9ca222bc032adaf552fbc6a49b8c8284ddf37dd5
[linux-2.6.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27
28 #include <asm/pgtable.h>
29 #include <asm/tlbflush.h>
30 #include <linux/swapops.h>
31
32 spinlock_t swaplock = SPIN_LOCK_UNLOCKED;
33 unsigned int nr_swapfiles;
34 int total_swap_pages;
35 static int swap_overflow;
36
37 EXPORT_SYMBOL(total_swap_pages);
38
39 static const char Bad_file[] = "Bad swap file entry ";
40 static const char Unused_file[] = "Unused swap file entry ";
41 static const char Bad_offset[] = "Bad swap offset entry ";
42 static const char Unused_offset[] = "Unused swap offset entry ";
43
44 struct swap_list_t swap_list = {-1, -1};
45
46 struct swap_info_struct swap_info[MAX_SWAPFILES];
47
48 static DECLARE_MUTEX(swapon_sem);
49
50 /*
51  * Array of backing blockdevs, for swap_unplug_fn.  We need this because the
52  * bdev->unplug_fn can sleep and we cannot hold swap_list_lock while calling
53  * the unplug_fn.  And swap_list_lock cannot be turned into a semaphore.
54  */
55 static DECLARE_MUTEX(swap_bdevs_sem);
56 static struct block_device *swap_bdevs[MAX_SWAPFILES];
57
58 #define SWAPFILE_CLUSTER 256
59
60 /*
61  * Caller holds swap_bdevs_sem
62  */
63 static void install_swap_bdev(struct block_device *bdev)
64 {
65         int i;
66
67         for (i = 0; i < MAX_SWAPFILES; i++) {
68                 if (swap_bdevs[i] == NULL) {
69                         swap_bdevs[i] = bdev;
70                         return;
71                 }
72         }
73         BUG();
74 }
75
76 static void remove_swap_bdev(struct block_device *bdev)
77 {
78         int i;
79
80         for (i = 0; i < MAX_SWAPFILES; i++) {
81                 if (swap_bdevs[i] == bdev) {
82                         memcpy(&swap_bdevs[i], &swap_bdevs[i + 1],
83                                 (MAX_SWAPFILES - i - 1) * sizeof(*swap_bdevs));
84                         swap_bdevs[MAX_SWAPFILES - 1] = NULL;
85                         return;
86                 }
87         }
88         BUG();
89 }
90
91 /*
92  * Unlike a standard unplug_io_fn, swap_unplug_io_fn is never called
93  * through swap's backing_dev_info (which is only used by shrink_list),
94  * but directly from sync_page when PageSwapCache: and takes the page
95  * as argument, so that it can find the right device from swp_entry_t.
96  */
97 void swap_unplug_io_fn(struct page *page)
98 {
99         swp_entry_t entry;
100
101         down(&swap_bdevs_sem);
102         entry.val = page->private;
103         if (PageSwapCache(page)) {
104                 struct block_device *bdev = swap_bdevs[swp_type(entry)];
105                 struct backing_dev_info *bdi;
106
107                 if (bdev) {
108                         bdi = bdev->bd_inode->i_mapping->backing_dev_info;
109                         (*bdi->unplug_io_fn)(bdi);
110                 }
111         }
112         up(&swap_bdevs_sem);
113 }
114
115 static inline int scan_swap_map(struct swap_info_struct *si)
116 {
117         unsigned long offset;
118         /* 
119          * We try to cluster swap pages by allocating them
120          * sequentially in swap.  Once we've allocated
121          * SWAPFILE_CLUSTER pages this way, however, we resort to
122          * first-free allocation, starting a new cluster.  This
123          * prevents us from scattering swap pages all over the entire
124          * swap partition, so that we reduce overall disk seek times
125          * between swap pages.  -- sct */
126         if (si->cluster_nr) {
127                 while (si->cluster_next <= si->highest_bit) {
128                         offset = si->cluster_next++;
129                         if (si->swap_map[offset])
130                                 continue;
131                         si->cluster_nr--;
132                         goto got_page;
133                 }
134         }
135         si->cluster_nr = SWAPFILE_CLUSTER;
136
137         /* try to find an empty (even not aligned) cluster. */
138         offset = si->lowest_bit;
139  check_next_cluster:
140         if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit)
141         {
142                 int nr;
143                 for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++)
144                         if (si->swap_map[nr])
145                         {
146                                 offset = nr+1;
147                                 goto check_next_cluster;
148                         }
149                 /* We found a completly empty cluster, so start
150                  * using it.
151                  */
152                 goto got_page;
153         }
154         /* No luck, so now go finegrined as usual. -Andrea */
155         for (offset = si->lowest_bit; offset <= si->highest_bit ; offset++) {
156                 if (si->swap_map[offset])
157                         continue;
158                 si->lowest_bit = offset+1;
159         got_page:
160                 if (offset == si->lowest_bit)
161                         si->lowest_bit++;
162                 if (offset == si->highest_bit)
163                         si->highest_bit--;
164                 if (si->lowest_bit > si->highest_bit) {
165                         si->lowest_bit = si->max;
166                         si->highest_bit = 0;
167                 }
168                 si->swap_map[offset] = 1;
169                 si->inuse_pages++;
170                 nr_swap_pages--;
171                 si->cluster_next = offset+1;
172                 return offset;
173         }
174         si->lowest_bit = si->max;
175         si->highest_bit = 0;
176         return 0;
177 }
178
179 swp_entry_t get_swap_page(void)
180 {
181         struct swap_info_struct * p;
182         unsigned long offset;
183         swp_entry_t entry;
184         int type, wrapped = 0;
185
186         entry.val = 0;  /* Out of memory */
187         swap_list_lock();
188         type = swap_list.next;
189         if (type < 0)
190                 goto out;
191         if (nr_swap_pages <= 0)
192                 goto out;
193
194         while (1) {
195                 p = &swap_info[type];
196                 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
197                         swap_device_lock(p);
198                         offset = scan_swap_map(p);
199                         swap_device_unlock(p);
200                         if (offset) {
201                                 entry = swp_entry(type,offset);
202                                 type = swap_info[type].next;
203                                 if (type < 0 ||
204                                         p->prio != swap_info[type].prio) {
205                                                 swap_list.next = swap_list.head;
206                                 } else {
207                                         swap_list.next = type;
208                                 }
209                                 goto out;
210                         }
211                 }
212                 type = p->next;
213                 if (!wrapped) {
214                         if (type < 0 || p->prio != swap_info[type].prio) {
215                                 type = swap_list.head;
216                                 wrapped = 1;
217                         }
218                 } else
219                         if (type < 0)
220                                 goto out;       /* out of swap space */
221         }
222 out:
223         swap_list_unlock();
224         return entry;
225 }
226
227 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
228 {
229         struct swap_info_struct * p;
230         unsigned long offset, type;
231
232         if (!entry.val)
233                 goto out;
234         type = swp_type(entry);
235         if (type >= nr_swapfiles)
236                 goto bad_nofile;
237         p = & swap_info[type];
238         if (!(p->flags & SWP_USED))
239                 goto bad_device;
240         offset = swp_offset(entry);
241         if (offset >= p->max)
242                 goto bad_offset;
243         if (!p->swap_map[offset])
244                 goto bad_free;
245         swap_list_lock();
246         if (p->prio > swap_info[swap_list.next].prio)
247                 swap_list.next = type;
248         swap_device_lock(p);
249         return p;
250
251 bad_free:
252         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
253         goto out;
254 bad_offset:
255         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
256         goto out;
257 bad_device:
258         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
259         goto out;
260 bad_nofile:
261         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
262 out:
263         return NULL;
264 }       
265
266 static void swap_info_put(struct swap_info_struct * p)
267 {
268         swap_device_unlock(p);
269         swap_list_unlock();
270 }
271
272 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
273 {
274         int count = p->swap_map[offset];
275
276         if (count < SWAP_MAP_MAX) {
277                 count--;
278                 p->swap_map[offset] = count;
279                 if (!count) {
280                         if (offset < p->lowest_bit)
281                                 p->lowest_bit = offset;
282                         if (offset > p->highest_bit)
283                                 p->highest_bit = offset;
284                         nr_swap_pages++;
285                         p->inuse_pages--;
286                 }
287         }
288         return count;
289 }
290
291 /*
292  * Caller has made sure that the swapdevice corresponding to entry
293  * is still around or has not been recycled.
