f1b2c19f81b9a458b17c41412d17c6d07e6f8dd0
[linux-2.6.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16
17 #include <asm/page.h>
18 #include <asm/pgtable.h>
19
20 #include <linux/hugetlb.h>
21 #include <linux/vs_memory.h>
22
23 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
24 static unsigned long nr_huge_pages, free_huge_pages;
25 unsigned long max_huge_pages;
26 static struct list_head hugepage_freelists[MAX_NUMNODES];
27 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
28 static unsigned int free_huge_pages_node[MAX_NUMNODES];
29
30 /*
31  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
32  */
33 static DEFINE_SPINLOCK(hugetlb_lock);
34
35 static void enqueue_huge_page(struct page *page)
36 {
37         int nid = page_to_nid(page);
38         list_add(&page->lru, &hugepage_freelists[nid]);
39         free_huge_pages++;
40         free_huge_pages_node[nid]++;
41 }
42
43 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
44                                 unsigned long address)
45 {
46         int nid = numa_node_id();
47         struct page *page = NULL;
48         struct zonelist *zonelist = huge_zonelist(vma, address);
49         struct zone **z;
50
51         for (z = zonelist->zones; *z; z++) {
52                 nid = (*z)->zone_pgdat->node_id;
53                 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
54                     !list_empty(&hugepage_freelists[nid]))
55                         break;
56         }
57
58         if (*z) {
59                 page = list_entry(hugepage_freelists[nid].next,
60                                   struct page, lru);
61                 list_del(&page->lru);
62                 free_huge_pages--;
63                 free_huge_pages_node[nid]--;
64         }
65         return page;
66 }
67
68 static struct page *alloc_fresh_huge_page(void)
69 {
70         static int nid = 0;
71         struct page *page;
72         page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
73                                         HUGETLB_PAGE_ORDER);
74         nid = (nid + 1) % num_online_nodes();
75         if (page) {
76                 spin_lock(&hugetlb_lock);
77                 nr_huge_pages++;
78                 nr_huge_pages_node[page_to_nid(page)]++;
79                 spin_unlock(&hugetlb_lock);
80         }
81         return page;
82 }
83
84 void free_huge_page(struct page *page)
85 {
86         BUG_ON(page_count(page));
87
88         INIT_LIST_HEAD(&page->lru);
89         page[1].lru.next = NULL;                        /* reset dtor */
90
91         spin_lock(&hugetlb_lock);
92         enqueue_huge_page(page);
93         spin_unlock(&hugetlb_lock);
94 }
95
96 struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
97 {
98         struct page *page;
99         int i;
100
101         spin_lock(&hugetlb_lock);
102         page = dequeue_huge_page(vma, addr);
103         if (!page) {
104                 spin_unlock(&hugetlb_lock);
105                 return NULL;
106         }
107         spin_unlock(&hugetlb_lock);
108         set_page_count(page, 1);
109         page[1].lru.next = (void *)free_huge_page;      /* set dtor */
110         for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
111                 clear_user_highpage(&page[i], addr);
112         return page;
113 }
114
115 static int __init hugetlb_init(void)
116 {
117         unsigned long i;
118         struct page *page;
119
120         if (HPAGE_SHIFT == 0)
121                 return 0;
122
123         for (i = 0; i < MAX_NUMNODES; ++i)
124                 INIT_LIST_HEAD(&hugepage_freelists[i]);
125
126         for (i = 0; i < max_huge_pages; ++i) {
127                 page = alloc_fresh_huge_page();
128                 if (!page)
129                         break;
130                 spin_lock(&hugetlb_lock);
131                 enqueue_huge_page(page);
132                 spin_unlock(&hugetlb_lock);
133         }
134         max_huge_pages = free_huge_pages = nr_huge_pages = i;
135         printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
136         return 0;
137 }
138 module_init(hugetlb_init);
139
140 static int __init hugetlb_setup(char *s)
141 {
142         if (sscanf(s, "%lu", &max_huge_pages) <= 0)
