This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / arch / avr32 / kernel / setup.c
diff --git a/arch/avr32/kernel/setup.c b/arch/avr32/kernel/setup.c
new file mode 100644 (file)
index 0000000..a342116
--- /dev/null
@@ -0,0 +1,312 @@
+/*
+ * Copyright (C) 2004-2006 Atmel Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/clk.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/console.h>
+#include <linux/ioport.h>
+#include <linux/bootmem.h>
+#include <linux/fs.h>
+#include <linux/module.h>
+#include <linux/root_dev.h>
+#include <linux/cpu.h>
+
+#include <asm/sections.h>
+#include <asm/processor.h>
+#include <asm/pgtable.h>
+#include <asm/setup.h>
+#include <asm/sysreg.h>
+
+#include <asm/arch/board.h>
+#include <asm/arch/init.h>
+
+extern int root_mountflags;
+
+/*
+ * Bootloader-provided information about physical memory
+ */
+struct tag_mem_range *mem_phys;
+struct tag_mem_range *mem_reserved;
+struct tag_mem_range *mem_ramdisk;
+
+/*
+ * Initialize loops_per_jiffy as 5000000 (500MIPS).
+ * Better make it too large than too small...
+ */
+struct avr32_cpuinfo boot_cpu_data = {
+       .loops_per_jiffy = 5000000
+};
+EXPORT_SYMBOL(boot_cpu_data);
+
+static char command_line[COMMAND_LINE_SIZE];
+
+/*
+ * Should be more than enough, but if you have a _really_ complex
+ * setup, you might need to increase the size of this...
+ */
+static struct tag_mem_range __initdata mem_range_cache[32];
+static unsigned mem_range_next_free;
+
+/*
+ * Standard memory resources
+ */
+static struct resource mem_res[] = {
+       {
+               .name   = "Kernel code",
+               .start  = 0,
+               .end    = 0,
+               .flags  = IORESOURCE_MEM
+       },
+       {
+               .name   = "Kernel data",
+               .start  = 0,
+               .end    = 0,
+               .flags  = IORESOURCE_MEM,
+       },
+};
+
+#define kernel_code    mem_res[0]
+#define kernel_data    mem_res[1]
+
+/*
+ * Early framebuffer allocation. Works as follows:
+ *   - If fbmem_size is zero, nothing will be allocated or reserved.
+ *   - If fbmem_start is zero when setup_bootmem() is called,
+ *     fbmem_size bytes will be allocated from the bootmem allocator.
+ *   - If fbmem_start is nonzero, an area of size fbmem_size will be
+ *     reserved at the physical address fbmem_start if necessary. If
+ *     the area isn't in a memory region known to the kernel, it will
+ *     be left alone.
+ *
+ * Board-specific code may use these variables to set up platform data
+ * for the framebuffer driver if fbmem_size is nonzero.
+ */
+static unsigned long __initdata fbmem_start;
+static unsigned long __initdata fbmem_size;
+
+/*
+ * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
+ * use as framebuffer.
+ *
+ * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
+ * starting at yyy to be reserved for use as framebuffer.
+ *
+ * The kernel won't verify that the memory region starting at yyy
+ * actually contains usable RAM.
+ */
+static int __init early_parse_fbmem(char *p)
+{
+       fbmem_size = memparse(p, &p);
+       if (*p == '@')
+               fbmem_start = memparse(p, &p);
+       return 0;
+}
+early_param("fbmem", early_parse_fbmem);
+
+static inline void __init resource_init(void)
+{
+       struct tag_mem_range *region;
+
+       kernel_code.start = __pa(init_mm.start_code);
+       kernel_code.end = __pa(init_mm.end_code - 1);
+       kernel_data.start = __pa(init_mm.end_code);
+       kernel_data.end = __pa(init_mm.brk - 1);
+
+       for (region = mem_phys; region; region = region->next) {
+               struct resource *res;
+               unsigned long phys_start, phys_end;
+
+               if (region->size == 0)
+                       continue;
+
+               phys_start = region->addr;
+               phys_end = phys_start + region->size - 1;
+
+               res = alloc_bootmem_low(sizeof(*res));
+               res->name = "System RAM";
+               res->start = phys_start;
+               res->end = phys_end;
+               res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
+
+               request_resource (&iomem_resource, res);
+
+               if (kernel_code.start >= res->start &&
+                   kernel_code.end <= res->end)
+                       request_resource (res, &kernel_code);
+               if (kernel_data.start >= res->start &&
+                   kernel_data.end <= res->end)
+                       request_resource (res, &kernel_data);
+       }
+}
+
+static int __init parse_tag_core(struct tag *tag)
+{
+       if (tag->hdr.size > 2) {
+               if ((tag->u.core.flags & 1) == 0)
+                       root_mountflags &= ~MS_RDONLY;
+               ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
+       }
+       return 0;
+}
+__tagtable(ATAG_CORE, parse_tag_core);
+
+static int __init parse_tag_mem_range(struct tag *tag,
+                                     struct tag_mem_range **root)
+{
+       struct tag_mem_range *cur, **pprev;
+       struct tag_mem_range *new;
+
+       /*
+        * Ignore zero-sized entries. If we're running standalone, the
+        * SDRAM code may emit such entries if something goes
+        * wrong...