294  */
295 void swap_free(swp_entry_t entry)
296 {
297         struct swap_info_struct * p;
298
299         p = swap_info_get(entry);
300         if (p) {
301                 swap_entry_free(p, swp_offset(entry));
302                 swap_info_put(p);
303         }
304 }
305
306 /*
307  * Check if we're the only user of a swap page,
308  * when the page is locked.
309  */
310 static int exclusive_swap_page(struct page *page)
311 {
312         int retval = 0;
313         struct swap_info_struct * p;
314         swp_entry_t entry;
315
316         entry.val = page->private;
317         p = swap_info_get(entry);
318         if (p) {
319                 /* Is the only swap cache user the cache itself? */
320                 if (p->swap_map[swp_offset(entry)] == 1) {
321                         /* Recheck the page count with the swapcache lock held.. */
322                         spin_lock(&swapper_space.tree_lock);
323                         if (page_count(page) == 2)
324                                 retval = 1;
325                         spin_unlock(&swapper_space.tree_lock);
326                 }
327                 swap_info_put(p);
328         }
329         return retval;
330 }
331
332 /*
333  * We can use this swap cache entry directly
334  * if there are no other references to it.
335  *
336  * Here "exclusive_swap_page()" does the real
337  * work, but we opportunistically check whether
338  * we need to get all the locks first..
339  */
340 int can_share_swap_page(struct page *page)
341 {
342         int retval = 0;
343
344         if (!PageLocked(page))
345                 BUG();
346         switch (page_count(page)) {
347         case 3:
348                 if (!PagePrivate(page))
349                         break;
350                 /* Fallthrough */
351         case 2:
352                 if (!PageSwapCache(page))
353                         break;
354                 retval = exclusive_swap_page(page);
355                 break;
356         case 1:
357                 if (PageReserved(page))
358                         break;
359                 retval = 1;
360         }
361         return retval;
362 }
363
364 /*
365  * Work out if there are any other processes sharing this
366  * swap cache page. Free it if you can. Return success.
367  */
368 int remove_exclusive_swap_page(struct page *page)
369 {
370         int retval;
371         struct swap_info_struct * p;
372         swp_entry_t entry;
373
374         BUG_ON(PagePrivate(page));
375         BUG_ON(!PageLocked(page));
376
377         if (!PageSwapCache(page))
378                 return 0;
379         if (PageWriteback(page))
380                 return 0;
381         if (page_count(page) != 2) /* 2: us + cache */
382                 return 0;
383
384         entry.val = page->private;
385         p = swap_info_get(entry);
386         if (!p)
387                 return 0;
388
389         /* Is the only swap cache user the cache itself? */
390         retval = 0;
391         if (p->swap_map[swp_offset(entry)] == 1) {
392                 /* Recheck the page count with the swapcache lock held.. */
393                 spin_lock(&swapper_space.tree_lock);
394                 if ((page_count(page) == 2) && !PageWriteback(page)) {
395                         __delete_from_swap_cache(page);
396                         SetPageDirty(page);
397                         retval = 1;
398                 }
399                 spin_unlock(&swapper_space.tree_lock);
400         }
401         swap_info_put(p);
402
403         if (retval) {
404                 swap_free(entry);
405                 page_cache_release(page);
406         }
407
408         return retval;
409 }
410
411 /*
412  * Free the swap entry like above, but also try to
413  * free the page cache entry if it is the last user.
414  */
415 void free_swap_and_cache(swp_entry_t entry)
416 {
417         struct swap_info_struct * p;
418         struct page *page = NULL;
419
420         p = swap_info_get(entry);
421         if (p) {
422                 if (swap_entry_free(p, swp_offset(entry)) == 1) {
423                         spin_lock(&swapper_space.tree_lock);
424                         page = radix_tree_lookup(&swapper_space.page_tree,
425                                 entry.val);
426                         if (page && TestSetPageLocked(page))
427                                 page = NULL;
428                         spin_unlock(&swapper_space.tree_lock);
429                 }
430                 swap_info_put(p);
431         }
432         if (page) {
433                 int one_user;
434
435                 BUG_ON(PagePrivate(page));
436                 page_cache_get(page);
437                 one_user = (page_count(page) == 2);
438                 /* Only cache user (+us), or swap space full? Free it! */
439                 if (!PageWriteback(page) && (one_user || vm_swap_full())) {
440                         delete_from_swap_cache(page);
441                         SetPageDirty(page);
442                 }
443                 unlock_page(page);
444                 page_cache_release(page);
445         }
446 }
447
448 /*
449  * The swap entry has been read in advance, and we return 1 to indicate
450  * that the page has been used or is no longer needed.
451  *
452  * Always set the resulting pte to be nowrite (the same as COW pages
453  * after one process has exited).  We don't know just how many PTEs will
454  * share this swap entry, so be cautious and let do_wp_page work out
455  * what to do if a write is requested later.
