fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / arch / parisc / kernel / time.c
index 594930b..bad7d1e 100644 (file)
@@ -10,7 +10,6 @@
  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  */
-#include <linux/config.h>
 #include <linux/errno.h>
 #include <linux/module.h>
 #include <linux/sched.h>
 
 #include <linux/timex.h>
 
-/* xtime and wall_jiffies keep wall-clock time */
-extern unsigned long wall_jiffies;
+static unsigned long clocktick __read_mostly;  /* timer cycles per tick */
 
-static long clocktick __read_mostly;   /* timer cycles per tick */
-static long halftick __read_mostly;
+/*
+ * We keep time on PA-RISC Linux by using the Interval Timer which is
+ * a pair of registers; one is read-only and one is write-only; both
+ * accessed through CR16.  The read-only register is 32 or 64 bits wide,
+ * and increments by 1 every CPU clock tick.  The architecture only
+ * guarantees us a rate between 0.5 and 2, but all implementations use a
+ * rate of 1.  The write-only register is 32-bits wide.  When the lowest
+ * 32 bits of the read-only register compare equal to the write-only
+ * register, it raises a maskable external interrupt.  Each processor has
+ * an Interval Timer of its own and they are not synchronised.  
+ *
+ * We want to generate an interrupt every 1/HZ seconds.  So we program
+ * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
+ * is programmed with the intended time of the next tick.  We can be
+ * held off for an arbitrarily long period of time by interrupts being
+ * disabled, so we may miss one or more ticks.
+ */
+irqreturn_t timer_interrupt(int irq, void *dev_id)
+{
+       unsigned long now;
+       unsigned long next_tick;
+       unsigned long cycles_elapsed, ticks_elapsed;
+       unsigned long cycles_remainder;
+       unsigned int cpu = smp_processor_id();
+       struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu];
 
-#ifdef CONFIG_SMP
-extern void smp_do_timer(struct pt_regs *regs);
-#endif
+       /* gcc can optimize for "read-only" case with a local clocktick */
+       unsigned long cpt = clocktick;
 
-irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
-{
-       long now;
-       long next_tick;
-       int nticks;
-       int cpu = smp_processor_id();
+       profile_tick(CPU_PROFILING);
 
-       profile_tick(CPU_PROFILING, regs);
+       /* Initialize next_tick to the expected tick time. */
+       next_tick = cpuinfo->it_value;
 
+       /* Get current interval timer.
+        * CR16 reads as 64 bits in CPU wide mode.
+        * CR16 reads as 32 bits in CPU narrow mode.
+        */
        now = mfctl(16);
-       /* initialize next_tick to time at last clocktick */
-       next_tick = cpu_data[cpu].it_value;
 
