This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / fs / ext4 / inode.c
diff --git a/fs/ext4/inode.c b/fs/ext4/inode.c
new file mode 100644 (file)
index 0000000..b37036c
--- /dev/null
@@ -0,0 +1,3295 @@
+/*
+ *  linux/fs/ext4/inode.c
+ *
+ * Copyright (C) 1992, 1993, 1994, 1995
+ * Remy Card (card@masi.ibp.fr)
+ * Laboratoire MASI - Institut Blaise Pascal
+ * Universite Pierre et Marie Curie (Paris VI)
+ *
+ *  from
+ *
+ *  linux/fs/minix/inode.c
+ *
+ *  Copyright (C) 1991, 1992  Linus Torvalds
+ *
+ *  Goal-directed block allocation by Stephen Tweedie
+ *     (sct@redhat.com), 1993, 1998
+ *  Big-endian to little-endian byte-swapping/bitmaps by
+ *        David S. Miller (davem@caip.rutgers.edu), 1995
+ *  64-bit file support on 64-bit platforms by Jakub Jelinek
+ *     (jj@sunsite.ms.mff.cuni.cz)
+ *
+ *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
+ */
+
+#include <linux/module.h>
+#include <linux/fs.h>
+#include <linux/time.h>
+#include <linux/ext4_jbd2.h>
+#include <linux/jbd2.h>
+#include <linux/smp_lock.h>
+#include <linux/highuid.h>
+#include <linux/pagemap.h>
+#include <linux/quotaops.h>
+#include <linux/string.h>
+#include <linux/buffer_head.h>
+#include <linux/writeback.h>
+#include <linux/mpage.h>
+#include <linux/uio.h>
+#include <linux/bio.h>
+#include <linux/vs_tag.h>
+#include "xattr.h"
+#include "acl.h"
+
+/*
+ * Test whether an inode is a fast symlink.
+ */
+static int ext4_inode_is_fast_symlink(struct inode *inode)
+{
+       int ea_blocks = EXT4_I(inode)->i_file_acl ?
+               (inode->i_sb->s_blocksize >> 9) : 0;
+
+       return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
+}
+
+/*
+ * The ext4 forget function must perform a revoke if we are freeing data
+ * which has been journaled.  Metadata (eg. indirect blocks) must be
+ * revoked in all cases.
+ *
+ * "bh" may be NULL: a metadata block may have been freed from memory
+ * but there may still be a record of it in the journal, and that record
+ * still needs to be revoked.
+ */
+int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
+                       struct buffer_head *bh, ext4_fsblk_t blocknr)
+{
+       int err;
+
+       might_sleep();
+
+       BUFFER_TRACE(bh, "enter");
+
+       jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
+                 "data mode %lx\n",
+                 bh, is_metadata, inode->i_mode,
+                 test_opt(inode->i_sb, DATA_FLAGS));
+
+       /* Never use the revoke function if we are doing full data
+        * journaling: there is no need to, and a V1 superblock won't
+        * support it.  Otherwise, only skip the revoke on un-journaled
+        * data blocks. */
+
+       if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
+           (!is_metadata && !ext4_should_journal_data(inode))) {
+               if (bh) {
+                       BUFFER_TRACE(bh, "call jbd2_journal_forget");
+                       return ext4_journal_forget(handle, bh);
+               }
+               return 0;
+       }
+
+       /*
+        * data!=journal && (is_metadata || should_journal_data(inode))
+        */
+       BUFFER_TRACE(bh, "call ext4_journal_revoke");
+       err = ext4_journal_revoke(handle, blocknr, bh);
+       if (err)
+               ext4_abort(inode->i_sb, __FUNCTION__,
+                          "error %d when attempting revoke", err);
+       BUFFER_TRACE(bh, "exit");
+       return err;
+}
+
+/*
+ * Work out how many blocks we need to proceed with the next chunk of a
+ * truncate transaction.
+ */
+static unsigned long blocks_for_truncate(struct inode *inode)
+{
+       unsigned long needed;
+
+       needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
+
+       /* Give ourselves just enough room to cope with inodes in which
+        * i_blocks is corrupt: we've seen disk corruptions in the past
+        * which resulted in random data in an inode which looked enough
+        * like a regular file for ext4 to try to delete it.  Things
+        * will go a bit crazy if that happens, but at least we should
+        * try not to panic the whole kernel. */
+       if (needed < 2)
+               needed = 2;
+
+       /* But we need to bound the transaction so we don't overflow the
+        * journal. */
+       if (needed > EXT4_MAX_TRANS_DATA)
+               needed = EXT4_MAX_TRANS_DATA;
+
+       return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
+}
+
+/*
+ * Truncate transactions can be complex and absolutely huge.  So we need to
+ * be able to restart the transaction at a conventient checkpoint to make
+ * sure we don't overflow the journal.
+ *
+ * start_transaction gets us a new handle for a truncate transaction,
+ * and extend_transaction tries to extend the existing one a bit.  If
+ * extend fails, we need to propagate the failure up and restart the
+ * transaction in the top-level truncate loop. --sct
+ */
+static handle_t *start_transaction(struct inode *inode)
+{
+       handle_t *result;
+
+       result = ext4_journal_start(inode, blocks_for_truncate(inode));
+       if (!IS_ERR(result))
+               return result;
+
+       ext4_std_error(inode->i_sb, PTR_ERR(result));
+       return result;
+}
+
+/*
+ * Try to extend this transaction for the purposes of truncation.
+ *
+ * Returns 0 if we managed to create more room.  If we can't create more
+ * room, and the transaction must be restarted we return 1.
+ */
+static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
+{
+       if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
+               return 0;
+       if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
+               return 0;
+       return 1;
+}
+
+/*
+ * Restart the transaction associated with *handle.  This does a commit,
+ * so before we call here everything must be consistently dirtied against
+ * this transaction.
+ */
+static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
+{
+       jbd_debug(2, "restarting handle %p\n", handle);
+       return ext4_journal_restart(handle, blocks_for_truncate(inode));
+}
+
+/*
+ * Called at the last iput() if i_nlink is zero.
+ */
+void ext4_delete_inode (struct inode * inode)
+{
+       handle_t *handle;
+
+       truncate_inode_pages(&inode->i_data, 0);
+
+       if (is_bad_inode(inode))
+               goto no_delete;
+
+       handle = start_transaction(inode);
+       if (IS_ERR(handle)) {
+               /*
+                * If we're going to skip the normal cleanup, we still need to
+                * make sure that the in-core orphan linked list is properly
+                * cleaned up.
+                */
+               ext4_orphan_del(NULL, inode);
+               goto no_delete;
+       }
+
+       if (IS_SYNC(inode))
+               handle->h_sync = 1;
+       inode->i_size = 0;
+       if (inode->i_blocks)
+               ext4_truncate(inode);
+       /*
+        * Kill off the orphan record which ext4_truncate created.
+        * AKPM: I think this can be inside the above `if'.
+        * Note that ext4_orphan_del() has to be able to cope with the
+        * deletion of a non-existent orphan - this is because we don't
+        * know if ext4_truncate() actually created an orphan record.
+        * (Well, we could do this if we need to, but heck - it works)
+        */
+       ext4_orphan_del(handle, inode);
+       EXT4_I(inode)->i_dtime  = get_seconds();
+
+       /*
+        * One subtle ordering requirement: if anything has gone wrong
+        * (transaction abort, IO errors, whatever), then we can still
+        * do these next steps (the fs will already have been marked as
+        * having errors), but we can't free the inode if the mark_dirty
+        * fails.
+        */
+       if (ext4_mark_inode_dirty(handle, inode))
+               /* If that failed, just do the required in-core inode clear. */
+               clear_inode(inode);
+       else
+               ext4_free_inode(handle, inode);
+       ext4_journal_stop(handle);
+       return;
+no_delete:
+       clear_inode(inode);     /* We must guarantee clearing of inode... */
+}
+
+typedef struct {
+       __le32  *p;
+       __le32  key;
+       struct buffer_head *bh;
+} Indirect;
+
+static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
+{
+       p->key = *(p->p = v);
+       p->bh = bh;
+}
+
+static int verify_chain(Indirect *from, Indirect *to)
+{
+       while (from <= to && from->key == *from->p)
+               from++;
+       return (from > to);
+}
+
+/**
+ *     ext4_block_to_path - parse the block number into array of offsets
+ *     @inode: inode in question (we are only interested in its superblock)
+ *     @i_block: block number to be parsed
+ *     @offsets: array to store the offsets in
+ *      @boundary: set this non-zero if the referred-to block is likely to be
+ *             followed (on disk) by an indirect block.
+ *
+ *     To store the locations of file's data ext4 uses a data structure common
+ *     for UNIX filesystems - tree of pointers anchored in the inode, with
+ *     data blocks at leaves and indirect blocks in intermediate nodes.
+ *     This function translates the block number into path in that tree -
+ *     return value is the path length and @offsets[n] is the offset of
+ *     pointer to (n+1)th node in the nth one. If @block is out of range
+ *     (negative or too large) warning is printed and zero returned.
+ *
+ *     Note: function doesn't find node addresses, so no IO is needed. All
+ *     we need to know is the capacity of indirect blocks (taken from the
+ *     inode->i_sb).
+ */
+
+/*
+ * Portability note: the last comparison (check that we fit into triple
+ * indirect block) is spelled differently, because otherwise on an
+ * architecture with 32-bit longs and 8Kb pages we might get into trouble
+ * if our filesystem had 8Kb blocks. We might use long long, but that would
+ * kill us on x86. Oh, well, at least the sign propagation does not matter -
+ * i_block would have to be negative in the very beginning, so we would not
+ * get there at all.
+ */
+
+static int ext4_block_to_path(struct inode *inode,
+                       long i_block, int offsets[4], int *boundary)
+{
+       int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
+       int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
+       const long direct_blocks = EXT4_NDIR_BLOCKS,
+               indirect_blocks = ptrs,
+               double_blocks = (1 << (ptrs_bits * 2));
+       int n = 0;
+       int final = 0;
+
+       if (i_block < 0) {
+               ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
+       } else if (i_block < direct_blocks) {
+               offsets[n++] = i_block;
+               final = direct_blocks;
+       } else if ( (i_block -= direct_blocks) < indirect_blocks) {
+               offsets[n++] = EXT4_IND_BLOCK;
+               offsets[n++] = i_block;
+               final = ptrs;
+       } else if ((i_block -= indirect_blocks) < double_blocks) {
+               offsets[n++] = EXT4_DIND_BLOCK;
+               offsets[n++] = i_block >> ptrs_bits;
+               offsets[n++] = i_block & (ptrs - 1);
+               final = ptrs;
+       } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
+               offsets[n++] = EXT4_TIND_BLOCK;
+               offsets[n++] = i_block >> (ptrs_bits * 2);
+               offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
+               offsets[n++] = i_block & (ptrs - 1);
+               final = ptrs;
+       } else {
+               ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big");
+       }
+       if (boundary)
+               *boundary = final - 1 - (i_block & (ptrs - 1));
+       return n;
+}
+
+/**
+ *     ext4_get_branch - read the chain of indirect blocks leading to data
+ *     @inode: inode in question
+ *     @depth: depth of the chain (1 - direct pointer, etc.)
+ *     @offsets: offsets of pointers in inode/indirect blocks
+ *     @chain: place to store the result
+ *     @err: here we store the error value
+ *
+ *     Function fills the array of triples <key, p, bh> and returns %NULL
+ *     if everything went OK or the pointer to the last filled triple
+ *     (incomplete one) otherwise. Upon the return chain[i].key contains
+ *     the number of (i+1)-th block in the chain (as it is stored in memory,
+ *     i.e. little-endian 32-bit), chain[i].p contains the address of that
+ *     number (it points into struct inode for i==0 and into the bh->b_data
+ *     for i>0) and chain[i].bh points to the buffer_head of i-th indirect
+ *     block for i>0 and NULL for i==0. In other words, it holds the block
+ *     numbers of the chain, addresses they were taken from (and where we can
+ *     verify that chain did not change) and buffer_heads hosting these
+ *     numbers.
+ *
+ *     Function stops when it stumbles upon zero pointer (absent block)
+ *             (pointer to last triple returned, *@err == 0)
+ *     or when it gets an IO error reading an indirect block
+ *             (ditto, *@err == -EIO)
+ *     or when it notices that chain had been changed while it was reading
+ *             (ditto, *@err == -EAGAIN)
+ *     or when it reads all @depth-1 indirect blocks successfully and finds
+ *     the whole chain, all way to the data (returns %NULL, *err == 0).
+ */
+static Indirect *ext4_get_branch(struct inode *inode, int depth, int *offsets,
+                                Indirect chain[4], int *err)
+{
+       struct super_block *sb = inode->i_sb;
+       Indirect *p = chain;
+       struct buffer_head *bh;
+
+       *err = 0;
+       /* i_data is not going away, no lock needed */
+       add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
+       if (!p->key)
+               goto no_block;
+       while (--depth) {
+               bh = sb_bread(sb, le32_to_cpu(p->key));
+               if (!bh)
+                       goto failure;
+               /* Reader: pointers */
+               if (!verify_chain(chain, p))
+                       goto changed;
+               add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
+               /* Reader: end */
+               if (!p->key)
+                       goto no_block;
+       }
+       return NULL;
+
+changed:
+       brelse(bh);
+       *err = -EAGAIN;
+       goto no_block;
+failure:
+       *err = -EIO;
+no_block:
+       return p;
+}
+
+/**
+ *     ext4_find_near - find a place for allocation with sufficient locality
+ *     @inode: owner
+ *     @ind: descriptor of indirect block.
+ *
+ *     This function returns the prefered place for block allocation.
+ *     It is used when heuristic for sequential allocation fails.