456  */
457 /* vma->vm_mm->page_table_lock is held */
458 static void
459 unuse_pte(struct vm_area_struct *vma, unsigned long address, pte_t *dir,
460         swp_entry_t entry, struct page *page, struct pte_chain **pte_chainp)
461 {
462         vma->vm_mm->rss++;
463         get_page(page);
464         set_pte(dir, pte_mkold(mk_pte(page, vma->vm_page_prot)));
465         *pte_chainp = page_add_rmap(page, dir, *pte_chainp);
466         swap_free(entry);
467 }
468
469 /* vma->vm_mm->page_table_lock is held */
470 static int unuse_pmd(struct vm_area_struct * vma, pmd_t *dir,
471         unsigned long address, unsigned long size, unsigned long offset,
472         swp_entry_t entry, struct page *page, struct pte_chain **pte_chainp)
473 {
474         pte_t * pte;
475         unsigned long end;
476         pte_t swp_pte = swp_entry_to_pte(entry);
477
478         if (pmd_none(*dir))
479                 return 0;
480         if (pmd_bad(*dir)) {
481                 pmd_ERROR(*dir);
482                 pmd_clear(dir);
483                 return 0;
484         }
485         pte = pte_offset_map(dir, address);
486         offset += address & PMD_MASK;
487         address &= ~PMD_MASK;
488         end = address + size;
489         if (end > PMD_SIZE)
490                 end = PMD_SIZE;
491         do {
492                 /*
493                  * swapoff spends a _lot_ of time in this loop!
494                  * Test inline before going to call unuse_pte.
495                  */
496                 if (unlikely(pte_same(*pte, swp_pte))) {
497                         unuse_pte(vma, offset + address, pte,
498                                         entry, page, pte_chainp);
499                         pte_unmap(pte);
500                         return 1;
501                 }
502                 address += PAGE_SIZE;
503                 pte++;
504         } while (address && (address < end));
505         pte_unmap(pte - 1);
506         return 0;
507 }
508
509 /* vma->vm_mm->page_table_lock is held */
510 static int unuse_pgd(struct vm_area_struct * vma, pgd_t *dir,
511         unsigned long address, unsigned long size,
512         swp_entry_t entry, struct page *page, struct pte_chain **pte_chainp)
513 {
514         pmd_t * pmd;
515         unsigned long offset, end;
516
517         if (pgd_none(*dir))
518                 return 0;
519         if (pgd_bad(*dir)) {
520                 pgd_ERROR(*dir);
521                 pgd_clear(dir);
522                 return 0;
523         }
524         pmd = pmd_offset(dir, address);
525         offset = address & PGDIR_MASK;
526         address &= ~PGDIR_MASK;
527         end = address + size;
528         if (end > PGDIR_SIZE)
529                 end = PGDIR_SIZE;
530         if (address >= end)
531                 BUG();
532         do {
533                 if (unuse_pmd(vma, pmd, address, end - address,
534                                 offset, entry, page, pte_chainp))
535                         return 1;
536                 address = (address + PMD_SIZE) & PMD_MASK;
537                 pmd++;
538         } while (address && (address < end));
539         return 0;
540 }
541
542 /* vma->vm_mm->page_table_lock is held */
543 static int unuse_vma(struct vm_area_struct * vma, pgd_t *pgdir,
544         swp_entry_t entry, struct page *page, struct pte_chain **pte_chainp)
545 {
546         unsigned long start = vma->vm_start, end = vma->vm_end;
547
548         if (start >= end)
549                 BUG();
550         do {
551                 if (unuse_pgd(vma, pgdir, start, end - start,
552                                 entry, page, pte_chainp))
553                         return 1;
554                 start = (start + PGDIR_SIZE) & PGDIR_MASK;
555                 pgdir++;
556         } while (start && (start < end));
557         return 0;
558 }
559
560 static int unuse_process(struct mm_struct * mm,
561                         swp_entry_t entry, struct page* page)
562 {
563         struct vm_area_struct* vma;
564         struct pte_chain *pte_chain;
565
566         pte_chain = pte_chain_alloc(GFP_KERNEL);
567         if (!pte_chain)
568                 return -ENOMEM;
569
570         /*
571          * Go through process' page directory.
572          */
573         spin_lock(&mm->page_table_lock);
574         for (vma = mm->mmap; vma; vma = vma->vm_next) {
575                 pgd_t * pgd = pgd_offset(mm, vma->vm_start);
576                 if (unuse_vma(vma, pgd, entry, page, &pte_chain))
577                         break;
578         }
579         spin_unlock(&mm->page_table_lock);
580         pte_chain_free(pte_chain);
581         return 0;
582 }
583
584 /*
585  * Scan swap_map from current position to next entry still in use.
586  * Recycle to start on reaching the end, returning 0 when empty.
587  */
588 static int find_next_to_unuse(struct swap_info_struct *si, int prev)
589 {
590         int max = si->max;
591         int i = prev;
592         int count;
593
594         /*
595          * No need for swap_device_lock(si) here: we're just looking
596          * for whether an entry is in use, not modifying it; false
597          * hits are okay, and sys_swapoff() has already prevented new
598          * allocations from this area (while holding swap_list_lock()).
599          */
600         for (;;) {
601                 if (++i >= max) {
602                         if (!prev) {
603                                 i = 0;
604                                 break;
605                         }
606                         /*
607                          * No entries in use at top of swap_map,
608                          * loop back to start and recheck there.
609                          */
610                         max = prev + 1;
611                         prev = 0;
612                         i = 1;
613                 }
614                 count = si->swap_map[i];
615                 if (count && count != SWAP_MAP_BAD)
616                         break;
617         }
618         return i;
619 }
620
621 /*
622  * We completely avoid races by reading each swap page in advance,
623  * and then search for the process using it.  All the necessary
624  * page table adjustments can then be made atomically.
625  */
626 static int try_to_unuse(unsigned int type)
627 {
628         struct swap_info_struct * si = &swap_info[type];
629         struct mm_struct *start_mm;
630         unsigned short *swap_map;
631         unsigned short swcount;
632         struct page *page;
633         swp_entry_t entry;
634         int i = 0;
635         int retval = 0;
636         int reset_overflow = 0;
637         int shmem;
638
639         /*
640          * When searching mms for an entry, a good strategy is to
641          * start at the first mm we freed the previous entry from
642          * (though actually we don't notice whether we or coincidence
643          * freed the entry).  Initialize this start_mm with a hold.
644          *
645          * A simpler strategy would be to start at the last mm we
646          * freed the previous entry from; but that would take less
647          * advantage of mmlist ordering (now preserved by swap_out()),
648          * which clusters forked address spaces together, most recent
649          * child immediately after parent.  If we race with dup_mmap(),
650          * we very much want to resolve parent before child, otherwise
651          * we may miss some entries: using last mm would invert that.
652          */
653         start_mm = &init_mm;
654         atomic_inc(&init_mm.mm_users);
655
656         /*
657          * Keep on scanning until all entries have gone.  Usually,
658          * one pass through swap_map is enough, but not necessarily:
659          * mmput() removes mm from mmlist before exit_mmap() and its
660          * zap_page_range().  That's not too bad, those entries are
661          * on their way out, and handled faster there than here.