+        */
+       if (tag->u.mem_range.size == 0)
+               return 0;
+
+       /*
+        * Copy the data so the bootmem init code doesn't need to care
+        * about it.
+        */
+       if (mem_range_next_free >=
+           (sizeof(mem_range_cache) / sizeof(mem_range_cache[0])))
+               panic("Physical memory map too complex!\n");
+
+       new = &mem_range_cache[mem_range_next_free++];
+       *new = tag->u.mem_range;
+
+       pprev = root;
+       cur = *root;
+       while (cur) {
+               pprev = &cur->next;
+               cur = cur->next;
+       }
+
+       *pprev = new;
+       new->next = NULL;
+
+       return 0;
+}
+
+static int __init parse_tag_mem(struct tag *tag)
+{
+       return parse_tag_mem_range(tag, &mem_phys);
+}
+__tagtable(ATAG_MEM, parse_tag_mem);
+
+static int __init parse_tag_cmdline(struct tag *tag)
+{
+       strlcpy(saved_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
+       return 0;
+}
+__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
+
+static int __init parse_tag_rdimg(struct tag *tag)
+{
+       return parse_tag_mem_range(tag, &mem_ramdisk);
+}
+__tagtable(ATAG_RDIMG, parse_tag_rdimg);
+
+static int __init parse_tag_clock(struct tag *tag)
+{
+       /*
+        * We'll figure out the clocks by peeking at the system
+        * manager regs directly.
+        */
+       return 0;
+}
+__tagtable(ATAG_CLOCK, parse_tag_clock);
+
+static int __init parse_tag_rsvd_mem(struct tag *tag)
+{
+       return parse_tag_mem_range(tag, &mem_reserved);
+}
+__tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);
+
+/*
+ * Scan the tag table for this tag, and call its parse function. The
+ * tag table is built by the linker from all the __tagtable
+ * declarations.
+ */
+static int __init parse_tag(struct tag *tag)
+{
+       extern struct tagtable __tagtable_begin, __tagtable_end;
+       struct tagtable *t;
+
+       for (t = &__tagtable_begin; t < &__tagtable_end; t++)
+               if (tag->hdr.tag == t->tag) {
+                       t->parse(tag);
+                       break;
+               }
+
+       return t < &__tagtable_end;
+}
+
+/*
+ * Parse all tags in the list we got from the boot loader
+ */
+static void __init parse_tags(struct tag *t)
+{
+       for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
+               if (!parse_tag(t))
+                       printk(KERN_WARNING
+                              "Ignoring unrecognised tag 0x%08x\n",
+                              t->hdr.tag);
+}
+
+void __init setup_arch (char **cmdline_p)
+{
+       struct clk *cpu_clk;
+
+       parse_tags(bootloader_tags);
+
+       setup_processor();
+       setup_platform();
+       setup_board();
+
+       cpu_clk = clk_get(NULL, "cpu");
+       if (IS_ERR(cpu_clk)) {
+               printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
+       } else {
+               unsigned long cpu_hz = clk_get_rate(cpu_clk);
+
+               /*
+                * Well, duh, but it's probably a good idea to
+                * increment the use count.
+                */
+               clk_enable(cpu_clk);
+
+               boot_cpu_data.clk = cpu_clk;
+               boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
+               printk("CPU: Running at %lu.%03lu MHz\n",
+                      ((cpu_hz + 500) / 1000) / 1000,
+                      ((cpu_hz + 500) / 1000) % 1000);
+       }
+
+       init_mm.start_code = (unsigned long) &_text;
+       init_mm.end_code = (unsigned long) &_etext;
+       init_mm.end_data = (unsigned long) &_edata;
+       init_mm.brk = (unsigned long) &_end;
+
+       strlcpy(command_line, saved_command_line, COMMAND_LINE_SIZE);
+       *cmdline_p = command_line;
+       parse_early_param();
+
+       setup_bootmem();
+
+       board_setup_fbmem(fbmem_start, fbmem_size);
+
+#ifdef CONFIG_VT
+       conswitchp = &dummy_con;
+#endif
+
+       paging_init();
+
+       resource_init();
+}