+ *     Rules are:
+ *       + if there is a block to the left of our position - allocate near it.
+ *       + if pointer will live in indirect block - allocate near that block.
+ *       + if pointer will live in inode - allocate in the same
+ *         cylinder group.
+ *
+ * In the latter case we colour the starting block by the callers PID to
+ * prevent it from clashing with concurrent allocations for a different inode
+ * in the same block group.   The PID is used here so that functionally related
+ * files will be close-by on-disk.
+ *
+ *     Caller must make sure that @ind is valid and will stay that way.
+ */
+static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
+{
+       struct ext4_inode_info *ei = EXT4_I(inode);
+       __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
+       __le32 *p;
+       ext4_fsblk_t bg_start;
+       ext4_grpblk_t colour;
+
+       /* Try to find previous block */
+       for (p = ind->p - 1; p >= start; p--) {
+               if (*p)
+                       return le32_to_cpu(*p);
+       }
+
+       /* No such thing, so let's try location of indirect block */
+       if (ind->bh)
+               return ind->bh->b_blocknr;
+
+       /*
+        * It is going to be referred to from the inode itself? OK, just put it
+        * into the same cylinder group then.
+        */
+       bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
+       colour = (current->pid % 16) *
+                       (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
+       return bg_start + colour;
+}
+
+/**
+ *     ext4_find_goal - find a prefered place for allocation.
+ *     @inode: owner
+ *     @block:  block we want
+ *     @chain:  chain of indirect blocks
+ *     @partial: pointer to the last triple within a chain
+ *     @goal:  place to store the result.
+ *
+ *     Normally this function find the prefered place for block allocation,
+ *     stores it in *@goal and returns zero.
+ */
+
+static ext4_fsblk_t ext4_find_goal(struct inode *inode, long block,
+               Indirect chain[4], Indirect *partial)
+{
+       struct ext4_block_alloc_info *block_i;
+
+       block_i =  EXT4_I(inode)->i_block_alloc_info;
+
+       /*
+        * try the heuristic for sequential allocation,
+        * failing that at least try to get decent locality.
+        */
+       if (block_i && (block == block_i->last_alloc_logical_block + 1)
+               && (block_i->last_alloc_physical_block != 0)) {
+               return block_i->last_alloc_physical_block + 1;
+       }
+
+       return ext4_find_near(inode, partial);
+}
+
+/**
+ *     ext4_blks_to_allocate: Look up the block map and count the number
+ *     of direct blocks need to be allocated for the given branch.
+ *
+ *     @branch: chain of indirect blocks
+ *     @k: number of blocks need for indirect blocks
+ *     @blks: number of data blocks to be mapped.
+ *     @blocks_to_boundary:  the offset in the indirect block
+ *
+ *     return the total number of blocks to be allocate, including the
+ *     direct and indirect blocks.
+ */
+static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
+               int blocks_to_boundary)
+{
+       unsigned long count = 0;
+
+       /*
+        * Simple case, [t,d]Indirect block(s) has not allocated yet
+        * then it's clear blocks on that path have not allocated
+        */
+       if (k > 0) {
+               /* right now we don't handle cross boundary allocation */
+               if (blks < blocks_to_boundary + 1)
+                       count += blks;
+               else
+                       count += blocks_to_boundary + 1;
+               return count;
+       }
+
+       count++;
+       while (count < blks && count <= blocks_to_boundary &&
+               le32_to_cpu(*(branch[0].p + count)) == 0) {
+               count++;
+       }
+       return count;
+}
+
+/**
+ *     ext4_alloc_blocks: multiple allocate blocks needed for a branch
+ *     @indirect_blks: the number of blocks need to allocate for indirect
+ *                     blocks
+ *
+ *     @new_blocks: on return it will store the new block numbers for
+ *     the indirect blocks(if needed) and the first direct block,
+ *     @blks:  on return it will store the total number of allocated
+ *             direct blocks
+ */
+static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
+                       ext4_fsblk_t goal, int indirect_blks, int blks,
+                       ext4_fsblk_t new_blocks[4], int *err)
+{
+       int target, i;
+       unsigned long count = 0;
+       int index = 0;
+       ext4_fsblk_t current_block = 0;
+       int ret = 0;
+
+       /*
+        * Here we try to allocate the requested multiple blocks at once,
+        * on a best-effort basis.
+        * To build a branch, we should allocate blocks for
+        * the indirect blocks(if not allocated yet), and at least
+        * the first direct block of this branch.  That's the
+        * minimum number of blocks need to allocate(required)
+        */
+       target = blks + indirect_blks;
+
+       while (1) {
+               count = target;
+               /* allocating blocks for indirect blocks and direct blocks */
+               current_block = ext4_new_blocks(handle,inode,goal,&count,err);
+               if (*err)
+                       goto failed_out;
+
+               target -= count;
+               /* allocate blocks for indirect blocks */
+               while (index < indirect_blks && count) {
+                       new_blocks[index++] = current_block++;
+                       count--;
+               }
+
+               if (count > 0)
+                       break;
+       }
+
+       /* save the new block number for the first direct block */
+       new_blocks[index] = current_block;
+
+       /* total number of blocks allocated for direct blocks */
+       ret = count;
+       *err = 0;
+       return ret;
+failed_out:
+       for (i = 0; i <index; i++)
+               ext4_free_blocks(handle, inode, new_blocks[i], 1);
+       return ret;
+}
+
+/**
+ *     ext4_alloc_branch - allocate and set up a chain of blocks.
+ *     @inode: owner
+ *     @indirect_blks: number of allocated indirect blocks
+ *     @blks: number of allocated direct blocks
+ *     @offsets: offsets (in the blocks) to store the pointers to next.
+ *     @branch: place to store the chain in.
+ *
+ *     This function allocates blocks, zeroes out all but the last one,
+ *     links them into chain and (if we are synchronous) writes them to disk.
+ *     In other words, it prepares a branch that can be spliced onto the
+ *     inode. It stores the information about that chain in the branch[], in
+ *     the same format as ext4_get_branch() would do. We are calling it after
+ *     we had read the existing part of chain and partial points to the last
+ *     triple of that (one with zero ->key). Upon the exit we have the same
+ *     picture as after the successful ext4_get_block(), except that in one
+ *     place chain is disconnected - *branch->p is still zero (we did not
+ *     set the last link), but branch->key contains the number that should
+ *     be placed into *branch->p to fill that gap.
+ *
+ *     If allocation fails we free all blocks we've allocated (and forget
+ *     their buffer_heads) and return the error value the from failed
+ *     ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
+ *     as described above and return 0.
+ */
+static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
+                       int indirect_blks, int *blks, ext4_fsblk_t goal,
+                       int *offsets, Indirect *branch)
+{
+       int blocksize = inode->i_sb->s_blocksize;
+       int i, n = 0;
+       int err = 0;
+       struct buffer_head *bh;
+       int num;
+       ext4_fsblk_t new_blocks[4];
+       ext4_fsblk_t current_block;
+
+       num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
+                               *blks, new_blocks, &err);
+       if (err)
+               return err;
+
+       branch[0].key = cpu_to_le32(new_blocks[0]);
+       /*
+        * metadata blocks and data blocks are allocated.
+        */
+       for (n = 1; n <= indirect_blks;  n++) {
+               /*
+                * Get buffer_head for parent block, zero it out
+                * and set the pointer to new one, then send
+                * parent to disk.
+                */
+               bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
+               branch[n].bh = bh;
+               lock_buffer(bh);
+               BUFFER_TRACE(bh, "call get_create_access");
+               err = ext4_journal_get_create_access(handle, bh);
+               if (err) {
+                       unlock_buffer(bh);
+                       brelse(bh);
+                       goto failed;
+               }
+
+               memset(bh->b_data, 0, blocksize);
+               branch[n].p = (__le32 *) bh->b_data + offsets[n];
+               branch[n].key = cpu_to_le32(new_blocks[n]);
+               *branch[n].p = branch[n].key;
+               if ( n == indirect_blks) {
+                       current_block = new_blocks[n];
+                       /*
+                        * End of chain, update the last new metablock of
+                        * the chain to point to the new allocated
+                        * data blocks numbers
+                        */
+                       for (i=1; i < num; i++)
+                               *(branch[n].p + i) = cpu_to_le32(++current_block);
+               }
+               BUFFER_TRACE(bh, "marking uptodate");
+               set_buffer_uptodate(bh);
+               unlock_buffer(bh);
+
+               BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
+               err = ext4_journal_dirty_metadata(handle, bh);
+               if (err)
+                       goto failed;
+       }
+       *blks = num;
+       return err;
+failed:
+       /* Allocation failed, free what we already allocated */
+       for (i = 1; i <= n ; i++) {
+               BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
+               ext4_journal_forget(handle, branch[i].bh);
+       }
+       for (i = 0; i <indirect_blks; i++)
+               ext4_free_blocks(handle, inode, new_blocks[i], 1);
+
+       ext4_free_blocks(handle, inode, new_blocks[i], num);
+
+       return err;
+}
+
+/**
+ * ext4_splice_branch - splice the allocated branch onto inode.
+ * @inode: owner
+ * @block: (logical) number of block we are adding
+ * @chain: chain of indirect blocks (with a missing link - see
+ *     ext4_alloc_branch)
+ * @where: location of missing link
+ * @num:   number of indirect blocks we are adding
+ * @blks:  number of direct blocks we are adding
+ *
+ * This function fills the missing link and does all housekeeping needed in
+ * inode (->i_blocks, etc.). In case of success we end up with the full
+ * chain to new block and return 0.
+ */
+static int ext4_splice_branch(handle_t *handle, struct inode *inode,
+                       long block, Indirect *where, int num, int blks)
+{
+       int i;
+       int err = 0;
+       struct ext4_block_alloc_info *block_i;
+       ext4_fsblk_t current_block;
+
+       block_i = EXT4_I(inode)->i_block_alloc_info;
+       /*
+        * If we're splicing into a [td]indirect block (as opposed to the
+        * inode) then we need to get write access to the [td]indirect block
+        * before the splice.
+        */
+       if (where->bh) {
+               BUFFER_TRACE(where->bh, "get_write_access");
+               err = ext4_journal_get_write_access(handle, where->bh);
+               if (err)
+                       goto err_out;
+       }
+       /* That's it */
+
+       *where->p = where->key;
+
+       /*
+        * Update the host buffer_head or inode to point to more just allocated
+        * direct blocks blocks
+        */
+       if (num == 0 && blks > 1) {
+               current_block = le32_to_cpu(where->key) + 1;
+               for (i = 1; i < blks; i++)
+                       *(where->p + i ) = cpu_to_le32(current_block++);
+       }
+
+       /*
+        * update the most recently allocated logical & physical block
+        * in i_block_alloc_info, to assist find the proper goal block for next
+        * allocation
+        */
+       if (block_i) {
+               block_i->last_alloc_logical_block = block + blks - 1;
+               block_i->last_alloc_physical_block =
+                               le32_to_cpu(where[num].key) + blks - 1;
+       }
+
+       /* We are done with atomic stuff, now do the rest of housekeeping */
+
+       inode->i_ctime = CURRENT_TIME_SEC;
+       ext4_mark_inode_dirty(handle, inode);
+
+       /* had we spliced it onto indirect block? */
+       if (where->bh) {
+               /*
+                * If we spliced it onto an indirect block, we haven't
+                * altered the inode.  Note however that if it is being spliced
+                * onto an indirect block at the very end of the file (the
+                * file is growing) then we *will* alter the inode to reflect
+                * the new i_size.  But that is not done here - it is done in
+                * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
+                */
+               jbd_debug(5, "splicing indirect only\n");
+               BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
+               err = ext4_journal_dirty_metadata(handle, where->bh);
+               if (err)
+                       goto err_out;
+       } else {
+               /*
+                * OK, we spliced it into the inode itself on a direct block.
+                * Inode was dirtied above.
+                */
+               jbd_debug(5, "splicing direct\n");
+       }
+       return err;
+
+err_out:
+       for (i = 1; i <= num; i++) {
+               BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
+               ext4_journal_forget(handle, where[i].bh);
+               ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
+       }
+       ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
+
+       return err;
+}
+
+/*
+ * Allocation strategy is simple: if we have to allocate something, we will
+ * have to go the whole way to leaf. So let's do it before attaching anything
+ * to tree, set linkage between the newborn blocks, write them if sync is
+ * required, recheck the path, free and repeat if check fails, otherwise
+ * set the last missing link (that will protect us from any truncate-generated
+ * removals - all blocks on the path are immune now) and possibly force the
+ * write on the parent block.
+ * That has a nice additional property: no special recovery from the failed
+ * allocations is needed - we simply release blocks and do not touch anything
+ * reachable from inode.
+ *
+ * `handle' can be NULL if create == 0.
+ *
+ * The BKL may not be held on entry here.  Be sure to take it early.
+ * return > 0, # of blocks mapped or allocated.
+ * return = 0, if plain lookup failed.
+ * return < 0, error case.
+ */
+int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
+               sector_t iblock, unsigned long maxblocks,
+               struct buffer_head *bh_result,
+               int create, int extend_disksize)
+{
+       int err = -EIO;
+       int offsets[4];
+       Indirect chain[4];
+       Indirect *partial;
+       ext4_fsblk_t goal;
+       int indirect_blks;
+       int blocks_to_boundary = 0;
+       int depth;
+       struct ext4_inode_info *ei = EXT4_I(inode);
+       int count = 0;
+       ext4_fsblk_t first_block = 0;
+
+
+       J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
+       J_ASSERT(handle != NULL || create == 0);
+       depth = ext4_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
+
+       if (depth == 0)
+               goto out;
+
+       partial = ext4_get_branch(inode, depth, offsets, chain, &err);
+
+       /* Simplest case - block found, no allocation needed */
+       if (!partial) {
+               first_block = le32_to_cpu(chain[depth - 1].key);
+               clear_buffer_new(bh_result);
+               count++;
+               /*map more blocks*/
+               while (count < maxblocks && count <= blocks_to_boundary) {
+                       ext4_fsblk_t blk;
+
+                       if (!verify_chain(chain, partial)) {
+                               /*
+                                * Indirect block might be removed by
+                                * truncate while we were reading it.
