4d414d925889440dc3f46f2db4821c9c6670596e
[linux-2.6.git] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/config.h>
8 #include <linux/compat.h>
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/smp_lock.h>
14 #include <linux/notifier.h>
15 #include <linux/reboot.h>
16 #include <linux/prctl.h>
17 #include <linux/init.h>
18 #include <linux/highuid.h>
19 #include <linux/fs.h>
20 #include <linux/workqueue.h>
21 #include <linux/device.h>
22 #include <linux/times.h>
23 #include <linux/security.h>
24 #include <linux/dcookies.h>
25 #include <linux/suspend.h>
26
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29 #include <asm/unistd.h>
30
31 #ifndef SET_UNALIGN_CTL
32 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
33 #endif
34 #ifndef GET_UNALIGN_CTL
35 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
36 #endif
37 #ifndef SET_FPEMU_CTL
38 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
39 #endif
40 #ifndef GET_FPEMU_CTL
41 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
42 #endif
43 #ifndef SET_FPEXC_CTL
44 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
45 #endif
46 #ifndef GET_FPEXC_CTL
47 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
48 #endif
49
50 /*
51  * this is where the system-wide overflow UID and GID are defined, for
52  * architectures that now have 32-bit UID/GID but didn't in the past
53  */
54
55 int overflowuid = DEFAULT_OVERFLOWUID;
56 int overflowgid = DEFAULT_OVERFLOWGID;
57
58 #ifdef CONFIG_UID16
59 EXPORT_SYMBOL(overflowuid);
60 EXPORT_SYMBOL(overflowgid);
61 #endif
62
63 /*
64  * the same as above, but for filesystems which can only store a 16-bit
65  * UID and GID. as such, this is needed on all architectures
66  */
67
68 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
69 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
70
71 EXPORT_SYMBOL(fs_overflowuid);
72 EXPORT_SYMBOL(fs_overflowgid);
73
74 /*
75  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
76  */
77
78 int C_A_D = 1;
79 int cad_pid = 1;
80
81 /*
82  *      Notifier list for kernel code which wants to be called
83  *      at shutdown. This is used to stop any idling DMA operations
84  *      and the like. 
85  */
86
87 static struct notifier_block *reboot_notifier_list;
88 rwlock_t notifier_lock = RW_LOCK_UNLOCKED;
89
90 /**
91  *      notifier_chain_register - Add notifier to a notifier chain
92  *      @list: Pointer to root list pointer
93  *      @n: New entry in notifier chain
94  *
95  *      Adds a notifier to a notifier chain.
96  *
97  *      Currently always returns zero.
98  */
99  
100 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
101 {
102         write_lock(&notifier_lock);
103         while(*list)
104         {
105                 if(n->priority > (*list)->priority)
106                         break;
107                 list= &((*list)->next);
108         }
109         n->next = *list;
110         *list=n;
111         write_unlock(&notifier_lock);
112         return 0;
113 }
114
115 EXPORT_SYMBOL(notifier_chain_register);
116
117 /**
118  *      notifier_chain_unregister - Remove notifier from a notifier chain
119  *      @nl: Pointer to root list pointer
120  *      @n: New entry in notifier chain
121  *
122  *      Removes a notifier from a notifier chain.
123  *
124  *      Returns zero on success, or %-ENOENT on failure.
125  */
126  
127 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
128 {
129         write_lock(&notifier_lock);
130         while((*nl)!=NULL)
131         {
132                 if((*nl)==n)
133                 {
134                         *nl=n->next;
135                         write_unlock(&notifier_lock);
136                         return 0;
137                 }
138                 nl=&((*nl)->next);
139         }
140         write_unlock(&notifier_lock);
141         return -ENOENT;
142 }
143
144 EXPORT_SYMBOL(notifier_chain_unregister);
145
146 /**
147  *      notifier_call_chain - Call functions in a notifier chain
148  *      @n: Pointer to root pointer of notifier chain
149  *      @val: Value passed unmodified to notifier function
150  *      @v: Pointer passed unmodified to notifier function
151  *
152  *      Calls each function in a notifier chain in turn.
153  *
154  *      If the return value of the notifier can be and'd
155  *      with %NOTIFY_STOP_MASK, then notifier_call_chain
156  *      will return immediately, with the return value of
157  *      the notifier function which halted execution.
158  *      Otherwise, the return value is the return value
159  *      of the last notifier function called.
160  */
161  
162 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
163 {
164         int ret=NOTIFY_DONE;
165         struct notifier_block *nb = *n;
166
167         while(nb)
168         {
169                 ret=nb->notifier_call(nb,val,v);
170                 if(ret&NOTIFY_STOP_MASK)
171                 {
172                         return ret;
173                 }
174                 nb=nb->next;
175         }
176         return ret;
177 }
178
179 EXPORT_SYMBOL(notifier_call_chain);
180
181 /**
182  *      register_reboot_notifier - Register function to be called at reboot time
183  *      @nb: Info about notifier function to be called
184  *
185  *      Registers a function with the list of functions
186  *      to be called at reboot time.
187  *
188  *      Currently always returns zero, as notifier_chain_register
189  *      always returns zero.
190  */
191  
192 int register_reboot_notifier(struct notifier_block * nb)
193 {
194         return notifier_chain_register(&reboot_notifier_list, nb);
195 }
196
197 EXPORT_SYMBOL(register_reboot_notifier);
198
199 /**
200  *      unregister_reboot_notifier - Unregister previously registered reboot notifier
201  *      @nb: Hook to be unregistered
202  *
203  *      Unregisters a previously registered reboot
204  *      notifier function.
205  *
206  *      Returns zero on success, or %-ENOENT on failure.