143                 max_huge_pages = 0;
144         return 1;
145 }
146 __setup("hugepages=", hugetlb_setup);
147
148 #ifdef CONFIG_SYSCTL
149 static void update_and_free_page(struct page *page)
150 {
151         int i;
152         nr_huge_pages--;
153         nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
154         for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
155                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
156                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
157                                 1 << PG_private | 1<< PG_writeback);
158                 set_page_count(&page[i], 0);
159         }
160         set_page_count(page, 1);
161         __free_pages(page, HUGETLB_PAGE_ORDER);
162 }
163
164 #ifdef CONFIG_HIGHMEM
165 static void try_to_free_low(unsigned long count)
166 {
167         int i, nid;
168         for (i = 0; i < MAX_NUMNODES; ++i) {
169                 struct page *page, *next;
170                 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
171                         if (PageHighMem(page))
172                                 continue;
173                         list_del(&page->lru);
174                         update_and_free_page(page);
175                         nid = page_zone(page)->zone_pgdat->node_id;
176                         free_huge_pages--;
177                         free_huge_pages_node[nid]--;
178                         if (count >= nr_huge_pages)
179                                 return;
180                 }
181         }
182 }
183 #else
184 static inline void try_to_free_low(unsigned long count)
185 {
186 }
187 #endif
188
189 static unsigned long set_max_huge_pages(unsigned long count)
190 {
191         while (count > nr_huge_pages) {
192                 struct page *page = alloc_fresh_huge_page();
193                 if (!page)
194                         return nr_huge_pages;
195                 spin_lock(&hugetlb_lock);
196                 enqueue_huge_page(page);
197                 spin_unlock(&hugetlb_lock);
198         }
199         if (count >= nr_huge_pages)
200                 return nr_huge_pages;
201
202         spin_lock(&hugetlb_lock);
203         try_to_free_low(count);
204         while (count < nr_huge_pages) {
205                 struct page *page = dequeue_huge_page(NULL, 0);
206                 if (!page)
207                         break;
208                 update_and_free_page(page);
209         }
210         spin_unlock(&hugetlb_lock);
211         return nr_huge_pages;
212 }
213
214 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
215                            struct file *file, void __user *buffer,
216                            size_t *length, loff_t *ppos)
217 {
218         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
219         max_huge_pages = set_max_huge_pages(max_huge_pages);
220         return 0;
221 }
222 #endif /* CONFIG_SYSCTL */
223
224 int hugetlb_report_meminfo(char *buf)
225 {
226         return sprintf(buf,
227                         "HugePages_Total: %5lu\n"
228                         "HugePages_Free:  %5lu\n"
229                         "Hugepagesize:    %5lu kB\n",
230                         nr_huge_pages,
231                         free_huge_pages,
232                         HPAGE_SIZE/1024);
233 }
234
235 int hugetlb_report_node_meminfo(int nid, char *buf)
236 {
237         return sprintf(buf,
238                 "Node %d HugePages_Total: %5u\n"
239                 "Node %d HugePages_Free:  %5u\n",
240                 nid, nr_huge_pages_node[nid],
241                 nid, free_huge_pages_node[nid]);
242 }
243
244 int is_hugepage_mem_enough(size_t size)
245 {
246         return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
247 }
248
249 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
250 unsigned long hugetlb_total_pages(void)
251 {
252         return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
253 }
254
255 /*
256  * We cannot handle pagefaults against hugetlb pages at all.  They cause
257  * handle_mm_fault() to try to instantiate regular-sized pages in the
258  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
259  * this far.