+                                * Handling of that case: forget what we've
+                                * got now. Flag the err as EAGAIN, so it
+                                * will reread.
+                                */
+                               err = -EAGAIN;
+                               count = 0;
+                               break;
+                       }
+                       blk = le32_to_cpu(*(chain[depth-1].p + count));
+
+                       if (blk == first_block + count)
+                               count++;
+                       else
+                               break;
+               }
+               if (err != -EAGAIN)
+                       goto got_it;
+       }
+
+       /* Next simple case - plain lookup or failed read of indirect block */
+       if (!create || err == -EIO)
+               goto cleanup;
+
+       mutex_lock(&ei->truncate_mutex);
+
+       /*
+        * If the indirect block is missing while we are reading
+        * the chain(ext4_get_branch() returns -EAGAIN err), or
+        * if the chain has been changed after we grab the semaphore,
+        * (either because another process truncated this branch, or
+        * another get_block allocated this branch) re-grab the chain to see if
+        * the request block has been allocated or not.
+        *
+        * Since we already block the truncate/other get_block
+        * at this point, we will have the current copy of the chain when we
+        * splice the branch into the tree.
+        */
+       if (err == -EAGAIN || !verify_chain(chain, partial)) {
+               while (partial > chain) {
+                       brelse(partial->bh);
+                       partial--;
+               }
+               partial = ext4_get_branch(inode, depth, offsets, chain, &err);
+               if (!partial) {
+                       count++;
+                       mutex_unlock(&ei->truncate_mutex);
+                       if (err)
+                               goto cleanup;
+                       clear_buffer_new(bh_result);
+                       goto got_it;
+               }
+       }
+
+       /*
+        * Okay, we need to do block allocation.  Lazily initialize the block
+        * allocation info here if necessary
+       */
+       if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
+               ext4_init_block_alloc_info(inode);
+
+       goal = ext4_find_goal(inode, iblock, chain, partial);
+
+       /* the number of blocks need to allocate for [d,t]indirect blocks */
+       indirect_blks = (chain + depth) - partial - 1;
+
+       /*
+        * Next look up the indirect map to count the totoal number of
+        * direct blocks to allocate for this branch.
+        */
+       count = ext4_blks_to_allocate(partial, indirect_blks,
+                                       maxblocks, blocks_to_boundary);
+       /*
+        * Block out ext4_truncate while we alter the tree
+        */
+       err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
+                               offsets + (partial - chain), partial);
+
+       /*
+        * The ext4_splice_branch call will free and forget any buffers
+        * on the new chain if there is a failure, but that risks using
+        * up transaction credits, especially for bitmaps where the
+        * credits cannot be returned.  Can we handle this somehow?  We
+        * may need to return -EAGAIN upwards in the worst case.  --sct
+        */
+       if (!err)
+               err = ext4_splice_branch(handle, inode, iblock,
+                                       partial, indirect_blks, count);
+       /*
+        * i_disksize growing is protected by truncate_mutex.  Don't forget to
+        * protect it if you're about to implement concurrent
+        * ext4_get_block() -bzzz
+       */
+       if (!err && extend_disksize && inode->i_size > ei->i_disksize)
+               ei->i_disksize = inode->i_size;
+       mutex_unlock(&ei->truncate_mutex);
+       if (err)
+               goto cleanup;
+
+       set_buffer_new(bh_result);
+got_it:
+       map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
+       if (count > blocks_to_boundary)
+               set_buffer_boundary(bh_result);
+       err = count;
+       /* Clean up and exit */
+       partial = chain + depth - 1;    /* the whole chain */
+cleanup:
+       while (partial > chain) {
+               BUFFER_TRACE(partial->bh, "call brelse");
+               brelse(partial->bh);
+               partial--;
+       }
+       BUFFER_TRACE(bh_result, "returned");
+out:
+       return err;
+}
+
+#define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
+
+static int ext4_get_block(struct inode *inode, sector_t iblock,
+                       struct buffer_head *bh_result, int create)
+{
+       handle_t *handle = journal_current_handle();
+       int ret = 0;
+       unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
+
+       if (!create)
+               goto get_block;         /* A read */
+
+       if (max_blocks == 1)
+               goto get_block;         /* A single block get */
+
+       if (handle->h_transaction->t_state == T_LOCKED) {
+               /*
+                * Huge direct-io writes can hold off commits for long
+                * periods of time.  Let this commit run.
+                */
+               ext4_journal_stop(handle);
+               handle = ext4_journal_start(inode, DIO_CREDITS);
+               if (IS_ERR(handle))
+                       ret = PTR_ERR(handle);
+               goto get_block;
+       }
+
+       if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
+               /*
+                * Getting low on buffer credits...
+                */
+               ret = ext4_journal_extend(handle, DIO_CREDITS);
+               if (ret > 0) {
+                       /*
+                        * Couldn't extend the transaction.  Start a new one.
+                        */
+                       ret = ext4_journal_restart(handle, DIO_CREDITS);
+               }
+       }
+
+get_block:
+       if (ret == 0) {
+               ret = ext4_get_blocks_wrap(handle, inode, iblock,
+                                       max_blocks, bh_result, create, 0);
+               if (ret > 0) {
+                       bh_result->b_size = (ret << inode->i_blkbits);
+                       ret = 0;
+               }
+       }
+       return ret;
+}
+
+/*
+ * `handle' can be NULL if create is zero
+ */
+struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
+                               long block, int create, int *errp)
+{
+       struct buffer_head dummy;
+       int fatal = 0, err;
+
+       J_ASSERT(handle != NULL || create == 0);
+
+       dummy.b_state = 0;
+       dummy.b_blocknr = -1000;
+       buffer_trace_init(&dummy.b_history);
+       err = ext4_get_blocks_wrap(handle, inode, block, 1,
+                                       &dummy, create, 1);
+       /*
+        * ext4_get_blocks_handle() returns number of blocks
+        * mapped. 0 in case of a HOLE.
+        */
+       if (err > 0) {
+               if (err > 1)
+                       WARN_ON(1);
+               err = 0;
+       }
+       *errp = err;
+       if (!err && buffer_mapped(&dummy)) {
+               struct buffer_head *bh;
+               bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
+               if (!bh) {
+                       *errp = -EIO;
+                       goto err;
+               }
+               if (buffer_new(&dummy)) {
+                       J_ASSERT(create != 0);
+                       J_ASSERT(handle != 0);
+
+                       /*
+                        * Now that we do not always journal data, we should
+                        * keep in mind whether this should always journal the
+                        * new buffer as metadata.  For now, regular file
+                        * writes use ext4_get_block instead, so it's not a
+                        * problem.
+                        */
+                       lock_buffer(bh);
+                       BUFFER_TRACE(bh, "call get_create_access");
+                       fatal = ext4_journal_get_create_access(handle, bh);
+                       if (!fatal && !buffer_uptodate(bh)) {
+                               memset(bh->b_data,0,inode->i_sb->s_blocksize);
+                               set_buffer_uptodate(bh);
+                       }
+                       unlock_buffer(bh);
+                       BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
+                       err = ext4_journal_dirty_metadata(handle, bh);
+                       if (!fatal)
+                               fatal = err;
+               } else {
+                       BUFFER_TRACE(bh, "not a new buffer");
+               }
+               if (fatal) {
+                       *errp = fatal;
+                       brelse(bh);
+                       bh = NULL;
+               }
+               return bh;
+       }
+err:
+       return NULL;
+}
+
+struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
+                              int block, int create, int *err)
+{
+       struct buffer_head * bh;
+
+       bh = ext4_getblk(handle, inode, block, create, err);
+       if (!bh)
+               return bh;
+       if (buffer_uptodate(bh))
+               return bh;
+       ll_rw_block(READ_META, 1, &bh);
+       wait_on_buffer(bh);
+       if (buffer_uptodate(bh))
+               return bh;
+       put_bh(bh);
+       *err = -EIO;
+       return NULL;
+}
+
+static int walk_page_buffers(  handle_t *handle,
+                               struct buffer_head *head,
+                               unsigned from,
+                               unsigned to,
+                               int *partial,
+                               int (*fn)(      handle_t *handle,
+                                               struct buffer_head *bh))
+{
+       struct buffer_head *bh;
+       unsigned block_start, block_end;
+       unsigned blocksize = head->b_size;
+       int err, ret = 0;
+       struct buffer_head *next;
+
+       for (   bh = head, block_start = 0;
+               ret == 0 && (bh != head || !block_start);
+               block_start = block_end, bh = next)
+       {
+               next = bh->b_this_page;
+               block_end = block_start + blocksize;
+               if (block_end <= from || block_start >= to) {
+                       if (partial && !buffer_uptodate(bh))
+                               *partial = 1;
+                       continue;
+               }
+               err = (*fn)(handle, bh);
+               if (!ret)
+                       ret = err;
+       }
+       return ret;
+}
+
+/*
+ * To preserve ordering, it is essential that the hole instantiation and
+ * the data write be encapsulated in a single transaction.  We cannot
+ * close off a transaction and start a new one between the ext4_get_block()
+ * and the commit_write().  So doing the jbd2_journal_start at the start of
+ * prepare_write() is the right place.
+ *
+ * Also, this function can nest inside ext4_writepage() ->
+ * block_write_full_page(). In that case, we *know* that ext4_writepage()
+ * has generated enough buffer credits to do the whole page.  So we won't
+ * block on the journal in that case, which is good, because the caller may
+ * be PF_MEMALLOC.
+ *
+ * By accident, ext4 can be reentered when a transaction is open via
+ * quota file writes.  If we were to commit the transaction while thus
+ * reentered, there can be a deadlock - we would be holding a quota
+ * lock, and the commit would never complete if another thread had a
+ * transaction open and was blocking on the quota lock - a ranking
+ * violation.
+ *
+ * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
+ * will _not_ run commit under these circumstances because handle->h_ref
+ * is elevated.  We'll still have enough credits for the tiny quotafile
+ * write.
+ */
+static int do_journal_get_write_access(handle_t *handle,
+                                       struct buffer_head *bh)
+{
+       if (!buffer_mapped(bh) || buffer_freed(bh))
+               return 0;
+       return ext4_journal_get_write_access(handle, bh);
+}
+
+static int ext4_prepare_write(struct file *file, struct page *page,
+                             unsigned from, unsigned to)
+{
+       struct inode *inode = page->mapping->host;
+       int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
+       handle_t *handle;
+       int retries = 0;
+
+retry:
+       handle = ext4_journal_start(inode, needed_blocks);
+       if (IS_ERR(handle)) {
+               ret = PTR_ERR(handle);
+               goto out;
+       }
+       if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
+               ret = nobh_prepare_write(page, from, to, ext4_get_block);
+       else
+               ret = block_prepare_write(page, from, to, ext4_get_block);
+       if (ret)
+               goto prepare_write_failed;
+
+       if (ext4_should_journal_data(inode)) {
+               ret = walk_page_buffers(handle, page_buffers(page),
+                               from, to, NULL, do_journal_get_write_access);
+       }
+prepare_write_failed:
+       if (ret)
+               ext4_journal_stop(handle);
+       if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
+               goto retry;
+out:
+       return ret;
+}
+
+int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
+{
+       int err = jbd2_journal_dirty_data(handle, bh);
+       if (err)
+               ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
+                                               bh, handle,err);
+       return err;
+}
+
+/* For commit_write() in data=journal mode */
+static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
+{
+       if (!buffer_mapped(bh) || buffer_freed(bh))
+               return 0;
+       set_buffer_uptodate(bh);
+       return ext4_journal_dirty_metadata(handle, bh);
+}
+
+/*
+ * We need to pick up the new inode size which generic_commit_write gave us
+ * `file' can be NULL - eg, when called from page_symlink().
+ *
+ * ext4 never places buffers on inode->i_mapping->private_list.  metadata
+ * buffers are managed internally.
+ */
+static int ext4_ordered_commit_write(struct file *file, struct page *page,
+                            unsigned from, unsigned to)
+{
+       handle_t *handle = ext4_journal_current_handle();
+       struct inode *inode = page->mapping->host;
+       int ret = 0, ret2;
+
+       ret = walk_page_buffers(handle, page_buffers(page),
+               from, to, NULL, ext4_journal_dirty_data);
+
+       if (ret == 0) {
+               /*
+                * generic_commit_write() will run mark_inode_dirty() if i_size
+                * changes.  So let's piggyback the i_disksize mark_inode_dirty
+                * into that.