207  */
208  
209 int unregister_reboot_notifier(struct notifier_block * nb)
210 {
211         return notifier_chain_unregister(&reboot_notifier_list, nb);
212 }
213
214 EXPORT_SYMBOL(unregister_reboot_notifier);
215
216 asmlinkage long sys_ni_syscall(void)
217 {
218         return -ENOSYS;
219 }
220
221 cond_syscall(sys_nfsservctl)
222 cond_syscall(sys_quotactl)
223 cond_syscall(sys_acct)
224 cond_syscall(sys_lookup_dcookie)
225 cond_syscall(sys_swapon)
226 cond_syscall(sys_swapoff)
227 cond_syscall(sys_init_module)
228 cond_syscall(sys_delete_module)
229 cond_syscall(sys_socketpair)
230 cond_syscall(sys_bind)
231 cond_syscall(sys_listen)
232 cond_syscall(sys_accept)
233 cond_syscall(sys_connect)
234 cond_syscall(sys_getsockname)
235 cond_syscall(sys_getpeername)
236 cond_syscall(sys_sendto)
237 cond_syscall(sys_send)
238 cond_syscall(sys_recvfrom)
239 cond_syscall(sys_recv)
240 cond_syscall(sys_socket)
241 cond_syscall(sys_setsockopt)
242 cond_syscall(sys_getsockopt)
243 cond_syscall(sys_shutdown)
244 cond_syscall(sys_sendmsg)
245 cond_syscall(sys_recvmsg)
246 cond_syscall(sys_socketcall)
247 cond_syscall(sys_futex)
248 cond_syscall(compat_sys_futex)
249 cond_syscall(sys_epoll_create)
250 cond_syscall(sys_epoll_ctl)
251 cond_syscall(sys_epoll_wait)
252 cond_syscall(sys_semget)
253 cond_syscall(sys_semop)
254 cond_syscall(sys_semtimedop)
255 cond_syscall(sys_semctl)
256 cond_syscall(sys_msgget)
257 cond_syscall(sys_msgsnd)
258 cond_syscall(sys_msgrcv)
259 cond_syscall(sys_msgctl)
260 cond_syscall(sys_shmget)
261 cond_syscall(sys_shmdt)
262 cond_syscall(sys_shmctl)
263 cond_syscall(sys_mq_open)
264 cond_syscall(sys_mq_unlink)
265 cond_syscall(sys_mq_timedsend)
266 cond_syscall(sys_mq_timedreceive)
267 cond_syscall(sys_mq_notify)
268 cond_syscall(sys_mq_getsetattr)
269 cond_syscall(compat_sys_mq_open)
270 cond_syscall(compat_sys_mq_timedsend)
271 cond_syscall(compat_sys_mq_timedreceive)
272 cond_syscall(compat_sys_mq_notify)
273 cond_syscall(compat_sys_mq_getsetattr)
274
275 /* arch-specific weak syscall entries */
276 cond_syscall(sys_pciconfig_read)
277 cond_syscall(sys_pciconfig_write)
278 cond_syscall(sys_pciconfig_iobase)
279
280 static int set_one_prio(struct task_struct *p, int niceval, int error)
281 {
282         int no_nice;
283
284         if (p->uid != current->euid &&
285                 p->uid != current->uid && !capable(CAP_SYS_NICE)) {
286                 error = -EPERM;
287                 goto out;
288         }
289         if (niceval < task_nice(p) && !capable(CAP_SYS_NICE)) {
290                 error = -EACCES;
291                 goto out;
292         }
293         no_nice = security_task_setnice(p, niceval);
294         if (no_nice) {
295                 error = no_nice;
296                 goto out;
297         }
298         if (error == -ESRCH)
299                 error = 0;
300         set_user_nice(p, niceval);
301 out:
302         return error;
303 }
304
305 asmlinkage long sys_setpriority(int which, int who, int niceval)
306 {
307         struct task_struct *g, *p;
308         struct user_struct *user;
309         struct pid *pid;
310         struct list_head *l;
311         int error = -EINVAL;
312
313         if (which > 2 || which < 0)
314                 goto out;
315
316         /* normalize: avoid signed division (rounding problems) */
317         error = -ESRCH;
318         if (niceval < -20)
319                 niceval = -20;
320         if (niceval > 19)
321                 niceval = 19;
322
323         read_lock(&tasklist_lock);
324         switch (which) {
325                 case PRIO_PROCESS:
326                         if (!who)
327                                 who = current->pid;
328                         p = find_task_by_pid(who);
329                         if (p)
330                                 error = set_one_prio(p, niceval, error);
331                         break;
332                 case PRIO_PGRP:
333                         if (!who)
334                                 who = process_group(current);
335                         for_each_task_pid(who, PIDTYPE_PGID, p, l, pid)
336                                 error = set_one_prio(p, niceval, error);
337                         break;
338                 case PRIO_USER:
339                         if (!who)
340                                 user = current->user;
341                         else
342                                 user = find_user(who);
343
344                         if (!user)
345                                 goto out_unlock;
346
347                         do_each_thread(g, p)
348                                 if (p->uid == who)
349                                         error = set_one_prio(p, niceval, error);
350                         while_each_thread(g, p);
351                         break;
352         }
353 out_unlock:
354         read_unlock(&tasklist_lock);
355 out:
356         return error;
357 }
358
359 /*
360  * Ugh. To avoid negative return values, "getpriority()" will
361  * not return the normal nice-value, but a negated value that
362  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
363  * to stay compatible.
364  */
365 asmlinkage long sys_getpriority(int which, int who)
366 {
367         struct task_struct *g, *p;
368         struct list_head *l;
369         struct pid *pid;
370         struct user_struct *user;
371         long niceval, retval = -ESRCH;
372
373         if (which > 2 || which < 0)
374                 return -EINVAL;
375
376         read_lock(&tasklist_lock);
377         switch (which) {
378                 case PRIO_PROCESS:
379                         if (!who)
380                                 who = current->pid;
381                         p = find_task_by_pid(who);
382                         if (p) {
383                                 niceval = 20 - task_nice(p);
384                                 if (niceval > retval)
385                                         retval = niceval;
386                         }
387                         break;
388                 case PRIO_PGRP:
389                         if (!who)
390                                 who = process_group(current);
391                         for_each_task_pid(who, PIDTYPE_PGID, p, l, pid) {
392                                 niceval = 20 - task_nice(p);
393                                 if (niceval > retval)
394                                         retval = niceval;
395                         }
396                         break;
397                 case PRIO_USER:
398                         if (!who)
399                                 user = current->user;
400                         else
401                                 user = find_user(who);
402
403                         if (!user)
404                                 goto out_unlock;
405
406                         do_each_thread(g, p)
407                                 if (p->uid == who) {
408                                         niceval = 20 - task_nice(p);
409                                         if (niceval > retval)
410                                                 retval = niceval;
411                                 }
412                         while_each_thread(g, p);
413                         break;
414         }
415 out_unlock:
416         read_unlock(&tasklist_lock);
417
418         return retval;
419 }
420
421
422 /*
423  * Reboot system call: for obvious reasons only root may call it,
424  * and even root needs to set up some magic numbers in the registers
425  * so that some mistake won't make this reboot the whole machine.
