error = 0, expand;
568
569         /*
570          * A background process may not have any files ...
571          */
572         oldf = current->files;
573         if (!oldf)
574                 goto out;
575
576         if (clone_flags & CLONE_FILES) {
577                 atomic_inc(&oldf->count);
578                 goto out;
579         }
580
581         /*
582          * Note: we may be using current for both targets (See exec.c)
583          * This works because we cache current->files (old) as oldf. Don't
584          * break this.
585          */
586         tsk->files = NULL;
587         error = -ENOMEM;
588         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
589         if (!newf) 
590                 goto out;
591
592         atomic_set(&newf->count, 1);
593
594         spin_lock_init(&newf->file_lock);
595         newf->next_fd       = 0;
596         newf->max_fds       = NR_OPEN_DEFAULT;
597         newf->max_fdset     = __FD_SETSIZE;
598         newf->close_on_exec = &newf->close_on_exec_init;
599         newf->open_fds      = &newf->open_fds_init;
600         newf->fd            = &newf->fd_array[0];
601
602         spin_lock(&oldf->file_lock);
603
604         open_files = count_open_files(oldf, oldf->max_fdset);
605         expand = 0;
606
607         /*
608          * Check whether we need to allocate a larger fd array or fd set.
609          * Note: we're not a clone task, so the open count won't  change.
610          */
611         if (open_files > newf->max_fdset) {
612                 newf->max_fdset = 0;
613                 expand = 1;
614         }
615         if (open_files > newf->max_fds) {
616                 newf->max_fds = 0;
617                 expand = 1;
618         }
619
620         /* if the old fdset gets grown now, we'll only copy up to "size" fds */
621         if (expand) {
622                 spin_unlock(&oldf->file_lock);
623                 spin_lock(&newf->file_lock);
624                 error = expand_files(newf, open_files-1);
625                 spin_unlock(&newf->file_lock);
626                 if (error < 0)
627                         goto out_release;
628                 spin_lock(&oldf->file_lock);
629         }
630
631         old_fds = oldf->fd;
632         new_fds = newf->fd;
633
634         memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
635         memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
636
637         for (i = open_files; i != 0; i--) {
638                 struct file *f = *old_fds++;
639                 if (f) {
640                         get_file(f);
641                         /* FIXME sum it first for avail check and performance */
642                         vx_openfd_inc(open_files - i);
643                 } else {
644                         /*
645                          * The fd may be claimed in the fd bitmap but not yet
646                          * instantiated in the files array if a sibling thread
647                          * is partway through open().  So make sure that this
648                          * fd is available to the new process.
649                          */
650                         FD_CLR(open_files - i, newf->open_fds);
651                 }
652                 *new_fds++ = f;
653         }
654         spin_unlock(&oldf->file_lock);
655
656         /* compute the remainder to be cleared */
657         size = (newf->max_fds - open_files) * sizeof(struct file *);
658
659         /* This is long word aligned thus could use a optimized version */ 
660         memset(new_fds, 0, size); 
661
662         if (newf->max_fdset > open_files) {
663                 int left = (newf->max_fdset-open_files)/8;
664                 int start = open_files / (8 * sizeof(unsigned long));
665
666                 memset(&newf->open_fds->fds_bits[start], 0, left);
667                 memset(&newf->close_on_exec->fds_bits[start], 0, left);
668         }
669
670         tsk->files = newf;
671         error = 0;
672 out:
673         return error;
674
675 out_release:
676         free_fdset (newf->close_on_exec, newf->max_fdset);
677         free_fdset (newf->open_fds, newf->max_fdset);
678         free_fd_array(newf->fd, newf->max_fds);
679         kmem_cache_free(files_cachep, newf);
680         goto out;
681 }
682
683 /*
684  *      Helper to unshare the files of the current task.
685  *      We don't want to expose copy_files internals to
686  *      the exec layer of the kernel.
