d04d60a1dd36adc38b6af6abecc65849388fb179
[linux-2.6.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@redhat.com>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/init.h>
17 #include <linux/file.h>
18 #include <linux/fs.h>
19 #include <linux/personality.h>
20 #include <linux/security.h>
21 #include <linux/hugetlb.h>
22 #include <linux/profile.h>
23 #include <linux/module.h>
24 #include <linux/acct.h>
25 #include <linux/mount.h>
26 #include <linux/mempolicy.h>
27 #include <linux/rmap.h>
28
29 #include <asm/uaccess.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlb.h>
32
33 /*
34  * WARNING: the debugging will use recursive algorithms so never enable this
35  * unless you know what you are doing.
36  */
37 #undef DEBUG_MM_RB
38
39 /* description of effects of mapping type and prot in current implementation.
40  * this is due to the limited x86 page protection hardware.  The expected
41  * behavior is in parens:
42  *
43  * map_type     prot
44  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
45  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
46  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
47  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
48  *              
49  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
50  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
51  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
52  *
53  */
54 pgprot_t protection_map[16] = {
55         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
56         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
57 };
58
59 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
60 int sysctl_overcommit_ratio = 50;       /* default is 50% */
61 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
62 atomic_t vm_committed_space = ATOMIC_INIT(0);
63
64 /*
65  * Check that a process has enough memory to allocate a new virtual
66  * mapping. 0 means there is enough memory for the allocation to
67  * succeed and -ENOMEM implies there is not.
68  *
69  * We currently support three overcommit policies, which are set via the
70  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
71  *
72  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
73  * Additional code 2002 Jul 20 by Robert Love.
74  *
75  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
76  *
77  * Note this is a helper function intended to be used by LSMs which
78  * wish to use this logic.
79  */
80 int __vm_enough_memory(long pages, int cap_sys_admin)
81 {
82         unsigned long free, allowed;
83
84         vm_acct_memory(pages);
85
86         /*
87          * Sometimes we want to use more memory than we have
88          */
89         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
90                 return 0;
91
92         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
93                 unsigned long n;
94
95                 free = get_page_cache_size();
96                 free += nr_swap_pages;
97
98                 /*
99                  * Any slabs which are created with the
100                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
101                  * which are reclaimable, under pressure.  The dentry
102                  * cache and most inode caches should fall into this
103                  */
104                 free += atomic_read(&slab_reclaim_pages);
105
106                 /*
107                  * Leave the last 3% for root
108                  */
109                 if (!cap_sys_admin)
110                         free -= free / 32;
111
112                 if (free > pages)
113                         return 0;
114
115                 /*
116                  * nr_free_pages() is very expensive on large systems,
117                  * only call if we're about to fail.
118                  */
119                 n = nr_free_pages();
120                 if (!cap_sys_admin)
121                         n -= n / 32;
122                 free += n;
123
124                 if (free > pages)
125                         return 0;
126                 vm_unacct_memory(pages);
127                 return -ENOMEM;
128         }
129
130         allowed = (totalram_pages - hugetlb_total_pages())
131                 * sysctl_overcommit_ratio / 100;
132         /*
133          * Leave the last 3% for root
134          */
135         if (!cap_sys_admin)
136                 allowed -= allowed / 32;
137         allowed += total_swap_pages;
138
139         /* Don't let a single process grow too big:
140            leave 3% of the size of this process for other processes */
141         allowed -= current->mm->total_vm / 32;
142
143         if (atomic_read(&vm_committed_space) < allowed)
144                 return 0;
145
146         vm_unacct_memory(pages);
147
148         return -ENOMEM;
149 }
150
151 EXPORT_SYMBOL(sysctl_overcommit_memory);
152 EXPORT_SYMBOL(sysctl_overcommit_ratio);
153 EXPORT_SYMBOL(sysctl_max_map_count);
154 EXPORT_SYMBOL(vm_committed_space);
155 EXPORT_SYMBOL(__vm_enough_memory);
156
157 /*
158  * Requires inode->i_mapping->i_mmap_lock
159  */
160 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
161                 struct file *file, struct address_space *mapping)
162 {
163         if (vma->vm_flags & VM_DENYWRITE)
164                 atomic_inc(&file->f_dentry->d_inode->i_writecount);
165         if (vma->vm_flags & VM_SHARED)
166                 mapping->i_mmap_writable--;
167
168         flush_dcache_mmap_lock(mapping);
169         if (unlikely(vma->vm_flags & VM_NONLINEAR))
170                 list_del_init(&vma->shared.vm_set.list);
171         else
172                 vma_prio_tree_remove(vma, &mapping->i_mmap);
173         flush_dcache_mmap_unlock(mapping);
174 }
175
176 /*
177  * Remove one vm structure and free it.
178  */
179 static void remove_vm_struct(struct vm_area_struct *vma)
180 {
181         struct file *file = vma->vm_file;
182
183         might_sleep();
184         if (file) {
185                 struct address_space *mapping = file->f_mapping;
186                 spin_lock(&mapping->i_mmap_lock);
187                 __remove_shared_vm_struct(vma, file, mapping);
188                 spin_unlock(&mapping->i_mmap_lock);
189         }
190         if (vma->vm_ops && vma->vm_ops->close)
191                 vma->vm_ops->close(vma);
192         if (file)
193                 fput(file);
194         anon_vma_unlink(vma);
195         mpol_free(vma_policy(vma));
196         kmem_cache_free(vm_area_cachep, vma);
197 }
198
199 /*
200  *  sys_brk() for the most part doesn't need the global kernel
201  *  lock, except when an application is doing something nasty
202  *  like trying to un-brk an area that has already been mapped
203  *  to a regular file.  in this case, the unmapping will need
204  *  to invoke file system routines that need the global lock.
205  */
206 asmlinkage unsigned long sys_brk(unsigned long brk)
207 {
208         unsigned long rlim, retval;
209         unsigned long newbrk, oldbrk;
210         struct mm_struct *mm = current->mm;
211
212         down_write(&mm->mmap_sem);
213
214         if (brk < mm->end_code)
215                 goto out;
216         newbrk = PAGE_ALIGN(brk);
217         oldbrk = PAGE_ALIGN(mm->brk);
218         if (oldbrk == newbrk)
219                 goto set_brk;
220
221         /* Always allow shrinking brk. */
222         if (brk <= mm->brk) {
223                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
224                         goto set_brk;
225                 goto out;
226         }
227
228         /* Check against rlimit.. */
229         rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
230         if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
231                 goto out;
232
233         /* Check against existing mmap mappings. */
234         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
235                 goto out;
236
237         /* Ok, looks good - let it rip. */
238         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
239                 goto out;
240 set_brk:
241         mm->brk = brk;
242 out:
243         retval = mm->brk;
244         up_write(&mm->mmap_sem);
245         return retval;
246 }
247
248 #ifdef DEBUG_MM_RB
249 static int browse_rb(struct rb_root *root)
250 {
251         int i = 0, j;
252         struct rb_node *nd, *pn = NULL;
253         unsigned long prev = 0, pend = 0;
254
255         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
256                 struct vm_area_struct *vma;
257                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
258                 if (vma->vm_start < prev)
259                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
260                 if (vma->vm_start < pend)
261                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
262                 if (vma->vm_start > vma->vm_end)
263                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
264                 i++;
265                 pn = nd;
266         }
267         j = 0;
268         for (nd = pn; nd; nd = rb_prev(nd)) {
269                 j++;
270         }
271         if (i != j)
272                 printk("backwards %d, forwards %d\n", j, i), i = 0;
273         return i;
274 }
275
276 void validate_mm(struct mm_struct *mm)
277 {
278         int bug = 0;
279         int i = 0;
280         struct vm_area_struct *tmp = mm->mmap;
281         while (tmp) {
282                 tmp = tmp->vm_next;
283                 i++;
284         }
285         if (i != mm->map_count)
286                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
287         i = browse_rb(&mm->mm_rb);
288         if (i != mm->map_count)
289                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
290         if (bug)
291                 BUG();
292 }
293 #else
294 #define validate_mm(mm) do { } while (0)
295 #endif
296
297 static struct vm_area_struct *
298 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
299                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
300                 struct rb_node ** rb_parent)
301 {
302         struct vm_area_struct * vma;
303         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
304
305         __rb_link = &mm->mm_rb.rb_node;
306         rb_prev = __rb_parent = NULL;
307         vma = NULL;
308
309         while (*__rb_link) {
310                 struct vm_area_struct *vma_tmp;
311
312                 __rb_parent = *__rb_link;