260  */
261 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
262                                 unsigned long address, int *unused)
263 {
264         BUG();
265         return NULL;
266 }
267
268 struct vm_operations_struct hugetlb_vm_ops = {
269         .nopage = hugetlb_nopage,
270 };
271
272 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
273                                 int writable)
274 {
275         pte_t entry;
276
277         if (writable) {
278                 entry =
279                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
280         } else {
281                 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
282         }
283         entry = pte_mkyoung(entry);
284         entry = pte_mkhuge(entry);
285
286         return entry;
287 }
288
289 static void set_huge_ptep_writable(struct vm_area_struct *vma,
290                                    unsigned long address, pte_t *ptep)
291 {
292         pte_t entry;
293
294         entry = pte_mkwrite(pte_mkdirty(*ptep));
295         ptep_set_access_flags(vma, address, ptep, entry, 1);
296         update_mmu_cache(vma, address, entry);
297         lazy_mmu_prot_update(entry);
298 }
299
300
301 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
302                             struct vm_area_struct *vma)
303 {
304         pte_t *src_pte, *dst_pte, entry;
305         struct page *ptepage;
306         unsigned long addr;
307         int cow;
308
309         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
310
311         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
312                 src_pte = huge_pte_offset(src, addr);
313                 if (!src_pte)
314                         continue;
315                 dst_pte = huge_pte_alloc(dst, addr);
316                 if (!dst_pte)
317                         goto nomem;
318                 spin_lock(&dst->page_table_lock);
319                 spin_lock(&src->page_table_lock);
320                 if (!pte_none(*src_pte)) {
321                         if (cow)
322                                 ptep_set_wrprotect(src, addr, src_pte);
323                         entry = *src_pte;
324                         ptepage = pte_page(entry);
325                         get_page(ptepage);
326                         add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
327                         set_huge_pte_at(dst, addr, dst_pte, entry);
328                 }
329                 spin_unlock(&src->page_table_lock);
330                 spin_unlock(&dst->page_table_lock);
331         }
332         return 0;
333
334 nomem:
335         return -ENOMEM;
336 }
337
338 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
339                           unsigned long end)
340 {
341         struct mm_struct *mm = vma->vm_mm;
342         unsigned long address;
343         pte_t *ptep;
344         pte_t pte;
345         struct page *page;
346
347         WARN_ON(!is_vm_hugetlb_page(vma));
348         BUG_ON(start & ~HPAGE_MASK);
349         BUG_ON(end & ~HPAGE_MASK);
350
351         spin_lock(&mm->page_table_lock);
352
353         /* Update high watermark before we lower rss */
354         update_hiwater_rss(mm);
355
356         for (address = start; address < end; address += HPAGE_SIZE) {
357                 ptep = huge_pte_offset(mm, address);
358                 if (!ptep)
359                         continue;
360
361                 pte = huge_ptep_get_and_clear(mm, address, ptep);
362                 if (pte_none(pte))
363                         continue;
364
365                 page = pte_page(pte);
366                 put_page(page);
367                 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
368         }
369
370         spin_unlock(&mm->page_table_lock);
371         flush_tlb_range(vma, start, end);
372 }
373
374 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
375                         unsigned long address, pte_t *ptep, pte_t pte)
376 {
377         struct page *old_page, *new_page;
378         int i, avoidcopy;
379
380         old_page = pte_page(pte);
381
382         /* If no-one else is actually using this page, avoid the copy
383          * and just make the page writable */
384         avoidcopy = (page_count(old_page) == 1);
385         if (avoidcopy) {
386                 set_huge_ptep_writable(vma, address, ptep);
387                 return VM_FAULT_MINOR;
388         }
389
390         page_cache_get(old_page);
391         new_page = alloc_huge_page(vma, address);
392
393         if (!new_page) {
394                 page_cache_release(old_page);
395                 return VM_FAULT_OOM;
396         }
397
398         spin_unlock(&mm->page_table_lock);
399         for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
400                 copy_user_highpage(new_page + i, old_page + i,
401                                    address + i*PAGE_SIZE);
402         spin_lock(&mm->page_table_lock);
403
404         ptep = huge_pte_offset(mm, address & HPAGE_MASK);
405         if (likely(pte_same(*ptep, pte))) {
406                 /* Break COW */
407                 set_huge_pte_at(mm, address, ptep,
408                                 make_huge_pte(vma, new_page, 1));
409                 /* Make the old page be freed below */
410                 new_page = old_page;
411         }
412         page_cache_release(new_page);
413         page_cache_release(old_page);
414         return VM_FAULT_MINOR;
415 }
416
417 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
418                         unsigned long address, pte_t *ptep, int write_access)
419 {
420         int ret = VM_FAULT_SIGBUS;
421         unsigned long idx;
422         unsigned long size;
423         struct page *page;
424         struct address_space *mapping;
425         pte_t new_pte;
426
427         mapping = vma->vm_file->f_mapping;
428         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
429                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
430
431         /*
432          * Use page lock to guard against racing truncation
433          * before we get page_table_lock.
