This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / drivers / infiniband / ulp / iser / iser_memory.c
diff --git a/drivers/infiniband/ulp/iser/iser_memory.c b/drivers/infiniband/ulp/iser/iser_memory.c
new file mode 100644 (file)
index 0000000..31950a5
--- /dev/null
@@ -0,0 +1,401 @@
+/*
+ * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
+ *
+ * This software is available to you under a choice of one of two
+ * licenses.  You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ *     Redistribution and use in source and binary forms, with or
+ *     without modification, are permitted provided that the following
+ *     conditions are met:
+ *
+ *     - Redistributions of source code must retain the above
+ *       copyright notice, this list of conditions and the following
+ *       disclaimer.
+ *
+ *     - Redistributions in binary form must reproduce the above
+ *       copyright notice, this list of conditions and the following
+ *       disclaimer in the documentation and/or other materials
+ *       provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ *
+ * $Id: iser_memory.c 6964 2006-05-07 11:11:43Z ogerlitz $
+ */
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/mm.h>
+#include <asm/io.h>
+#include <asm/scatterlist.h>
+#include <linux/scatterlist.h>
+
+#include "iscsi_iser.h"
+
+#define ISER_KMALLOC_THRESHOLD 0x20000 /* 128K - kmalloc limit */
+/**
+ * Decrements the reference count for the
+ * registered buffer & releases it
+ *
+ * returns 0 if released, 1 if deferred
+ */
+int iser_regd_buff_release(struct iser_regd_buf *regd_buf)
+{
+       struct device *dma_device;
+
+       if ((atomic_read(&regd_buf->ref_count) == 0) ||
+           atomic_dec_and_test(&regd_buf->ref_count)) {
+               /* if we used the dma mr, unreg is just NOP */
+               if (regd_buf->reg.rkey != 0)
+                       iser_unreg_mem(&regd_buf->reg);
+
+               if (regd_buf->dma_addr) {
+                       dma_device = regd_buf->device->ib_device->dma_device;
+                       dma_unmap_single(dma_device,
+                                        regd_buf->dma_addr,
+                                        regd_buf->data_size,
+                                        regd_buf->direction);
+               }
+               /* else this regd buf is associated with task which we */
+               /* dma_unmap_single/sg later */
+               return 0;
+       } else {
+               iser_dbg("Release deferred, regd.buff: 0x%p\n", regd_buf);
+               return 1;
+       }
+}
+
+/**
+ * iser_reg_single - fills registered buffer descriptor with
+ *                  registration information
+ */
+void iser_reg_single(struct iser_device *device,
+                    struct iser_regd_buf *regd_buf,
+                    enum dma_data_direction direction)
+{
+       dma_addr_t dma_addr;
+
+       dma_addr  = dma_map_single(device->ib_device->dma_device,
+                                  regd_buf->virt_addr,
+                                  regd_buf->data_size, direction);
+       BUG_ON(dma_mapping_error(dma_addr));
+
+       regd_buf->reg.lkey = device->mr->lkey;
+       regd_buf->reg.rkey = 0; /* indicate there's no need to unreg */
+       regd_buf->reg.len  = regd_buf->data_size;
+       regd_buf->reg.va   = dma_addr;
+
+       regd_buf->dma_addr  = dma_addr;
+       regd_buf->direction = direction;
+}
+
+/**
+ * iser_start_rdma_unaligned_sg
+ */
+int iser_start_rdma_unaligned_sg(struct iscsi_iser_cmd_task  *iser_ctask,
+                                enum iser_data_dir cmd_dir)
+{
+       int dma_nents;
+       struct device *dma_device;
+       char *mem = NULL;
+       struct iser_data_buf *data = &iser_ctask->data[cmd_dir];
+       unsigned long  cmd_data_len = data->data_len;
+
+       if (cmd_data_len > ISER_KMALLOC_THRESHOLD)
+               mem = (void *)__get_free_pages(GFP_NOIO,
+                     long_log2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT);