687  */
688
689 int unshare_files(void)
690 {
691         struct files_struct *files  = current->files;
692         int rc;
693
694         if(!files)
695                 BUG();
696
697         /* This can race but the race causes us to copy when we don't
698            need to and drop the copy */
699         if(atomic_read(&files->count) == 1)
700         {
701                 atomic_inc(&files->count);
702                 return 0;
703         }
704         rc = copy_files(0, current);
705         if(rc)
706                 current->files = files;
707         return rc;
708 }
709
710 EXPORT_SYMBOL(unshare_files);
711
712 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
713 {
714         struct sighand_struct *sig;
715
716         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
717                 atomic_inc(&current->sighand->count);
718                 return 0;
719         }
720         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
721         tsk->sighand = sig;
722         if (!sig)
723                 return -ENOMEM;
724         spin_lock_init(&sig->siglock);
725         atomic_set(&sig->count, 1);
726         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
727         return 0;
728 }
729
730 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
731 {
732         struct signal_struct *sig;
733
734         if (clone_flags & CLONE_THREAD) {
735                 atomic_inc(&current->signal->count);
736                 atomic_inc(&current->signal->live);
737                 return 0;
738         }
739         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
740         tsk->signal = sig;
741         if (!sig)
742                 return -ENOMEM;
743         atomic_set(&sig->count, 1);
744         atomic_set(&sig->live, 1);
745         init_waitqueue_head(&sig->wait_chldexit);
746         sig->flags = 0;
747         sig->group_exit_code = 0;
748         sig->group_exit_task = NULL;
749         sig->group_stop_count = 0;
750         sig->curr_target = NULL;
751         init_sigpending(&sig->shared_pending);
752         INIT_LIST_HEAD(&sig->posix_timers);
753
754         sig->tty = current->signal->tty;
755         sig->pgrp = process_group(current);
756         sig->session = current->signal->session;
757         sig->leader = 0;        /* session leadership doesn't inherit */
758         sig->tty_old_pgrp = 0;
759
760         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
761         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
762         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
763
764         task_lock(current->group_leader);
765         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
766         task_unlock(current->group_leader);
767
768         return 0;
769 }
770
771 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
772 {
773         unsigned long new_flags = p->flags;
774
775         new_flags &= ~PF_SUPERPRIV;
776         new_flags |= PF_FORKNOEXEC;
777         if (!(clone_flags & CLONE_PTRACE))
778                 p->ptrace = 0;
779         p->flags = new_flags;
780 }
781
782 asmlinkage long sys_set_tid_address(int __user *tidptr)
783 {
784         current->clear_child_tid = tidptr;
785
786         return current->pid;
787 }
788
789 /*
790  * This creates a new process as a copy of the old one,
791  * but does not actually start it yet.
792  *
793  * It copies the registers, and all the appropriate
794  * parts of the process environment (as per the clone
795  * flags). The actual kick-off is left to the caller.
796  */
797 static task_t *copy_process(unsigned long clone_flags,
798                                  unsigned long stack_start,
799                                  struct pt_regs *regs,
800                                  unsigned long stack_size,
801                                  int __user *parent_tidptr,
802                                  int __user *child_tidptr,
803                                  int pid)
804 {
805         int retval;
806         struct task_struct *p = NULL;
807         struct vx_info *vxi;
808
809         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
810                 return ERR_PTR(-EINVAL);
811
812         /*
813          * Thread groups must share signals as well, and detached threads
814          * can only be started up within the thread group.
815          */
816         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
817                 return ERR_PTR(-EINVAL);
818
819         /*
820          * Shared signal handlers imply shared VM. By way of the above,
821          * thread groups also imply shared VM. Blocking this case allows
822          * for various simplifications in other code.