-       /* since time passes between the interrupt and the mfctl()
-        * above, it is never true that last_tick + clocktick == now.  If we
-        * never miss a clocktick, we could set next_tick = last_tick + clocktick
-        * but maybe we'll miss ticks, hence the loop.
+       cycles_elapsed = now - next_tick;
+
+       if ((cycles_elapsed >> 5) < cpt) {
+               /* use "cheap" math (add/subtract) instead
+                * of the more expensive div/mul method
+                */
+               cycles_remainder = cycles_elapsed;
+               ticks_elapsed = 1;
+               while (cycles_remainder > cpt) {
+                       cycles_remainder -= cpt;
+                       ticks_elapsed++;
+               }
+       } else {
+               cycles_remainder = cycles_elapsed % cpt;
+               ticks_elapsed = 1 + cycles_elapsed / cpt;
+       }
+
+       /* Can we differentiate between "early CR16" (aka Scenario 1) and
+        * "long delay" (aka Scenario 3)? I don't think so.
         *
-        * Variables are *signed*.
+        * We expected timer_interrupt to be delivered at least a few hundred
+        * cycles after the IT fires. But it's arbitrary how much time passes
+        * before we call it "late". I've picked one second.
         */
-
-       nticks = 0;
-       while((next_tick - now) < halftick) {
-               next_tick += clocktick;
-               nticks++;
+       if (ticks_elapsed > HZ) {
+               /* Scenario 3: very long delay?  bad in any case */
+               printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
+                       " cycles %lX rem %lX "
+                       " next/now %lX/%lX\n",
+                       cpu,
+                       cycles_elapsed, cycles_remainder,
+                       next_tick, now );
        }
+
+       /* convert from "division remainder" to "remainder of clock tick" */
+       cycles_remainder = cpt - cycles_remainder;
+
+       /* Determine when (in CR16 cycles) next IT interrupt will fire.
+        * We want IT to fire modulo clocktick even if we miss/skip some.
+        * But those interrupts don't in fact get delivered that regularly.
+        */
+       next_tick = now + cycles_remainder;
+
+       cpuinfo->it_value = next_tick;
+
+       /* Skip one clocktick on purpose if we are likely to miss next_tick.
+        * We want to avoid the new next_tick being less than CR16.
+        * If that happened, itimer wouldn't fire until CR16 wrapped.
+        * We'll catch the tick we missed on the tick after that.
+        */
+       if (!(cycles_remainder >> 13))
+               next_tick += cpt;
+
+       /* Program the IT when to deliver the next interrupt. */
+       /* Only bottom 32-bits of next_tick are written to cr16.  */
        mtctl(next_tick, 16);
-       cpu_data[cpu].it_value = next_tick;
 
-       while (nticks--) {
-#ifdef CONFIG_SMP
-               smp_do_timer(regs);
-#else
-               update_process_times(user_mode(regs));
-#endif
-               if (cpu == 0) {
-                       write_seqlock(&xtime_lock);
-                       do_timer(regs);
-                       write_sequnlock(&xtime_lock);
-               }
+
+       /* Done mucking with unreliable delivery of interrupts.
+        * Go do system house keeping.
+        */
+
+       if (!--cpuinfo->prof_counter) {
+               cpuinfo->prof_counter = cpuinfo->prof_multiplier;
+               update_process_times(user_mode(get_irq_regs()));
+       }
+
+       if (cpu == 0) {
+               write_seqlock(&xtime_lock);
+               do_timer(ticks_elapsed);
+               write_sequnlock(&xtime_lock);
        }
-    
+
        /* check soft power switch status */
        if (cpu == 0 && !atomic_read(&power_tasklet.count))
                tasklet_schedule(&power_tasklet);
@@ -110,14 +172,12 @@ unsigned long profile_pc(struct pt_regs *regs)
 EXPORT_SYMBOL(profile_pc);
 
 
-/*** converted from ia64 ***/
 /*
  * Return the number of micro-seconds that elapsed since the last
- * update to wall time (aka xtime aka wall_jiffies).  The xtime_lock
+ * update to wall time (aka xtime).  The xtime_lock
  * must be at least read-locked when calling this routine.
  */
-static inline unsigned long
-gettimeoffset (void)
+static inline unsigned long gettimeoffset (void)
 {
 #ifndef CONFIG_SMP
        /*
@@ -125,21 +185,44 @@ gettimeoffset (void)
         *    Once parisc-linux learns the cr16 difference between processors,
         *    this could be made to work.
         */
-       long last_tick;
-       long elapsed_cycles;
-
-       /* it_value is the intended time of the next tick */
-       last_tick = cpu_data[smp_processor_id()].it_value;
-
-       /* Subtract one tick and account for possible difference between
-        * when we expected the tick and when it actually arrived.
-        * (aka wall vs real)
-        */
-       last_tick -= clocktick * (jiffies - wall_jiffies + 1);
-       elapsed_cycles = mfctl(16) - last_tick;
+       unsigned long now;
+       unsigned long prev_tick;
+       unsigned long next_tick;
+       unsigned long elapsed_cycles;
+       unsigned long usec;
+       unsigned long cpuid = smp_processor_id();
+       unsigned long cpt = clocktick;
+
+       next_tick = cpu_data[cpuid].it_value;
+       now = mfctl(16);        /* Read the hardware interval timer.  */
+
+       prev_tick = next_tick - cpt;
+
+       /* Assume Scenario 1: "now" is later than prev_tick.  */
+       elapsed_cycles = now - prev_tick;
+
+/* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */
+#if HZ == 1000
+       if (elapsed_cycles > (cpt << 10) )
+#elif HZ == 250
+       if (elapsed_cycles > (cpt << 8) )
+#elif HZ == 100
+       if (elapsed_cycles > (cpt << 7) )
+#else
+#warn WTF is HZ set to anyway?
+       if (elapsed_cycles > (HZ * cpt) )
+#endif
+       {
+               /* Scenario 3: clock ticks are missing. */
+               printk (KERN_CRIT "gettimeoffset(CPU %ld): missing %ld ticks!"
+                       " cycles %lX prev/now/next %lX/%lX/%lX  clock %lX\n",
+                       cpuid, elapsed_cycles / cpt,
+                       elapsed_cycles, prev_tick, now, next_tick, cpt);
+       }
 