313                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
314
315                 if (vma_tmp->vm_end > addr) {
316                         vma = vma_tmp;
317                         if (vma_tmp->vm_start <= addr)
318                                 return vma;
319                         __rb_link = &__rb_parent->rb_left;
320                 } else {
321                         rb_prev = __rb_parent;
322                         __rb_link = &__rb_parent->rb_right;
323                 }
324         }
325
326         *pprev = NULL;
327         if (rb_prev)
328                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
329         *rb_link = __rb_link;
330         *rb_parent = __rb_parent;
331         return vma;
332 }
333
334 static inline void
335 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
336                 struct vm_area_struct *prev, struct rb_node *rb_parent)
337 {
338         if (prev) {
339                 vma->vm_next = prev->vm_next;
340                 prev->vm_next = vma;
341         } else {
342                 mm->mmap = vma;
343                 if (rb_parent)
344                         vma->vm_next = rb_entry(rb_parent,
345                                         struct vm_area_struct, vm_rb);
346                 else
347                         vma->vm_next = NULL;
348         }
349 }
350
351 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
352                 struct rb_node **rb_link, struct rb_node *rb_parent)
353 {
354         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
355         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
356 }
357
358 static inline void __vma_link_file(struct vm_area_struct *vma)
359 {
360         struct file * file;
361
362         file = vma->vm_file;
363         if (file) {
364                 struct address_space *mapping = file->f_mapping;
365
366                 if (vma->vm_flags & VM_DENYWRITE)
367                         atomic_dec(&file->f_dentry->d_inode->i_writecount);
368                 if (vma->vm_flags & VM_SHARED)
369                         mapping->i_mmap_writable++;
370
371                 flush_dcache_mmap_lock(mapping);
372                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
373                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
374                 else
375                         vma_prio_tree_insert(vma, &mapping->i_mmap);
376                 flush_dcache_mmap_unlock(mapping);
377         }
378 }
379
380 static void
381 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
382         struct vm_area_struct *prev, struct rb_node **rb_link,
383         struct rb_node *rb_parent)
384 {
385         __vma_link_list(mm, vma, prev, rb_parent);
386         __vma_link_rb(mm, vma, rb_link, rb_parent);
387         __anon_vma_link(vma);
388 }
389
390 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
391                         struct vm_area_struct *prev, struct rb_node **rb_link,
392                         struct rb_node *rb_parent)
393 {
394         struct address_space *mapping = NULL;
395
396         if (vma->vm_file)
397                 mapping = vma->vm_file->f_mapping;
398
399         if (mapping) {
400                 spin_lock(&mapping->i_mmap_lock);
401                 vma->vm_truncate_count = mapping->truncate_count;
402         }
403         anon_vma_lock(vma);
404
405         __vma_link(mm, vma, prev, rb_link, rb_parent);
406         __vma_link_file(vma);
407
408         anon_vma_unlock(vma);
409         if (mapping)
410                 spin_unlock(&mapping->i_mmap_lock);
411
412         mm->map_count++;
413         validate_mm(mm);
414 }
415
416 /*
417  * Helper for vma_adjust in the split_vma insert case:
418  * insert vm structure into list and rbtree and anon_vma,
419  * but it has already been inserted into prio_tree earlier.
420  */
421 static void
422 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
423 {
424         struct vm_area_struct * __vma, * prev;
425         struct rb_node ** rb_link, * rb_parent;
426
427         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
428         if (__vma && __vma->vm_start < vma->vm_end)
429                 BUG();
430         __vma_link(mm, vma, prev, rb_link, rb_parent);
431         mm->map_count++;
432 }
433
434 static inline void
435 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
436                 struct vm_area_struct *prev)
437 {
438         prev->vm_next = vma->vm_next;
439         rb_erase(&vma->vm_rb, &mm->mm_rb);
440         if (mm->mmap_cache == vma)
441                 mm->mmap_cache = prev;
442 }
443
444 /*
445  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
446  * is already present in an i_mmap tree without adjusting the tree.
447  * The following helper function should be used when such adjustments
448  * are necessary.  The "insert" vma (if any) is to be inserted
449  * before we drop the necessary locks.
450  */
451 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
452         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
453 {
454         struct mm_struct *mm = vma->vm_mm;
455         struct vm_area_struct *next = vma->vm_next;
456         struct vm_area_struct *importer = NULL;
457         struct address_space *mapping = NULL;
458         struct prio_tree_root *root = NULL;
459         struct file *file = vma->vm_file;
460         struct anon_vma *anon_vma = NULL;
461         long adjust_next = 0;
462         int remove_next = 0;
463
464         if (next && !insert) {
465                 if (end >= next->vm_end) {
466                         /*
467                          * vma expands, overlapping all the next, and
468                          * perhaps the one after too (mprotect case 6).
469                          */
470 again:                  remove_next = 1 + (end > next->vm_end);
471                         end = next->vm_end;
472                         anon_vma = next->anon_vma;
473                         importer = vma;
474                 } else if (end > next->vm_start) {
475                         /*
476                          * vma expands, overlapping part of the next:
477                          * mprotect case 5 shifting the boundary up.
478                          */
479                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
480                         anon_vma = next->anon_vma;
481                         importer = vma;
482                 } else if (end < vma->vm_end) {
483                         /*
484                          * vma shrinks, and !insert tells it's not
485                          * split_vma inserting another: so it must be
486                          * mprotect case 4 shifting the boundary down.
487                          */
488                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
489                         anon_vma = next->anon_vma;
490                         importer = next;
491                 }
492         }
493
494         if (file) {
495                 mapping = file->f_mapping;
496                 if (!(vma->vm_flags & VM_NONLINEAR))
497                         root = &mapping->i_mmap;
498                 spin_lock(&mapping->i_mmap_lock);
499                 if (importer &&
500                     vma->vm_truncate_count != next->vm_truncate_count) {
501                         /*
502                          * unmap_mapping_range might be in progress:
503                          * ensure that the expanding vma is rescanned.
504                          */
505                         importer->vm_truncate_count = 0;
506                 }
507                 if (insert) {
508                         insert->vm_truncate_count = vma->vm_truncate_count;
509                         /*
510                          * Put into prio_tree now, so instantiated pages
511                          * are visible to arm/parisc __flush_dcache_page
512                          * throughout; but we cannot insert into address
513                          * space until vma start or end is updated.
514                          */
515                         __vma_link_file(insert);
516                 }
517         }
518
519         /*
520          * When changing only vma->vm_end, we don't really need
521          * anon_vma lock: but is that case worth optimizing out?
522          */
523         if (vma->anon_vma)
524                 anon_vma = vma->anon_vma;
525         if (anon_vma) {
526                 spin_lock(&anon_vma->lock);
527                 /*
528                  * Easily overlooked: when mprotect shifts the boundary,
529                  * make sure the expanding vma has anon_vma set if the
530                  * shrinking vma had, to cover any anon pages imported.
531                  */
532                 if (importer && !importer->anon_vma) {
533                         importer->anon_vma = anon_vma;
534                         __anon_vma_link(importer);
535                 }
536         }
537
538         if (root) {
539                 flush_dcache_mmap_lock(mapping);
540                 vma_prio_tree_remove(vma, root);
541                 if (adjust_next)
542                         vma_prio_tree_remove(next, root);
543         }
544
545         vma->vm_start = start;
546         vma->vm_end = end;
547         vma->vm_pgoff = pgoff;
548         if (adjust_next) {
549                 next->vm_start += adjust_next << PAGE_SHIFT;
550                 next->vm_pgoff += adjust_next;
551         }
552
553         if (root) {
554                 if (adjust_next)
555                         vma_prio_tree_insert(next, root);
556                 vma_prio_tree_insert(vma, root);
557                 flush_dcache_mmap_unlock(mapping);
558         }
559
560         if (remove_next) {
561                 /*
562                  * vma_merge has merged next into vma, and needs
563                  * us to remove next before dropping the locks.
564                  */
565                 __vma_unlink(mm, next, vma);
566                 if (file)
567                         __remove_shared_vm_struct(next, file, mapping);
568                 if (next->anon_vma)
569                         __anon_vma_merge(vma, next);
570         } else if (insert) {
571                 /*
572                  * split_vma has split insert from vma, and needs
573                  * us to insert it before dropping the locks
574                  * (it may either follow vma or precede it).