662          * do_munmap() behaves similarly, taking the range out of mm's
663          * vma list before zap_page_range().  But unfortunately, when
664          * unmapping a part of a vma, it takes the whole out first,
665          * then reinserts what's left after (might even reschedule if
666          * open() method called) - so swap entries may be invisible
667          * to swapoff for a while, then reappear - but that is rare.
668          */
669         while ((i = find_next_to_unuse(si, i))) {
670                 if (signal_pending(current)) {
671                         retval = -EINTR;
672                         break;
673                 }
674
675                 /* 
676                  * Get a page for the entry, using the existing swap
677                  * cache page if there is one.  Otherwise, get a clean
678                  * page and read the swap into it. 
679                  */
680                 swap_map = &si->swap_map[i];
681                 entry = swp_entry(type, i);
682                 page = read_swap_cache_async(entry);
683                 if (!page) {
684                         /*
685                          * Either swap_duplicate() failed because entry
686                          * has been freed independently, and will not be
687                          * reused since sys_swapoff() already disabled
688                          * allocation from here, or alloc_page() failed.
689                          */
690                         if (!*swap_map)
691                                 continue;
692                         retval = -ENOMEM;
693                         break;
694                 }
695
696                 /*
697                  * Don't hold on to start_mm if it looks like exiting.
698                  */
699                 if (atomic_read(&start_mm->mm_users) == 1) {
700                         mmput(start_mm);
701                         start_mm = &init_mm;
702                         atomic_inc(&init_mm.mm_users);
703                 }
704
705                 /*
706                  * Wait for and lock page.  When do_swap_page races with
707                  * try_to_unuse, do_swap_page can handle the fault much
708                  * faster than try_to_unuse can locate the entry.  This
709                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
710                  * defer to do_swap_page in such a case - in some tests,
711                  * do_swap_page and try_to_unuse repeatedly compete.
712                  */
713                 wait_on_page_locked(page);
714                 wait_on_page_writeback(page);
715                 lock_page(page);
716                 wait_on_page_writeback(page);
717
718                 /*
719                  * Remove all references to entry, without blocking.
720                  * Whenever we reach init_mm, there's no address space
721                  * to search, but use it as a reminder to search shmem.
722                  */
723                 shmem = 0;
724                 swcount = *swap_map;
725                 if (swcount > 1) {
726                         if (start_mm == &init_mm)
727                                 shmem = shmem_unuse(entry, page);
728                         else
729                                 retval = unuse_process(start_mm, entry, page);
730                 }
731                 if (*swap_map > 1) {
732                         int set_start_mm = (*swap_map >= swcount);
733                         struct list_head *p = &start_mm->mmlist;
734                         struct mm_struct *new_start_mm = start_mm;
735                         struct mm_struct *prev_mm = start_mm;
736                         struct mm_struct *mm;
737
738                         atomic_inc(&new_start_mm->mm_users);
739                         atomic_inc(&prev_mm->mm_users);
740                         spin_lock(&mmlist_lock);
741                         while (*swap_map > 1 && !retval &&
742                                         (p = p->next) != &start_mm->mmlist) {
743                                 mm = list_entry(p, struct mm_struct, mmlist);
744                                 atomic_inc(&mm->mm_users);
745                                 spin_unlock(&mmlist_lock);
746                                 mmput(prev_mm);
747                                 prev_mm = mm;
748
749                                 cond_resched();
750
751                                 swcount = *swap_map;
752                                 if (swcount <= 1)
753                                         ;
754                                 else if (mm == &init_mm) {
755                                         set_start_mm = 1;
756                                         shmem = shmem_unuse(entry, page);
757                                 } else
758                                         retval = unuse_process(mm, entry, page);
759                                 if (set_start_mm && *swap_map < swcount) {
760                                         mmput(new_start_mm);
761                                         atomic_inc(&mm->mm_users);
762                                         new_start_mm = mm;
763                                         set_start_mm = 0;
764                                 }
765                                 spin_lock(&mmlist_lock);
766                         }
767                         spin_unlock(&mmlist_lock);
768                         mmput(prev_mm);
769                         mmput(start_mm);
770                         start_mm = new_start_mm;
771                 }
772                 if (retval) {
773                         unlock_page(page);
774                         page_cache_release(page);
775                         break;
776                 }
777
778                 /*
779                  * How could swap count reach 0x7fff when the maximum
780                  * pid is 0x7fff, and there's no way to repeat a swap
781                  * page within an mm (except in shmem, where it's the
782                  * shared object which takes the reference count)?
783                  * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
784                  *
785                  * If that's wrong, then we should worry more about
786                  * exit_mmap() and do_munmap() cases described above:
787                  * we might be resetting SWAP_MAP_MAX too early here.
788                  * We know "Undead"s can happen, they're okay, so don't
789                  * report them; but do report if we reset SWAP_MAP_MAX.
790                  */
791                 if (*swap_map == SWAP_MAP_MAX) {
792                         swap_device_lock(si);
793                         *swap_map = 1;
794                         swap_device_unlock(si);
795                         reset_overflow = 1;
796                 }
797
798                 /*
799                  * If a reference remains (rare), we would like to leave
800                  * the page in the swap cache; but try_to_unmap could
801                  * then re-duplicate the entry once we drop page lock,
802                  * so we might loop indefinitely; also, that page could
803                  * not be swapped out to other storage meanwhile.  So:
804                  * delete from cache even if there's another reference,
805                  * after ensuring that the data has been saved to disk -
806                  * since if the reference remains (rarer), it will be
807                  * read from disk into another page.  Splitting into two
808                  * pages would be incorrect if swap supported "shared
809                  * private" pages, but they are handled by tmpfs files.
810                  *
811                  * Note shmem_unuse already deleted a swappage from
812                  * the swap cache, unless the move to filepage failed:
813                  * in which case it left swappage in cache, lowered its
814                  * swap count to pass quickly through the loops above,
815                  * and now we must reincrement count to try again later.
816                  */
817                 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
818                         struct writeback_control wbc = {
819                                 .sync_mode = WB_SYNC_NONE,
820                         };
821
822                         swap_writepage(page, &wbc);
823                         lock_page(page);
824                         wait_on_page_writeback(page);
825                 }
826                 if (PageSwapCache(page)) {
827                         if (shmem)
828                                 swap_duplicate(entry);
829                         else
830                                 delete_from_swap_cache(page);
831                 }
832
833                 /*
834                  * So we could skip searching mms once swap count went
835                  * to 1, we did not mark any present ptes as dirty: must
836                  * mark page dirty so shrink_list will preserve it.