823          */
824         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
825                 return ERR_PTR(-EINVAL);
826
827         retval = security_task_create(clone_flags);
828         if (retval)
829                 goto fork_out;
830
831         retval = -ENOMEM;
832         p = dup_task_struct(current);
833         if (!p)
834                 goto fork_out;
835
836         init_vx_info(&p->vx_info, current->vx_info);
837         p->nx_info = NULL;
838         set_nx_info(&p->nx_info, current->nx_info);
839
840         /* check vserver memory */
841         if (p->mm && !(clone_flags & CLONE_VM)) {
842                 if (vx_vmpages_avail(p->mm, p->mm->total_vm))
843                         vx_pages_add(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
844                 else
845                         goto bad_fork_free;
846         }
847         if (p->mm && vx_flags(VXF_FORK_RSS, 0)) {
848                 if (!vx_rsspages_avail(p->mm, p->mm->rss))
849                         goto bad_fork_cleanup_vm;
850         }
851
852         retval = -EAGAIN;
853         if (!vx_nproc_avail(1))
854                 goto bad_fork_cleanup_vm;
855
856         if (atomic_read(&p->user->processes) >=
857                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
858                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
859                                 p->user != &root_user)
860                         goto bad_fork_cleanup_vm;
861         }
862
863         atomic_inc(&p->user->__count);
864         atomic_inc(&p->user->processes);
865         get_group_info(p->group_info);
866
867         /*
868          * If multiple threads are within copy_process(), then this check
869          * triggers too late. This doesn't hurt, the check is only there
870          * to stop root fork bombs.
871          */
872         if (nr_threads >= max_threads)
873                 goto bad_fork_cleanup_count;
874
875         if (!try_module_get(p->thread_info->exec_domain->module))
876                 goto bad_fork_cleanup_count;
877
878         if (p->binfmt && !try_module_get(p->binfmt->module))
879                 goto bad_fork_cleanup_put_domain;
880
881         p->did_exec = 0;
882         copy_flags(clone_flags, p);
883         p->pid = pid;
884         retval = -EFAULT;
885         if (clone_flags & CLONE_PARENT_SETTID)
886                 if (put_user(p->pid, parent_tidptr))
887                         goto bad_fork_cleanup;
888
889         p->proc_dentry = NULL;
890
891         INIT_LIST_HEAD(&p->children);
892         INIT_LIST_HEAD(&p->sibling);
893         p->vfork_done = NULL;
894         spin_lock_init(&p->alloc_lock);
895         spin_lock_init(&p->proc_lock);
896
897         clear_tsk_thread_flag(p, TIF_SIGPENDING);
898         init_sigpending(&p->pending);
899
900         p->it_real_value = 0;
901         p->it_real_incr = 0;
902         p->it_virt_value = cputime_zero;
903         p->it_virt_incr = cputime_zero;
904         p->it_prof_value = cputime_zero;
905         p->it_prof_incr = cputime_zero;
906         init_timer(&p->real_timer);
907         p->real_timer.data = (unsigned long) p;
908
909         p->utime = cputime_zero;
910         p->stime = cputime_zero;
911         p->rchar = 0;           /* I/O counter: bytes read */
912         p->wchar = 0;           /* I/O counter: bytes written */
913         p->syscr = 0;           /* I/O counter: read syscalls */
914         p->syscw = 0;           /* I/O counter: write syscalls */
915         acct_clear_integrals(p);
916
917         p->lock_depth = -1;             /* -1 = no lock */
918         do_posix_clock_monotonic_gettime(&p->start_time);
919         p->security = NULL;
920         p->io_context = NULL;
921         p->io_wait = NULL;
922         p->audit_context = NULL;
923 #ifdef CONFIG_NUMA
924         p->mempolicy = mpol_copy(p->mempolicy);
925         if (IS_ERR(p->mempolicy)) {
926                 retval = PTR_ERR(p->mempolicy);
927                 p->mempolicy = NULL;
928                 goto bad_fork_cleanup;
929         }
930 #endif
931
932         p->tgid = p->pid;
933         if (clone_flags & CLONE_THREAD)
934                 p->tgid = current->tgid;
935
936         if ((retval = security_task_alloc(p)))
937                 goto bad_fork_cleanup_policy;
938         if ((retval = audit_alloc(p)))
939                 goto bad_fork_cleanup_security;
940         /* copy all the process information */
941         if ((retval = copy_semundo(clone_flags, p)))
942                 goto bad_fork_cleanup_audit;
943         if ((retval = copy_files(clone_flags, p)))
944                 goto bad_fork_cleanup_semundo;
945         if ((retval = copy_fs(clone_flags, p)))
946                 goto bad_fork_cleanup_files;
947         if ((retval = copy_sighand(clone_flags, p)))
948                 goto bad_fork_cleanup_fs;
949         if ((retval = copy_signal(clone_flags, p)))
950                 goto bad_fork_cleanup_sighand;
951         if ((retval = copy_mm(clone_flags, p)))
952                 goto bad_fork_cleanup_signal;
953         if ((retval = copy_keys(clone_flags, p)))
954                 goto bad_fork_cleanup_mm;
955         if ((retval = copy_namespace(clone_flags, p)))
956                 goto bad_fork_cleanup_keys;
957         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
958         if (retval)
959                 goto bad_fork_cleanup_namespace;
960
961         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
962         /*
963          * Clear TID on mm_release()?