575                  */
576                 __insert_vm_struct(mm, insert);
577         }
578
579         if (anon_vma)
580                 spin_unlock(&anon_vma->lock);
581         if (mapping)
582                 spin_unlock(&mapping->i_mmap_lock);
583
584         if (remove_next) {
585                 if (file)
586                         fput(file);
587                 mm->map_count--;
588                 mpol_free(vma_policy(next));
589                 kmem_cache_free(vm_area_cachep, next);
590                 /*
591                  * In mprotect's case 6 (see comments on vma_merge),
592                  * we must remove another next too. It would clutter
593                  * up the code too much to do both in one go.
594                  */
595                 if (remove_next == 2) {
596                         next = vma->vm_next;
597                         goto again;
598                 }
599         }
600
601         validate_mm(mm);
602 }
603
604 /*
605  * If the vma has a ->close operation then the driver probably needs to release
606  * per-vma resources, so we don't attempt to merge those.
607  */
608 #define VM_SPECIAL (VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED)
609
610 static inline int is_mergeable_vma(struct vm_area_struct *vma,
611                         struct file *file, unsigned long vm_flags)
612 {
613         if (vma->vm_flags != vm_flags)
614                 return 0;
615         if (vma->vm_file != file)
616                 return 0;
617         if (vma->vm_ops && vma->vm_ops->close)
618                 return 0;
619         return 1;
620 }
621
622 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
623                                         struct anon_vma *anon_vma2)
624 {
625         return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
626 }
627
628 /*
629  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
630  * in front of (at a lower virtual address and file offset than) the vma.
631  *
632  * We cannot merge two vmas if they have differently assigned (non-NULL)
633  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
634  *
635  * We don't check here for the merged mmap wrapping around the end of pagecache
636  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
637  * wrap, nor mmaps which cover the final page at index -1UL.
638  */
639 static int
640 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
641         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
642 {
643         if (is_mergeable_vma(vma, file, vm_flags) &&
644             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
645                 if (vma->vm_pgoff == vm_pgoff)
646                         return 1;
647         }
648         return 0;
649 }
650
651 /*
652  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
653  * beyond (at a higher virtual address and file offset than) the vma.
654  *
655  * We cannot merge two vmas if they have differently assigned (non-NULL)
656  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
657  */
658 static int
659 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
660         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
661 {
662         if (is_mergeable_vma(vma, file, vm_flags) &&
663             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
664                 pgoff_t vm_pglen;
665                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
666                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
667                         return 1;
668         }
669         return 0;
670 }
671
672 /*
673  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
674  * whether that can be merged with its predecessor or its successor.
675  * Or both (it neatly fills a hole).
676  *
677  * In most cases - when called for mmap, brk or mremap - [addr,end) is
678  * certain not to be mapped by the time vma_merge is called; but when
679  * called for mprotect, it is certain to be already mapped (either at
680  * an offset within prev, or at the start of next), and the flags of
681  * this area are about to be changed to vm_flags - and the no-change
682  * case has already been eliminated.
683  *
684  * The following mprotect cases have to be considered, where AAAA is
685  * the area passed down from mprotect_fixup, never extending beyond one
686  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
687  *
688  *     AAAA             AAAA                AAAA          AAAA
689  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
690  *    cannot merge    might become    might become    might become
691  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
692  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
693  *    mremap move:                                    PPPPNNNNNNNN 8
694  *        AAAA
695  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
696  *    might become    case 1 below    case 2 below    case 3 below
697  *
698  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
699  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
700  */
701 struct vm_area_struct *vma_merge(struct mm_struct *mm,
702                         struct vm_area_struct *prev, unsigned long addr,
703                         unsigned long end, unsigned long vm_flags,
704                         struct anon_vma *anon_vma, struct file *file,
705                         pgoff_t pgoff, struct mempolicy *policy)
706 {
707         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
708         struct vm_area_struct *area, *next;
709
710         /*
711          * We later require that vma->vm_flags == vm_flags,
712          * so this tests vma->vm_flags & VM_SPECIAL, too.
713          */
714         if (vm_flags & VM_SPECIAL)
715                 return NULL;
716
717         if (prev)
718                 next = prev->vm_next;
719         else
720                 next = mm->mmap;
721         area = next;
722         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
723                 next = next->vm_next;
724
725         /*
726          * Can it merge with the predecessor?
727          */
728         if (prev && prev->vm_end == addr &&
729                         mpol_equal(vma_policy(prev), policy) &&
730                         can_vma_merge_after(prev, vm_flags,
731                                                 anon_vma, file, pgoff)) {
732                 /*
733                  * OK, it can.  Can we now merge in the successor as well?
734                  */
735                 if (next && end == next->vm_start &&
736                                 mpol_equal(policy, vma_policy(next)) &&
737                                 can_vma_merge_before(next, vm_flags,
738                                         anon_vma, file, pgoff+pglen) &&
739                                 is_mergeable_anon_vma(prev->anon_vma,
740                                                       next->anon_vma)) {
741                                                         /* cases 1, 6 */
742                         vma_adjust(prev, prev->vm_start,
743                                 next->vm_end, prev->vm_pgoff, NULL);
744                 } else                                  /* cases 2, 5, 7 */
745                         vma_adjust(prev, prev->vm_start,
746                                 end, prev->vm_pgoff, NULL);
747                 return prev;
748         }
749
750         /*
751          * Can this new request be merged in front of next?
752          */
753         if (next && end == next->vm_start &&
754                         mpol_equal(policy, vma_policy(next)) &&
755                         can_vma_merge_before(next, vm_flags,
756                                         anon_vma, file, pgoff+pglen)) {
757                 if (prev && addr < prev->vm_end)        /* case 4 */
758                         vma_adjust(prev, prev->vm_start,
759                                 addr, prev->vm_pgoff, NULL);
760                 else                                    /* cases 3, 8 */
761                         vma_adjust(area, addr, next->vm_end,
762                                 next->vm_pgoff - pglen, NULL);
763                 return area;
764         }
765
766         return NULL;
767 }
768
769 /*
770  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
771  * neighbouring vmas for a suitable anon_vma, before it goes off
772  * to allocate a new anon_vma.  It checks because a repetitive
773  * sequence of mprotects and faults may otherwise lead to distinct
774  * anon_vmas being allocated, preventing vma merge in subsequent
775  * mprotect.
776  */
777 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
778 {
779         struct vm_area_struct *near;
780         unsigned long vm_flags;
781
782         near = vma->vm_next;
783         if (!near)
784                 goto try_prev;
785
786         /*
787          * Since only mprotect tries to remerge vmas, match flags
788          * which might be mprotected into each other later on.
789          * Neither mlock nor madvise tries to remerge at present,
790          * so leave their flags as obstructing a merge.
791          */
792         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
793         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
794
795         if (near->anon_vma && vma->vm_end == near->vm_start &&
796                         mpol_equal(vma_policy(vma), vma_policy(near)) &&
797                         can_vma_merge_before(near, vm_flags,
798                                 NULL, vma->vm_file, vma->vm_pgoff +
799                                 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
800                 return near->anon_vma;
801 try_prev:
802         /*
803          * It is potentially slow to have to call find_vma_prev here.
804          * But it's only on the first write fault on the vma, not
805          * every time, and we could devise a way to avoid it later
806          * (e.g. stash info in next's anon_vma_node when assigning
807          * an anon_vma, or when trying vma_merge).  Another time.
808          */
809         if (find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma)
810                 BUG();
811         if (!near)
812                 goto none;
813
814         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
815         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
816
817         if (near->anon_vma && near->vm_end == vma->vm_start &&
818                         mpol_equal(vma_policy(near), vma_policy(vma)) &&
819                         can_vma_merge_after(near, vm_flags,
820                                 NULL, vma->vm_file, vma->vm_pgoff))
821                 return near->anon_vma;
822 none:
823         /*
824          * There's no absolute need to look only at touching neighbours:
825          * we could search further afield for "compatible" anon_vmas.
826          * But it would probably just be a waste of time searching,
827          * or lead to too many vmas hanging off the same anon_vma.
828          * We're trying to allow mprotect remerging later on,
829          * not trying to minimize memory used for anon_vmas.
830          */
831         return NULL;
832 }
833
834 #ifdef CONFIG_PROC_FS
835 void __vm_stat_account(struct mm_struct *mm, unsigned long flags,
836                                                 struct file *file, long pages)
837 {
838         const unsigned long stack_flags
839                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
840
841 #ifdef CONFIG_HUGETLB
842         if (flags & VM_HUGETLB) {
843                 if (!(flags & VM_DONTCOPY))
844                         mm->shared_vm += pages;
845                 return;
846         }
847 #endif /* CONFIG_HUGETLB */
848
849         if (file) {
850                 mm->shared_vm += pages;
851                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
852                         mm->exec_vm += pages;
853         } else if (flags & stack_flags)
854                 mm->stack_vm += pages;
855         if (flags & (VM_RESERVED|VM_IO))
856                 mm->reserved_vm += pages;
857 }
858 #endif /* CONFIG_PROC_FS */
859
860 /*
861  * The caller must hold down_write(current->mm->mmap_sem).
