Fedora kernel-2.6.17-1.2142_FC4 patched with stable patch-2.6.17.4-vs2.0.2-rc26.diff
[linux-2.6.git] / crypto / tea.c
index 03c23cb..a6a02b3 100644 (file)
@@ -1,11 +1,15 @@
 /* 
  * Cryptographic API.
  *
- * TEA and Xtended TEA Algorithms
+ * TEA, XTEA, and XETA crypto alogrithms
  *
  * The TEA and Xtended TEA algorithms were developed by David Wheeler 
  * and Roger Needham at the Computer Laboratory of Cambridge University.
  *
+ * Due to the order of evaluation in XTEA many people have incorrectly
+ * implemented it.  XETA (XTEA in the wrong order), exists for
+ * compatibility with these implementations.
+ *
  * Copyright (c) 2004 Aaron Grothe ajgrothe@yahoo.com
  *
  * This program is free software; you can redistribute it and/or modify
 #include <linux/init.h>
 #include <linux/module.h>
 #include <linux/mm.h>
+#include <asm/byteorder.h>
 #include <asm/scatterlist.h>
 #include <linux/crypto.h>
+#include <linux/types.h>
 
 #define TEA_KEY_SIZE           16
 #define TEA_BLOCK_SIZE         8
@@ -31,9 +37,6 @@
 #define XTEA_ROUNDS            32
 #define XTEA_DELTA             0x9e3779b9
 
-#define u32_in(x) le32_to_cpu(*(const __le32 *)(x))
-#define u32_out(to, from) (*(__le32 *)(to) = cpu_to_le32(from))
-
 struct tea_ctx {
        u32 KEY[4];
 };
@@ -45,8 +48,8 @@ struct xtea_ctx {
 static int tea_setkey(void *ctx_arg, const u8 *in_key,
                        unsigned int key_len, u32 *flags)
 { 
-
        struct tea_ctx *ctx = ctx_arg;
+       const __le32 *key = (const __le32 *)in_key;
        
        if (key_len != 16)
        {
@@ -54,10 +57,10 @@ static int tea_setkey(void *ctx_arg, const u8 *in_key,
                return -EINVAL;
        }
 
-       ctx->KEY[0] = u32_in (in_key);
-       ctx->KEY[1] = u32_in (in_key + 4);
-       ctx->KEY[2] = u32_in (in_key + 8);
-       ctx->KEY[3] = u32_in (in_key + 12);
+       ctx->KEY[0] = le32_to_cpu(key[0]);
+       ctx->KEY[1] = le32_to_cpu(key[1]);
+       ctx->KEY[2] = le32_to_cpu(key[2]);
+       ctx->KEY[3] = le32_to_cpu(key[3]);
 
        return 0; 
 
@@ -69,9 +72,11 @@ static void tea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
        u32 k0, k1, k2, k3;
 
        struct tea_ctx *ctx = ctx_arg;
+       const __le32 *in = (const __le32 *)src;
+       __le32 *out = (__le32 *)dst;
 
-       y = u32_in (src);
-       z = u32_in (src + 4);
+       y = le32_to_cpu(in[0]);
+       z = le32_to_cpu(in[1]);
 
        k0 = ctx->KEY[0];
        k1 = ctx->KEY[1];
@@ -86,19 +91,20 @@ static void tea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
                z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
        }
        
-       u32_out (dst, y);
-       u32_out (dst + 4, z);
+       out[0] = cpu_to_le32(y);
+       out[1] = cpu_to_le32(z);
 }
 
 static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
 { 
        u32 y, z, n, sum;
        u32 k0, k1, k2, k3;
-
        struct tea_ctx *ctx = ctx_arg;
+       const __le32 *in = (const __le32 *)src;
+       __le32 *out = (__le32 *)dst;
 
-       y = u32_in (src);
-       z = u32_in (src + 4);
+       y = le32_to_cpu(in[0]);
+       z = le32_to_cpu(in[1]);
 
        k0 = ctx->KEY[0];
        k1 = ctx->KEY[1];
@@ -115,16 +121,15 @@ static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
                sum -= TEA_DELTA;
        }
        
-       u32_out (dst, y);
-       u32_out (dst + 4, z);
-
+       out[0] = cpu_to_le32(y);
+       out[1] = cpu_to_le32(z);
 }
 
 static int xtea_setkey(void *ctx_arg, const u8 *in_key,
                        unsigned int key_len, u32 *flags)
 { 
-
        struct xtea_ctx *ctx = ctx_arg;
+       const __le32 *key = (const __le32 *)in_key;
        
        if (key_len != 16)
        {
@@ -132,10 +137,10 @@ static int xtea_setkey(void *ctx_arg, const u8 *in_key,
                return -EINVAL;
        }
 
-       ctx->KEY[0] = u32_in (in_key);
-       ctx->KEY[1] = u32_in (in_key + 4);
-       ctx->KEY[2] = u32_in (in_key + 8);
-       ctx->KEY[3] = u32_in (in_key + 12);
+       ctx->KEY[0] = le32_to_cpu(key[0]);
+       ctx->KEY[1] = le32_to_cpu(key[1]);
+       ctx->KEY[2] = le32_to_cpu(key[2]);
+       ctx->KEY[3] = le32_to_cpu(key[3]);
 
        return 0; 
 
@@ -143,34 +148,80 @@ static int xtea_setkey(void *ctx_arg, const u8 *in_key,
 
 static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
 { 
-
        u32 y, z, sum = 0;
        u32 limit = XTEA_DELTA * XTEA_ROUNDS;
 
        struct xtea_ctx *ctx = ctx_arg;
+       const __le32 *in = (const __le32 *)src;
+       __le32 *out = (__le32 *)dst;
 