426  * You can also set the meaning of the ctrl-alt-del-key here.
427  *
428  * reboot doesn't sync: do that yourself before calling this.
429  */
430 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
431 {
432         char buffer[256];
433
434         /* We only trust the superuser with rebooting the system. */
435         if (!capable(CAP_SYS_BOOT))
436                 return -EPERM;
437
438         /* For safety, we require "magic" arguments. */
439         if (magic1 != LINUX_REBOOT_MAGIC1 ||
440             (magic2 != LINUX_REBOOT_MAGIC2 &&
441                         magic2 != LINUX_REBOOT_MAGIC2A &&
442                         magic2 != LINUX_REBOOT_MAGIC2B &&
443                         magic2 != LINUX_REBOOT_MAGIC2C))
444                 return -EINVAL;
445
446         lock_kernel();
447         switch (cmd) {
448         case LINUX_REBOOT_CMD_RESTART:
449                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
450                 system_state = SYSTEM_SHUTDOWN;
451                 device_shutdown();
452                 printk(KERN_EMERG "Restarting system.\n");
453                 machine_restart(NULL);
454                 break;
455
456         case LINUX_REBOOT_CMD_CAD_ON:
457                 C_A_D = 1;
458                 break;
459
460         case LINUX_REBOOT_CMD_CAD_OFF:
461                 C_A_D = 0;
462                 break;
463
464         case LINUX_REBOOT_CMD_HALT:
465                 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
466                 system_state = SYSTEM_SHUTDOWN;
467                 device_shutdown();
468                 printk(KERN_EMERG "System halted.\n");
469                 machine_halt();
470                 unlock_kernel();
471                 do_exit(0);
472                 break;
473
474         case LINUX_REBOOT_CMD_POWER_OFF:
475                 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
476                 system_state = SYSTEM_SHUTDOWN;
477                 device_shutdown();
478                 printk(KERN_EMERG "Power down.\n");
479                 machine_power_off();
480                 unlock_kernel();
481                 do_exit(0);
482                 break;
483
484         case LINUX_REBOOT_CMD_RESTART2:
485                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
486                         unlock_kernel();
487                         return -EFAULT;
488                 }
489                 buffer[sizeof(buffer) - 1] = '\0';
490
491                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer);
492                 system_state = SYSTEM_SHUTDOWN;
493                 device_shutdown();
494                 printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer);
495                 machine_restart(buffer);
496                 break;
497
498 #ifdef CONFIG_SOFTWARE_SUSPEND
499         case LINUX_REBOOT_CMD_SW_SUSPEND:
500                 {
501                         int ret = software_suspend();
502                         unlock_kernel();
503                         return ret;
504                 }
505 #endif
506
507         default:
508                 unlock_kernel();
509                 return -EINVAL;
510         }
511         unlock_kernel();
512         return 0;
513 }
514
515 static void deferred_cad(void *dummy)
516 {
517         notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
518         machine_restart(NULL);
519 }
520
521 /*
522  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
523  * As it's called within an interrupt, it may NOT sync: the only choice
524  * is whether to reboot at once, or just ignore the ctrl-alt-del.
525  */
526 void ctrl_alt_del(void)
527 {
528         static DECLARE_WORK(cad_work, deferred_cad, NULL);
529
530         if (C_A_D)
531                 schedule_work(&cad_work);
532         else
533                 kill_proc(cad_pid, SIGINT, 1);
534 }
535         
536
537 /*
538  * Unprivileged users may change the real gid to the effective gid
539  * or vice versa.  (BSD-style)
540  *
541  * If you set the real gid at all, or set the effective gid to a value not
542  * equal to the real gid, then the saved gid is set to the new effective gid.
543  *
544  * This makes it possible for a setgid program to completely drop its
545  * privileges, which is often a useful assertion to make when you are doing
546  * a security audit over a program.
547  *
548  * The general idea is that a program which uses just setregid() will be
549  * 100% compatible with BSD.  A program which uses just setgid() will be
550  * 100% compatible with POSIX with saved IDs. 
551  *
552  * SMP: There are not races, the GIDs are checked only by filesystem
553  *      operations (as far as semantic preservation is concerned).
554  */
555 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
556 {
557         int old_rgid = current->gid;
558         int old_egid = current->egid;
559         int new_rgid = old_rgid;
560         int new_egid = old_egid;
561         int retval;
562
563         retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
564         if (retval)
565                 return retval;
566
567         if (rgid != (gid_t) -1) {
568                 if ((old_rgid == rgid) ||
569                     (current->egid==rgid) ||
570                     capable(CAP_SETGID))
571                         new_rgid = rgid;
572                 else
573                         return -EPERM;
574         }
575         if (egid != (gid_t) -1) {
576                 if ((old_rgid == egid) ||
577                     (current->egid == egid) ||
578                     (current->sgid == egid) ||
579                     capable(CAP_SETGID))
580                         new_egid = egid;
581                 else {
582                         return -EPERM;
583                 }
584         }
585         if (new_egid != old_egid)
586         {
587                 current->mm->dumpable = 0;
588                 wmb();
589         }
590         if (rgid != (gid_t) -1 ||
591             (egid != (gid_t) -1 && egid != old_rgid))
592                 current->sgid = new_egid;
593         current->fsgid = new_egid;
594         current->egid = new_egid;
595         current->gid = new_rgid;
596         return 0;
597 }
598
599 /*
600  * setgid() is implemented like SysV w/ SAVED_IDS 
601  *
602  * SMP: Same implicit races as above.
