This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / drivers / media / dvb / frontends / mt2060.c
diff --git a/drivers/media/dvb/frontends/mt2060.c b/drivers/media/dvb/frontends/mt2060.c
new file mode 100644 (file)
index 0000000..450fad8
--- /dev/null
@@ -0,0 +1,370 @@
+/*
+ *  Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
+ *
+ *  Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
+ *
+ *  This program is free software; you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation; either version 2 of the License, or
+ *  (at your option) any later version.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *
+ *  GNU General Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License
+ *  along with this program; if not, write to the Free Software
+ *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
+ */
+
+/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
+
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/delay.h>
+#include <linux/dvb/frontend.h>
+#include <linux/i2c.h>
+
+#include "dvb_frontend.h"
+
+#include "mt2060.h"
+#include "mt2060_priv.h"
+
+static int debug;
+module_param(debug, int, 0644);
+MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
+
+#define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
+
+// Reads a single register
+static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
+{
+       struct i2c_msg msg[2] = {
+               { .addr = priv->cfg->i2c_address, .flags = 0,        .buf = &reg, .len = 1 },
+               { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val,  .len = 1 },
+       };
+
+       if (i2c_transfer(priv->i2c, msg, 2) != 2) {
+               printk(KERN_WARNING "mt2060 I2C read failed\n");
+               return -EREMOTEIO;
+       }
+       return 0;
+}
+
+// Writes a single register
+static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
+{
+       u8 buf[2] = { reg, val };
+       struct i2c_msg msg = {
+               .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
+       };
+
+       if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
+               printk(KERN_WARNING "mt2060 I2C write failed\n");
+               return -EREMOTEIO;
+       }
+       return 0;
+}
+
+// Writes a set of consecutive registers
+static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
+{
+       struct i2c_msg msg = {
+               .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len
+       };
+       if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
+               printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
+               return -EREMOTEIO;
+       }
+       return 0;
+}
+
+// Initialisation sequences
+// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
+static u8 mt2060_config1[] = {
+       REG_LO1C1,
+       0x3F,   0x74,   0x00,   0x08,   0x93
+};
+
+// FMCG=2, GP2=0, GP1=0
+static u8 mt2060_config2[] = {
+       REG_MISC_CTRL,
+       0x20,   0x1E,   0x30,   0xff,   0x80,   0xff,   0x00,   0x2c,   0x42
+};
+
+//  VGAG=3, V1CSE=1
+
+#ifdef  MT2060_SPURCHECK
+/* The function below calculates the frequency offset between the output frequency if2
+ and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
+static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
+{
+       int I,J;
+       int dia,diamin,diff;
+       diamin=1000000;
+       for (I = 1; I < 10; I++) {
+               J = ((2*I*lo1)/lo2+1)/2;
+               diff = I*(int)lo1-J*(int)lo2;
+               if (diff < 0) diff=-diff;
+               dia = (diff-(int)if2);
+               if (dia < 0) dia=-dia;
+               if (diamin > dia) diamin=dia;
+       }
+       return diamin;
+}
+
+#define BANDWIDTH 4000 // kHz
+
+/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
+static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
+{
+       u32 Spur,Sp1,Sp2;
+       int I,J;
+       I=0;
+       J=1000;
+
+       Spur=mt2060_spurcalc(lo1,lo2,if2);
+       if (Spur < BANDWIDTH) {
+               /* Potential spurs detected */
+               dprintk("Spurs before : f_lo1: %d  f_lo2: %d  (kHz)",
+                       (int)lo1,(int)lo2);
+               I=1000;
+               Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
+               Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
+
+               if (Sp1 < Sp2) {
+                       J=-J; I=-I; Spur=Sp2;
+               } else
+                       Spur=Sp1;
+
+               while (Spur < BANDWIDTH) {
+                       I += J;
+                       Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
+               }
+               dprintk("Spurs after  : f_lo1: %d  f_lo2: %d  (kHz)",
+                       (int)(lo1+I),(int)(lo2+I));
+       }
+       return I;
+}
+#endif
+
+#define IF2  36150       // IF2 frequency = 36.150 MHz
+#define FREF 16000       // Quartz oscillator 16 MHz
+
+static int mt2060_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params)
+{
+       struct mt2060_priv *priv;
+       int ret=0;
+       int i=0;
+       u32 freq;
+       u8  lnaband;
+       u32 f_lo1,f_lo2;
+       u32 div1,num1,div2,num2;
+       u8  b[8];
+       u32 if1;
+
+       priv = fe->tuner_priv;
+
+       if1 = priv->if1_freq;
+       b[0] = REG_LO1B1;
+       b[1] = 0xFF;
+
+       mt2060_writeregs(priv,b,2);
+
+       freq = params->frequency / 1000; // Hz -> kHz
+       priv->bandwidth = (fe->ops.info.type == FE_OFDM) ? params->u.ofdm.bandwidth : 0;
+
+       f_lo1 = freq + if1 * 1000;
+       f_lo1 = (f_lo1 / 250) * 250;
+       f_lo2 = f_lo1 - freq - IF2;
+       // From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