862  */
863
864 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
865                         unsigned long len, unsigned long prot,
866                         unsigned long flags, unsigned long pgoff)
867 {
868         struct mm_struct * mm = current->mm;
869         struct vm_area_struct * vma, * prev;
870         struct inode *inode;
871         unsigned int vm_flags;
872         int correct_wcount = 0;
873         int error;
874         struct rb_node ** rb_link, * rb_parent;
875         int accountable = 1;
876         unsigned long charged = 0;
877
878         if (file) {
879                 if (is_file_hugepages(file))
880                         accountable = 0;
881
882                 if (!file->f_op || !file->f_op->mmap)
883                         return -ENODEV;
884
885                 if ((prot & PROT_EXEC) &&
886                     (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))
887                         return -EPERM;
888         }
889         /*
890          * Does the application expect PROT_READ to imply PROT_EXEC?
891          *
892          * (the exception is when the underlying filesystem is noexec
893          *  mounted, in which case we dont add PROT_EXEC.)
894          */
895         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
896                 if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)))
897                         prot |= PROT_EXEC;
898
899         if (!len)
900                 return addr;
901
902         /* Careful about overflows.. */
903         len = PAGE_ALIGN(len);
904         if (!len || len > TASK_SIZE)
905                 return -EINVAL;
906
907         /* offset overflow? */
908         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
909                 return -EINVAL;
910
911         /* Too many mappings? */
912         if (mm->map_count > sysctl_max_map_count)
913                 return -ENOMEM;
914
915         /* Obtain the address to map to. we verify (or select) it and ensure
916          * that it represents a valid section of the address space.
917          */
918         addr = get_unmapped_area(file, addr, len, pgoff, flags);
919         if (addr & ~PAGE_MASK)
920                 return addr;
921
922         /* Do simple checking here so the lower-level routines won't have
923          * to. we assume access permissions have been handled by the open
924          * of the memory object, so we don't do any here.
925          */
926         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
927                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
928
929         if (flags & MAP_LOCKED) {
930                 if (!can_do_mlock())
931                         return -EPERM;
932                 vm_flags |= VM_LOCKED;
933         }
934         /* mlock MCL_FUTURE? */
935         if (vm_flags & VM_LOCKED) {
936                 unsigned long locked, lock_limit;
937                 locked = mm->locked_vm << PAGE_SHIFT;
938                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
939                 locked += len;
940                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
941                         return -EAGAIN;
942         }
943
944         inode = file ? file->f_dentry->d_inode : NULL;
945
946         if (file) {
947                 switch (flags & MAP_TYPE) {
948                 case MAP_SHARED:
949                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
950                                 return -EACCES;
951
952                         /*
953                          * Make sure we don't allow writing to an append-only
954                          * file..
955                          */
956                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
957                                 return -EACCES;
958
959                         /*
960                          * Make sure there are no mandatory locks on the file.
961                          */
962                         if (locks_verify_locked(inode))
963                                 return -EAGAIN;
964
965                         vm_flags |= VM_SHARED | VM_MAYSHARE;
966                         if (!(file->f_mode & FMODE_WRITE))
967                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
968
969                         /* fall through */
970                 case MAP_PRIVATE:
971                         if (!(file->f_mode & FMODE_READ))
972                                 return -EACCES;
973                         break;
974
975                 default:
976                         return -EINVAL;
977                 }
978         } else {
979                 switch (flags & MAP_TYPE) {
980                 case MAP_SHARED:
981                         vm_flags |= VM_SHARED | VM_MAYSHARE;
982                         break;
983                 case MAP_PRIVATE:
984                         /*
985                          * Set pgoff according to addr for anon_vma.
986                          */
987                         pgoff = addr >> PAGE_SHIFT;
988                         break;
989                 default:
990                         return -EINVAL;
991                 }
992         }
993
994         error = security_file_mmap(file, prot, flags);
995         if (error)
996                 return error;
997                 
998         /* Clear old maps */
999         error = -ENOMEM;
1000 munmap_back:
1001         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1002         if (vma && vma->vm_start < addr + len) {
1003                 if (do_munmap(mm, addr, len))
1004                         return -ENOMEM;
1005                 goto munmap_back;
1006         }
1007
1008         /* Check against address space limit. */
1009         if ((mm->total_vm << PAGE_SHIFT) + len
1010             > current->signal->rlim[RLIMIT_AS].rlim_cur)
1011                 return -ENOMEM;
1012
1013         /* check context space, maybe only Private writable mapping? */
1014         if (!vx_vmpages_avail(mm, len >> PAGE_SHIFT))
1015                 return -ENOMEM;
1016
1017         if (accountable && (!(flags & MAP_NORESERVE) ||
1018                             sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1019                 if (vm_flags & VM_SHARED) {
1020                         /* Check memory availability in shmem_file_setup? */
1021                         vm_flags |= VM_ACCOUNT;
1022                 } else if (vm_flags & VM_WRITE) {
1023                         /*
1024                          * Private writable mapping: check memory availability
1025                          */
1026                         charged = len >> PAGE_SHIFT;
1027                         if (security_vm_enough_memory(charged))
1028                                 return -ENOMEM;
1029                         vm_flags |= VM_ACCOUNT;
1030                 }
1031         }
1032
1033         /*
1034          * Can we just expand an old private anonymous mapping?
1035          * The VM_SHARED test is necessary because shmem_zero_setup
1036          * will create the file object for a shared anonymous map below.
1037          */
1038         if (!file && !(vm_flags & VM_SHARED) &&
1039             vma_merge(mm, prev, addr, addr + len, vm_flags,
1040                                         NULL, NULL, pgoff, NULL))
1041                 goto out;
1042
1043         /*
1044          * Determine the object being mapped and call the appropriate
1045          * specific mapper. the address has already been validated, but
1046          * not unmapped, but the maps are removed from the list.
1047          */
1048         vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1049         if (!vma) {
1050                 error = -ENOMEM;
1051                 goto unacct_error;
1052         }
1053         memset(vma, 0, sizeof(*vma));
1054
1055         vma->vm_mm = mm;
1056         vma->vm_start = addr;
1057         vma->vm_end = addr + len;
1058         vma->vm_flags = vm_flags;
1059         vma->vm_page_prot = protection_map[vm_flags & 0x0f];
1060         vma->vm_pgoff = pgoff;
1061
1062         if (file) {
1063                 error = -EINVAL;
1064                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1065                         goto free_vma;
1066                 if (vm_flags & VM_DENYWRITE) {
1067                         error = deny_write_access(file);
1068                         if (error)
1069                                 goto free_vma;
1070                         correct_wcount = 1;
1071                 }
1072                 vma->vm_file = file;
1073                 get_file(file);
1074                 error = file->f_op->mmap(file, vma);
1075                 if (error)
1076                         goto unmap_and_free_vma;
1077         } else if (vm_flags & VM_SHARED) {
1078                 error = shmem_zero_setup(vma);
1079                 if (error)
1080                         goto free_vma;
1081         }
1082
1083         /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1084          * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1085          * that memory reservation must be checked; but that reservation
1086          * belongs to shared memory object, not to vma: so now clear it.
1087          */
1088         if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1089                 vma->vm_flags &= ~VM_ACCOUNT;
1090
1091         /* Can addr have changed??