603  */
604 asmlinkage long sys_setgid(gid_t gid)
605 {
606         int old_egid = current->egid;
607         int retval;
608
609         retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
610         if (retval)
611                 return retval;
612
613         if (capable(CAP_SETGID))
614         {
615                 if(old_egid != gid)
616                 {
617                         current->mm->dumpable=0;
618                         wmb();
619                 }
620                 current->gid = current->egid = current->sgid = current->fsgid = gid;
621         }
622         else if ((gid == current->gid) || (gid == current->sgid))
623         {
624                 if(old_egid != gid)
625                 {
626                         current->mm->dumpable=0;
627                         wmb();
628                 }
629                 current->egid = current->fsgid = gid;
630         }
631         else
632                 return -EPERM;
633         return 0;
634 }
635   
636 static int set_user(uid_t new_ruid, int dumpclear)
637 {
638         struct user_struct *new_user;
639
640         new_user = alloc_uid(new_ruid);
641         if (!new_user)
642                 return -EAGAIN;
643
644         if (atomic_read(&new_user->processes) >=
645                                 current->rlim[RLIMIT_NPROC].rlim_cur &&
646                         new_user != &root_user) {
647                 free_uid(new_user);
648                 return -EAGAIN;
649         }
650
651         switch_uid(new_user);
652
653         if(dumpclear)
654         {
655                 current->mm->dumpable = 0;
656                 wmb();
657         }
658         current->uid = new_ruid;
659         return 0;
660 }
661
662 /*
663  * Unprivileged users may change the real uid to the effective uid
664  * or vice versa.  (BSD-style)
665  *
666  * If you set the real uid at all, or set the effective uid to a value not
667  * equal to the real uid, then the saved uid is set to the new effective uid.
668  *
669  * This makes it possible for a setuid program to completely drop its
670  * privileges, which is often a useful assertion to make when you are doing
671  * a security audit over a program.
672  *
673  * The general idea is that a program which uses just setreuid() will be
674  * 100% compatible with BSD.  A program which uses just setuid() will be
675  * 100% compatible with POSIX with saved IDs. 
676  */
677 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
678 {
679         int old_ruid, old_euid, old_suid, new_ruid, new_euid;
680         int retval;
681
682         retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
683         if (retval)
684                 return retval;
685
686         new_ruid = old_ruid = current->uid;
687         new_euid = old_euid = current->euid;
688         old_suid = current->suid;
689
690         if (ruid != (uid_t) -1) {
691                 new_ruid = ruid;
692                 if ((old_ruid != ruid) &&
693                     (current->euid != ruid) &&
694                     !capable(CAP_SETUID))
695                         return -EPERM;
696         }
697
698         if (euid != (uid_t) -1) {
699                 new_euid = euid;
700                 if ((old_ruid != euid) &&
701                     (current->euid != euid) &&
702                     (current->suid != euid) &&
703                     !capable(CAP_SETUID))
704                         return -EPERM;
705         }
706
707         if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
708                 return -EAGAIN;
709
710         if (new_euid != old_euid)
711         {
712                 current->mm->dumpable=0;
713                 wmb();
714         }
715         current->fsuid = current->euid = new_euid;
716         if (ruid != (uid_t) -1 ||
717             (euid != (uid_t) -1 && euid != old_ruid))
718                 current->suid = current->euid;
719         current->fsuid = current->euid;
720
721         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
722 }
723
724
725                 
726 /*
727  * setuid() is implemented like SysV with SAVED_IDS 
728  * 
729  * Note that SAVED_ID's is deficient in that a setuid root program
730  * like sendmail, for example, cannot set its uid to be a normal 
731  * user and then switch back, because if you're root, setuid() sets
732  * the saved uid too.  If you don't like this, blame the bright people
733  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
734  * will allow a root program to temporarily drop privileges and be able to
735  * regain them by swapping the real and effective uid.  
736  */
737 asmlinkage long sys_setuid(uid_t uid)
738 {
739         int old_euid = current->euid;
740         int old_ruid, old_suid, new_ruid, new_suid;
741         int retval;
742
743         retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
744         if (retval)
745                 return retval;
746
747         old_ruid = new_ruid = current->uid;
748         old_suid = current->suid;
749         new_suid = old_suid;
750         
751         if (capable(CAP_SETUID)) {
752                 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
753                         return -EAGAIN;
754                 new_suid = uid;
755         } else if ((uid != current->uid) && (uid != new_suid))
756                 return -EPERM;
757
758         if (old_euid != uid)
759         {
760                 current->mm->dumpable = 0;
761                 wmb();
762         }
763         current->fsuid = current->euid = uid;
764         current->suid = new_suid;
765
766         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
767 }
768
769
770 /*
771  * This function implements a generic ability to update ruid, euid,
772  * and suid.  This allows you to implement the 4.4 compatible seteuid().
773  */
774 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
775 {
776         int old_ruid = current->uid;
777         int old_euid = current->euid;
778         int old_suid = current->suid;
779         int retval;
780
781         retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
782         if (retval)
783                 return retval;
784
785         if (!capable(CAP_SETUID)) {
786                 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
787                     (ruid != current->euid) && (ruid != current->suid))
788                         return -EPERM;
789                 if ((euid != (uid_t) -1) && (euid != current->uid) &&
790                     (euid != current->euid) && (euid != current->suid))
791                         return -EPERM;
792                 if ((suid != (uid_t) -1) && (suid != current->uid) &&
793                     (suid != current->euid) && (suid != current->suid))
794                         return -EPERM;
795         }
796         if (ruid != (uid_t) -1) {
797                 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
798                         return -EAGAIN;
799         }
800         if (euid != (uid_t) -1) {
801                 if (euid != current->euid)
802                 {
803                         current->mm->dumpable = 0;
804                         wmb();
805                 }
806                 current->euid = euid;
807         }
808         current->fsuid = current->euid;
809         if (suid != (uid_t) -1)
810                 current->suid = suid;
811
812         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
813 }
814
815 asmlinkage long sys_getresuid(uid_t *ruid, uid_t *euid, uid_t *suid)
816 {
817         int retval;
818
819         if (!(retval = put_user(current->uid, ruid)) &&
820             !(retval = put_user(current->euid, euid)))
821                 retval = put_user(current->suid, suid);
822
823         return retval;
824 }
825
826 /*
827  * Same as above, but for rgid, egid, sgid.