964          */
965         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
966
967         /*
968          * Syscall tracing should be turned off in the child regardless
969          * of CLONE_PTRACE.
970          */
971         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
972
973         /* Our parent execution domain becomes current domain
974            These must match for thread signalling to apply */
975            
976         p->parent_exec_id = p->self_exec_id;
977
978         /* ok, now we should be set up.. */
979         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
980         p->pdeath_signal = 0;
981         p->exit_state = 0;
982
983         /* Perform scheduler related setup */
984         sched_fork(p);
985
986         /*
987          * Ok, make it visible to the rest of the system.
988          * We dont wake it up yet.
989          */
990         p->group_leader = p;
991         INIT_LIST_HEAD(&p->ptrace_children);
992         INIT_LIST_HEAD(&p->ptrace_list);
993
994         /* Need tasklist lock for parent etc handling! */
995         write_lock_irq(&tasklist_lock);
996
997         /*
998          * The task hasn't been attached yet, so cpus_allowed mask cannot
999          * have changed. The cpus_allowed mask of the parent may have
1000          * changed after it was copied first time, and it may then move to
1001          * another CPU - so we re-copy it here and set the child's CPU to
1002          * the parent's CPU. This avoids alot of nasty races.
1003          */
1004         p->cpus_allowed = current->cpus_allowed;
1005         set_task_cpu(p, smp_processor_id());
1006
1007         /*
1008          * Check for pending SIGKILL! The new thread should not be allowed
1009          * to slip out of an OOM kill. (or normal SIGKILL.)
1010          */
1011         if (sigismember(&current->pending.signal, SIGKILL)) {
1012                 write_unlock_irq(&tasklist_lock);
1013                 retval = -EINTR;
1014                 goto bad_fork_cleanup_namespace;
1015         }
1016
1017         /* CLONE_PARENT re-uses the old parent */
1018         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1019                 p->real_parent = current->real_parent;
1020         else
1021                 p->real_parent = current;
1022         p->parent = p->real_parent;
1023
1024         if (clone_flags & CLONE_THREAD) {
1025                 spin_lock(&current->sighand->siglock);
1026                 /*
1027                  * Important: if an exit-all has been started then
1028                  * do not create this new thread - the whole thread
1029                  * group is supposed to exit anyway.
1030                  */
1031                 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1032                         spin_unlock(&current->sighand->siglock);
1033                         write_unlock_irq(&tasklist_lock);
1034                         retval = -EAGAIN;
1035                         goto bad_fork_cleanup_namespace;
1036                 }
1037                 p->group_leader = current->group_leader;
1038
1039                 if (current->signal->group_stop_count > 0) {
1040                         /*
1041                          * There is an all-stop in progress for the group.
1042                          * We ourselves will stop as soon as we check signals.
1043                          * Make the new thread part of that group stop too.