1092          *
1093          * Answer: Yes, several device drivers can do it in their
1094          *         f_op->mmap method. -DaveM
1095          */
1096         addr = vma->vm_start;
1097         pgoff = vma->vm_pgoff;
1098         vm_flags = vma->vm_flags;
1099
1100         if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1101                         vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1102                 file = vma->vm_file;
1103                 vma_link(mm, vma, prev, rb_link, rb_parent);
1104                 if (correct_wcount)
1105                         atomic_inc(&inode->i_writecount);
1106         } else {
1107                 if (file) {
1108                         if (correct_wcount)
1109                                 atomic_inc(&inode->i_writecount);
1110                         fput(file);
1111                 }
1112                 mpol_free(vma_policy(vma));
1113                 kmem_cache_free(vm_area_cachep, vma);
1114         }
1115 out:    
1116         // mm->total_vm += len >> PAGE_SHIFT;
1117         vx_vmpages_add(mm, len >> PAGE_SHIFT);
1118         __vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1119         if (vm_flags & VM_LOCKED) {
1120                 // mm->locked_vm += len >> PAGE_SHIFT;
1121                 vx_vmlocked_add(mm, len >> PAGE_SHIFT);
1122                 make_pages_present(addr, addr + len);
1123         }
1124         if (flags & MAP_POPULATE) {
1125                 up_write(&mm->mmap_sem);
1126                 sys_remap_file_pages(addr, len, 0,
1127                                         pgoff, flags & MAP_NONBLOCK);
1128                 down_write(&mm->mmap_sem);
1129         }
1130         acct_update_integrals();
1131         update_mem_hiwater();
1132         return addr;
1133
1134 unmap_and_free_vma:
1135         if (correct_wcount)
1136                 atomic_inc(&inode->i_writecount);
1137         vma->vm_file = NULL;
1138         fput(file);
1139
1140         /* Undo any partial mapping done by a device driver. */
1141         zap_page_range(vma, vma->vm_start, vma->vm_end - vma->vm_start, NULL);
1142 free_vma:
1143         kmem_cache_free(vm_area_cachep, vma);
1144 unacct_error:
1145         if (charged)
1146                 vm_unacct_memory(charged);
1147         return error;
1148 }
1149
1150 EXPORT_SYMBOL(do_mmap_pgoff);
1151
1152 /* Get an address range which is currently unmapped.
1153  * For shmat() with addr=0.
1154  *
1155  * Ugly calling convention alert:
1156  * Return value with the low bits set means error value,
1157  * ie
1158  *      if (ret & ~PAGE_MASK)
1159  *              error = ret;
1160  *
1161  * This function "knows" that -ENOMEM has the bits set.
1162  */
1163 #ifndef HAVE_ARCH_UNMAPPED_AREA
1164 unsigned long
1165 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1166                 unsigned long len, unsigned long pgoff, unsigned long flags)
1167 {
1168         struct mm_struct *mm = current->mm;
1169         struct vm_area_struct *vma;
1170         unsigned long start_addr;
1171
1172         if (len > TASK_SIZE)
1173                 return -ENOMEM;
1174
1175         if (addr) {
1176                 addr = PAGE_ALIGN(addr);
1177                 vma = find_vma(mm, addr);
1178                 if (TASK_SIZE - len >= addr &&
1179                     (!vma || addr + len <= vma->vm_start))
1180                         return addr;
1181         }
1182         start_addr = addr = mm->free_area_cache;
1183
1184 full_search:
1185         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1186                 /* At this point:  (!vma || addr < vma->vm_end). */
1187                 if (TASK_SIZE - len < addr) {
1188                         /*
1189                          * Start a new search - just in case we missed
1190                          * some holes.
1191                          */
1192                         if (start_addr != TASK_UNMAPPED_BASE) {
1193                                 start_addr = addr = TASK_UNMAPPED_BASE;
1194                                 goto full_search;
1195                         }
1196                         return -ENOMEM;
1197                 }
1198                 if (!vma || addr + len <= vma->vm_start) {
1199                         /*
1200                          * Remember the place where we stopped the search:
1201                          */
1202                         mm->free_area_cache = addr + len;
1203                         return addr;
1204                 }
1205                 addr = vma->vm_end;
1206         }
1207 }
1208 #endif  
1209
1210 void arch_unmap_area(struct vm_area_struct *area)
1211 {
1212         /*
1213          * Is this a new hole at the lowest possible address?
1214          */
1215         if (area->vm_start >= TASK_UNMAPPED_BASE &&
1216                         area->vm_start < area->vm_mm->free_area_cache)
1217                 area->vm_mm->free_area_cache = area->vm_start;
1218 }
1219
1220 /*
1221  * This mmap-allocator allocates new areas top-down from below the
1222  * stack's low limit (the base):
1223  */
1224 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1225 unsigned long
1226 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1227                           const unsigned long len, const unsigned long pgoff,
1228                           const unsigned long flags)
1229 {
1230         struct vm_area_struct *vma, *prev_vma;
1231         struct mm_struct *mm = current->mm;
1232         unsigned long base = mm->mmap_base, addr = addr0;
1233         int first_time = 1;
1234
1235         /* requested length too big for entire address space */
1236         if (len > TASK_SIZE)
1237                 return -ENOMEM;
1238
1239         /* dont allow allocations above current base */
1240         if (mm->free_area_cache > base)
1241                 mm->free_area_cache = base;
1242
1243         /* requesting a specific address */
1244         if (addr) {
1245                 addr = PAGE_ALIGN(addr);
1246                 vma = find_vma(mm, addr);
1247                 if (TASK_SIZE - len >= addr &&
1248                                 (!vma || addr + len <= vma->vm_start))
1249                         return addr;
1250         }
1251
1252 try_again:
1253         /* make sure it can fit in the remaining address space */
1254         if (mm->free_area_cache < len)
1255                 goto fail;
1256
1257         /* either no address requested or cant fit in requested address hole */
1258         addr = (mm->free_area_cache - len) & PAGE_MASK;
1259         do {
1260                 /*
1261                  * Lookup failure means no vma is above this address,
1262                  * i.e. return with success:
1263                  */
1264                 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
1265                         return addr;
1266
1267                 /*
1268                  * new region fits between prev_vma->vm_end and
1269                  * vma->vm_start, use it:
1270                  */
1271                 if (addr+len <= vma->vm_start &&
1272                                 (!prev_vma || (addr >= prev_vma->vm_end)))
1273                         /* remember the address as a hint for next time */
1274                         return (mm->free_area_cache = addr);
1275                 else
1276                         /* pull free_area_cache down to the first hole */
1277                         if (mm->free_area_cache == vma->vm_end)
1278                                 mm->free_area_cache = vma->vm_start;
1279
1280                 /* try just below the current vma->vm_start */
1281                 addr = vma->vm_start-len;
1282         } while (len <= vma->vm_start);
1283
1284 fail:
1285         /*
1286          * if hint left us with no space for the requested
1287          * mapping then try again:
1288          */
1289         if (first_time) {
1290                 mm->free_area_cache = base;
1291                 first_time = 0;
1292                 goto try_again;
1293         }
1294         /*
1295          * A failed mmap() very likely causes application failure,
1296          * so fall back to the bottom-up function here. This scenario
1297          * can happen with large stack limits and large mmap()
1298          * allocations.
1299          */
1300         mm->free_area_cache = TASK_UNMAPPED_BASE;
1301         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1302         /*
1303          * Restore the topdown base:
1304          */
1305         mm->free_area_cache = base;
1306
1307         return addr;
1308 }
1309 #endif
1310
1311 void arch_unmap_area_topdown(struct vm_area_struct *area)
1312 {
1313         /*
1314          * Is this a new hole at the highest possible address?
1315          */
1316         if (area->vm_end > area->vm_mm->free_area_cache)
1317                 area->vm_mm->free_area_cache = area->vm_end;
1318 }
1319
1320 unsigned long
1321 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1322                 unsigned long pgoff, unsigned long flags)
1323 {
1324         if (flags & MAP_FIXED) {
1325                 unsigned long ret;
1326
1327                 if (addr > TASK_SIZE - len)
1328                         return -ENOMEM;
1329                 if (addr & ~PAGE_MASK)
1330                         return -EINVAL;
1331                 if (file && is_file_hugepages(file))  {
1332                         /*
1333                          * Check if the given range is hugepage aligned, and
1334                          * can be made suitable for hugepages.
1335                          */
1336                         ret = prepare_hugepage_range(addr, len);
1337                 } else {
1338                         /*
1339                          * Ensure that a normal request is not falling in a
1340                          * reserved hugepage range.  For some archs like IA-64,
1341                          * there is a separate region for hugepages.