828  */
829 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
830 {
831         int retval;
832
833         retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
834         if (retval)
835                 return retval;
836
837         if (!capable(CAP_SETGID)) {
838                 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
839                     (rgid != current->egid) && (rgid != current->sgid))
840                         return -EPERM;
841                 if ((egid != (gid_t) -1) && (egid != current->gid) &&
842                     (egid != current->egid) && (egid != current->sgid))
843                         return -EPERM;
844                 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
845                     (sgid != current->egid) && (sgid != current->sgid))
846                         return -EPERM;
847         }
848         if (egid != (gid_t) -1) {
849                 if (egid != current->egid)
850                 {
851                         current->mm->dumpable = 0;
852                         wmb();
853                 }
854                 current->egid = egid;
855         }
856         current->fsgid = current->egid;
857         if (rgid != (gid_t) -1)
858                 current->gid = rgid;
859         if (sgid != (gid_t) -1)
860                 current->sgid = sgid;
861         return 0;
862 }
863
864 asmlinkage long sys_getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid)
865 {
866         int retval;
867
868         if (!(retval = put_user(current->gid, rgid)) &&
869             !(retval = put_user(current->egid, egid)))
870                 retval = put_user(current->sgid, sgid);
871
872         return retval;
873 }
874
875
876 /*
877  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
878  * is used for "access()" and for the NFS daemon (letting nfsd stay at
879  * whatever uid it wants to). It normally shadows "euid", except when
880  * explicitly set by setfsuid() or for access..
881  */
882 asmlinkage long sys_setfsuid(uid_t uid)
883 {
884         int old_fsuid;
885
886         old_fsuid = current->fsuid;
887         if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
888                 return old_fsuid;
889
890         if (uid == current->uid || uid == current->euid ||
891             uid == current->suid || uid == current->fsuid || 
892             capable(CAP_SETUID))
893         {
894                 if (uid != old_fsuid)
895                 {
896                         current->mm->dumpable = 0;
897                         wmb();
898                 }
899                 current->fsuid = uid;
900         }
901
902         security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
903
904         return old_fsuid;
905 }
906
907 /*
908  * Samma pÃ¥ svenska..
909  */
910 asmlinkage long sys_setfsgid(gid_t gid)
911 {
912         int old_fsgid;
913
914         old_fsgid = current->fsgid;
915         if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
916                 return old_fsgid;
917
918         if (gid == current->gid || gid == current->egid ||
919             gid == current->sgid || gid == current->fsgid || 
920             capable(CAP_SETGID))
921         {
922                 if (gid != old_fsgid)
923                 {
924                         current->mm->dumpable = 0;
925                         wmb();
926                 }
927                 current->fsgid = gid;
928         }
929         return old_fsgid;
930 }
931
932 asmlinkage long sys_times(struct tms __user * tbuf)
933 {
934         /*
935          *      In the SMP world we might just be unlucky and have one of
936          *      the times increment as we use it. Since the value is an
937          *      atomically safe type this is just fine. Conceptually its
938          *      as if the syscall took an instant longer to occur.
939          */
940         if (tbuf) {
941                 struct tms tmp;
942                 tmp.tms_utime = jiffies_to_clock_t(current->utime);
943                 tmp.tms_stime = jiffies_to_clock_t(current->stime);
944                 tmp.tms_cutime = jiffies_to_clock_t(current->cutime);
945                 tmp.tms_cstime = jiffies_to_clock_t(current->cstime);
946                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
947                         return -EFAULT;
948         }
949         return (long) jiffies_64_to_clock_t(get_jiffies_64());
950 }
951
952 /*
953  * This needs some heavy checking ...
954  * I just haven't the stomach for it. I also don't fully
955  * understand sessions/pgrp etc. Let somebody who does explain it.
956  *
957  * OK, I think I have the protection semantics right.... this is really
958  * only important on a multi-user system anyway, to make sure one user
959  * can't send a signal to a process owned by another.  -TYT, 12/12/91
960  *
961  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
962  * LBT 04.03.94
963  */
964
965 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
966 {
967         struct task_struct *p;
968         int err = -EINVAL;
969
970         if (!pid)
971                 pid = current->pid;
972         if (!pgid)
973                 pgid = pid;
974         if (pgid < 0)
975                 return -EINVAL;
976
977         /* From this point forward we keep holding onto the tasklist lock
978          * so that our parent does not change from under us. -DaveM
979          */
980         write_lock_irq(&tasklist_lock);
981
982         err = -ESRCH;
983         p = find_task_by_pid(pid);
984         if (!p)
985                 goto out;
986
987         err = -EINVAL;
988         if (!thread_group_leader(p))
989                 goto out;
990
991         if (p->parent == current || p->real_parent == current) {
992                 err = -EPERM;
993                 if (p->signal->session != current->signal->session)
994                         goto out;
995                 err = -EACCES;
996                 if (p->did_exec)
997                         goto out;
998         } else {
999                 err = -ESRCH;
1000                 if (p != current)
1001                         goto out;
1002         }
1003
1004         err = -EPERM;
1005         if (p->signal->leader)
1006                 goto out;
1007
1008         if (pgid != pid) {
1009                 struct task_struct *p;
1010                 struct pid *pid;
1011                 struct list_head *l;
1012
1013                 for_each_task_pid(pgid, PIDTYPE_PGID, p, l, pid)
1014                         if (p->signal->session == current->signal->session)
1015                                 goto ok_pgid;
1016                 goto out;
1017         }
1018
1019 ok_pgid:
1020         err = security_task_setpgid(p, pgid);
1021         if (err)
1022                 goto out;
1023
1024         if (process_group(p) != pgid) {
1025                 detach_pid(p, PIDTYPE_PGID);
1026                 p->signal->pgrp = pgid;
1027                 attach_pid(p, PIDTYPE_PGID, pgid);
1028         }
1029
1030         err = 0;
1031 out:
1032         /* All paths lead to here, thus we are safe. -DaveM */
1033         write_unlock_irq(&tasklist_lock);
1034         return err;
1035 }
1036
1037 asmlinkage long sys_getpgid(pid_t pid)
1038 {
1039         if (!pid) {
1040                 return process_group(current);
1041         } else {
1042                 int retval;
1043                 struct task_struct *p;
1044
1045                 read_lock(&tasklist_lock);
1046                 p = find_task_by_pid(pid);
1047
1048                 retval = -ESRCH;
1049                 if (p) {
1050                         retval = security_task_getpgid(p);
1051                         if (!retval)
1052                                 retval = process_group(p);