-       y = u32_in (src);
-       z = u32_in (src + 4);
+       y = le32_to_cpu(in[0]);
+       z = le32_to_cpu(in[1]);
 
        while (sum != limit) {
-               y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3]
+               y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3])
                sum += XTEA_DELTA;
-               z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3]
+               z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3])
        }
        
-       u32_out (dst, y);
-       u32_out (dst + 4, z);
-
+       out[0] = cpu_to_le32(y);
+       out[1] = cpu_to_le32(z);
 }
 
 static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
 { 
+       u32 y, z, sum;
+       struct tea_ctx *ctx = ctx_arg;
+       const __le32 *in = (const __le32 *)src;
+       __le32 *out = (__le32 *)dst;
+
+       y = le32_to_cpu(in[0]);
+       z = le32_to_cpu(in[1]);
+
+       sum = XTEA_DELTA * XTEA_ROUNDS;
+
+       while (sum) {
+               z -= ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 & 3]);
+               sum -= XTEA_DELTA;
+               y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
+       }
+       
+       out[0] = cpu_to_le32(y);
+       out[1] = cpu_to_le32(z);
+}
+
+
+static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
+{ 
+       u32 y, z, sum = 0;
+       u32 limit = XTEA_DELTA * XTEA_ROUNDS;
+
+       struct xtea_ctx *ctx = ctx_arg;
+       const __le32 *in = (const __le32 *)src;
+       __le32 *out = (__le32 *)dst;
 
+       y = le32_to_cpu(in[0]);
+       z = le32_to_cpu(in[1]);
+
+       while (sum != limit) {
+               y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
+               sum += XTEA_DELTA;
+               z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
+       }
+       
+       out[0] = cpu_to_le32(y);
+       out[1] = cpu_to_le32(z);
+}
+
+static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
+{ 
        u32 y, z, sum;
        struct tea_ctx *ctx = ctx_arg;
+       const __le32 *in = (const __le32 *)src;
+       __le32 *out = (__le32 *)dst;
 
-       y = u32_in (src);
-       z = u32_in (src + 4);
+       y = le32_to_cpu(in[0]);
+       z = le32_to_cpu(in[1]);
 
        sum = XTEA_DELTA * XTEA_ROUNDS;
 
@@ -180,9 +231,8 @@ static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
                y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
        }
        
-       u32_out (dst, y);
-       u32_out (dst + 4, z);
-
+       out[0] = cpu_to_le32(y);
+       out[1] = cpu_to_le32(z);
 }
 
 static struct crypto_alg tea_alg = {
@@ -190,6 +240,7 @@ static struct crypto_alg tea_alg = {
        .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
        .cra_blocksize          =       TEA_BLOCK_SIZE,
        .cra_ctxsize            =       sizeof (struct tea_ctx),
+       .cra_alignmask          =       3,
        .cra_module             =       THIS_MODULE,
        .cra_list               =       LIST_HEAD_INIT(tea_alg.cra_list),
        .cra_u                  =       { .cipher = {
@@ -205,6 +256,7 @@ static struct crypto_alg xtea_alg = {
        .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
        .cra_blocksize          =       XTEA_BLOCK_SIZE,
        .cra_ctxsize            =       sizeof (struct xtea_ctx),
+       .cra_alignmask          =       3,
        .cra_module             =       THIS_MODULE,
        .cra_list               =       LIST_HEAD_INIT(xtea_alg.cra_list),
        .cra_u                  =       { .cipher = {
@@ -215,6 +267,22 @@ static struct crypto_alg xtea_alg = {
        .cia_decrypt            =       xtea_decrypt } }
 };
 
+static struct crypto_alg xeta_alg = {
+       .cra_name               =       "xeta",
+       .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
+       .cra_blocksize          =       XTEA_BLOCK_SIZE,
+       .cra_ctxsize            =       sizeof (struct xtea_ctx),
+       .cra_alignmask          =       3,
+       .cra_module             =       THIS_MODULE,
+       .cra_list               =       LIST_HEAD_INIT(xtea_alg.cra_list),
+       .cra_u                  =       { .cipher = {
+       .cia_min_keysize        =       XTEA_KEY_SIZE,
+       .cia_max_keysize        =       XTEA_KEY_SIZE,
+       .cia_setkey             =       xtea_setkey,
+       .cia_encrypt            =       xeta_encrypt,
+       .cia_decrypt            =       xeta_decrypt } }
+};
+
 static int __init init(void)
 {
        int ret = 0;
@@ -229,6 +297,13 @@ static int __init init(void)
                goto out;
        }
 
+       ret = crypto_register_alg(&xeta_alg);
+       if (ret < 0) {
+               crypto_unregister_alg(&tea_alg);
+               crypto_unregister_alg(&xtea_alg);
+               goto out;
+       }
+
 out:   
        return ret;
 }
@@ -237,12 +312,14 @@ static void __exit fini(void)
 {
        crypto_unregister_alg(&tea_alg);
        crypto_unregister_alg(&xtea_alg);
+       crypto_unregister_alg(&xeta_alg);
 }
 
 MODULE_ALIAS("xtea");
+MODULE_ALIAS("xeta");
 
 module_init(init);
 module_exit(fini);
 
 MODULE_LICENSE("GPL");
-MODULE_DESCRIPTION("TEA & XTEA Cryptographic Algorithms");
+MODULE_DESCRIPTION("TEA, XTEA & XETA Cryptographic Algorithms");