+       else
+               mem = kmalloc(cmd_data_len, GFP_NOIO);
+
+       if (mem == NULL) {
+               iser_err("Failed to allocate mem size %d %d for copying sglist\n",
+                        data->size,(int)cmd_data_len);
+               return -ENOMEM;
+       }
+
+       if (cmd_dir == ISER_DIR_OUT) {
+               /* copy the unaligned sg the buffer which is used for RDMA */
+               struct scatterlist *sg = (struct scatterlist *)data->buf;
+               int i;
+               char *p, *from;
+
+               for (p = mem, i = 0; i < data->size; i++) {
+                       from = kmap_atomic(sg[i].page, KM_USER0);
+                       memcpy(p,
+                              from + sg[i].offset,
+                              sg[i].length);
+                       kunmap_atomic(from, KM_USER0);
+                       p += sg[i].length;
+               }
+       }
+
+       sg_init_one(&iser_ctask->data_copy[cmd_dir].sg_single, mem, cmd_data_len);
+       iser_ctask->data_copy[cmd_dir].buf  =
+               &iser_ctask->data_copy[cmd_dir].sg_single;
+       iser_ctask->data_copy[cmd_dir].size = 1;
+
+       iser_ctask->data_copy[cmd_dir].copy_buf  = mem;
+
+       dma_device = iser_ctask->iser_conn->ib_conn->device->ib_device->dma_device;
+
+       if (cmd_dir == ISER_DIR_OUT)
+               dma_nents = dma_map_sg(dma_device,
+                                      &iser_ctask->data_copy[cmd_dir].sg_single,
+                                      1, DMA_TO_DEVICE);
+       else
+               dma_nents = dma_map_sg(dma_device,
+                                      &iser_ctask->data_copy[cmd_dir].sg_single,
+                                      1, DMA_FROM_DEVICE);
+
+       BUG_ON(dma_nents == 0);
+
+       iser_ctask->data_copy[cmd_dir].dma_nents = dma_nents;
+       return 0;
+}
+
+/**
+ * iser_finalize_rdma_unaligned_sg
+ */
+void iser_finalize_rdma_unaligned_sg(struct iscsi_iser_cmd_task *iser_ctask,
+                                    enum iser_data_dir         cmd_dir)
+{
+       struct device *dma_device;
+       struct iser_data_buf *mem_copy;
+       unsigned long  cmd_data_len;
+
+       dma_device = iser_ctask->iser_conn->ib_conn->device->ib_device->dma_device;
+       mem_copy   = &iser_ctask->data_copy[cmd_dir];
+
+       if (cmd_dir == ISER_DIR_OUT)
+               dma_unmap_sg(dma_device, &mem_copy->sg_single, 1,
+                            DMA_TO_DEVICE);
+       else
+               dma_unmap_sg(dma_device, &mem_copy->sg_single, 1,
+                            DMA_FROM_DEVICE);
+
+       if (cmd_dir == ISER_DIR_IN) {
+               char *mem;
+               struct scatterlist *sg;
+               unsigned char *p, *to;
+               unsigned int sg_size;
+               int i;
+
+               /* copy back read RDMA to unaligned sg */
+               mem     = mem_copy->copy_buf;
+
+               sg      = (struct scatterlist *)iser_ctask->data[ISER_DIR_IN].buf;
+               sg_size = iser_ctask->data[ISER_DIR_IN].size;
+
+               for (p = mem, i = 0; i < sg_size; i++){
+                       to = kmap_atomic(sg[i].page, KM_SOFTIRQ0);
+                       memcpy(to + sg[i].offset,
+                              p,
+                              sg[i].length);
+                       kunmap_atomic(to, KM_SOFTIRQ0);
+                       p += sg[i].length;
+               }
+       }
+
+       cmd_data_len = iser_ctask->data[cmd_dir].data_len;
+
+       if (cmd_data_len > ISER_KMALLOC_THRESHOLD)
+               free_pages((unsigned long)mem_copy->copy_buf,
+                          long_log2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT);
+       else
+               kfree(mem_copy->copy_buf);
+
+       mem_copy->copy_buf = NULL;
+}
+
+/**
+ * iser_sg_to_page_vec - Translates scatterlist entries to physical addresses
+ * and returns the length of resulting physical address array (may be less than
+ * the original due to possible compaction).