+                */
+               loff_t new_i_size;
+
+               new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
+               if (new_i_size > EXT4_I(inode)->i_disksize)
+                       EXT4_I(inode)->i_disksize = new_i_size;
+               ret = generic_commit_write(file, page, from, to);
+       }
+       ret2 = ext4_journal_stop(handle);
+       if (!ret)
+               ret = ret2;
+       return ret;
+}
+
+static int ext4_writeback_commit_write(struct file *file, struct page *page,
+                            unsigned from, unsigned to)
+{
+       handle_t *handle = ext4_journal_current_handle();
+       struct inode *inode = page->mapping->host;
+       int ret = 0, ret2;
+       loff_t new_i_size;
+
+       new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
+       if (new_i_size > EXT4_I(inode)->i_disksize)
+               EXT4_I(inode)->i_disksize = new_i_size;
+
+       if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
+               ret = nobh_commit_write(file, page, from, to);
+       else
+               ret = generic_commit_write(file, page, from, to);
+
+       ret2 = ext4_journal_stop(handle);
+       if (!ret)
+               ret = ret2;
+       return ret;
+}
+
+static int ext4_journalled_commit_write(struct file *file,
+                       struct page *page, unsigned from, unsigned to)
+{
+       handle_t *handle = ext4_journal_current_handle();
+       struct inode *inode = page->mapping->host;
+       int ret = 0, ret2;
+       int partial = 0;
+       loff_t pos;
+
+       /*
+        * Here we duplicate the generic_commit_write() functionality
+        */
+       pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
+
+       ret = walk_page_buffers(handle, page_buffers(page), from,
+                               to, &partial, commit_write_fn);
+       if (!partial)
+               SetPageUptodate(page);
+       if (pos > inode->i_size)
+               i_size_write(inode, pos);
+       EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
+       if (inode->i_size > EXT4_I(inode)->i_disksize) {
+               EXT4_I(inode)->i_disksize = inode->i_size;
+               ret2 = ext4_mark_inode_dirty(handle, inode);
+               if (!ret)
+                       ret = ret2;
+       }
+       ret2 = ext4_journal_stop(handle);
+       if (!ret)
+               ret = ret2;
+       return ret;
+}
+
+/*
+ * bmap() is special.  It gets used by applications such as lilo and by
+ * the swapper to find the on-disk block of a specific piece of data.
+ *
+ * Naturally, this is dangerous if the block concerned is still in the
+ * journal.  If somebody makes a swapfile on an ext4 data-journaling
+ * filesystem and enables swap, then they may get a nasty shock when the
+ * data getting swapped to that swapfile suddenly gets overwritten by
+ * the original zero's written out previously to the journal and
+ * awaiting writeback in the kernel's buffer cache.
+ *
+ * So, if we see any bmap calls here on a modified, data-journaled file,
+ * take extra steps to flush any blocks which might be in the cache.
+ */
+static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
+{
+       struct inode *inode = mapping->host;
+       journal_t *journal;
+       int err;
+
+       if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
+               /*
+                * This is a REALLY heavyweight approach, but the use of
+                * bmap on dirty files is expected to be extremely rare:
+                * only if we run lilo or swapon on a freshly made file
+                * do we expect this to happen.
+                *
+                * (bmap requires CAP_SYS_RAWIO so this does not
+                * represent an unprivileged user DOS attack --- we'd be
+                * in trouble if mortal users could trigger this path at
+                * will.)
+                *
+                * NB. EXT4_STATE_JDATA is not set on files other than
+                * regular files.  If somebody wants to bmap a directory
+                * or symlink and gets confused because the buffer
+                * hasn't yet been flushed to disk, they deserve
+                * everything they get.
+                */
+
+               EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
+               journal = EXT4_JOURNAL(inode);
+               jbd2_journal_lock_updates(journal);
+               err = jbd2_journal_flush(journal);
+               jbd2_journal_unlock_updates(journal);
+
+               if (err)
+                       return 0;
+       }
+
+       return generic_block_bmap(mapping,block,ext4_get_block);
+}
+
+static int bget_one(handle_t *handle, struct buffer_head *bh)
+{
+       get_bh(bh);
+       return 0;
+}
+
+static int bput_one(handle_t *handle, struct buffer_head *bh)
+{
+       put_bh(bh);
+       return 0;
+}
+
+static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
+{
+       if (buffer_mapped(bh))
+               return ext4_journal_dirty_data(handle, bh);
+       return 0;
+}
+
+/*
+ * Note that we always start a transaction even if we're not journalling
+ * data.  This is to preserve ordering: any hole instantiation within
+ * __block_write_full_page -> ext4_get_block() should be journalled
+ * along with the data so we don't crash and then get metadata which
+ * refers to old data.
+ *
+ * In all journalling modes block_write_full_page() will start the I/O.
+ *
+ * Problem:
+ *
+ *     ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
+ *             ext4_writepage()
+ *
+ * Similar for:
+ *
+ *     ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
+ *
+ * Same applies to ext4_get_block().  We will deadlock on various things like
+ * lock_journal and i_truncate_mutex.
+ *
+ * Setting PF_MEMALLOC here doesn't work - too many internal memory
+ * allocations fail.
+ *
+ * 16May01: If we're reentered then journal_current_handle() will be
+ *         non-zero. We simply *return*.
+ *
+ * 1 July 2001: @@@ FIXME:
+ *   In journalled data mode, a data buffer may be metadata against the
+ *   current transaction.  But the same file is part of a shared mapping
+ *   and someone does a writepage() on it.
+ *
+ *   We will move the buffer onto the async_data list, but *after* it has
+ *   been dirtied. So there's a small window where we have dirty data on
+ *   BJ_Metadata.
+ *
+ *   Note that this only applies to the last partial page in the file.  The
+ *   bit which block_write_full_page() uses prepare/commit for.  (That's
+ *   broken code anyway: it's wrong for msync()).
+ *
+ *   It's a rare case: affects the final partial page, for journalled data
+ *   where the file is subject to bith write() and writepage() in the same
+ *   transction.  To fix it we'll need a custom block_write_full_page().
+ *   We'll probably need that anyway for journalling writepage() output.
+ *
+ * We don't honour synchronous mounts for writepage().  That would be
+ * disastrous.  Any write() or metadata operation will sync the fs for
+ * us.
+ *
+ * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
+ * we don't need to open a transaction here.
+ */
+static int ext4_ordered_writepage(struct page *page,
+                               struct writeback_control *wbc)
+{
+       struct inode *inode = page->mapping->host;
+       struct buffer_head *page_bufs;
+       handle_t *handle = NULL;
+       int ret = 0;
+       int err;
+
+       J_ASSERT(PageLocked(page));
+
+       /*
+        * We give up here if we're reentered, because it might be for a
+        * different filesystem.
+        */
+       if (ext4_journal_current_handle())
+               goto out_fail;
+
+       handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
+
+       if (IS_ERR(handle)) {
+               ret = PTR_ERR(handle);
+               goto out_fail;
+       }
+
+       if (!page_has_buffers(page)) {
+               create_empty_buffers(page, inode->i_sb->s_blocksize,
+                               (1 << BH_Dirty)|(1 << BH_Uptodate));
+       }
+       page_bufs = page_buffers(page);
+       walk_page_buffers(handle, page_bufs, 0,
+                       PAGE_CACHE_SIZE, NULL, bget_one);
+
+       ret = block_write_full_page(page, ext4_get_block, wbc);
+
+       /*
+        * The page can become unlocked at any point now, and
+        * truncate can then come in and change things.  So we
+        * can't touch *page from now on.  But *page_bufs is
+        * safe due to elevated refcount.
+        */
+
+       /*
+        * And attach them to the current transaction.  But only if
+        * block_write_full_page() succeeded.  Otherwise they are unmapped,
+        * and generally junk.
+        */
+       if (ret == 0) {
+               err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
+                                       NULL, jbd2_journal_dirty_data_fn);
+               if (!ret)
+                       ret = err;
+       }
+       walk_page_buffers(handle, page_bufs, 0,
+                       PAGE_CACHE_SIZE, NULL, bput_one);
+       err = ext4_journal_stop(handle);
+       if (!ret)
+               ret = err;
+       return ret;
+
+out_fail:
+       redirty_page_for_writepage(wbc, page);
+       unlock_page(page);
+       return ret;
+}
+
+static int ext4_writeback_writepage(struct page *page,
+                               struct writeback_control *wbc)
+{
+       struct inode *inode = page->mapping->host;
+       handle_t *handle = NULL;
+       int ret = 0;
+       int err;
+
+       if (ext4_journal_current_handle())
+               goto out_fail;
+
+       handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
+       if (IS_ERR(handle)) {
+               ret = PTR_ERR(handle);
+               goto out_fail;
+       }
+
+       if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
+               ret = nobh_writepage(page, ext4_get_block, wbc);
+       else
+               ret = block_write_full_page(page, ext4_get_block, wbc);
+
+       err = ext4_journal_stop(handle);
+       if (!ret)
+               ret = err;
+       return ret;
+
+out_fail:
+       redirty_page_for_writepage(wbc, page);
+       unlock_page(page);
+       return ret;
+}
+
+static int ext4_journalled_writepage(struct page *page,
+                               struct writeback_control *wbc)
+{
+       struct inode *inode = page->mapping->host;
+       handle_t *handle = NULL;
+       int ret = 0;
+       int err;
+
+       if (ext4_journal_current_handle())
+               goto no_write;
+
+       handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
+       if (IS_ERR(handle)) {
+               ret = PTR_ERR(handle);
+               goto no_write;
+       }
+
+       if (!page_has_buffers(page) || PageChecked(page)) {
+               /*
+                * It's mmapped pagecache.  Add buffers and journal it.  There
+                * doesn't seem much point in redirtying the page here.
+                */
+               ClearPageChecked(page);
+               ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
+                                       ext4_get_block);
+               if (ret != 0) {
+                       ext4_journal_stop(handle);
+                       goto out_unlock;
+               }
+               ret = walk_page_buffers(handle, page_buffers(page), 0,
+                       PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
+
+               err = walk_page_buffers(handle, page_buffers(page), 0,
+                               PAGE_CACHE_SIZE, NULL, commit_write_fn);
+               if (ret == 0)
+                       ret = err;
+               EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
+               unlock_page(page);
+       } else {
+               /*
+                * It may be a page full of checkpoint-mode buffers.  We don't
+                * really know unless we go poke around in the buffer_heads.
+                * But block_write_full_page will do the right thing.
+                */
+               ret = block_write_full_page(page, ext4_get_block, wbc);
+       }
+       err = ext4_journal_stop(handle);
+       if (!ret)
+               ret = err;
+out:
+       return ret;
+
+no_write:
+       redirty_page_for_writepage(wbc, page);
+out_unlock:
+       unlock_page(page);
+       goto out;
+}
+
+static int ext4_readpage(struct file *file, struct page *page)
+{
+       return mpage_readpage(page, ext4_get_block);
+}
+
+static int
+ext4_readpages(struct file *file, struct address_space *mapping,
+               struct list_head *pages, unsigned nr_pages)
+{
+       return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
+}
+
+static void ext4_invalidatepage(struct page *page, unsigned long offset)
+{
+       journal_t *journal = EXT4_JOURNAL(page->mapping->host);
+
+       /*
+        * If it's a full truncate we just forget about the pending dirtying
+        */
+       if (offset == 0)
+               ClearPageChecked(page);
+
+       jbd2_journal_invalidatepage(journal, page, offset);
+}
+
+static int ext4_releasepage(struct page *page, gfp_t wait)
+{
+       journal_t *journal = EXT4_JOURNAL(page->mapping->host);
+
+       WARN_ON(PageChecked(page));
+       if (!page_has_buffers(page))
+               return 0;
+       return jbd2_journal_try_to_free_buffers(journal, page, wait);
+}
+
+/*
+ * If the O_DIRECT write will extend the file then add this inode to the
+ * orphan list.  So recovery will truncate it back to the original size
+ * if the machine crashes during the write.
+ *
+ * If the O_DIRECT write is intantiating holes inside i_size and the machine
+ * crashes then stale disk data _may_ be exposed inside the file.
+ */
+static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
+                       const struct iovec *iov, loff_t offset,
+                       unsigned long nr_segs)
+{
+       struct file *file = iocb->ki_filp;
+       struct inode *inode = file->f_mapping->host;
+       struct ext4_inode_info *ei = EXT4_I(inode);
+       handle_t *handle = NULL;
+       ssize_t ret;
+       int orphan = 0;
+       size_t count = iov_length(iov, nr_segs);
+
+       if (rw == WRITE) {
+               loff_t final_size = offset + count;
+
+               handle = ext4_journal_start(inode, DIO_CREDITS);
+               if (IS_ERR(handle)) {
+                       ret = PTR_ERR(handle);
+                       goto out;
+               }
+               if (final_size > inode->i_size) {
+                       ret = ext4_orphan_add(handle, inode);
+                       if (ret)
+                               goto out_stop;
+                       orphan = 1;
+                       ei->i_disksize = inode->i_size;
+               }
+       }
+
+       ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
+                                offset, nr_segs,
+                                ext4_get_block, NULL);
+
+       /*
+        * Reacquire the handle: ext4_get_block() can restart the transaction
+        */
+       handle = journal_current_handle();
+
+out_stop:
+       if (handle) {
+               int err;
+
+               if (orphan && inode->i_nlink)
+                       ext4_orphan_del(handle, inode);
+               if (orphan && ret > 0) {
+                       loff_t end = offset + ret;
+                       if (end > inode->i_size) {
+                               ei->i_disksize = end;
+                               i_size_write(inode, end);
+                               /*
+                                * We're going to return a positive `ret'
+                                * here due to non-zero-length I/O, so there's
+                                * no way of reporting error returns from
+                                * ext4_mark_inode_dirty() to userspace.  So
+                                * ignore it.
+                                */
+                               ext4_mark_inode_dirty(handle, inode);
+                       }
+               }
+               err = ext4_journal_stop(handle);
+               if (ret == 0)
+                       ret = err;
+       }
+out:
+       return ret;
+}
+
+/*
+ * Pages can be marked dirty completely asynchronously from ext4's journalling
+ * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
+ * much here because ->set_page_dirty is called under VFS locks.  The page is
+ * not necessarily locked.
+ *
+ * We cannot just dirty the page and leave attached buffers clean, because the
+ * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
+ * or jbddirty because all the journalling code will explode.