837                  */
838                 SetPageDirty(page);
839                 unlock_page(page);
840                 page_cache_release(page);
841
842                 /*
843                  * Make sure that we aren't completely killing
844                  * interactive performance.
845                  */
846                 cond_resched();
847         }
848
849         mmput(start_mm);
850         if (reset_overflow) {
851                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
852                 swap_overflow = 0;
853         }
854         return retval;
855 }
856
857 /*
858  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
859  * corresponds to page offset `offset'.
860  */
861 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
862 {
863         struct swap_extent *se = sis->curr_swap_extent;
864         struct swap_extent *start_se = se;
865
866         for ( ; ; ) {
867                 struct list_head *lh;
868
869                 if (se->start_page <= offset &&
870                                 offset < (se->start_page + se->nr_pages)) {
871                         return se->start_block + (offset - se->start_page);
872                 }
873                 lh = se->list.prev;
874                 if (lh == &sis->extent_list)
875                         lh = lh->prev;
876                 se = list_entry(lh, struct swap_extent, list);
877                 sis->curr_swap_extent = se;
878                 BUG_ON(se == start_se);         /* It *must* be present */
879         }
880 }
881
882 /*
883  * Free all of a swapdev's extent information
884  */
885 static void destroy_swap_extents(struct swap_info_struct *sis)
886 {
887         while (!list_empty(&sis->extent_list)) {
888                 struct swap_extent *se;
889
890                 se = list_entry(sis->extent_list.next,
891                                 struct swap_extent, list);
892                 list_del(&se->list);
893                 kfree(se);
894         }
895         sis->nr_extents = 0;
896 }
897
898 /*
899  * Add a block range (and the corresponding page range) into this swapdev's
900  * extent list.  The extent list is kept sorted in block order.
901  *
902  * This function rather assumes that it is called in ascending sector_t order.
903  * It doesn't look for extent coalescing opportunities.
904  */
905 static int
906 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
907                 unsigned long nr_pages, sector_t start_block)
908 {
909         struct swap_extent *se;
910         struct swap_extent *new_se;
911         struct list_head *lh;
912
913         lh = sis->extent_list.next;     /* The highest-addressed block */
914         while (lh != &sis->extent_list) {
915                 se = list_entry(lh, struct swap_extent, list);
916                 if (se->start_block + se->nr_pages == start_block &&
917                     se->start_page  + se->nr_pages == start_page) {
918                         /* Merge it */
919                         se->nr_pages += nr_pages;
920                         return 0;
921                 }
922                 lh = lh->next;
923         }
924
925         /*
926          * No merge.  Insert a new extent, preserving ordering.
927          */
928         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
929         if (new_se == NULL)
930                 return -ENOMEM;
931         new_se->start_page = start_page;
932         new_se->nr_pages = nr_pages;
933         new_se->start_block = start_block;
934
935         lh = sis->extent_list.prev;     /* The lowest block */
936         while (lh != &sis->extent_list) {
937                 se = list_entry(lh, struct swap_extent, list);
938                 if (se->start_block > start_block)
939                         break;
940                 lh = lh->prev;
941         }
942         list_add_tail(&new_se->list, lh);
943         sis->nr_extents++;
944         return 0;
945 }
946
947 /*
948  * A `swap extent' is a simple thing which maps a contiguous range of pages
949  * onto a contiguous range of disk blocks.  An ordered list of swap extents
950  * is built at swapon time and is then used at swap_writepage/swap_readpage
951  * time for locating where on disk a page belongs.
952  *
953  * If the swapfile is an S_ISBLK block device, a single extent is installed.
954  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
955  * swap files identically.
956  *
957  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
958  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
959  * swapfiles are handled *identically* after swapon time.
960  *
961  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
962  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
963  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
964  * requirements, they are simply tossed out - we will never use those blocks
965  * for swapping.
966  *
967  * For S_ISREG swapfiles we hold i_sem across the life of the swapon.  This
968  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
969  * which will scribble on the fs.
970  *
971  * The amount of disk space which a single swap extent represents varies.
972  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
973  * extents in the list.  To avoid much list walking, we cache the previous
974  * search location in `curr_swap_extent', and start new searches from there.
975  * This is extremely effective.  The average number of iterations in
976  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
977  */
978 static int setup_swap_extents(struct swap_info_struct *sis)
979 {
980         struct inode *inode;
981         unsigned blocks_per_page;
982         unsigned long page_no;
983         unsigned blkbits;
984         sector_t probe_block;
985         sector_t last_block;
986         int ret;
987
988         inode = sis->swap_file->f_mapping->host;
989         if (S_ISBLK(inode->i_mode)) {
990                 ret = add_swap_extent(sis, 0, sis->max, 0);
991                 goto done;
992         }
993
994         blkbits = inode->i_blkbits;
995         blocks_per_page = PAGE_SIZE >> blkbits;
996
997         /*
998          * Map all the blocks into the extent list.  This code doesn't try
999          * to be very smart.