1342                          */
1343                         ret = is_hugepage_only_range(addr, len);
1344                 }
1345                 if (ret)
1346                         return -EINVAL;
1347                 return addr;
1348         }
1349
1350         if (file && file->f_op && file->f_op->get_unmapped_area)
1351                 return file->f_op->get_unmapped_area(file, addr, len,
1352                                                 pgoff, flags);
1353
1354         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
1355 }
1356
1357 EXPORT_SYMBOL(get_unmapped_area);
1358
1359 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1360 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1361 {
1362         struct vm_area_struct *vma = NULL;
1363
1364         if (mm) {
1365                 /* Check the cache first. */
1366                 /* (Cache hit rate is typically around 35%.) */
1367                 vma = mm->mmap_cache;
1368                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1369                         struct rb_node * rb_node;
1370
1371                         rb_node = mm->mm_rb.rb_node;
1372                         vma = NULL;
1373
1374                         while (rb_node) {
1375                                 struct vm_area_struct * vma_tmp;
1376
1377                                 vma_tmp = rb_entry(rb_node,
1378                                                 struct vm_area_struct, vm_rb);
1379
1380                                 if (vma_tmp->vm_end > addr) {
1381                                         vma = vma_tmp;
1382                                         if (vma_tmp->vm_start <= addr)
1383                                                 break;
1384                                         rb_node = rb_node->rb_left;
1385                                 } else
1386                                         rb_node = rb_node->rb_right;
1387                         }
1388                         if (vma)
1389                                 mm->mmap_cache = vma;
1390                 }
1391         }
1392         return vma;
1393 }
1394
1395 EXPORT_SYMBOL(find_vma);
1396
1397 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1398 struct vm_area_struct *
1399 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1400                         struct vm_area_struct **pprev)
1401 {
1402         struct vm_area_struct *vma = NULL, *prev = NULL;
1403         struct rb_node * rb_node;
1404         if (!mm)
1405                 goto out;
1406
1407         /* Guard against addr being lower than the first VMA */
1408         vma = mm->mmap;
1409
1410         /* Go through the RB tree quickly. */
1411         rb_node = mm->mm_rb.rb_node;
1412
1413         while (rb_node) {
1414                 struct vm_area_struct *vma_tmp;
1415                 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1416
1417                 if (addr < vma_tmp->vm_end) {
1418                         rb_node = rb_node->rb_left;
1419                 } else {
1420                         prev = vma_tmp;
1421                         if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1422                                 break;
1423                         rb_node = rb_node->rb_right;
1424                 }
1425         }
1426
1427 out:
1428         *pprev = prev;
1429         return prev ? prev->vm_next : vma;
1430 }
1431
1432 /*
1433  * Verify that the stack growth is acceptable and
1434  * update accounting. This is shared with both the
1435  * grow-up and grow-down cases.
1436  */
1437 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1438 {
1439         struct mm_struct *mm = vma->vm_mm;
1440         struct rlimit *rlim = current->signal->rlim;
1441
1442         /* address space limit tests */
1443         if (mm->total_vm + grow > rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT)
1444                 return -ENOMEM;
1445
1446         /* Stack limit test */
1447         if (size > rlim[RLIMIT_STACK].rlim_cur)
1448                 return -ENOMEM;
1449
1450         /* mlock limit tests */
1451         if (vma->vm_flags & VM_LOCKED) {
1452                 unsigned long locked;
1453                 unsigned long limit;
1454                 locked = mm->locked_vm + grow;
1455                 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1456                 if (locked > limit && !capable(CAP_IPC_LOCK))
1457                         return -ENOMEM;
1458         }
1459
1460         if (!vx_vmpages_avail(vma->vm_mm, grow))
1461                 return -ENOMEM;
1462
1463         /*
1464          * Overcommit..  This must be the final test, as it will
1465          * update security statistics.
1466          */
1467         if (security_vm_enough_memory(grow))
1468                 return -ENOMEM;
1469
1470         /* Ok, everything looks good - let it rip */
1471         // mm->total_vm += grow;
1472         vx_vmpages_add(mm, grow);
1473         if (vma->vm_flags & VM_LOCKED)
1474                 // mm->locked_vm += grow;
1475                 vx_vmlocked_add(mm, grow);
1476         __vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1477         acct_update_integrals();
1478         update_mem_hiwater();
1479         return 0;
1480 }
1481
1482 #ifdef CONFIG_STACK_GROWSUP
1483 /*
1484  * vma is the first one with address > vma->vm_end.  Have to extend vma.
1485  */
1486 int expand_stack(struct vm_area_struct * vma, unsigned long address)
1487 {
1488         int error;
1489
1490         if (!(vma->vm_flags & VM_GROWSUP))
1491                 return -EFAULT;
1492
1493         /*
1494          * We must make sure the anon_vma is allocated
1495          * so that the anon_vma locking is not a noop.
1496          */
1497         if (unlikely(anon_vma_prepare(vma)))
1498                 return -ENOMEM;
1499         anon_vma_lock(vma);
1500
1501         /*
1502          * vma->vm_start/vm_end cannot change under us because the caller
1503          * is required to hold the mmap_sem in read mode.  We need the
1504          * anon_vma lock to serialize against concurrent expand_stacks.
1505          */
1506         address += 4 + PAGE_SIZE - 1;
1507         address &= PAGE_MASK;
1508         error = 0;
1509
1510         /* Somebody else might have raced and expanded it already */
1511         if (address > vma->vm_end) {
1512                 unsigned long size, grow;
1513
1514                 size = address - vma->vm_start;
1515                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1516
1517                 error = acct_stack_growth(vma, size, grow);
1518                 if (!error)
1519                         vma->vm_end = address;
1520         }
1521         anon_vma_unlock(vma);
1522         return error;
1523 }
1524
1525 struct vm_area_struct *
1526 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1527 {
1528         struct vm_area_struct *vma, *prev;
1529
1530         addr &= PAGE_MASK;
1531         vma = find_vma_prev(mm, addr, &prev);
1532         if (vma && (vma->vm_start <= addr))
1533                 return vma;
1534         if (!prev || expand_stack(prev, addr))
1535                 return NULL;
1536         if (prev->vm_flags & VM_LOCKED) {
1537                 make_pages_present(addr, prev->vm_end);
1538         }
1539         return prev;
1540 }
1541 #else
1542 /*
1543  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1544  */
1545 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1546 {
1547         int error;
1548
1549         /*
1550          * We must make sure the anon_vma is allocated
1551          * so that the anon_vma locking is not a noop.
1552          */
1553         if (unlikely(anon_vma_prepare(vma)))
1554                 return -ENOMEM;
1555         anon_vma_lock(vma);
1556
1557         /*
1558          * vma->vm_start/vm_end cannot change under us because the caller
1559          * is required to hold the mmap_sem in read mode.  We need the
1560          * anon_vma lock to serialize against concurrent expand_stacks.
1561          */
1562         address &= PAGE_MASK;
1563         error = 0;
1564
1565         /* Somebody else might have raced and expanded it already */
1566         if (address < vma->vm_start) {
1567                 unsigned long size, grow;
1568
1569                 size = vma->vm_end - address;
1570                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1571
1572                 error = acct_stack_growth(vma, size, grow);
1573                 if (!error) {
1574                         vma->vm_start = address;
1575                         vma->vm_pgoff -= grow;
1576                 }
1577         }
1578         anon_vma_unlock(vma);
1579         return error;
1580 }
1581
1582 struct vm_area_struct *
1583 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1584 {
1585         struct vm_area_struct * vma;
1586         unsigned long start;
1587
1588         addr &= PAGE_MASK;
1589         vma = find_vma(mm,addr);
1590         if (!vma)
1591                 return NULL;
1592         if (vma->vm_start <= addr)
1593                 return vma;
1594         if (!(vma->vm_flags & VM_GROWSDOWN))
1595                 return NULL;
1596         start = vma->vm_start;
1597         if (expand_stack(vma, addr))
1598                 return NULL;
1599         if (vma->vm_flags & VM_LOCKED) {
1600                 make_pages_present(addr, start);
1601         }
1602         return vma;
1603 }
1604 #endif
1605
1606 /*
1607  * Try to free as many page directory entries as we can,
1608  * without having to work very hard at actually scanning
1609  * the page tables themselves.
1610  *
1611  * Right now we try to free page tables if we have a nice
1612  * PGDIR-aligned area that got free'd up. We could be more
1613  * granular if we want to, but this is fast and simple,
1614  * and covers the bad cases.
1615  *
1616  * "prev", if it exists, points to a vma before the one
1617  * we just free'd - but there's no telling how much before.