434          */
435 retry:
436         page = find_lock_page(mapping, idx);
437         if (!page) {
438                 if (hugetlb_get_quota(mapping))
439                         goto out;
440                 page = alloc_huge_page(vma, address);
441                 if (!page) {
442                         hugetlb_put_quota(mapping);
443                         ret = VM_FAULT_OOM;
444                         goto out;
445                 }
446
447                 if (vma->vm_flags & VM_SHARED) {
448                         int err;
449
450                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
451                         if (err) {
452                                 put_page(page);
453                                 hugetlb_put_quota(mapping);
454                                 if (err == -EEXIST)
455                                         goto retry;
456                                 goto out;
457                         }
458                 } else
459                         lock_page(page);
460         }
461
462         spin_lock(&mm->page_table_lock);
463         size = i_size_read(mapping->host) >> HPAGE_SHIFT;
464         if (idx >= size)
465                 goto backout;
466
467         ret = VM_FAULT_MINOR;
468         if (!pte_none(*ptep))
469                 goto backout;
470
471         add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
472         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
473                                 && (vma->vm_flags & VM_SHARED)));
474         set_huge_pte_at(mm, address, ptep, new_pte);
475
476         if (write_access && !(vma->vm_flags & VM_SHARED)) {
477                 /* Optimization, do the COW without a second fault */
478                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
479         }
480
481         spin_unlock(&mm->page_table_lock);
482         unlock_page(page);
483 out:
484         return ret;
485
486 backout:
487         spin_unlock(&mm->page_table_lock);
488         hugetlb_put_quota(mapping);
489         unlock_page(page);
490         put_page(page);
491         goto out;
492 }
493
494 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
495                         unsigned long address, int write_access)
496 {
497         pte_t *ptep;
498         pte_t entry;
499         int ret;
500
501         ptep = huge_pte_alloc(mm, address);
502         if (!ptep)
503                 return VM_FAULT_OOM;
504
505         entry = *ptep;
506         if (pte_none(entry))
507                 return hugetlb_no_page(mm, vma, address, ptep, write_access);
508
509         ret = VM_FAULT_MINOR;
510
511         spin_lock(&mm->page_table_lock);
512         /* Check for a racing update before calling hugetlb_cow */
513         if (likely(pte_same(entry, *ptep)))
514                 if (write_access && !pte_write(entry))
515                         ret = hugetlb_cow(mm, vma, address, ptep, entry);
516         spin_unlock(&mm->page_table_lock);
517
518         return ret;
519 }
520
521 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
522                         struct page **pages, struct vm_area_struct **vmas,
523                         unsigned long *position, int *length, int i)
524 {
525         unsigned long vpfn, vaddr = *position;
526         int remainder = *length;
527
528         vpfn = vaddr/PAGE_SIZE;
529         spin_lock(&mm->page_table_lock);
530         while (vaddr < vma->vm_end && remainder) {
531                 pte_t *pte;
532                 struct page *page;
533
534                 /*
535                  * Some archs (sparc64, sh*) have multiple pte_ts to
536                  * each hugepage.  We have to make * sure we get the
537                  * first, for the page indexing below to work.
538                  */
539                 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
540
541                 if (!pte || pte_none(*pte)) {
542                         int ret;
543
544                         spin_unlock(&mm->page_table_lock);
545                         ret = hugetlb_fault(mm, vma, vaddr, 0);
546                         spin_lock(&mm->page_table_lock);
547                         if (ret == VM_FAULT_MINOR)
548                                 continue;
549
550                         remainder = 0;
551                         if (!i)
552                                 i = -EFAULT;
553                         break;
554                 }
555
556                 if (pages) {
557                         page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
558                         get_page(page);
559                         pages[i] = page;
560                 }
561
562                 if (vmas)
563                         vmas[i] = vma;
564
565                 vaddr += PAGE_SIZE;
566                 ++vpfn;
567                 --remainder;
568                 ++i;
569         }
570         spin_unlock(&mm->page_table_lock);
571         *length = remainder;
572         *position = vaddr;
573
574         return i;
575 }