+ *
+ * So what we do is to mark the page "pending dirty" and next time writepage
+ * is called, propagate that into the buffers appropriately.
+ */
+static int ext4_journalled_set_page_dirty(struct page *page)
+{
+       SetPageChecked(page);
+       return __set_page_dirty_nobuffers(page);
+}
+
+static const struct address_space_operations ext4_ordered_aops = {
+       .readpage       = ext4_readpage,
+       .readpages      = ext4_readpages,
+       .writepage      = ext4_ordered_writepage,
+       .sync_page      = block_sync_page,
+       .prepare_write  = ext4_prepare_write,
+       .commit_write   = ext4_ordered_commit_write,
+       .bmap           = ext4_bmap,
+       .invalidatepage = ext4_invalidatepage,
+       .releasepage    = ext4_releasepage,
+       .direct_IO      = ext4_direct_IO,
+       .migratepage    = buffer_migrate_page,
+};
+
+static const struct address_space_operations ext4_writeback_aops = {
+       .readpage       = ext4_readpage,
+       .readpages      = ext4_readpages,
+       .writepage      = ext4_writeback_writepage,
+       .sync_page      = block_sync_page,
+       .prepare_write  = ext4_prepare_write,
+       .commit_write   = ext4_writeback_commit_write,
+       .bmap           = ext4_bmap,
+       .invalidatepage = ext4_invalidatepage,
+       .releasepage    = ext4_releasepage,
+       .direct_IO      = ext4_direct_IO,
+       .migratepage    = buffer_migrate_page,
+};
+
+static const struct address_space_operations ext4_journalled_aops = {
+       .readpage       = ext4_readpage,
+       .readpages      = ext4_readpages,
+       .writepage      = ext4_journalled_writepage,
+       .sync_page      = block_sync_page,
+       .prepare_write  = ext4_prepare_write,
+       .commit_write   = ext4_journalled_commit_write,
+       .set_page_dirty = ext4_journalled_set_page_dirty,
+       .bmap           = ext4_bmap,
+       .invalidatepage = ext4_invalidatepage,
+       .releasepage    = ext4_releasepage,
+};
+
+void ext4_set_aops(struct inode *inode)
+{
+       if (ext4_should_order_data(inode))
+               inode->i_mapping->a_ops = &ext4_ordered_aops;
+       else if (ext4_should_writeback_data(inode))
+               inode->i_mapping->a_ops = &ext4_writeback_aops;
+       else
+               inode->i_mapping->a_ops = &ext4_journalled_aops;
+}
+
+/*
+ * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
+ * up to the end of the block which corresponds to `from'.
+ * This required during truncate. We need to physically zero the tail end
+ * of that block so it doesn't yield old data if the file is later grown.
+ */
+int ext4_block_truncate_page(handle_t *handle, struct page *page,
+               struct address_space *mapping, loff_t from)
+{
+       ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
+       unsigned offset = from & (PAGE_CACHE_SIZE-1);
+       unsigned blocksize, iblock, length, pos;
+       struct inode *inode = mapping->host;
+       struct buffer_head *bh;
+       int err = 0;
+       void *kaddr;
+
+       blocksize = inode->i_sb->s_blocksize;
+       length = blocksize - (offset & (blocksize - 1));
+       iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
+
+       /*
+        * For "nobh" option,  we can only work if we don't need to
+        * read-in the page - otherwise we create buffers to do the IO.
+        */
+       if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
+            ext4_should_writeback_data(inode) && PageUptodate(page)) {
+               kaddr = kmap_atomic(page, KM_USER0);
+               memset(kaddr + offset, 0, length);
+               flush_dcache_page(page);
+               kunmap_atomic(kaddr, KM_USER0);
+               set_page_dirty(page);
+               goto unlock;
+       }
+
+       if (!page_has_buffers(page))
+               create_empty_buffers(page, blocksize, 0);
+
+       /* Find the buffer that contains "offset" */
+       bh = page_buffers(page);
+       pos = blocksize;
+       while (offset >= pos) {
+               bh = bh->b_this_page;
+               iblock++;
+               pos += blocksize;
+       }
+
+       err = 0;
+       if (buffer_freed(bh)) {
+               BUFFER_TRACE(bh, "freed: skip");
+               goto unlock;
+       }
+
+       if (!buffer_mapped(bh)) {
+               BUFFER_TRACE(bh, "unmapped");
+               ext4_get_block(inode, iblock, bh, 0);
+               /* unmapped? It's a hole - nothing to do */
+               if (!buffer_mapped(bh)) {
+                       BUFFER_TRACE(bh, "still unmapped");
+                       goto unlock;
+               }
+       }
+
+       /* Ok, it's mapped. Make sure it's up-to-date */
+       if (PageUptodate(page))
+               set_buffer_uptodate(bh);
+
+       if (!buffer_uptodate(bh)) {
+               err = -EIO;
+               ll_rw_block(READ, 1, &bh);
+               wait_on_buffer(bh);
+               /* Uhhuh. Read error. Complain and punt. */
+               if (!buffer_uptodate(bh))
+                       goto unlock;
+       }
+
+       if (ext4_should_journal_data(inode)) {
+               BUFFER_TRACE(bh, "get write access");
+               err = ext4_journal_get_write_access(handle, bh);
+               if (err)
+                       goto unlock;
+       }
+
+       kaddr = kmap_atomic(page, KM_USER0);
+       memset(kaddr + offset, 0, length);
+       flush_dcache_page(page);
+       kunmap_atomic(kaddr, KM_USER0);
+
+       BUFFER_TRACE(bh, "zeroed end of block");
+
+       err = 0;
+       if (ext4_should_journal_data(inode)) {
+               err = ext4_journal_dirty_metadata(handle, bh);
+       } else {
+               if (ext4_should_order_data(inode))
+                       err = ext4_journal_dirty_data(handle, bh);
+               mark_buffer_dirty(bh);
+       }
+
+unlock:
+       unlock_page(page);
+       page_cache_release(page);
+       return err;
+}
+
+/*
+ * Probably it should be a library function... search for first non-zero word
+ * or memcmp with zero_page, whatever is better for particular architecture.
+ * Linus?
+ */
+static inline int all_zeroes(__le32 *p, __le32 *q)
+{
+       while (p < q)
+               if (*p++)
+                       return 0;
+       return 1;
+}
+
+/**
+ *     ext4_find_shared - find the indirect blocks for partial truncation.
+ *     @inode:   inode in question
+ *     @depth:   depth of the affected branch
+ *     @offsets: offsets of pointers in that branch (see ext4_block_to_path)
+ *     @chain:   place to store the pointers to partial indirect blocks
+ *     @top:     place to the (detached) top of branch
+ *
+ *     This is a helper function used by ext4_truncate().
+ *
+ *     When we do truncate() we may have to clean the ends of several
+ *     indirect blocks but leave the blocks themselves alive. Block is
+ *     partially truncated if some data below the new i_size is refered
+ *     from it (and it is on the path to the first completely truncated
+ *     data block, indeed).  We have to free the top of that path along
+ *     with everything to the right of the path. Since no allocation
+ *     past the truncation point is possible until ext4_truncate()
+ *     finishes, we may safely do the latter, but top of branch may
+ *     require special attention - pageout below the truncation point
+ *     might try to populate it.
+ *
+ *     We atomically detach the top of branch from the tree, store the
+ *     block number of its root in *@top, pointers to buffer_heads of
+ *     partially truncated blocks - in @chain[].bh and pointers to
+ *     their last elements that should not be removed - in
+ *     @chain[].p. Return value is the pointer to last filled element
+ *     of @chain.
+ *
+ *     The work left to caller to do the actual freeing of subtrees:
+ *             a) free the subtree starting from *@top
+ *             b) free the subtrees whose roots are stored in
+ *                     (@chain[i].p+1 .. end of @chain[i].bh->b_data)
+ *             c) free the subtrees growing from the inode past the @chain[0].
+ *                     (no partially truncated stuff there).  */
+
+static Indirect *ext4_find_shared(struct inode *inode, int depth,
+                       int offsets[4], Indirect chain[4], __le32 *top)
+{
+       Indirect *partial, *p;
+       int k, err;
+
+       *top = 0;
+       /* Make k index the deepest non-null offest + 1 */
+       for (k = depth; k > 1 && !offsets[k-1]; k--)
+               ;
+       partial = ext4_get_branch(inode, k, offsets, chain, &err);
+       /* Writer: pointers */
+       if (!partial)
+               partial = chain + k-1;
+       /*
+        * If the branch acquired continuation since we've looked at it -
+        * fine, it should all survive and (new) top doesn't belong to us.
+        */
+       if (!partial->key && *partial->p)
+               /* Writer: end */
+               goto no_top;
+       for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
+               ;
+       /*
+        * OK, we've found the last block that must survive. The rest of our
+        * branch should be detached before unlocking. However, if that rest
+        * of branch is all ours and does not grow immediately from the inode
+        * it's easier to cheat and just decrement partial->p.
+        */
+       if (p == chain + k - 1 && p > chain) {
+               p->p--;
+       } else {
+               *top = *p->p;
+               /* Nope, don't do this in ext4.  Must leave the tree intact */
+#if 0
+               *p->p = 0;
+#endif
+       }
+       /* Writer: end */
+
+       while(partial > p) {
+               brelse(partial->bh);
+               partial--;
+       }
+no_top:
+       return partial;
+}
+
+/*
+ * Zero a number of block pointers in either an inode or an indirect block.
+ * If we restart the transaction we must again get write access to the
+ * indirect block for further modification.
+ *
+ * We release `count' blocks on disk, but (last - first) may be greater
+ * than `count' because there can be holes in there.
+ */
+static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
+               struct buffer_head *bh, ext4_fsblk_t block_to_free,
+               unsigned long count, __le32 *first, __le32 *last)
+{
+       __le32 *p;
+       if (try_to_extend_transaction(handle, inode)) {
+               if (bh) {
+                       BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
+                       ext4_journal_dirty_metadata(handle, bh);
+               }
+               ext4_mark_inode_dirty(handle, inode);
+               ext4_journal_test_restart(handle, inode);
+               if (bh) {
+                       BUFFER_TRACE(bh, "retaking write access");
+                       ext4_journal_get_write_access(handle, bh);
+               }
+       }
+
+       /*
+        * Any buffers which are on the journal will be in memory. We find
+        * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
+        * on them.  We've already detached each block from the file, so
+        * bforget() in jbd2_journal_forget() should be safe.
+        *
+        * AKPM: turn on bforget in jbd2_journal_forget()!!!
+        */
+       for (p = first; p < last; p++) {
+               u32 nr = le32_to_cpu(*p);
+               if (nr) {
+                       struct buffer_head *bh;
+
+                       *p = 0;
+                       bh = sb_find_get_block(inode->i_sb, nr);
+                       ext4_forget(handle, 0, inode, bh, nr);
+               }
+       }
+
+       ext4_free_blocks(handle, inode, block_to_free, count);
+}
+
+/**
+ * ext4_free_data - free a list of data blocks
+ * @handle:    handle for this transaction
+ * @inode:     inode we are dealing with
+ * @this_bh:   indirect buffer_head which contains *@first and *@last
+ * @first:     array of block numbers
+ * @last:      points immediately past the end of array
+ *
+ * We are freeing all blocks refered from that array (numbers are stored as
+ * little-endian 32-bit) and updating @inode->i_blocks appropriately.
+ *
+ * We accumulate contiguous runs of blocks to free.  Conveniently, if these
+ * blocks are contiguous then releasing them at one time will only affect one
+ * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
+ * actually use a lot of journal space.
+ *
+ * @this_bh will be %NULL if @first and @last point into the inode's direct
+ * block pointers.
+ */
+static void ext4_free_data(handle_t *handle, struct inode *inode,
+                          struct buffer_head *this_bh,
+                          __le32 *first, __le32 *last)
+{
+       ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
+       unsigned long count = 0;            /* Number of blocks in the run */
+       __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
+                                              corresponding to
+                                              block_to_free */
+       ext4_fsblk_t nr;                    /* Current block # */
+       __le32 *p;                          /* Pointer into inode/ind
+                                              for current block */
+       int err;
+
+       if (this_bh) {                          /* For indirect block */
+               BUFFER_TRACE(this_bh, "get_write_access");
+               err = ext4_journal_get_write_access(handle, this_bh);
+               /* Important: if we can't update the indirect pointers
+                * to the blocks, we can't free them. */
+               if (err)
+                       return;
+       }
+
+       for (p = first; p < last; p++) {
+               nr = le32_to_cpu(*p);
+               if (nr) {
+                       /* accumulate blocks to free if they're contiguous */
+                       if (count == 0) {
+                               block_to_free = nr;
+                               block_to_free_p = p;
+                               count = 1;
+                       } else if (nr == block_to_free + count) {
+                               count++;
+                       } else {
+                               ext4_clear_blocks(handle, inode, this_bh,
+                                                 block_to_free,
+                                                 count, block_to_free_p, p);
+                               block_to_free = nr;
+                               block_to_free_p = p;
+                               count = 1;
+                       }
+               }
+       }
+
+       if (count > 0)
+               ext4_clear_blocks(handle, inode, this_bh, block_to_free,
+                                 count, block_to_free_p, p);
+
+       if (this_bh) {
+               BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
+               ext4_journal_dirty_metadata(handle, this_bh);
+       }
+}
+
+/**
+ *     ext4_free_branches - free an array of branches
+ *     @handle: JBD handle for this transaction
+ *     @inode: inode we are dealing with
+ *     @parent_bh: the buffer_head which contains *@first and *@last
+ *     @first: array of block numbers
+ *     @last:  pointer immediately past the end of array
+ *     @depth: depth of the branches to free
+ *
+ *     We are freeing all blocks refered from these branches (numbers are
+ *     stored as little-endian 32-bit) and updating @inode->i_blocks
+ *     appropriately.