1618  */
1619 static void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *prev,
1620         unsigned long start, unsigned long end)
1621 {
1622         unsigned long first = start & PGDIR_MASK;
1623         unsigned long last = end + PGDIR_SIZE - 1;
1624         struct mm_struct *mm = tlb->mm;
1625
1626         if (last > MM_VM_SIZE(mm) || last < end)
1627                 last = MM_VM_SIZE(mm);
1628
1629         if (!prev) {
1630                 prev = mm->mmap;
1631                 if (!prev)
1632                         goto no_mmaps;
1633                 if (prev->vm_end > start) {
1634                         if (last > prev->vm_start)
1635                                 last = prev->vm_start;
1636                         goto no_mmaps;
1637                 }
1638         }
1639         for (;;) {
1640                 struct vm_area_struct *next = prev->vm_next;
1641
1642                 if (next) {
1643                         if (next->vm_start < start) {
1644                                 prev = next;
1645                                 continue;
1646                         }
1647                         if (last > next->vm_start)
1648                                 last = next->vm_start;
1649                 }
1650                 if (prev->vm_end > first)
1651                         first = prev->vm_end;
1652                 break;
1653         }
1654 no_mmaps:
1655         if (last < first)       /* for arches with discontiguous pgd indices */
1656                 return;
1657         if (first < FIRST_USER_PGD_NR * PGDIR_SIZE)
1658                 first = FIRST_USER_PGD_NR * PGDIR_SIZE;
1659         /* No point trying to free anything if we're in the same pte page */
1660         if ((first & PMD_MASK) < (last & PMD_MASK)) {
1661                 clear_page_range(tlb, first, last);
1662                 flush_tlb_pgtables(mm, first, last);
1663         }
1664 }
1665
1666 /* Normal function to fix up a mapping
1667  * This function is the default for when an area has no specific
1668  * function.  This may be used as part of a more specific routine.
1669  *
1670  * By the time this function is called, the area struct has been
1671  * removed from the process mapping list.
1672  */
1673 static void unmap_vma(struct mm_struct *mm, struct vm_area_struct *area)
1674 {
1675         size_t len = area->vm_end - area->vm_start;
1676
1677         // area->vm_mm->total_vm -= len >> PAGE_SHIFT;
1678         vx_vmpages_sub(area->vm_mm, len >> PAGE_SHIFT);
1679
1680         if (area->vm_flags & VM_LOCKED)
1681                 // area->vm_mm->locked_vm -= len >> PAGE_SHIFT;
1682                 vx_vmlocked_sub(area->vm_mm, len >> PAGE_SHIFT);
1683         vm_stat_unaccount(area);
1684         area->vm_mm->unmap_area(area);
1685         remove_vm_struct(area);
1686 }
1687
1688 /*
1689  * Update the VMA and inode share lists.
1690  *
1691  * Ok - we have the memory areas we should free on the 'free' list,
1692  * so release them, and do the vma updates.
1693  */
1694 static void unmap_vma_list(struct mm_struct *mm,
1695         struct vm_area_struct *mpnt)
1696 {
1697         do {
1698                 struct vm_area_struct *next = mpnt->vm_next;
1699                 unmap_vma(mm, mpnt);
1700                 mpnt = next;
1701         } while (mpnt != NULL);
1702         validate_mm(mm);
1703 }
1704
1705 /*
1706  * Get rid of page table information in the indicated region.
1707  *
1708  * Called with the page table lock held.
1709  */
1710 static void unmap_region(struct mm_struct *mm,
1711         struct vm_area_struct *vma,
1712         struct vm_area_struct *prev,
1713         unsigned long start,
1714         unsigned long end)
1715 {
1716         struct mmu_gather *tlb;
1717         unsigned long nr_accounted = 0;
1718
1719         lru_add_drain();
1720         tlb = tlb_gather_mmu(mm, 0);
1721         unmap_vmas(&tlb, mm, vma, start, end, &nr_accounted, NULL);
1722         vm_unacct_memory(nr_accounted);
1723
1724         if (is_hugepage_only_range(start, end - start))
1725                 hugetlb_free_pgtables(tlb, prev, start, end);
1726         else
1727                 free_pgtables(tlb, prev, start, end);
1728         tlb_finish_mmu(tlb, start, end);
1729 }
1730
1731 /*
1732  * Create a list of vma's touched by the unmap, removing them from the mm's
1733  * vma list as we go..
1734  */
1735 static void
1736 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1737         struct vm_area_struct *prev, unsigned long end)
1738 {
1739         struct vm_area_struct **insertion_point;
1740         struct vm_area_struct *tail_vma = NULL;
1741
1742         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1743         do {
1744                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1745                 mm->map_count--;
1746                 tail_vma = vma;
1747                 vma = vma->vm_next;
1748         } while (vma && vma->vm_start < end);
1749         *insertion_point = vma;
1750         tail_vma->vm_next = NULL;
1751         mm->mmap_cache = NULL;          /* Kill the cache. */
1752 }
1753
1754 /*
1755  * Split a vma into two pieces at address 'addr', a new vma is allocated
1756  * either for the first part or the the tail.
1757  */
1758 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1759               unsigned long addr, int new_below)
1760 {
1761         struct mempolicy *pol;
1762         struct vm_area_struct *new;
1763
1764         if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1765                 return -EINVAL;
1766
1767         if (mm->map_count >= sysctl_max_map_count)
1768                 return -ENOMEM;
1769
1770         new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1771         if (!new)
1772                 return -ENOMEM;
1773
1774         /* most fields are the same, copy all, and then fixup */
1775         *new = *vma;
1776
1777         if (new_below)
1778                 new->vm_end = addr;
1779         else {
1780                 new->vm_start = addr;
1781                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1782         }
1783
1784         pol = mpol_copy(vma_policy(vma));
1785         if (IS_ERR(pol)) {
1786                 kmem_cache_free(vm_area_cachep, new);
1787                 return PTR_ERR(pol);
1788         }
1789         vma_set_policy(new, pol);
1790
1791         if (new->vm_file)
1792                 get_file(new->vm_file);
1793
1794         if (new->vm_ops && new->vm_ops->open)
1795                 new->vm_ops->open(new);
1796
1797         if (new_below)
1798                 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1799                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1800         else
1801                 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1802
1803         return 0;
1804 }
1805
1806 /* Munmap is split into 2 main parts -- this part which finds
1807  * what needs doing, and the areas themselves, which do the
1808  * work.  This now handles partial unmappings.
1809  * Jeremy Fitzhardinge <jeremy@goop.org>
1810  */
1811 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1812 {
1813         unsigned long end;
1814         struct vm_area_struct *mpnt, *prev, *last;
1815
1816         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1817                 return -EINVAL;
1818
1819         if ((len = PAGE_ALIGN(len)) == 0)
1820                 return -EINVAL;
1821
1822         /* Find the first overlapping VMA */
1823         mpnt = find_vma_prev(mm, start, &prev);
1824         if (!mpnt)
1825                 return 0;
1826         /* we have  start < mpnt->vm_end  */
1827
1828         /* if it doesn't overlap, we have nothing.. */
1829         end = start + len;
1830         if (mpnt->vm_start >= end)
1831                 return 0;
1832
1833         /*
1834          * If we need to split any vma, do it now to save pain later.
1835          *
1836          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1837          * unmapped vm_area_struct will remain in use: so lower split_vma
1838          * places tmp vma above, and higher split_vma places tmp vma below.
1839          */
1840         if (start > mpnt->vm_start) {
1841                 int error = split_vma(mm, mpnt, start, 0);
1842                 if (error)
1843                         return error;
1844                 prev = mpnt;
1845         }
1846
1847         /* Does it split the last one? */
1848         last = find_vma(mm, end);
1849         if (last && end > last->vm_start) {
1850                 int error = split_vma(mm, last, end, 1);
1851                 if (error)
1852                         return error;
1853         }
1854         mpnt = prev? prev->vm_next: mm->mmap;
1855
1856         /*
1857          * Remove the vma's, and unmap the actual pages
1858          */
1859         detach_vmas_to_be_unmapped(mm, mpnt, prev, end);
1860         spin_lock(&mm->page_table_lock);
1861         unmap_region(mm, mpnt, prev, start, end);
1862         spin_unlock(&mm->page_table_lock);
1863
1864         /* Fix up all other VM information */
1865         unmap_vma_list(mm, mpnt);
1866
1867         return 0;
1868 }
1869
1870 EXPORT_SYMBOL(do_munmap);
1871
1872 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1873 {
1874         int ret;
1875         struct mm_struct *mm = current->mm;
1876
1877         profile_munmap(addr);
1878
1879         down_write(&mm->mmap_sem);
1880         ret = do_munmap(mm, addr, len);
1881         up_write(&mm->mmap_sem);
1882         return ret;
1883 }
1884
1885 static inline void verify_mm_writelocked(struct mm_struct *mm)
1886 {
1887 #ifdef CONFIG_DEBUG_KERNEL
1888         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1889                 WARN_ON(1);
1890                 up_read(&mm->mmap_sem);
1891         }
1892 #endif
1893 }
1894
1895 /*
1896  *  this is really a simplified "do_mmap".  it only handles
1897  *  anonymous maps.  eventually we may be able to do some
1898  *  brk-specific accounting here.