1053                 }
1054                 read_unlock(&tasklist_lock);
1055                 return retval;
1056         }
1057 }
1058
1059 asmlinkage long sys_getpgrp(void)
1060 {
1061         /* SMP - assuming writes are word atomic this is fine */
1062         return process_group(current);
1063 }
1064
1065 asmlinkage long sys_getsid(pid_t pid)
1066 {
1067         if (!pid) {
1068                 return current->signal->session;
1069         } else {
1070                 int retval;
1071                 struct task_struct *p;
1072
1073                 read_lock(&tasklist_lock);
1074                 p = find_task_by_pid(pid);
1075
1076                 retval = -ESRCH;
1077                 if(p) {
1078                         retval = security_task_getsid(p);
1079                         if (!retval)
1080                                 retval = p->signal->session;
1081                 }
1082                 read_unlock(&tasklist_lock);
1083                 return retval;
1084         }
1085 }
1086
1087 asmlinkage long sys_setsid(void)
1088 {
1089         struct pid *pid;
1090         int err = -EPERM;
1091
1092         if (!thread_group_leader(current))
1093                 return -EINVAL;
1094
1095         write_lock_irq(&tasklist_lock);
1096
1097         pid = find_pid(PIDTYPE_PGID, current->pid);
1098         if (pid)
1099                 goto out;
1100
1101         current->signal->leader = 1;
1102         __set_special_pids(current->pid, current->pid);
1103         current->signal->tty = NULL;
1104         current->signal->tty_old_pgrp = 0;
1105         err = process_group(current);
1106 out:
1107         write_unlock_irq(&tasklist_lock);
1108         return err;
1109 }
1110
1111 /*
1112  * Supplementary group IDs
1113  */
1114
1115 /* init to 2 - one for init_task, one to ensure it is never freed */
1116 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1117
1118 struct group_info *groups_alloc(int gidsetsize)
1119 {
1120         struct group_info *group_info;
1121         int nblocks;
1122         int i;
1123
1124         nblocks = (gidsetsize/NGROUPS_PER_BLOCK) +
1125             (gidsetsize%NGROUPS_PER_BLOCK?1:0);
1126         group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *),
1127             GFP_USER);
1128         if (!group_info)
1129                 return NULL;
1130         group_info->ngroups = gidsetsize;
1131         group_info->nblocks = nblocks;
1132         atomic_set(&group_info->usage, 1);
1133
1134         if (gidsetsize <= NGROUPS_SMALL) {
1135                 group_info->blocks[0] = group_info->small_block;
1136         } else {
1137                 for (i = 0; i < nblocks; i++) {
1138                         gid_t *b;
1139                         b = (void *)__get_free_page(GFP_USER);
1140                         if (!b)
1141                                 goto out_undo_partial_alloc;
1142                         group_info->blocks[i] = b;
1143                 }
1144         }
1145         return group_info;
1146
1147 out_undo_partial_alloc:
1148         while (--i >= 0) {
1149                 free_page((unsigned long)group_info->blocks[i]);
1150         }
1151         kfree(group_info);
1152         return NULL;
1153 }
1154
1155 EXPORT_SYMBOL(groups_alloc);
1156
1157 void groups_free(struct group_info *group_info)
1158 {
1159         if (group_info->blocks[0] != group_info->small_block) {
1160                 int i;
1161                 for (i = 0; i < group_info->nblocks; i++)
1162                         free_page((unsigned long)group_info->blocks[i]);
1163         }
1164         kfree(group_info);
1165 }
1166
1167 EXPORT_SYMBOL(groups_free);
1168
1169 /* export the group_info to a user-space array */
1170 static int groups_to_user(gid_t __user *grouplist,
1171     struct group_info *group_info)
1172 {
1173         int i;
1174         int count = group_info->ngroups;
1175
1176         for (i = 0; i < group_info->nblocks; i++) {
1177                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1178                 int off = i * NGROUPS_PER_BLOCK;
1179                 int len = cp_count * sizeof(*grouplist);
1180
1181                 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1182                         return -EFAULT;
1183
1184                 count -= cp_count;
1185         }
1186         return 0;
1187 }
1188
1189 /* fill a group_info from a user-space array - it must be allocated already */
1190 static int groups_from_user(struct group_info *group_info,
1191     gid_t __user *grouplist)
1192  {
1193         int i;
1194         int count = group_info->ngroups;
1195
1196         for (i = 0; i < group_info->nblocks; i++) {
1197                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1198                 int off = i * NGROUPS_PER_BLOCK;
1199                 int len = cp_count * sizeof(*grouplist);
1200
1201                 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1202                         return -EFAULT;
1203
1204                 count -= cp_count;
1205         }
1206         return 0;
1207 }
1208
1209 /* a simple shell-metzner sort */
1210 static void groups_sort(struct group_info *group_info)
1211 {
1212         int base, max, stride;
1213         int gidsetsize = group_info->ngroups;
1214
1215         for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1216                 ; /* nothing */
1217         stride /= 3;
1218
1219         while (stride) {
1220                 max = gidsetsize - stride;
1221                 for (base = 0; base < max; base++) {
1222                         int left = base;
1223                         int right = left + stride;
1224                         gid_t tmp = GROUP_AT(group_info, right);
1225
1226                         while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1227                                 GROUP_AT(group_info, right) =
1228                                     GROUP_AT(group_info, left);
1229                                 right = left;
1230                                 left -= stride;
1231                         }
1232                         GROUP_AT(group_info, right) = tmp;
1233                 }
1234                 stride /= 3;
1235         }
1236 }
1237
1238 /* a simple bsearch */
1239 static int groups_search(struct group_info *group_info, gid_t grp)
1240 {
1241         int left, right;
1242
1243         if (!group_info)
1244                 return 0;
1245
1246         left = 0;
1247         right = group_info->ngroups;
1248         while (left < right) {
1249                 int mid = (left+right)/2;
1250                 int cmp = grp - GROUP_AT(group_info, mid);
1251                 if (cmp > 0)
1252                         left = mid + 1;
1253                 else if (cmp < 0)
1254                         right = mid;
1255                 else
1256                         return 1;
1257         }
1258         return 0;
1259 }
1260
1261 /* validate and set current->group_info */
1262 int set_current_groups(struct group_info *group_info)
1263 {
1264         int retval;
1265         struct group_info *old_info;
1266
1267         retval = security_task_setgroups(group_info);
1268         if (retval)
1269                 return retval;
1270
1271         groups_sort(group_info);
1272         get_group_info(group_info);
1273         old_info = current->group_info;
1274         current->group_info = group_info;
1275         put_group_info(old_info);
1276
1277         return 0;
1278 }
1279
1280 EXPORT_SYMBOL(set_current_groups);
1281
1282 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1283 {
1284         int i = 0;
1285
1286         /*
1287          *      SMP: Nobody else can change our grouplist. Thus we are
1288          *      safe.