1000          */
1001         probe_block = 0;
1002         page_no = 0;
1003         last_block = i_size_read(inode) >> blkbits;
1004         while ((probe_block + blocks_per_page) <= last_block &&
1005                         page_no < sis->max) {
1006                 unsigned block_in_page;
1007                 sector_t first_block;
1008
1009                 first_block = bmap(inode, probe_block);
1010                 if (first_block == 0)
1011                         goto bad_bmap;
1012
1013                 /*
1014                  * It must be PAGE_SIZE aligned on-disk
1015                  */
1016                 if (first_block & (blocks_per_page - 1)) {
1017                         probe_block++;
1018                         goto reprobe;
1019                 }
1020
1021                 for (block_in_page = 1; block_in_page < blocks_per_page;
1022                                         block_in_page++) {
1023                         sector_t block;
1024
1025                         block = bmap(inode, probe_block + block_in_page);
1026                         if (block == 0)
1027                                 goto bad_bmap;
1028                         if (block != first_block + block_in_page) {
1029                                 /* Discontiguity */
1030                                 probe_block++;
1031                                 goto reprobe;
1032                         }
1033                 }
1034
1035                 /*
1036                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1037                  */
1038                 ret = add_swap_extent(sis, page_no, 1,
1039                                 first_block >> (PAGE_SHIFT - blkbits));
1040                 if (ret)
1041                         goto out;
1042                 page_no++;
1043                 probe_block += blocks_per_page;
1044 reprobe:
1045                 continue;
1046         }
1047         ret = 0;
1048         if (page_no == 0)
1049                 ret = -EINVAL;
1050         sis->max = page_no;
1051         sis->highest_bit = page_no - 1;
1052 done:
1053         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1054                                         struct swap_extent, list);
1055         goto out;
1056 bad_bmap:
1057         printk(KERN_ERR "swapon: swapfile has holes\n");
1058         ret = -EINVAL;
1059 out:
1060         return ret;
1061 }
1062
1063 #if 0   /* We don't need this yet */
1064 #include <linux/backing-dev.h>
1065 int page_queue_congested(struct page *page)
1066 {
1067         struct backing_dev_info *bdi;
1068
1069         BUG_ON(!PageLocked(page));      /* It pins the swap_info_struct */
1070
1071         if (PageSwapCache(page)) {
1072                 swp_entry_t entry = { .val = page->private };
1073                 struct swap_info_struct *sis;
1074
1075                 sis = get_swap_info_struct(swp_type(entry));
1076                 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1077         } else
1078                 bdi = page->mapping->backing_dev_info;
1079         return bdi_write_congested(bdi);
1080 }
1081 #endif
1082
1083 asmlinkage long sys_swapoff(const char __user * specialfile)
1084 {
1085         struct swap_info_struct * p = NULL;
1086         unsigned short *swap_map;
1087         struct file *swap_file, *victim;
1088         struct address_space *mapping;
1089         char * pathname;
1090         int i, type, prev;
1091         int err;
1092         
1093         if (!capable(CAP_SYS_ADMIN))
1094                 return -EPERM;
1095
1096         pathname = getname(specialfile);
1097         err = PTR_ERR(pathname);
1098         if (IS_ERR(pathname))
1099                 goto out;
1100
1101         victim = filp_open(pathname, O_RDWR, 0);
1102         putname(pathname);
1103         err = PTR_ERR(victim);
1104         if (IS_ERR(victim))
1105                 goto out;
1106
1107         mapping = victim->f_mapping;
1108         prev = -1;
1109         swap_list_lock();
1110         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1111                 p = swap_info + type;
1112                 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1113                         if (p->swap_file->f_mapping == mapping)
1114                                 break;
1115                 }
1116                 prev = type;
1117         }
1118         if (type < 0) {
1119                 err = -EINVAL;
1120                 swap_list_unlock();
1121                 goto out_dput;
1122         }
1123         if (!security_vm_enough_memory(p->pages))
1124                 vm_unacct_memory(p->pages);
1125         else {
1126                 err = -ENOMEM;
1127                 swap_list_unlock();
1128                 goto out_dput;
1129         }
1130         if (prev < 0) {
1131                 swap_list.head = p->next;
1132         } else {
1133                 swap_info[prev].next = p->next;
1134         }
1135         if (type == swap_list.next) {
1136                 /* just pick something that's safe... */
1137                 swap_list.next = swap_list.head;
1138         }
1139         nr_swap_pages -= p->pages;
1140         total_swap_pages -= p->pages;
1141         p->flags &= ~SWP_WRITEOK;
1142         swap_list_unlock();
1143         current->flags |= PF_SWAPOFF;
1144         err = try_to_unuse(type);
1145         current->flags &= ~PF_SWAPOFF;
1146         if (err) {
1147                 /* re-insert swap space back into swap_list */
1148                 swap_list_lock();
1149                 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1150                         if (p->prio >= swap_info[i].prio)
1151                                 break;
1152                 p->next = i;
1153                 if (prev < 0)
1154                         swap_list.head = swap_list.next = p - swap_info;
1155                 else
1156                         swap_info[prev].next = p - swap_info;
1157                 nr_swap_pages += p->pages;
1158                 total_swap_pages += p->pages;
1159                 p->flags |= SWP_WRITEOK;
1160                 swap_list_unlock();
1161                 goto out_dput;
1162         }
1163         down(&swapon_sem);
1164         down(&swap_bdevs_sem);
1165         swap_list_lock();
1166         swap_device_lock(p);
1167         swap_file = p->swap_file;
1168         p->swap_file = NULL;
1169         p->max = 0;
1170         swap_map = p->swap_map;
1171         p->swap_map = NULL;
1172         p->flags = 0;
1173         destroy_swap_extents(p);
1174         swap_device_unlock(p);
1175         swap_list_unlock();
1176         remove_swap_bdev(p->bdev);
1177         up(&swap_bdevs_sem);
1178         up(&swapon_sem);
1179         vfree(swap_map);
1180         if (S_ISBLK(mapping->host->i_mode)) {
1181                 struct block_device *bdev = I_BDEV(mapping->host);
1182                 set_blocksize(bdev, p->old_block_size);
1183                 bd_release(bdev);
1184         } else {
1185                 up(&mapping->host->i_sem);
1186         }
1187         filp_close(swap_file, NULL);
1188         err = 0;
1189
1190 out_dput:
1191         filp_close(victim, NULL);
1192 out:
1193         return err;
1194 }
1195
1196 #ifdef CONFIG_PROC_FS
1197 /* iterator */
1198 static void *swap_start(struct seq_file *swap, loff_t *pos)
1199 {
1200         struct swap_info_struct *ptr = swap_info;
1201         int i;
1202         loff_t l = *pos;
1203
1204         down(&swapon_sem);
1205
1206         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1207                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1208                         continue;
1209                 if (!l--)
1210                         return ptr;
1211         }
1212
1213         return NULL;
1214 }
1215
1216 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1217 {
1218         struct swap_info_struct *ptr = v;
1219         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1220
1221         for (++ptr; ptr < endptr; ptr++) {
1222                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1223                         continue;
1224                 ++*pos;
1225                 return ptr;
1226         }
1227
1228         return NULL;
1229 }
1230
1231 static void swap_stop(struct seq_file *swap, void *v)
1232 {
1233         up(&swapon_sem);
1234 }
1235
1236 static int swap_show(struct seq_file *swap, void *v)
1237 {
1238         struct swap_info_struct *ptr = v;
1239         struct file *file;
1240         int len;
1241
1242         if (v == swap_info)
1243                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1244
1245         file = ptr->swap_file;
1246         len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1247         seq_printf(swap, "%*s%s\t%d\t%ld\t%d\n",
1248                        len < 40 ? 40 - len : 1, " ",
1249                        S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1250                                 "partition" : "file\t",
1251                        ptr->pages << (PAGE_SHIFT - 10),
1252                        ptr->inuse_pages << (PAGE_SHIFT - 10),
1253                        ptr->prio);
1254         return 0;
1255 }
1256
1257 static struct seq_operations swaps_op = {
1258         .start =        swap_start,
1259         .next =         swap_next,
1260         .stop =         swap_stop,
1261         .show =         swap_show
1262 };
1263
1264 static int swaps_open(struct inode *inode, struct file *file)
1265 {
1266         return seq_open(file, &swaps_op);
1267 }
1268
1269 static struct file_operations proc_swaps_operations = {
1270         .open           = swaps_open,
1271         .read           = seq_read,
1272         .llseek         = seq_lseek,
1273         .release        = seq_release,
1274 };
1275
1276 static int __init procswaps_init(void)
1277 {
1278         struct proc_dir_entry *entry;
1279
1280         entry = create_proc_entry("swaps", 0, NULL);
1281         if (entry)
1282                 entry->proc_fops = &proc_swaps_operations;
1283         return 0;
1284 }
1285 __initcall(procswaps_init);
1286 #endif /* CONFIG_PROC_FS */
1287
1288 /*
1289  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1290  *
1291  * The swapon system call
1292  */
1293 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1294 {
1295         struct swap_info_struct * p;
1296         char *name = NULL;
1297         struct block_device *bdev = NULL;
1298         struct file *swap_file = NULL;
1299         struct address_space *mapping;
1300         unsigned int type;
1301         int i, prev;
1302         int error;
1303         static int least_priority;
1304         union swap_header *swap_header = 0;
1305         int swap_header_version;
1306         int nr_good_pages = 0;
1307         unsigned long maxpages = 1;
1308         int swapfilesize;
1309         unsigned short *swap_map;
1310         struct page *page = NULL;
1311         struct inode *inode = NULL;
1312         int did_down = 0;
1313
1314         if (!capable(CAP_SYS_ADMIN))
1315                 return -EPERM;
1316         swap_list_lock();
1317         p = swap_info;
1318         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1319                 if (!(p->flags & SWP_USED))
1320                         break;
1321         error = -EPERM;
1322         /*
1323          * Test if adding another swap device is possible. There are
1324          * two limiting factors: 1) the number of bits for the swap
1325          * type swp_entry_t definition and 2) the number of bits for
1326          * the swap type in the swap ptes as defined by the different
1327          * architectures. To honor both limitations a swap entry
1328          * with swap offset 0 and swap type ~0UL is created, encoded
1329          * to a swap pte, decoded to a swp_entry_t again and finally
1330          * the swap type part is extracted. This will mask all bits
1331          * from the initial ~0UL that can't be encoded in either the
1332          * swp_entry_t or the architecture definition of a swap pte.