+ */
+static void ext4_free_branches(handle_t *handle, struct inode *inode,
+                              struct buffer_head *parent_bh,
+                              __le32 *first, __le32 *last, int depth)
+{
+       ext4_fsblk_t nr;
+       __le32 *p;
+
+       if (is_handle_aborted(handle))
+               return;
+
+       if (depth--) {
+               struct buffer_head *bh;
+               int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
+               p = last;
+               while (--p >= first) {
+                       nr = le32_to_cpu(*p);
+                       if (!nr)
+                               continue;               /* A hole */
+
+                       /* Go read the buffer for the next level down */
+                       bh = sb_bread(inode->i_sb, nr);
+
+                       /*
+                        * A read failure? Report error and clear slot
+                        * (should be rare).
+                        */
+                       if (!bh) {
+                               ext4_error(inode->i_sb, "ext4_free_branches",
+                                          "Read failure, inode=%lu, block=%llu",
+                                          inode->i_ino, nr);
+                               continue;
+                       }
+
+                       /* This zaps the entire block.  Bottom up. */
+                       BUFFER_TRACE(bh, "free child branches");
+                       ext4_free_branches(handle, inode, bh,
+                                          (__le32*)bh->b_data,
+                                          (__le32*)bh->b_data + addr_per_block,
+                                          depth);
+
+                       /*
+                        * We've probably journalled the indirect block several
+                        * times during the truncate.  But it's no longer
+                        * needed and we now drop it from the transaction via
+                        * jbd2_journal_revoke().
+                        *
+                        * That's easy if it's exclusively part of this
+                        * transaction.  But if it's part of the committing
+                        * transaction then jbd2_journal_forget() will simply
+                        * brelse() it.  That means that if the underlying
+                        * block is reallocated in ext4_get_block(),
+                        * unmap_underlying_metadata() will find this block
+                        * and will try to get rid of it.  damn, damn.
+                        *
+                        * If this block has already been committed to the
+                        * journal, a revoke record will be written.  And
+                        * revoke records must be emitted *before* clearing
+                        * this block's bit in the bitmaps.
+                        */
+                       ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
+
+                       /*
+                        * Everything below this this pointer has been
+                        * released.  Now let this top-of-subtree go.
+                        *
+                        * We want the freeing of this indirect block to be
+                        * atomic in the journal with the updating of the
+                        * bitmap block which owns it.  So make some room in
+                        * the journal.
+                        *
+                        * We zero the parent pointer *after* freeing its
+                        * pointee in the bitmaps, so if extend_transaction()
+                        * for some reason fails to put the bitmap changes and
+                        * the release into the same transaction, recovery
+                        * will merely complain about releasing a free block,
+                        * rather than leaking blocks.
+                        */
+                       if (is_handle_aborted(handle))
+                               return;
+                       if (try_to_extend_transaction(handle, inode)) {
+                               ext4_mark_inode_dirty(handle, inode);
+                               ext4_journal_test_restart(handle, inode);
+                       }
+
+                       ext4_free_blocks(handle, inode, nr, 1);
+
+                       if (parent_bh) {
+                               /*
+                                * The block which we have just freed is
+                                * pointed to by an indirect block: journal it
+                                */
+                               BUFFER_TRACE(parent_bh, "get_write_access");
+                               if (!ext4_journal_get_write_access(handle,
+                                                                  parent_bh)){
+                                       *p = 0;
+                                       BUFFER_TRACE(parent_bh,
+                                       "call ext4_journal_dirty_metadata");
+                                       ext4_journal_dirty_metadata(handle,
+                                                                   parent_bh);
+                               }
+                       }
+               }
+       } else {
+               /* We have reached the bottom of the tree. */
+               BUFFER_TRACE(parent_bh, "free data blocks");
+               ext4_free_data(handle, inode, parent_bh, first, last);
+       }
+}
+
+/*
+ * ext4_truncate()
+ *
+ * We block out ext4_get_block() block instantiations across the entire
+ * transaction, and VFS/VM ensures that ext4_truncate() cannot run
+ * simultaneously on behalf of the same inode.
+ *
+ * As we work through the truncate and commmit bits of it to the journal there
+ * is one core, guiding principle: the file's tree must always be consistent on
+ * disk.  We must be able to restart the truncate after a crash.
+ *
+ * The file's tree may be transiently inconsistent in memory (although it
+ * probably isn't), but whenever we close off and commit a journal transaction,
+ * the contents of (the filesystem + the journal) must be consistent and
+ * restartable.  It's pretty simple, really: bottom up, right to left (although
+ * left-to-right works OK too).
+ *
+ * Note that at recovery time, journal replay occurs *before* the restart of
+ * truncate against the orphan inode list.
+ *
+ * The committed inode has the new, desired i_size (which is the same as
+ * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
+ * that this inode's truncate did not complete and it will again call
+ * ext4_truncate() to have another go.  So there will be instantiated blocks
+ * to the right of the truncation point in a crashed ext4 filesystem.  But
+ * that's fine - as long as they are linked from the inode, the post-crash
+ * ext4_truncate() run will find them and release them.
+ */
+void ext4_truncate(struct inode *inode)
+{
+       handle_t *handle;
+       struct ext4_inode_info *ei = EXT4_I(inode);
+       __le32 *i_data = ei->i_data;
+       int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
+       struct address_space *mapping = inode->i_mapping;
+       int offsets[4];
+       Indirect chain[4];
+       Indirect *partial;
+       __le32 nr = 0;
+       int n;
+       long last_block;
+       unsigned blocksize = inode->i_sb->s_blocksize;
+       struct page *page;
+
+       if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
+           S_ISLNK(inode->i_mode)))
+               return;
+       if (ext4_inode_is_fast_symlink(inode))
+               return;
+       if (IS_APPEND(inode) || IS_IXORUNLINK(inode))
+               return;
+
+       /*
+        * We have to lock the EOF page here, because lock_page() nests
+        * outside jbd2_journal_start().
+        */
+       if ((inode->i_size & (blocksize - 1)) == 0) {
+               /* Block boundary? Nothing to do */
+               page = NULL;
+       } else {
+               page = grab_cache_page(mapping,
+                               inode->i_size >> PAGE_CACHE_SHIFT);
+               if (!page)
+                       return;
+       }
+
+       if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
+               return ext4_ext_truncate(inode, page);
+
+       handle = start_transaction(inode);
+       if (IS_ERR(handle)) {
+               if (page) {
+                       clear_highpage(page);
+                       flush_dcache_page(page);
+                       unlock_page(page);
+                       page_cache_release(page);
+               }
+               return;         /* AKPM: return what? */
+       }
+
+       last_block = (inode->i_size + blocksize-1)
+                                       >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
+
+       if (page)
+               ext4_block_truncate_page(handle, page, mapping, inode->i_size);
+
+       n = ext4_block_to_path(inode, last_block, offsets, NULL);
+       if (n == 0)
+               goto out_stop;  /* error */
+
+       /*
+        * OK.  This truncate is going to happen.  We add the inode to the
+        * orphan list, so that if this truncate spans multiple transactions,
+        * and we crash, we will resume the truncate when the filesystem
+        * recovers.  It also marks the inode dirty, to catch the new size.
+        *
+        * Implication: the file must always be in a sane, consistent
+        * truncatable state while each transaction commits.
+        */
+       if (ext4_orphan_add(handle, inode))
+               goto out_stop;
+
+       /*
+        * The orphan list entry will now protect us from any crash which
+        * occurs before the truncate completes, so it is now safe to propagate
+        * the new, shorter inode size (held for now in i_size) into the
+        * on-disk inode. We do this via i_disksize, which is the value which
+        * ext4 *really* writes onto the disk inode.
+        */
+       ei->i_disksize = inode->i_size;
+
+       /*
+        * From here we block out all ext4_get_block() callers who want to
+        * modify the block allocation tree.
+        */
+       mutex_lock(&ei->truncate_mutex);
+
+       if (n == 1) {           /* direct blocks */
+               ext4_free_data(handle, inode, NULL, i_data+offsets[0],
+                              i_data + EXT4_NDIR_BLOCKS);
+               goto do_indirects;
+       }
+
+       partial = ext4_find_shared(inode, n, offsets, chain, &nr);
+       /* Kill the top of shared branch (not detached) */
+       if (nr) {
+               if (partial == chain) {
+                       /* Shared branch grows from the inode */
+                       ext4_free_branches(handle, inode, NULL,
+                                          &nr, &nr+1, (chain+n-1) - partial);
+                       *partial->p = 0;
+                       /*
+                        * We mark the inode dirty prior to restart,
+                        * and prior to stop.  No need for it here.
+                        */
+               } else {
+                       /* Shared branch grows from an indirect block */
+                       BUFFER_TRACE(partial->bh, "get_write_access");
+                       ext4_free_branches(handle, inode, partial->bh,
+                                       partial->p,
+                                       partial->p+1, (chain+n-1) - partial);
+               }
+       }
+       /* Clear the ends of indirect blocks on the shared branch */
+       while (partial > chain) {
+               ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
+                                  (__le32*)partial->bh->b_data+addr_per_block,
+                                  (chain+n-1) - partial);
+               BUFFER_TRACE(partial->bh, "call brelse");
+               brelse (partial->bh);
+               partial--;
+       }
+do_indirects:
+       /* Kill the remaining (whole) subtrees */
+       switch (offsets[0]) {
+       default:
+               nr = i_data[EXT4_IND_BLOCK];
+               if (nr) {
+                       ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
+                       i_data[EXT4_IND_BLOCK] = 0;
+               }
+       case EXT4_IND_BLOCK:
+               nr = i_data[EXT4_DIND_BLOCK];
+               if (nr) {
+                       ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
+                       i_data[EXT4_DIND_BLOCK] = 0;
+               }
+       case EXT4_DIND_BLOCK:
+               nr = i_data[EXT4_TIND_BLOCK];
+               if (nr) {
+                       ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
+                       i_data[EXT4_TIND_BLOCK] = 0;
+               }
+       case EXT4_TIND_BLOCK:
+               ;
+       }
+
+       ext4_discard_reservation(inode);
+
+       mutex_unlock(&ei->truncate_mutex);
+       inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
+       ext4_mark_inode_dirty(handle, inode);
+
+       /*
+        * In a multi-transaction truncate, we only make the final transaction
+        * synchronous
+        */
+       if (IS_SYNC(inode))
+               handle->h_sync = 1;
+out_stop:
+       /*
+        * If this was a simple ftruncate(), and the file will remain alive
+        * then we need to clear up the orphan record which we created above.
+        * However, if this was a real unlink then we were called by
+        * ext4_delete_inode(), and we allow that function to clean up the
+        * orphan info for us.
+        */
+       if (inode->i_nlink)
+               ext4_orphan_del(handle, inode);
+
+       ext4_journal_stop(handle);
+}
+
+static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
+               unsigned long ino, struct ext4_iloc *iloc)
+{
+       unsigned long desc, group_desc, block_group;
+       unsigned long offset;
+       ext4_fsblk_t block;
+       struct buffer_head *bh;
+       struct ext4_group_desc * gdp;
+
+       if (!ext4_valid_inum(sb, ino)) {
+               /*
+                * This error is already checked for in namei.c unless we are
+                * looking at an NFS filehandle, in which case no error
+                * report is needed
+                */
+               return 0;
+       }
+
+       block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
+       if (block_group >= EXT4_SB(sb)->s_groups_count) {
+               ext4_error(sb,"ext4_get_inode_block","group >= groups count");
+               return 0;
+       }
+       smp_rmb();
+       group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
+       desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
+       bh = EXT4_SB(sb)->s_group_desc[group_desc];
+       if (!bh) {
+               ext4_error (sb, "ext4_get_inode_block",
+                           "Descriptor not loaded");
+               return 0;
+       }
+
+       gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
+               desc * EXT4_DESC_SIZE(sb));
+       /*
+        * Figure out the offset within the block group inode table
+        */
+       offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
+               EXT4_INODE_SIZE(sb);
+       block = ext4_inode_table(sb, gdp) +
+               (offset >> EXT4_BLOCK_SIZE_BITS(sb));
+
+       iloc->block_group = block_group;
+       iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
+       return block;
+}
+
+/*
+ * ext4_get_inode_loc returns with an extra refcount against the inode's
+ * underlying buffer_head on success. If 'in_mem' is true, we have all
+ * data in memory that is needed to recreate the on-disk version of this
+ * inode.
+ */
+static int __ext4_get_inode_loc(struct inode *inode,
+                               struct ext4_iloc *iloc, int in_mem)
+{
+       ext4_fsblk_t block;
+       struct buffer_head *bh;
+
+       block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
+       if (!block)
+               return -EIO;
+
+       bh = sb_getblk(inode->i_sb, block);
+       if (!bh) {
+               ext4_error (inode->i_sb, "ext4_get_inode_loc",
+                               "unable to read inode block - "
+                               "inode=%lu, block=%llu",
+                                inode->i_ino, block);
+               return -EIO;
+       }
+       if (!buffer_uptodate(bh)) {
+               lock_buffer(bh);
+               if (buffer_uptodate(bh)) {
+                       /* someone brought it uptodate while we waited */
+                       unlock_buffer(bh);
+                       goto has_buffer;
+               }
+
+               /*
+                * If we have all information of the inode in memory and this
+                * is the only valid inode in the block, we need not read the
+                * block.