1289          */
1290
1291         if (gidsetsize < 0)
1292                 return -EINVAL;
1293
1294         get_group_info(current->group_info);
1295         i = current->group_info->ngroups;
1296         if (gidsetsize) {
1297                 if (i > gidsetsize) {
1298                         i = -EINVAL;
1299                         goto out;
1300                 }
1301                 if (groups_to_user(grouplist, current->group_info)) {
1302                         i = -EFAULT;
1303                         goto out;
1304                 }
1305         }
1306 out:
1307         put_group_info(current->group_info);
1308         return i;
1309 }
1310
1311 /*
1312  *      SMP: Our groups are copy-on-write. We can set them safely
1313  *      without another task interfering.
1314  */
1315  
1316 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1317 {
1318         struct group_info *group_info;
1319         int retval;
1320
1321         if (!capable(CAP_SETGID))
1322                 return -EPERM;
1323         if ((unsigned)gidsetsize > NGROUPS_MAX)
1324                 return -EINVAL;
1325
1326         group_info = groups_alloc(gidsetsize);
1327         if (!group_info)
1328                 return -ENOMEM;
1329         retval = groups_from_user(group_info, grouplist);
1330         if (retval) {
1331                 put_group_info(group_info);
1332                 return retval;
1333         }
1334
1335         retval = set_current_groups(group_info);
1336         put_group_info(group_info);
1337
1338         return retval;
1339 }
1340
1341 /*
1342  * Check whether we're fsgid/egid or in the supplemental group..
1343  */
1344 int in_group_p(gid_t grp)
1345 {
1346         int retval = 1;
1347         if (grp != current->fsgid) {
1348                 get_group_info(current->group_info);
1349                 retval = groups_search(current->group_info, grp);
1350                 put_group_info(current->group_info);
1351         }
1352         return retval;
1353 }
1354
1355 EXPORT_SYMBOL(in_group_p);
1356
1357 int in_egroup_p(gid_t grp)
1358 {
1359         int retval = 1;
1360         if (grp != current->egid) {
1361                 get_group_info(current->group_info);
1362                 retval = groups_search(current->group_info, grp);
1363                 put_group_info(current->group_info);
1364         }
1365         return retval;
1366 }
1367
1368 EXPORT_SYMBOL(in_egroup_p);
1369
1370 DECLARE_RWSEM(uts_sem);
1371
1372 EXPORT_SYMBOL(uts_sem);
1373
1374 asmlinkage long sys_newuname(struct new_utsname __user * name)
1375 {
1376         int errno = 0;
1377
1378         down_read(&uts_sem);
1379         if (copy_to_user(name,&system_utsname,sizeof *name))
1380                 errno = -EFAULT;
1381         up_read(&uts_sem);
1382         return errno;
1383 }
1384
1385 asmlinkage long sys_sethostname(char __user *name, int len)
1386 {
1387         int errno;
1388         char tmp[__NEW_UTS_LEN];
1389
1390         if (!capable(CAP_SYS_ADMIN))
1391                 return -EPERM;
1392         if (len < 0 || len > __NEW_UTS_LEN)
1393                 return -EINVAL;
1394         down_write(&uts_sem);
1395         errno = -EFAULT;
1396         if (!copy_from_user(tmp, name, len)) {
1397                 memcpy(system_utsname.nodename, tmp, len);
1398                 system_utsname.nodename[len] = 0;
1399                 errno = 0;
1400         }
1401         up_write(&uts_sem);
1402         return errno;
1403 }
1404
1405 asmlinkage long sys_gethostname(char __user *name, int len)
1406 {
1407         int i, errno;
1408
1409         if (len < 0)
1410                 return -EINVAL;
1411         down_read(&uts_sem);
1412         i = 1 + strlen(system_utsname.nodename);
1413         if (i > len)
1414                 i = len;
1415         errno = 0;
1416         if (copy_to_user(name, system_utsname.nodename, i))
1417                 errno = -EFAULT;
1418         up_read(&uts_sem);
1419         return errno;
1420 }
1421
1422 /*
1423  * Only setdomainname; getdomainname can be implemented by calling
1424  * uname()
1425  */
1426 asmlinkage long sys_setdomainname(char __user *name, int len)
1427 {
1428         int errno;
1429         char tmp[__NEW_UTS_LEN];
1430
1431         if (!capable(CAP_SYS_ADMIN))
1432                 return -EPERM;
1433         if (len < 0 || len > __NEW_UTS_LEN)
1434                 return -EINVAL;
1435
1436         down_write(&uts_sem);
1437         errno = -EFAULT;
1438         if (!copy_from_user(tmp, name, len)) {
1439                 memcpy(system_utsname.domainname, tmp, len);
1440                 system_utsname.domainname[len] = 0;
1441                 errno = 0;
1442         }
1443         up_write(&uts_sem);
1444         return errno;
1445 }
1446
1447 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1448 {
1449         if (resource >= RLIM_NLIMITS)
1450                 return -EINVAL;
1451         else
1452                 return copy_to_user(rlim, current->rlim + resource, sizeof(*rlim))
1453                         ? -EFAULT : 0;
1454 }
1455
1456 #if defined(COMPAT_RLIM_OLD_INFINITY) || !(defined(CONFIG_IA64) || defined(CONFIG_V850))
1457
1458 /*
1459  *      Back compatibility for getrlimit. Needed for some apps.