+ *
+ * we build a "page vec" under the assumption that the SG meets the RDMA
+ * alignment requirements. Other then the first and last SG elements, all
+ * the "internal" elements can be compacted into a list whose elements are
+ * dma addresses of physical pages. The code supports also the weird case
+ * where --few fragments of the same page-- are present in the SG as
+ * consecutive elements. Also, it handles one entry SG.
+ */
+static int iser_sg_to_page_vec(struct iser_data_buf *data,
+                              struct iser_page_vec *page_vec)
+{
+       struct scatterlist *sg = (struct scatterlist *)data->buf;
+       dma_addr_t first_addr, last_addr, page;
+       int start_aligned, end_aligned;
+       unsigned int cur_page = 0;
+       unsigned long total_sz = 0;
+       int i;
+
+       /* compute the offset of first element */
+       page_vec->offset = (u64) sg[0].offset;
+
+       for (i = 0; i < data->dma_nents; i++) {
+               total_sz += sg_dma_len(&sg[i]);
+
+               first_addr = sg_dma_address(&sg[i]);
+               last_addr  = first_addr + sg_dma_len(&sg[i]);
+
+               start_aligned = !(first_addr & ~PAGE_MASK);
+               end_aligned   = !(last_addr  & ~PAGE_MASK);
+
+               /* continue to collect page fragments till aligned or SG ends */
+               while (!end_aligned && (i + 1 < data->dma_nents)) {
+                       i++;
+                       total_sz += sg_dma_len(&sg[i]);
+                       last_addr = sg_dma_address(&sg[i]) + sg_dma_len(&sg[i]);
+                       end_aligned = !(last_addr  & ~PAGE_MASK);
+               }
+
+               first_addr = first_addr & PAGE_MASK;
+
+               for (page = first_addr; page < last_addr; page += PAGE_SIZE)
+                       page_vec->pages[cur_page++] = page;
+
+       }
+       page_vec->data_size = total_sz;
+       iser_dbg("page_vec->data_size:%d cur_page %d\n", page_vec->data_size,cur_page);
+       return cur_page;
+}
+
+#define MASK_4K                        ((1UL << 12) - 1) /* 0xFFF */
+#define IS_4K_ALIGNED(addr)    ((((unsigned long)addr) & MASK_4K) == 0)
+
+/**
+ * iser_data_buf_aligned_len - Tries to determine the maximal correctly aligned
+ * for RDMA sub-list of a scatter-gather list of memory buffers, and  returns
+ * the number of entries which are aligned correctly. Supports the case where
+ * consecutive SG elements are actually fragments of the same physcial page.