+                */
+               if (in_mem) {
+                       struct buffer_head *bitmap_bh;
+                       struct ext4_group_desc *desc;
+                       int inodes_per_buffer;
+                       int inode_offset, i;
+                       int block_group;
+                       int start;
+
+                       block_group = (inode->i_ino - 1) /
+                                       EXT4_INODES_PER_GROUP(inode->i_sb);
+                       inodes_per_buffer = bh->b_size /
+                               EXT4_INODE_SIZE(inode->i_sb);
+                       inode_offset = ((inode->i_ino - 1) %
+                                       EXT4_INODES_PER_GROUP(inode->i_sb));
+                       start = inode_offset & ~(inodes_per_buffer - 1);
+
+                       /* Is the inode bitmap in cache? */
+                       desc = ext4_get_group_desc(inode->i_sb,
+                                               block_group, NULL);
+                       if (!desc)
+                               goto make_io;
+
+                       bitmap_bh = sb_getblk(inode->i_sb,
+                               ext4_inode_bitmap(inode->i_sb, desc));
+                       if (!bitmap_bh)
+                               goto make_io;
+
+                       /*
+                        * If the inode bitmap isn't in cache then the
+                        * optimisation may end up performing two reads instead
+                        * of one, so skip it.
+                        */
+                       if (!buffer_uptodate(bitmap_bh)) {
+                               brelse(bitmap_bh);
+                               goto make_io;
+                       }
+                       for (i = start; i < start + inodes_per_buffer; i++) {
+                               if (i == inode_offset)
+                                       continue;
+                               if (ext4_test_bit(i, bitmap_bh->b_data))
+                                       break;
+                       }
+                       brelse(bitmap_bh);
+                       if (i == start + inodes_per_buffer) {
+                               /* all other inodes are free, so skip I/O */
+                               memset(bh->b_data, 0, bh->b_size);
+                               set_buffer_uptodate(bh);
+                               unlock_buffer(bh);
+                               goto has_buffer;
+                       }
+               }
+
+make_io:
+               /*
+                * There are other valid inodes in the buffer, this inode
+                * has in-inode xattrs, or we don't have this inode in memory.
+                * Read the block from disk.
+                */
+               get_bh(bh);
+               bh->b_end_io = end_buffer_read_sync;
+               submit_bh(READ_META, bh);
+               wait_on_buffer(bh);
+               if (!buffer_uptodate(bh)) {
+                       ext4_error(inode->i_sb, "ext4_get_inode_loc",
+                                       "unable to read inode block - "
+                                       "inode=%lu, block=%llu",
+                                       inode->i_ino, block);
+                       brelse(bh);
+                       return -EIO;
+               }
+       }
+has_buffer:
+       iloc->bh = bh;
+       return 0;
+}
+
+int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
+{
+       /* We have all inode data except xattrs in memory here. */
+       return __ext4_get_inode_loc(inode, iloc,
+               !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
+}
+
+void ext4_set_inode_flags(struct inode *inode)
+{
+       unsigned int flags = EXT4_I(inode)->i_flags;
+
+       inode->i_flags &= ~(S_IMMUTABLE | S_IUNLINK | S_BARRIER |
+               S_SYNC | S_APPEND | S_NOATIME | S_DIRSYNC);
+
+       if (flags & EXT4_IMMUTABLE_FL)
+               inode->i_flags |= S_IMMUTABLE;
+       if (flags & EXT4_IUNLINK_FL)
+               inode->i_flags |= S_IUNLINK;
+       if (flags & EXT4_BARRIER_FL)
+               inode->i_flags |= S_BARRIER;
+
+       if (flags & EXT4_SYNC_FL)
+               inode->i_flags |= S_SYNC;
+       if (flags & EXT4_APPEND_FL)
+               inode->i_flags |= S_APPEND;
+       if (flags & EXT4_NOATIME_FL)
+               inode->i_flags |= S_NOATIME;
+       if (flags & EXT4_DIRSYNC_FL)
+               inode->i_flags |= S_DIRSYNC;
+}
+
+int ext4_sync_flags(struct inode *inode)
+{
+       unsigned int oldflags, newflags;
+       int err = 0;
+
+       oldflags = EXT4_I(inode)->i_flags;
+       newflags = oldflags & ~(EXT4_IMMUTABLE_FL |
+               EXT4_IUNLINK_FL | EXT4_BARRIER_FL);
+
+       if (IS_IMMUTABLE(inode))
+               newflags |= EXT4_IMMUTABLE_FL;
+       if (IS_IUNLINK(inode))
+               newflags |= EXT4_IUNLINK_FL;
+       if (IS_BARRIER(inode))
+               newflags |= EXT4_BARRIER_FL;
+
+       if (oldflags ^ newflags) {
+               handle_t *handle;
+               struct ext4_iloc iloc;
+
+               handle = ext4_journal_start(inode, 1);
+               if (IS_ERR(handle))
+                       return PTR_ERR(handle);
+               if (IS_SYNC(inode))
+                       handle->h_sync = 1;
+               err = ext4_reserve_inode_write(handle, inode, &iloc);
+               if (err)
+                       goto flags_err;
+
+               EXT4_I(inode)->i_flags = newflags;
+               inode->i_ctime = CURRENT_TIME;
+
+               err = ext4_mark_iloc_dirty(handle, inode, &iloc);
+       flags_err:
+               ext4_journal_stop(handle);
+       }
+       return err;
+}
+
+void ext4_read_inode(struct inode * inode)
+{
+       struct ext4_iloc iloc;
+       struct ext4_inode *raw_inode;
+       struct ext4_inode_info *ei = EXT4_I(inode);
+       struct buffer_head *bh;
+       int block;
+       uid_t uid;
+       gid_t gid;
+
+#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
+       ei->i_acl = EXT4_ACL_NOT_CACHED;
+       ei->i_default_acl = EXT4_ACL_NOT_CACHED;
+#endif
+       ei->i_block_alloc_info = NULL;
+
+       if (__ext4_get_inode_loc(inode, &iloc, 0))
+               goto bad_inode;
+       bh = iloc.bh;
+       raw_inode = ext4_raw_inode(&iloc);
+       inode->i_mode = le16_to_cpu(raw_inode->i_mode);
+       uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
+       gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
+       if(!(test_opt (inode->i_sb, NO_UID32))) {
+               uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
+               gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
+       }
+       inode->i_uid = INOTAG_UID(DX_TAG(inode), uid, gid);
+       inode->i_gid = INOTAG_GID(DX_TAG(inode), uid, gid);
+       inode->i_tag = INOTAG_TAG(DX_TAG(inode), uid, gid,
+               le16_to_cpu(raw_inode->i_raw_tag));
+
+       inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
+       inode->i_size = le32_to_cpu(raw_inode->i_size);
+       inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
+       inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
+       inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
+       inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
+
+       ei->i_state = 0;
+       ei->i_dir_start_lookup = 0;
+       ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
+       /* We now have enough fields to check if the inode was active or not.
+        * This is needed because nfsd might try to access dead inodes
+        * the test is that same one that e2fsck uses
+        * NeilBrown 1999oct15
+        */
+       if (inode->i_nlink == 0) {
+               if (inode->i_mode == 0 ||
+                   !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
+                       /* this inode is deleted */
+                       brelse (bh);
+                       goto bad_inode;
+               }
+               /* The only unlinked inodes we let through here have
+                * valid i_mode and are being read by the orphan
+                * recovery code: that's fine, we're about to complete
+                * the process of deleting those. */
+       }
+       inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
+       ei->i_flags = le32_to_cpu(raw_inode->i_flags);
+#ifdef EXT4_FRAGMENTS
+       ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
+       ei->i_frag_no = raw_inode->i_frag;
+       ei->i_frag_size = raw_inode->i_fsize;
+#endif
+       ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
+       if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
+           cpu_to_le32(EXT4_OS_HURD))
+               ei->i_file_acl |=
+                       ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
+       if (!S_ISREG(inode->i_mode)) {
+               ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
+       } else {
+               inode->i_size |=
+                       ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
+       }
+       ei->i_disksize = inode->i_size;
+       inode->i_generation = le32_to_cpu(raw_inode->i_generation);
+       ei->i_block_group = iloc.block_group;
+       /*
+        * NOTE! The in-memory inode i_data array is in little-endian order
+        * even on big-endian machines: we do NOT byteswap the block numbers!
+        */
+       for (block = 0; block < EXT4_N_BLOCKS; block++)
+               ei->i_data[block] = raw_inode->i_block[block];
+       INIT_LIST_HEAD(&ei->i_orphan);
+
+       if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
+           EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
+               /*
+                * When mke2fs creates big inodes it does not zero out
+                * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
+                * so ignore those first few inodes.
+                */
+               ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
+               if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
+                   EXT4_INODE_SIZE(inode->i_sb))
+                       goto bad_inode;
+               if (ei->i_extra_isize == 0) {
+                       /* The extra space is currently unused. Use it. */
+                       ei->i_extra_isize = sizeof(struct ext4_inode) -
+                                           EXT4_GOOD_OLD_INODE_SIZE;
+               } else {
+                       __le32 *magic = (void *)raw_inode +
+                                       EXT4_GOOD_OLD_INODE_SIZE +
+                                       ei->i_extra_isize;
+                       if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
+                                ei->i_state |= EXT4_STATE_XATTR;
+               }
+       } else
+               ei->i_extra_isize = 0;
+
+       if (S_ISREG(inode->i_mode)) {
+               inode->i_op = &ext4_file_inode_operations;
+               inode->i_fop = &ext4_file_operations;
+               ext4_set_aops(inode);
+       } else if (S_ISDIR(inode->i_mode)) {
+               inode->i_op = &ext4_dir_inode_operations;
+               inode->i_fop = &ext4_dir_operations;
+       } else if (S_ISLNK(inode->i_mode)) {
+               if (ext4_inode_is_fast_symlink(inode))
+                       inode->i_op = &ext4_fast_symlink_inode_operations;
+               else {
+                       inode->i_op = &ext4_symlink_inode_operations;
+                       ext4_set_aops(inode);
+               }
+       } else {
+               inode->i_op = &ext4_special_inode_operations;
+               if (raw_inode->i_block[0])
+                       init_special_inode(inode, inode->i_mode,
+                          old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
+               else
+                       init_special_inode(inode, inode->i_mode,
+                          new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
+       }
+       brelse (iloc.bh);
+       ext4_set_inode_flags(inode);
+       return;
+
+bad_inode:
+       make_bad_inode(inode);
+       return;
+}
+
+/*
+ * Post the struct inode info into an on-disk inode location in the
+ * buffer-cache.  This gobbles the caller's reference to the
+ * buffer_head in the inode location struct.
+ *
+ * The caller must have write access to iloc->bh.
+ */
+static int ext4_do_update_inode(handle_t *handle,
+                               struct inode *inode,
+                               struct ext4_iloc *iloc)
+{
+       struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
+       struct ext4_inode_info *ei = EXT4_I(inode);
+       struct buffer_head *bh = iloc->bh;
+       uid_t uid = TAGINO_UID(DX_TAG(inode), inode->i_uid, inode->i_tag);
+       gid_t gid = TAGINO_GID(DX_TAG(inode), inode->i_gid, inode->i_tag);
+       int err = 0, rc, block;
+
+       /* For fields not not tracking in the in-memory inode,
+        * initialise them to zero for new inodes. */
+       if (ei->i_state & EXT4_STATE_NEW)
+               memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
+
+       raw_inode->i_mode = cpu_to_le16(inode->i_mode);
+       if(!(test_opt(inode->i_sb, NO_UID32))) {
+               raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
+               raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
+/*
+ * Fix up interoperability with old kernels. Otherwise, old inodes get
+ * re-used with the upper 16 bits of the uid/gid intact
+ */
+               if(!ei->i_dtime) {
+                       raw_inode->i_uid_high =
+                               cpu_to_le16(high_16_bits(uid));
+                       raw_inode->i_gid_high =
+                               cpu_to_le16(high_16_bits(gid));
+               } else {
+                       raw_inode->i_uid_high = 0;
+                       raw_inode->i_gid_high = 0;
+               }
+       } else {
+               raw_inode->i_uid_low =
+                       cpu_to_le16(fs_high2lowuid(uid));
+               raw_inode->i_gid_low =
+                       cpu_to_le16(fs_high2lowgid(gid));
+               raw_inode->i_uid_high = 0;
+               raw_inode->i_gid_high = 0;
+       }
+#ifdef CONFIG_TAGGING_INTERN
+       raw_inode->i_raw_tag = cpu_to_le16(inode->i_tag);
+#endif
+       raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
+       raw_inode->i_size = cpu_to_le32(ei->i_disksize);
+       raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
+       raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
+       raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
+       raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
+       raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
+       raw_inode->i_flags = cpu_to_le32(ei->i_flags);
+#ifdef EXT4_FRAGMENTS
+       raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
+       raw_inode->i_frag = ei->i_frag_no;
+       raw_inode->i_fsize = ei->i_frag_size;
+#endif
+       if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
+           cpu_to_le32(EXT4_OS_HURD))
+               raw_inode->i_file_acl_high =
+                       cpu_to_le16(ei->i_file_acl >> 32);
+       raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
+       if (!S_ISREG(inode->i_mode)) {
+               raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
+       } else {
+               raw_inode->i_size_high =
+                       cpu_to_le32(ei->i_disksize >> 32);
+               if (ei->i_disksize > 0x7fffffffULL) {
+                       struct super_block *sb = inode->i_sb;
+                       if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
+                                       EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
+                           EXT4_SB(sb)->s_es->s_rev_level ==
+                                       cpu_to_le32(EXT4_GOOD_OLD_REV)) {
+                              /* If this is the first large file
+                               * created, add a flag to the superblock.