1899  */
1900 unsigned long do_brk(unsigned long addr, unsigned long len)
1901 {
1902         struct mm_struct * mm = current->mm;
1903         struct vm_area_struct * vma, * prev;
1904         unsigned long flags;
1905         struct rb_node ** rb_link, * rb_parent;
1906         pgoff_t pgoff = addr >> PAGE_SHIFT;
1907
1908         len = PAGE_ALIGN(len);
1909         if (!len)
1910                 return addr;
1911
1912         if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1913                 return -EINVAL;
1914
1915         /*
1916          * mlock MCL_FUTURE?
1917          */
1918         if (mm->def_flags & VM_LOCKED) {
1919                 unsigned long locked, lock_limit;
1920                 locked = mm->locked_vm << PAGE_SHIFT;
1921                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1922                 locked += len;
1923                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1924                         return -EAGAIN;
1925                 if (!vx_vmlocked_avail(mm, len >> PAGE_SHIFT))
1926                         return -ENOMEM;
1927         }
1928
1929         /*
1930          * mm->mmap_sem is required to protect against another thread
1931          * changing the mappings in case we sleep.
1932          */
1933         verify_mm_writelocked(mm);
1934
1935         /*
1936          * Clear old maps.  this also does some error checking for us
1937          */
1938  munmap_back:
1939         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1940         if (vma && vma->vm_start < addr + len) {
1941                 if (do_munmap(mm, addr, len))
1942                         return -ENOMEM;
1943                 goto munmap_back;
1944         }
1945
1946         /* Check against address space limits *after* clearing old maps... */
1947         if ((mm->total_vm << PAGE_SHIFT) + len
1948             > current->signal->rlim[RLIMIT_AS].rlim_cur)
1949                 return -ENOMEM;
1950
1951         if (mm->map_count > sysctl_max_map_count)
1952                 return -ENOMEM;
1953
1954         if (security_vm_enough_memory(len >> PAGE_SHIFT) ||
1955                 !vx_vmpages_avail(mm, len >> PAGE_SHIFT))
1956                 return -ENOMEM;
1957
1958         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1959
1960         /* Can we just expand an old private anonymous mapping? */
1961         if (vma_merge(mm, prev, addr, addr + len, flags,
1962                                         NULL, NULL, pgoff, NULL))
1963                 goto out;
1964
1965         /*
1966          * create a vma struct for an anonymous mapping
1967          */
1968         vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1969         if (!vma) {
1970                 vm_unacct_memory(len >> PAGE_SHIFT);
1971                 return -ENOMEM;
1972         }
1973         memset(vma, 0, sizeof(*vma));
1974
1975         vma->vm_mm = mm;
1976         vma->vm_start = addr;
1977         vma->vm_end = addr + len;
1978         vma->vm_pgoff = pgoff;
1979         vma->vm_flags = flags;
1980         vma->vm_page_prot = protection_map[flags & 0x0f];
1981         vma_link(mm, vma, prev, rb_link, rb_parent);
1982 out:
1983         // mm->total_vm += len >> PAGE_SHIFT;
1984         vx_vmpages_add(mm, len >> PAGE_SHIFT);
1985         if (flags & VM_LOCKED) {
1986                 // mm->locked_vm += len >> PAGE_SHIFT;
1987                 vx_vmlocked_add(mm, len >> PAGE_SHIFT);
1988                 make_pages_present(addr, addr + len);
1989         }
1990         acct_update_integrals();
1991         update_mem_hiwater();
1992         return addr;
1993 }
1994
1995 EXPORT_SYMBOL(do_brk);
1996
1997 /* Release all mmaps. */
1998 void exit_mmap(struct mm_struct *mm)
1999 {
2000         struct mmu_gather *tlb;
2001         struct vm_area_struct *vma;
2002         unsigned long nr_accounted = 0;
2003
2004         lru_add_drain();
2005
2006         spin_lock(&mm->page_table_lock);
2007
2008         tlb = tlb_gather_mmu(mm, 1);
2009         flush_cache_mm(mm);
2010         /* Use ~0UL here to ensure all VMAs in the mm are unmapped */
2011         mm->map_count -= unmap_vmas(&tlb, mm, mm->mmap, 0,
2012                                         ~0UL, &nr_accounted, NULL);
2013         vm_unacct_memory(nr_accounted);
2014         BUG_ON(mm->map_count);  /* This is just debugging */
2015         clear_page_range(tlb, FIRST_USER_PGD_NR * PGDIR_SIZE, MM_VM_SIZE(mm));
2016         
2017         tlb_finish_mmu(tlb, 0, MM_VM_SIZE(mm));
2018
2019         vma = mm->mmap;
2020         mm->mmap = mm->mmap_cache = NULL;
2021         mm->mm_rb = RB_ROOT;
2022         // mm->rss = 0;
2023         vx_rsspages_sub(mm, mm->rss);
2024         // mm->total_vm = 0;
2025         vx_vmpages_sub(mm, mm->total_vm);
2026         // mm->locked_vm = 0;
2027         vx_vmlocked_sub(mm, mm->locked_vm);
2028
2029         spin_unlock(&mm->page_table_lock);
2030
2031         /*
2032          * Walk the list again, actually closing and freeing it
2033          * without holding any MM locks.
2034          */
2035         while (vma) {
2036                 struct vm_area_struct *next = vma->vm_next;
2037                 remove_vm_struct(vma);
2038                 vma = next;
2039         }
2040 }
2041
2042 /* Insert vm structure into process list sorted by address
2043  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2044  * then i_mmap_lock is taken here.
2045  */
2046 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2047 {
2048         struct vm_area_struct * __vma, * prev;
2049         struct rb_node ** rb_link, * rb_parent;
2050
2051         /*
2052          * The vm_pgoff of a purely anonymous vma should be irrelevant
2053          * until its first write fault, when page's anon_vma and index
2054          * are set.  But now set the vm_pgoff it will almost certainly
2055          * end up with (unless mremap moves it elsewhere before that
2056          * first wfault), so /proc/pid/maps tells a consistent story.
2057          *
2058          * By setting it to reflect the virtual start address of the
2059          * vma, merges and splits can happen in a seamless way, just
2060          * using the existing file pgoff checks and manipulations.
2061          * Similarly in do_mmap_pgoff and in do_brk.
2062          */
2063         if (!vma->vm_file) {
2064                 BUG_ON(vma->anon_vma);
2065                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2066         }
2067         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2068         if (__vma && __vma->vm_start < vma->vm_end)
2069                 return -ENOMEM;
2070         vma_link(mm, vma, prev, rb_link, rb_parent);
2071         return 0;
2072 }
2073
2074 /*
2075  * Copy the vma structure to a new location in the same mm,
2076  * prior to moving page table entries, to effect an mremap move.
2077  */
2078 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2079         unsigned long addr, unsigned long len, pgoff_t pgoff)
2080 {
2081         struct vm_area_struct *vma = *vmap;
2082         unsigned long vma_start = vma->vm_start;
2083         struct mm_struct *mm = vma->vm_mm;
2084         struct vm_area_struct *new_vma, *prev;
2085         struct rb_node **rb_link, *rb_parent;
2086         struct mempolicy *pol;
2087
2088         /*
2089          * If anonymous vma has not yet been faulted, update new pgoff
2090          * to match new location, to increase its chance of merging.
2091          */
2092         if (!vma->vm_file && !vma->anon_vma)
2093                 pgoff = addr >> PAGE_SHIFT;
2094
2095         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2096         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2097                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2098         if (new_vma) {
2099                 /*
2100                  * Source vma may have been merged into new_vma
2101                  */
2102                 if (vma_start >= new_vma->vm_start &&
2103                     vma_start < new_vma->vm_end)
2104                         *vmap = new_vma;
2105         } else {
2106                 new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2107                 if (new_vma) {
2108                         *new_vma = *vma;
2109                         pol = mpol_copy(vma_policy(vma));
2110                         if (IS_ERR(pol)) {
2111                                 kmem_cache_free(vm_area_cachep, new_vma);
2112                                 return NULL;
2113                         }
2114                         vma_set_policy(new_vma, pol);
2115                         new_vma->vm_start = addr;
2116                         new_vma->vm_end = addr + len;
2117                         new_vma->vm_pgoff = pgoff;
2118                         if (new_vma->vm_file)
2119                                 get_file(new_vma->vm_file);
2120                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2121                                 new_vma->vm_ops->open(new_vma);
2122                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2123                 }
2124         }
2125         return new_vma;
2126 }