1460  */
1461  
1462 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1463 {
1464         struct rlimit x;
1465         if (resource >= RLIM_NLIMITS)
1466                 return -EINVAL;
1467
1468         memcpy(&x, current->rlim + resource, sizeof(*rlim));
1469         if(x.rlim_cur > 0x7FFFFFFF)
1470                 x.rlim_cur = 0x7FFFFFFF;
1471         if(x.rlim_max > 0x7FFFFFFF)
1472                 x.rlim_max = 0x7FFFFFFF;
1473         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1474 }
1475
1476 #endif
1477
1478 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1479 {
1480         struct rlimit new_rlim, *old_rlim;
1481         int retval;
1482
1483         if (resource >= RLIM_NLIMITS)
1484                 return -EINVAL;
1485         if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1486                 return -EFAULT;
1487        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1488                return -EINVAL;
1489         old_rlim = current->rlim + resource;
1490         if (((new_rlim.rlim_cur > old_rlim->rlim_max) ||
1491              (new_rlim.rlim_max > old_rlim->rlim_max)) &&
1492             !capable(CAP_SYS_RESOURCE))
1493                 return -EPERM;
1494         if (resource == RLIMIT_NOFILE) {
1495                 if (new_rlim.rlim_cur > NR_OPEN || new_rlim.rlim_max > NR_OPEN)
1496                         return -EPERM;
1497         }
1498
1499         retval = security_task_setrlimit(resource, &new_rlim);
1500         if (retval)
1501                 return retval;
1502
1503         *old_rlim = new_rlim;
1504         return 0;
1505 }
1506
1507 /*
1508  * It would make sense to put struct rusage in the task_struct,
1509  * except that would make the task_struct be *really big*.  After
1510  * task_struct gets moved into malloc'ed memory, it would
1511  * make sense to do this.  It will make moving the rest of the information
1512  * a lot simpler!  (Which we're not doing right now because we're not
1513  * measuring them yet).
1514  *
1515  * This is SMP safe.  Either we are called from sys_getrusage on ourselves
1516  * below (we know we aren't going to exit/disappear and only we change our
1517  * rusage counters), or we are called from wait4() on a process which is
1518  * either stopped or zombied.  In the zombied case the task won't get
1519  * reaped till shortly after the call to getrusage(), in both cases the
1520  * task being examined is in a frozen state so the counters won't change.
1521  */
1522 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1523 {
1524         struct rusage r;
1525
1526         memset((char *) &r, 0, sizeof(r));
1527         switch (who) {
1528                 case RUSAGE_SELF:
1529                         jiffies_to_timeval(p->utime, &r.ru_utime);
1530                         jiffies_to_timeval(p->stime, &r.ru_stime);
1531                         r.ru_nvcsw = p->nvcsw;
1532                         r.ru_nivcsw = p->nivcsw;
1533                         r.ru_minflt = p->min_flt;
1534                         r.ru_majflt = p->maj_flt;
1535                         break;
1536                 case RUSAGE_CHILDREN:
1537                         jiffies_to_timeval(p->cutime, &r.ru_utime);
1538                         jiffies_to_timeval(p->cstime, &r.ru_stime);
1539                         r.ru_nvcsw = p->cnvcsw;
1540                         r.ru_nivcsw = p->cnivcsw;
1541                         r.ru_minflt = p->cmin_flt;
1542                         r.ru_majflt = p->cmaj_flt;
1543                         break;
1544                 default:
1545                         jiffies_to_timeval(p->utime + p->cutime, &r.ru_utime);
1546                         jiffies_to_timeval(p->stime + p->cstime, &r.ru_stime);
1547                         r.ru_nvcsw = p->nvcsw + p->cnvcsw;
1548                         r.ru_nivcsw = p->nivcsw + p->cnivcsw;
1549                         r.ru_minflt = p->min_flt + p->cmin_flt;
1550                         r.ru_majflt = p->maj_flt + p->cmaj_flt;
1551                         break;
1552         }
1553         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1554 }
1555
1556 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1557 {
1558         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1559                 return -EINVAL;
1560         return getrusage(current, who, ru);
1561 }
1562
1563 asmlinkage long sys_umask(int mask)
1564 {
1565         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1566         return mask;
1567 }
1568     
1569 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1570                           unsigned long arg4, unsigned long arg5)
1571 {
1572         int error;
1573         int sig;
1574
1575         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1576         if (error)
1577                 return error;
1578
1579         switch (option) {
1580                 case PR_SET_PDEATHSIG:
1581                         sig = arg2;
1582                         if (sig < 0 || sig > _NSIG) {
1583                                 error = -EINVAL;
1584                                 break;
1585                         }
1586                         current->pdeath_signal = sig;
1587                         break;
1588                 case PR_GET_PDEATHSIG:
1589                         error = put_user(current->pdeath_signal, (int __user *)arg2);
1590                         break;
1591                 case PR_GET_DUMPABLE:
1592                         if (current->mm->dumpable)
1593                                 error = 1;
1594                         break;
1595                 case PR_SET_DUMPABLE:
1596                         if (arg2 != 0 && arg2 != 1) {
1597                                 error = -EINVAL;
1598                                 break;
1599                         }
1600                         current->mm->dumpable = arg2;
1601                         break;
1602
1603                 case PR_SET_UNALIGN:
1604                         error = SET_UNALIGN_CTL(current, arg2);
1605                         break;
1606                 case PR_GET_UNALIGN:
1607                         error = GET_UNALIGN_CTL(current, arg2);
1608                         break;
1609                 case PR_SET_FPEMU:
1610                         error = SET_FPEMU_CTL(current, arg2);
1611                         break;
1612                 case PR_GET_FPEMU:
1613                         error = GET_FPEMU_CTL(current, arg2);
1614                         break;
1615                 case PR_SET_FPEXC:
1616                         error = SET_FPEXC_CTL(current, arg2);
1617                         break;
1618                 case PR_GET_FPEXC:
1619                         error = GET_FPEXC_CTL(current, arg2);
1620                         break;
1621                 case PR_GET_TIMING:
1622                         error = PR_TIMING_STATISTICAL;
1623                         break;
1624                 case PR_SET_TIMING:
1625                         if (arg2 == PR_TIMING_STATISTICAL)
1626                                 error = 0;
1627                         else
1628                                 error = -EINVAL;
1629                         break;
1630
1631                 case PR_GET_KEEPCAPS:
1632                         if (current->keep_capabilities)
1633                                 error = 1;
1634                         break;
1635                 case PR_SET_KEEPCAPS:
1636                         if (arg2 != 0 && arg2 != 1) {
1637                                 error = -EINVAL;
1638                                 break;
1639                         }
1640                         current->keep_capabilities = arg2;
1641                         break;
1642                 default:
1643                         error = -EINVAL;
1644                         break;
1645         }
1646         return error;
1647 }