+       f_lo2 = ((f_lo2 + 25) / 50) * 50;
+       priv->frequency =  (f_lo1 - f_lo2 - IF2) * 1000,
+
+#ifdef MT2060_SPURCHECK
+       // LO-related spurs detection and correction
+       num1   = mt2060_spurcheck(f_lo1,f_lo2,IF2);
+       f_lo1 += num1;
+       f_lo2 += num1;
+#endif
+       //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
+       num1 = f_lo1 / (FREF / 64);
+       div1 = num1 / 64;
+       num1 &= 0x3f;
+
+       // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
+       num2 = f_lo2 * 64 / (FREF / 128);
+       div2 = num2 / 8192;
+       num2 &= 0x1fff;
+
+       if (freq <=  95000) lnaband = 0xB0; else
+       if (freq <= 180000) lnaband = 0xA0; else
+       if (freq <= 260000) lnaband = 0x90; else
+       if (freq <= 335000) lnaband = 0x80; else
+       if (freq <= 425000) lnaband = 0x70; else
+       if (freq <= 480000) lnaband = 0x60; else
+       if (freq <= 570000) lnaband = 0x50; else
+       if (freq <= 645000) lnaband = 0x40; else
+       if (freq <= 730000) lnaband = 0x30; else
+       if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
+
+       b[0] = REG_LO1C1;
+       b[1] = lnaband | ((num1 >>2) & 0x0F);
+       b[2] = div1;
+       b[3] = (num2 & 0x0F)  | ((num1 & 3) << 4);
+       b[4] = num2 >> 4;
+       b[5] = ((num2 >>12) & 1) | (div2 << 1);
+
+       dprintk("IF1: %dMHz",(int)if1);
+       dprintk("PLL freq=%dkHz  f_lo1=%dkHz  f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
+       dprintk("PLL div1=%d  num1=%d  div2=%d  num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
+       dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
+
+       mt2060_writeregs(priv,b,6);
+
+       //Waits for pll lock or timeout
+       i = 0;
+       do {
+               mt2060_readreg(priv,REG_LO_STATUS,b);
+               if ((b[0] & 0x88)==0x88)
+                       break;
+               msleep(4);
+               i++;
+       } while (i<10);
+
+       return ret;
+}
+
+static void mt2060_calibrate(struct mt2060_priv *priv)
+{
+       u8 b = 0;
+       int i = 0;
+
+       if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
+               return;
+       if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
+               return;
+
+       /* initialize the clock output */
+       mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
+
+       do {
+               b |= (1 << 6); // FM1SS;
+               mt2060_writereg(priv, REG_LO2C1,b);
+               msleep(20);
+
+               if (i == 0) {
+                       b |= (1 << 7); // FM1CA;
+                       mt2060_writereg(priv, REG_LO2C1,b);
+                       b &= ~(1 << 7); // FM1CA;
+                       msleep(20);
+               }
+
+               b &= ~(1 << 6); // FM1SS
+               mt2060_writereg(priv, REG_LO2C1,b);
+
+               msleep(20);
+               i++;
+       } while (i < 9);
+
+       i = 0;
+       while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
+               msleep(20);
+
+       if (i < 10) {
+               mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
+               dprintk("calibration was successful: %d", (int)priv->fmfreq);
+       } else
+               dprintk("FMCAL timed out");
+}
+
+static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
+{
+       struct mt2060_priv *priv = fe->tuner_priv;
+       *frequency = priv->frequency;
+       return 0;
+}
+
+static int mt2060_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
+{
+       struct mt2060_priv *priv = fe->tuner_priv;
+       *bandwidth = priv->bandwidth;
+       return 0;
+}
+
+static int mt2060_init(struct dvb_frontend *fe)
+{
+       struct mt2060_priv *priv = fe->tuner_priv;
+       return mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x33);
+}
+
+static int mt2060_sleep(struct dvb_frontend *fe)
+{
+       struct mt2060_priv *priv = fe->tuner_priv;
+       return mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
+}
+
+static int mt2060_release(struct dvb_frontend *fe)
+{
+       kfree(fe->tuner_priv);
+       fe->tuner_priv = NULL;
+       return 0;
+}
+
+static const struct dvb_tuner_ops mt2060_tuner_ops = {
+       .info = {
+               .name           = "Microtune MT2060",
+               .frequency_min  =  48000000,
+               .frequency_max  = 860000000,
+               .frequency_step =     50000,
+       },
+
+       .release       = mt2060_release,
+
+       .init          = mt2060_init,
+       .sleep         = mt2060_sleep,
+
+       .set_params    = mt2060_set_params,
+       .get_frequency = mt2060_get_frequency,
+       .get_bandwidth = mt2060_get_bandwidth
+};
+
+/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
+struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
+{
+       struct mt2060_priv *priv = NULL;
+       u8 id = 0;
+
+       priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
+       if (priv == NULL)
+               return NULL;
+
+       priv->cfg      = cfg;
+       priv->i2c      = i2c;
+       priv->if1_freq = if1;
+
+       if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
+               kfree(priv);
+               return NULL;
+       }
+
+       if (id != PART_REV) {
+               kfree(priv);
+               return NULL;
+       }
+       printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
+       memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
+
+       fe->tuner_priv = priv;
+
+       mt2060_calibrate(priv);
+
+       return fe;
+}
+EXPORT_SYMBOL(mt2060_attach);
+
+MODULE_AUTHOR("Olivier DANET");
+MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
+MODULE_LICENSE("GPL");