-       /* the precision of this math could be improved */
-       return elapsed_cycles / (PAGE0->mem_10msec / 10000);
+       /* FIXME: Can we improve the precision? Not with PAGE0. */
+       usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec;
+       return usec;
 #else
        return 0;
 #endif
@@ -150,6 +233,7 @@ do_gettimeofday (struct timeval *tv)
 {
        unsigned long flags, seq, usec, sec;
 
+       /* Hold xtime_lock and adjust timeval.  */
        do {
                seq = read_seqbegin_irqsave(&xtime_lock, flags);
                usec = gettimeoffset();
@@ -157,11 +241,13 @@ do_gettimeofday (struct timeval *tv)
                usec += (xtime.tv_nsec / 1000);
        } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
 
-       while (usec >= 1000000) {
-               usec -= 1000000;
+       /* Move adjusted usec's into sec's.  */
+       while (usec >= USEC_PER_SEC) {
+               usec -= USEC_PER_SEC;
                ++sec;
        }
 
+       /* Return adjusted result.  */
        tv->tv_sec = sec;
        tv->tv_usec = usec;
 }
@@ -213,30 +299,33 @@ unsigned long long sched_clock(void)
 }
 
 
+void __init start_cpu_itimer(void)
+{
+       unsigned int cpu = smp_processor_id();
+       unsigned long next_tick = mfctl(16) + clocktick;
+
+       mtctl(next_tick, 16);           /* kick off Interval Timer (CR16) */
+
+       cpu_data[cpu].it_value = next_tick;
+}
+
 void __init time_init(void)
 {
-       unsigned long next_tick;
        static struct pdc_tod tod_data;
 
        clocktick = (100 * PAGE0->mem_10msec) / HZ;
-       halftick = clocktick / 2;
-
-       /* Setup clock interrupt timing */
 
-       next_tick = mfctl(16);
-       next_tick += clocktick;
-       cpu_data[smp_processor_id()].it_value = next_tick;
+       start_cpu_itimer();     /* get CPU 0 started */
 
-       /* kick off Itimer (CR16) */
-       mtctl(next_tick, 16);
+       if (pdc_tod_read(&tod_data) == 0) {
+               unsigned long flags;
 
-       if(pdc_tod_read(&tod_data) == 0) {
-               write_seqlock_irq(&xtime_lock);
+               write_seqlock_irqsave(&xtime_lock, flags);
                xtime.tv_sec = tod_data.tod_sec;
                xtime.tv_nsec = tod_data.tod_usec * 1000;
                set_normalized_timespec(&wall_to_monotonic,
                                        -xtime.tv_sec, -xtime.tv_nsec);
-               write_sequnlock_irq(&xtime_lock);
+               write_sequnlock_irqrestore(&xtime_lock, flags);
        } else {
                printk(KERN_ERR "Error reading tod clock\n");
                xtime.tv_sec = 0;