+ */
+static unsigned int iser_data_buf_aligned_len(struct iser_data_buf *data)
+{
+       struct scatterlist *sg;
+       dma_addr_t end_addr, next_addr;
+       int i, cnt;
+       unsigned int ret_len = 0;
+
+       sg = (struct scatterlist *)data->buf;
+
+       for (cnt = 0, i = 0; i < data->dma_nents; i++, cnt++) {
+               /* iser_dbg("Checking sg iobuf [%d]: phys=0x%08lX "
+                  "offset: %ld sz: %ld\n", i,
+                  (unsigned long)page_to_phys(sg[i].page),
+                  (unsigned long)sg[i].offset,
+                  (unsigned long)sg[i].length); */
+               end_addr = sg_dma_address(&sg[i]) +
+                          sg_dma_len(&sg[i]);
+               /* iser_dbg("Checking sg iobuf end address "
+                      "0x%08lX\n", end_addr); */
+               if (i + 1 < data->dma_nents) {
+                       next_addr = sg_dma_address(&sg[i+1]);
+                       /* are i, i+1 fragments of the same page? */
+                       if (end_addr == next_addr)
+                               continue;
+                       else if (!IS_4K_ALIGNED(end_addr)) {
+                               ret_len = cnt + 1;
+                               break;
+                       }
+               }
+       }
+       if (i == data->dma_nents)
+               ret_len = cnt;  /* loop ended */
+       iser_dbg("Found %d aligned entries out of %d in sg:0x%p\n",
+                ret_len, data->dma_nents, data);
+       return ret_len;
+}
+
+static void iser_data_buf_dump(struct iser_data_buf *data)
+{
+       struct scatterlist *sg = (struct scatterlist *)data->buf;
+       int i;
+
+       for (i = 0; i < data->size; i++)
+               iser_err("sg[%d] dma_addr:0x%lX page:0x%p "
+                        "off:%d sz:%d dma_len:%d\n",
+                        i, (unsigned long)sg_dma_address(&sg[i]),
+                        sg[i].page, sg[i].offset,
+                        sg[i].length,sg_dma_len(&sg[i]));
+}
+
+static void iser_dump_page_vec(struct iser_page_vec *page_vec)
+{
+       int i;
+
+       iser_err("page vec length %d data size %d\n",
+                page_vec->length, page_vec->data_size);
+       for (i = 0; i < page_vec->length; i++)
+               iser_err("%d %lx\n",i,(unsigned long)page_vec->pages[i]);
+}
+
+static void iser_page_vec_build(struct iser_data_buf *data,
+                               struct iser_page_vec *page_vec)
+{
+       int page_vec_len = 0;
+
+       page_vec->length = 0;
+       page_vec->offset = 0;
+
+       iser_dbg("Translating sg sz: %d\n", data->dma_nents);
+       page_vec_len = iser_sg_to_page_vec(data,page_vec);
+       iser_dbg("sg len %d page_vec_len %d\n", data->dma_nents,page_vec_len);
+
+       page_vec->length = page_vec_len;
+
+       if (page_vec_len * PAGE_SIZE < page_vec->data_size) {
+               iser_err("page_vec too short to hold this SG\n");
+               iser_data_buf_dump(data);
+               iser_dump_page_vec(page_vec);
+               BUG();
+       }
+}
+
+/**
+ * iser_reg_rdma_mem - Registers memory intended for RDMA,
+ * obtaining rkey and va
+ *
+ * returns 0 on success, errno code on failure
+ */
+int iser_reg_rdma_mem(struct iscsi_iser_cmd_task *iser_ctask,
+                     enum   iser_data_dir        cmd_dir)
+{
+       struct iser_conn     *ib_conn = iser_ctask->iser_conn->ib_conn;
+       struct iser_data_buf *mem = &iser_ctask->data[cmd_dir];
+       struct iser_regd_buf *regd_buf;
+       int aligned_len;
+       int err;
+
+       regd_buf = &iser_ctask->rdma_regd[cmd_dir];
+
+       aligned_len = iser_data_buf_aligned_len(mem);
+       if (aligned_len != mem->size) {
+               iser_err("rdma alignment violation %d/%d aligned\n",
+                        aligned_len, mem->size);
+               iser_data_buf_dump(mem);
+               /* allocate copy buf, if we are writing, copy the */
+               /* unaligned scatterlist, dma map the copy        */
+               if (iser_start_rdma_unaligned_sg(iser_ctask, cmd_dir) != 0)
+                               return -ENOMEM;
+               mem = &iser_ctask->data_copy[cmd_dir];
+       }
+
+       iser_page_vec_build(mem, ib_conn->page_vec);
+       err = iser_reg_page_vec(ib_conn, ib_conn->page_vec, &regd_buf->reg);
+       if (err)
+               return err;
+
+       /* take a reference on this regd buf such that it will not be released *
+        * (eg in send dto completion) before we get the scsi response         */
+       atomic_inc(&regd_buf->ref_count);
+       return 0;
+}