1333          */
1334         if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1335                 swap_list_unlock();
1336                 goto out;
1337         }
1338         if (type >= nr_swapfiles)
1339                 nr_swapfiles = type+1;
1340         INIT_LIST_HEAD(&p->extent_list);
1341         p->flags = SWP_USED;
1342         p->nr_extents = 0;
1343         p->swap_file = NULL;
1344         p->old_block_size = 0;
1345         p->swap_map = NULL;
1346         p->lowest_bit = 0;
1347         p->highest_bit = 0;
1348         p->cluster_nr = 0;
1349         p->inuse_pages = 0;
1350         p->sdev_lock = SPIN_LOCK_UNLOCKED;
1351         p->next = -1;
1352         if (swap_flags & SWAP_FLAG_PREFER) {
1353                 p->prio =
1354                   (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1355         } else {
1356                 p->prio = --least_priority;
1357         }
1358         swap_list_unlock();
1359         name = getname(specialfile);
1360         error = PTR_ERR(name);
1361         if (IS_ERR(name)) {
1362                 name = NULL;
1363                 goto bad_swap_2;
1364         }
1365         swap_file = filp_open(name, O_RDWR, 0);
1366         error = PTR_ERR(swap_file);
1367         if (IS_ERR(swap_file)) {
1368                 swap_file = NULL;
1369                 goto bad_swap_2;
1370         }
1371
1372         p->swap_file = swap_file;
1373         mapping = swap_file->f_mapping;
1374         inode = mapping->host;
1375
1376         error = -EBUSY;
1377         for (i = 0; i < nr_swapfiles; i++) {
1378                 struct swap_info_struct *q = &swap_info[i];
1379
1380                 if (i == type || !q->swap_file)
1381                         continue;
1382                 if (mapping == q->swap_file->f_mapping)
1383                         goto bad_swap;
1384         }
1385
1386         error = -EINVAL;
1387         if (S_ISBLK(inode->i_mode)) {
1388                 bdev = I_BDEV(inode);
1389                 error = bd_claim(bdev, sys_swapon);
1390                 if (error < 0) {
1391                         bdev = NULL;
1392                         goto bad_swap;
1393                 }
1394                 p->old_block_size = block_size(bdev);
1395                 error = set_blocksize(bdev, PAGE_SIZE);
1396                 if (error < 0)
1397                         goto bad_swap;
1398                 p->bdev = bdev;
1399         } else if (S_ISREG(inode->i_mode)) {
1400                 p->bdev = inode->i_sb->s_bdev;
1401                 down(&inode->i_sem);
1402                 did_down = 1;
1403         } else {
1404                 goto bad_swap;
1405         }
1406
1407         swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1408
1409         /*
1410          * Read the swap header.
1411          */
1412         if (!mapping->a_ops->readpage) {
1413                 error = -EINVAL;
1414                 goto bad_swap;
1415         }
1416         page = read_cache_page(mapping, 0,
1417                         (filler_t *)mapping->a_ops->readpage, swap_file);
1418         if (IS_ERR(page)) {
1419                 error = PTR_ERR(page);
1420                 goto bad_swap;
1421         }
1422         wait_on_page_locked(page);
1423         if (!PageUptodate(page))
1424                 goto bad_swap;
1425         kmap(page);
1426         swap_header = page_address(page);
1427
1428         if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1429                 swap_header_version = 1;
1430         else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1431                 swap_header_version = 2;
1432         else {
1433                 printk("Unable to find swap-space signature\n");
1434                 error = -EINVAL;
1435                 goto bad_swap;
1436         }
1437         
1438         switch (swap_header_version) {
1439         case 1:
1440                 printk(KERN_ERR "version 0 swap is no longer supported. "
1441                         "Use mkswap -v1 %s\n", name);
1442                 error = -EINVAL;
1443                 goto bad_swap;
1444         case 2:
1445                 /* Check the swap header's sub-version and the size of
1446                    the swap file and bad block lists */
1447                 if (swap_header->info.version != 1) {
1448                         printk(KERN_WARNING
1449                                "Unable to handle swap header version %d\n",
1450                                swap_header->info.version);
1451                         error = -EINVAL;
1452                         goto bad_swap;
1453                 }
1454
1455                 p->lowest_bit  = 1;
1456                 /*
1457                  * Find out how many pages are allowed for a single swap
1458                  * device. There are two limiting factors: 1) the number of
1459                  * bits for the swap offset in the swp_entry_t type and
1460                  * 2) the number of bits in the a swap pte as defined by
1461                  * the different architectures. In order to find the
1462                  * largest possible bit mask a swap entry with swap type 0
1463                  * and swap offset ~0UL is created, encoded to a swap pte,
1464                  * decoded to a swp_entry_t again and finally the swap
1465                  * offset is extracted. This will mask all the bits from
1466                  * the initial ~0UL mask that can't be encoded in either
1467                  * the swp_entry_t or the architecture definition of a
1468                  * swap pte.