1044                          */
1045                         current->signal->group_stop_count++;
1046                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1047                 }
1048
1049                 spin_unlock(&current->sighand->siglock);
1050         }
1051
1052         SET_LINKS(p);
1053         if (unlikely(p->ptrace & PT_PTRACED))
1054                 __ptrace_link(p, current->parent);
1055
1056         attach_pid(p, PIDTYPE_PID, p->pid);
1057         attach_pid(p, PIDTYPE_TGID, p->tgid);
1058         if (thread_group_leader(p)) {
1059                 attach_pid(p, PIDTYPE_PGID, process_group(p));
1060                 attach_pid(p, PIDTYPE_SID, p->signal->session);
1061                 if (p->pid)
1062                         __get_cpu_var(process_counts)++;
1063         }
1064
1065         nr_threads++;
1066         total_forks++;
1067
1068         /* p is copy of current */
1069         vxi = p->vx_info;
1070         if (vxi) {
1071                 claim_vx_info(vxi, p);
1072                 atomic_inc(&vxi->cvirt.nr_threads);
1073                 atomic_inc(&vxi->cvirt.total_forks);
1074                 vx_nproc_inc(p);
1075         }
1076         write_unlock_irq(&tasklist_lock);
1077         retval = 0;
1078
1079 fork_out:
1080         if (retval)
1081                 return ERR_PTR(retval);
1082         return p;
1083
1084 bad_fork_cleanup_namespace:
1085         exit_namespace(p);
1086 bad_fork_cleanup_keys:
1087         exit_keys(p);
1088 bad_fork_cleanup_mm:
1089         if (p->mm)
1090                 mmput(p->mm);
1091 bad_fork_cleanup_signal:
1092         exit_signal(p);
1093 bad_fork_cleanup_sighand:
1094         exit_sighand(p);
1095 bad_fork_cleanup_fs:
1096         exit_fs(p); /* blocking */
1097 bad_fork_cleanup_files:
1098         exit_files(p); /* blocking */
1099 bad_fork_cleanup_semundo:
1100         exit_sem(p);
1101 bad_fork_cleanup_audit:
1102         audit_free(p);
1103 bad_fork_cleanup_security:
1104         security_task_free(p);
1105 bad_fork_cleanup_policy:
1106 #ifdef CONFIG_NUMA
1107         mpol_free(p->mempolicy);
1108 #endif
1109 bad_fork_cleanup:
1110         if (p->binfmt)
1111                 module_put(p->binfmt->module);
1112 bad_fork_cleanup_put_domain:
1113         module_put(p->thread_info->exec_domain->module);
1114 bad_fork_cleanup_count:
1115         put_group_info(p->group_info);
1116         atomic_dec(&p->user->processes);
1117         free_uid(p->user);
1118 bad_fork_cleanup_vm:
1119         if (p->mm && !(clone_flags & CLONE_VM))
1120                 vx_pages_sub(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
1121 bad_fork_free:
1122         free_task(p);
1123         goto fork_out;
1124 }
1125
1126 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1127 {
1128         memset(regs, 0, sizeof(struct pt_regs));
1129         return regs;
1130 }
1131
1132 task_t * __devinit fork_idle(int cpu)
1133 {
1134         task_t *task;
1135         struct pt_regs regs;
1136
1137         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1138         if (!task)
1139                 return ERR_PTR(-ENOMEM);
1140         init_idle(task, cpu);
1141         unhash_process(task);
1142         return task;
1143 }
1144
1145 static inline int fork_traceflag (unsigned clone_flags)
1146 {
1147         if (clone_flags & CLONE_UNTRACED)
1148                 return 0;
1149         else if (clone_flags & CLONE_VFORK) {
1150                 if (current->ptrace & PT_TRACE_VFORK)
1151                         return PTRACE_EVENT_VFORK;
1152         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1153                 if (current->ptrace & PT_TRACE_CLONE)
1154                         return PTRACE_EVENT_CLONE;
1155         } else if (current->ptrace & PT_TRACE_FORK)
1156                 return PTRACE_EVENT_FORK;
1157
1158         return 0;
1159 }
1160
1161 /*
1162  *  Ok, this is the main fork-routine.