1469                  */
1470                 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1471                 if (maxpages > swap_header->info.last_page)
1472                         maxpages = swap_header->info.last_page;
1473                 p->highest_bit = maxpages - 1;
1474
1475                 error = -EINVAL;
1476                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1477                         goto bad_swap;
1478                 
1479                 /* OK, set up the swap map and apply the bad block list */
1480                 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1481                         error = -ENOMEM;
1482                         goto bad_swap;
1483                 }
1484
1485                 error = 0;
1486                 memset(p->swap_map, 0, maxpages * sizeof(short));
1487                 for (i=0; i<swap_header->info.nr_badpages; i++) {
1488                         int page = swap_header->info.badpages[i];
1489                         if (page <= 0 || page >= swap_header->info.last_page)
1490                                 error = -EINVAL;
1491                         else
1492                                 p->swap_map[page] = SWAP_MAP_BAD;
1493                 }
1494                 nr_good_pages = swap_header->info.last_page -
1495                                 swap_header->info.nr_badpages -
1496                                 1 /* header page */;
1497                 if (error) 
1498                         goto bad_swap;
1499         }
1500         
1501         if (swapfilesize && maxpages > swapfilesize) {
1502                 printk(KERN_WARNING
1503                        "Swap area shorter than signature indicates\n");
1504                 error = -EINVAL;
1505                 goto bad_swap;
1506         }
1507         if (!nr_good_pages) {
1508                 printk(KERN_WARNING "Empty swap-file\n");
1509                 error = -EINVAL;
1510                 goto bad_swap;
1511         }
1512         p->swap_map[0] = SWAP_MAP_BAD;
1513         p->max = maxpages;
1514         p->pages = nr_good_pages;
1515
1516         error = setup_swap_extents(p);
1517         if (error)
1518                 goto bad_swap;
1519
1520         down(&swapon_sem);
1521         down(&swap_bdevs_sem);
1522         swap_list_lock();
1523         swap_device_lock(p);
1524         p->flags = SWP_ACTIVE;
1525         nr_swap_pages += nr_good_pages;
1526         total_swap_pages += nr_good_pages;
1527         printk(KERN_INFO "Adding %dk swap on %s.  Priority:%d extents:%d\n",
1528                 nr_good_pages<<(PAGE_SHIFT-10), name,
1529                 p->prio, p->nr_extents);
1530
1531         /* insert swap space into swap_list: */
1532         prev = -1;
1533         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1534                 if (p->prio >= swap_info[i].prio) {
1535                         break;
1536                 }
1537                 prev = i;
1538         }
1539         p->next = i;
1540         if (prev < 0) {
1541                 swap_list.head = swap_list.next = p - swap_info;
1542         } else {
1543                 swap_info[prev].next = p - swap_info;
1544         }
1545         swap_device_unlock(p);
1546         swap_list_unlock();
1547         install_swap_bdev(p->bdev);
1548         up(&swap_bdevs_sem);
1549         up(&swapon_sem);
1550         error = 0;
1551         goto out;
1552 bad_swap:
1553         if (bdev) {
1554                 set_blocksize(bdev, p->old_block_size);
1555                 bd_release(bdev);
1556         }
1557 bad_swap_2:
1558         swap_list_lock();
1559         swap_map = p->swap_map;
1560         p->swap_file = NULL;
1561         p->swap_map = NULL;
1562         p->flags = 0;
1563         if (!(swap_flags & SWAP_FLAG_PREFER))
1564                 ++least_priority;
1565         swap_list_unlock();
1566         destroy_swap_extents(p);
1567         if (swap_map)
1568                 vfree(swap_map);
1569         if (swap_file)
1570                 filp_close(swap_file, NULL);
1571 out:
1572         if (page && !IS_ERR(page)) {
1573                 kunmap(page);
1574                 page_cache_release(page);
1575         }
1576         if (name)
1577                 putname(name);
1578         if (error && did_down)
1579                 up(&inode->i_sem);
1580         return error;
1581 }
1582
1583 void si_swapinfo(struct sysinfo *val)
1584 {
1585         unsigned int i;
1586         unsigned long nr_to_be_unused = 0;
1587
1588         swap_list_lock();
1589         for (i = 0; i < nr_swapfiles; i++) {
1590                 if (!(swap_info[i].flags & SWP_USED) ||
1591                      (swap_info[i].flags & SWP_WRITEOK))
1592                         continue;
1593                 nr_to_be_unused += swap_info[i].inuse_pages;
1594         }
1595         val->freeswap = nr_swap_pages + nr_to_be_unused;
1596         val->totalswap = total_swap_pages + nr_to_be_unused;
1597         swap_list_unlock();
1598 }
1599
1600 /*
1601  * Verify that a swap entry is valid and increment its swap map count.
1602  *
1603  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1604  * "permanent", but will be reclaimed by the next swapoff.
1605  */
1606 int swap_duplicate(swp_entry_t entry)
1607 {
1608         struct swap_info_struct * p;
1609         unsigned long offset, type;
1610         int result = 0;
1611
1612         type = swp_type(entry);
1613         if (type >= nr_swapfiles)
1614                 goto bad_file;
1615         p = type + swap_info;
1616         offset = swp_offset(entry);
1617
1618         swap_device_lock(p);
1619         if (offset < p->max && p->swap_map[offset]) {
1620                 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1621                         p->swap_map[offset]++;
1622                         result = 1;
1623                 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1624                         if (swap_overflow++ < 5)
1625                                 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1626                         p->swap_map[offset] = SWAP_MAP_MAX;
1627                         result = 1;
1628                 }
1629         }
1630         swap_device_unlock(p);
1631 out:
1632         return result;
1633
1634 bad_file:
1635         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1636         goto out;
1637 }
1638
1639 struct swap_info_struct *
1640 get_swap_info_struct(unsigned type)
1641 {
1642         return &swap_info[type];
1643 }
1644
1645 /*
1646  * swap_device_lock prevents swap_map being freed. Don't grab an extra
1647  * reference on the swaphandle, it doesn't matter if it becomes unused.
1648  */
1649 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1650 {
1651         int ret = 0, i = 1 << page_cluster;
1652         unsigned long toff;
1653         struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1654
1655         if (!page_cluster)      /* no readahead */
1656                 return 0;
1657         toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1658         if (!toff)              /* first page is swap header */
1659                 toff++, i--;
1660         *offset = toff;
1661
1662         swap_device_lock(swapdev);
1663         do {
1664                 /* Don't read-ahead past the end of the swap area */
1665                 if (toff >= swapdev->max)
1666                         break;
1667                 /* Don't read in free or bad pages */
1668                 if (!swapdev->swap_map[toff])
1669                         break;
1670                 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1671                         break;
1672                 toff++;
1673                 ret++;
1674         } while (--i);
1675         swap_device_unlock(swapdev);
1676         return ret;
1677 }