1163  *
1164  * It copies the process, and if successful kick-starts
1165  * it and waits for it to finish using the VM if required.
1166  */
1167 long do_fork(unsigned long clone_flags,
1168               unsigned long stack_start,
1169               struct pt_regs *regs,
1170               unsigned long stack_size,
1171               int __user *parent_tidptr,
1172               int __user *child_tidptr)
1173 {
1174         struct task_struct *p;
1175         int trace = 0;
1176         long pid = alloc_pidmap();
1177
1178         if (pid < 0)
1179                 return -EAGAIN;
1180         if (unlikely(current->ptrace)) {
1181                 trace = fork_traceflag (clone_flags);
1182                 if (trace)
1183                         clone_flags |= CLONE_PTRACE;
1184         }
1185
1186         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1187         /*
1188          * Do this prior waking up the new thread - the thread pointer
1189          * might get invalid after that point, if the thread exits quickly.
1190          */
1191         if (!IS_ERR(p)) {
1192                 struct completion vfork;
1193
1194                 if (clone_flags & CLONE_VFORK) {
1195                         p->vfork_done = &vfork;
1196                         init_completion(&vfork);
1197                 }
1198
1199                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1200                         /*
1201                          * We'll start up with an immediate SIGSTOP.
1202                          */
1203                         sigaddset(&p->pending.signal, SIGSTOP);
1204                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1205                 }
1206
1207                 if (!(clone_flags & CLONE_STOPPED))
1208                         wake_up_new_task(p, clone_flags);
1209                 else
1210                         p->state = TASK_STOPPED;
1211
1212                 if (unlikely (trace)) {
1213                         current->ptrace_message = pid;
1214                         ptrace_notify ((trace << 8) | SIGTRAP);
1215                 }
1216
1217                 if (clone_flags & CLONE_VFORK) {
1218                         wait_for_completion(&vfork);
1219                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1220                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1221                 }
1222         } else {
1223                 free_pidmap(pid);
1224                 pid = PTR_ERR(p);
1225         }
1226         return pid;
1227 }
1228
1229 /* SLAB cache for signal_struct structures (tsk->signal) */
1230 kmem_cache_t *signal_cachep;
1231
1232 /* SLAB cache for sighand_struct structures (tsk->sighand) */
1233 kmem_cache_t *sighand_cachep;
1234
1235 /* SLAB cache for files_struct structures (tsk->files) */
1236 kmem_cache_t *files_cachep;
1237
1238 /* SLAB cache for fs_struct structures (tsk->fs) */
1239 kmem_cache_t *fs_cachep;
1240
1241 /* SLAB cache for vm_area_struct structures */
1242 kmem_cache_t *vm_area_cachep;
1243
1244 /* SLAB cache for mm_struct structures (tsk->mm) */
1245 kmem_cache_t *mm_cachep;
1246
1247 void __init proc_caches_init(void)
1248 {
1249         sighand_cachep = kmem_cache_create("sighand_cache",
1250                         sizeof(struct sighand_struct), 0,
1251                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1252         signal_cachep = kmem_cache_create("signal_cache",
1253                         sizeof(struct signal_struct), 0,
1254                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1255         files_cachep = kmem_cache_create("files_cache", 
1256                         sizeof(struct files_struct), 0,
1257                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1258         fs_cachep = kmem_cache_create("fs_cache", 
1259                         sizeof(struct fs_struct), 0,
1260                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1261         vm_area_cachep = kmem_cache_create("vm_area_struct",
1262                         sizeof(struct vm_area_struct), 0,
1263                         SLAB_PANIC, NULL, NULL);
1264         mm_cachep = kmem_cache_create("mm_struct",
1265                         sizeof(struct mm_struct), 0,
1266                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1267 }