+                               */
+                               err = ext4_journal_get_write_access(handle,
+                                               EXT4_SB(sb)->s_sbh);
+                               if (err)
+                                       goto out_brelse;
+                               ext4_update_dynamic_rev(sb);
+                               EXT4_SET_RO_COMPAT_FEATURE(sb,
+                                       EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
+                               sb->s_dirt = 1;
+                               handle->h_sync = 1;
+                               err = ext4_journal_dirty_metadata(handle,
+                                               EXT4_SB(sb)->s_sbh);
+                       }
+               }
+       }
+       raw_inode->i_generation = cpu_to_le32(inode->i_generation);
+       if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
+               if (old_valid_dev(inode->i_rdev)) {
+                       raw_inode->i_block[0] =
+                               cpu_to_le32(old_encode_dev(inode->i_rdev));
+                       raw_inode->i_block[1] = 0;
+               } else {
+                       raw_inode->i_block[0] = 0;
+                       raw_inode->i_block[1] =
+                               cpu_to_le32(new_encode_dev(inode->i_rdev));
+                       raw_inode->i_block[2] = 0;
+               }
+       } else for (block = 0; block < EXT4_N_BLOCKS; block++)
+               raw_inode->i_block[block] = ei->i_data[block];
+
+       if (ei->i_extra_isize)
+               raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
+
+       BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
+       rc = ext4_journal_dirty_metadata(handle, bh);
+       if (!err)
+               err = rc;
+       ei->i_state &= ~EXT4_STATE_NEW;
+
+out_brelse:
+       brelse (bh);
+       ext4_std_error(inode->i_sb, err);
+       return err;
+}
+
+/*
+ * ext4_write_inode()
+ *
+ * We are called from a few places:
+ *
+ * - Within generic_file_write() for O_SYNC files.
+ *   Here, there will be no transaction running. We wait for any running
+ *   trasnaction to commit.
+ *
+ * - Within sys_sync(), kupdate and such.
+ *   We wait on commit, if tol to.
+ *
+ * - Within prune_icache() (PF_MEMALLOC == true)
+ *   Here we simply return.  We can't afford to block kswapd on the
+ *   journal commit.
+ *
+ * In all cases it is actually safe for us to return without doing anything,
+ * because the inode has been copied into a raw inode buffer in
+ * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
+ * knfsd.
+ *
+ * Note that we are absolutely dependent upon all inode dirtiers doing the
+ * right thing: they *must* call mark_inode_dirty() after dirtying info in
+ * which we are interested.
+ *
+ * It would be a bug for them to not do this.  The code:
+ *
+ *     mark_inode_dirty(inode)
+ *     stuff();
+ *     inode->i_size = expr;
+ *
+ * is in error because a kswapd-driven write_inode() could occur while
+ * `stuff()' is running, and the new i_size will be lost.  Plus the inode
+ * will no longer be on the superblock's dirty inode list.
+ */
+int ext4_write_inode(struct inode *inode, int wait)
+{
+       if (current->flags & PF_MEMALLOC)
+               return 0;
+
+       if (ext4_journal_current_handle()) {
+               jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
+               dump_stack();
+               return -EIO;
+       }
+
+       if (!wait)
+               return 0;
+
+       return ext4_force_commit(inode->i_sb);
+}
+
+/*
+ * ext4_setattr()
+ *
+ * Called from notify_change.
+ *
+ * We want to trap VFS attempts to truncate the file as soon as
+ * possible.  In particular, we want to make sure that when the VFS
+ * shrinks i_size, we put the inode on the orphan list and modify
+ * i_disksize immediately, so that during the subsequent flushing of
+ * dirty pages and freeing of disk blocks, we can guarantee that any
+ * commit will leave the blocks being flushed in an unused state on
+ * disk.  (On recovery, the inode will get truncated and the blocks will
+ * be freed, so we have a strong guarantee that no future commit will
+ * leave these blocks visible to the user.)
+ *
+ * Called with inode->sem down.
+ */
+int ext4_setattr(struct dentry *dentry, struct iattr *attr)
+{
+       struct inode *inode = dentry->d_inode;
+       int error, rc = 0;
+       const unsigned int ia_valid = attr->ia_valid;
+
+       error = inode_change_ok(inode, attr);
+       if (error)
+               return error;
+
+       if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
+               (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid) ||
+               (ia_valid & ATTR_TAG && attr->ia_tag != inode->i_tag)) {
+               handle_t *handle;
+
+               /* (user+group)*(old+new) structure, inode write (sb,
+                * inode block, ? - but truncate inode update has it) */
+               handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
+                                       EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
+               if (IS_ERR(handle)) {
+                       error = PTR_ERR(handle);
+                       goto err_out;
+               }
+               error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
+               if (error) {
+                       ext4_journal_stop(handle);
+                       return error;
+               }
+               /* Update corresponding info in inode so that everything is in
+                * one transaction */
+               if (attr->ia_valid & ATTR_UID)
+                       inode->i_uid = attr->ia_uid;
+               if (attr->ia_valid & ATTR_GID)
+                       inode->i_gid = attr->ia_gid;
+               if ((attr->ia_valid & ATTR_TAG) && IS_TAGGED(inode))
+                       inode->i_tag = attr->ia_tag;
+               error = ext4_mark_inode_dirty(handle, inode);
+               ext4_journal_stop(handle);
+       }
+
+       if (S_ISREG(inode->i_mode) &&
+           attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
+               handle_t *handle;
+
+               handle = ext4_journal_start(inode, 3);
+               if (IS_ERR(handle)) {
+                       error = PTR_ERR(handle);
+                       goto err_out;
+               }
+
+               error = ext4_orphan_add(handle, inode);
+               EXT4_I(inode)->i_disksize = attr->ia_size;
+               rc = ext4_mark_inode_dirty(handle, inode);
+               if (!error)
+                       error = rc;
+               ext4_journal_stop(handle);
+       }
+
+       rc = inode_setattr(inode, attr);
+
+       /* If inode_setattr's call to ext4_truncate failed to get a
+        * transaction handle at all, we need to clean up the in-core
+        * orphan list manually. */
+       if (inode->i_nlink)
+               ext4_orphan_del(NULL, inode);
+
+       if (!rc && (ia_valid & ATTR_MODE))
+               rc = ext4_acl_chmod(inode);
+
+err_out:
+       ext4_std_error(inode->i_sb, error);
+       if (!error)
+               error = rc;
+       return error;
+}
+
+
+/*
+ * How many blocks doth make a writepage()?
+ *
+ * With N blocks per page, it may be:
+ * N data blocks
+ * 2 indirect block
+ * 2 dindirect
+ * 1 tindirect
+ * N+5 bitmap blocks (from the above)
+ * N+5 group descriptor summary blocks
+ * 1 inode block
+ * 1 superblock.
+ * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
+ *
+ * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
+ *
+ * With ordered or writeback data it's the same, less the N data blocks.
+ *
+ * If the inode's direct blocks can hold an integral number of pages then a
+ * page cannot straddle two indirect blocks, and we can only touch one indirect
+ * and dindirect block, and the "5" above becomes "3".
+ *
+ * This still overestimates under most circumstances.  If we were to pass the
+ * start and end offsets in here as well we could do block_to_path() on each
+ * block and work out the exact number of indirects which are touched.  Pah.
+ */
+
+int ext4_writepage_trans_blocks(struct inode *inode)
+{
+       int bpp = ext4_journal_blocks_per_page(inode);
+       int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
+       int ret;
+
+       if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
+               return ext4_ext_writepage_trans_blocks(inode, bpp);
+
+       if (ext4_should_journal_data(inode))
+               ret = 3 * (bpp + indirects) + 2;
+       else
+               ret = 2 * (bpp + indirects) + 2;
+
+#ifdef CONFIG_QUOTA
+       /* We know that structure was already allocated during DQUOT_INIT so
+        * we will be updating only the data blocks + inodes */
+       ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
+#endif
+
+       return ret;
+}
+
+/*
+ * The caller must have previously called ext4_reserve_inode_write().
+ * Give this, we know that the caller already has write access to iloc->bh.
+ */
+int ext4_mark_iloc_dirty(handle_t *handle,
+               struct inode *inode, struct ext4_iloc *iloc)
+{
+       int err = 0;
+
+       /* the do_update_inode consumes one bh->b_count */
+       get_bh(iloc->bh);
+
+       /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
+       err = ext4_do_update_inode(handle, inode, iloc);
+       put_bh(iloc->bh);
+       return err;
+}
+
+/*
+ * On success, We end up with an outstanding reference count against
+ * iloc->bh.  This _must_ be cleaned up later.
+ */
+
+int
+ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
+                        struct ext4_iloc *iloc)
+{
+       int err = 0;
+       if (handle) {
+               err = ext4_get_inode_loc(inode, iloc);
+               if (!err) {
+                       BUFFER_TRACE(iloc->bh, "get_write_access");
+                       err = ext4_journal_get_write_access(handle, iloc->bh);
+                       if (err) {
+                               brelse(iloc->bh);
+                               iloc->bh = NULL;
+                       }
+               }
+       }
+       ext4_std_error(inode->i_sb, err);
+       return err;
+}
+
+/*
+ * What we do here is to mark the in-core inode as clean with respect to inode
+ * dirtiness (it may still be data-dirty).
+ * This means that the in-core inode may be reaped by prune_icache
+ * without having to perform any I/O.  This is a very good thing,
+ * because *any* task may call prune_icache - even ones which
+ * have a transaction open against a different journal.
+ *
+ * Is this cheating?  Not really.  Sure, we haven't written the
+ * inode out, but prune_icache isn't a user-visible syncing function.
+ * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
+ * we start and wait on commits.
+ *
+ * Is this efficient/effective?  Well, we're being nice to the system
+ * by cleaning up our inodes proactively so they can be reaped
+ * without I/O.  But we are potentially leaving up to five seconds'
+ * worth of inodes floating about which prune_icache wants us to
+ * write out.  One way to fix that would be to get prune_icache()
+ * to do a write_super() to free up some memory.  It has the desired
+ * effect.
+ */
+int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
+{
+       struct ext4_iloc iloc;
+       int err;
+
+       might_sleep();
+       err = ext4_reserve_inode_write(handle, inode, &iloc);
+       if (!err)
+               err = ext4_mark_iloc_dirty(handle, inode, &iloc);
+       return err;
+}
+
+/*
+ * ext4_dirty_inode() is called from __mark_inode_dirty()
+ *
+ * We're really interested in the case where a file is being extended.
+ * i_size has been changed by generic_commit_write() and we thus need
+ * to include the updated inode in the current transaction.
+ *
+ * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
+ * are allocated to the file.
+ *
+ * If the inode is marked synchronous, we don't honour that here - doing
+ * so would cause a commit on atime updates, which we don't bother doing.
+ * We handle synchronous inodes at the highest possible level.
+ */
+void ext4_dirty_inode(struct inode *inode)
+{
+       handle_t *current_handle = ext4_journal_current_handle();
+       handle_t *handle;
+
+       handle = ext4_journal_start(inode, 2);
+       if (IS_ERR(handle))
+               goto out;
+       if (current_handle &&
+               current_handle->h_transaction != handle->h_transaction) {
+               /* This task has a transaction open against a different fs */
+               printk(KERN_EMERG "%s: transactions do not match!\n",
+                      __FUNCTION__);
+       } else {
+               jbd_debug(5, "marking dirty.  outer handle=%p\n",
+                               current_handle);
+               ext4_mark_inode_dirty(handle, inode);
+       }
+       ext4_journal_stop(handle);
+out:
+       return;
+}
+
+#if 0
+/*
+ * Bind an inode's backing buffer_head into this transaction, to prevent
+ * it from being flushed to disk early.  Unlike
+ * ext4_reserve_inode_write, this leaves behind no bh reference and
+ * returns no iloc structure, so the caller needs to repeat the iloc
+ * lookup to mark the inode dirty later.
+ */
+static int ext4_pin_inode(handle_t *handle, struct inode *inode)
+{
+       struct ext4_iloc iloc;
+
+       int err = 0;
+       if (handle) {
+               err = ext4_get_inode_loc(inode, &iloc);
+               if (!err) {
+                       BUFFER_TRACE(iloc.bh, "get_write_access");
+                       err = jbd2_journal_get_write_access(handle, iloc.bh);
+                       if (!err)
+                               err = ext4_journal_dirty_metadata(handle,
+                                                                 iloc.bh);
+                       brelse(iloc.bh);
+               }
+       }
+       ext4_std_error(inode->i_sb, err);
+       return err;
+}
+#endif
+
+int ext4_change_inode_journal_flag(struct inode *inode, int val)
+{
+       journal_t *journal;
+       handle_t *handle;
+       int err;
+
+       /*
+        * We have to be very careful here: changing a data block's
+        * journaling status dynamically is dangerous.  If we write a
+        * data block to the journal, change the status and then delete
+        * that block, we risk forgetting to revoke the old log record
+        * from the journal and so a subsequent replay can corrupt data.
+        * So, first we make sure that the journal is empty and that
+        * nobody is changing anything.
+        */
+
+       journal = EXT4_JOURNAL(inode);
+       if (is_journal_aborted(journal) || IS_RDONLY(inode))
+               return -EROFS;
+
+       jbd2_journal_lock_updates(journal);
+       jbd2_journal_flush(journal);
+
+       /*
+        * OK, there are no updates running now, and all cached data is
+        * synced to disk.  We are now in a completely consistent state
+        * which doesn't have anything in the journal, and we know that
+        * no filesystem updates are running, so it is safe to modify
+        * the inode's in-core data-journaling state flag now.
+        */
+
+       if (val)
+               EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
+       else
+               EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
+       ext4_set_aops(inode);
+
+       jbd2_journal_unlock_updates(journal);
+
+       /* Finally we can mark the inode as dirty. */
+
+       handle = ext4_journal_start(inode, 1);
+       if (IS_ERR(handle))
+               return PTR_ERR(handle);
+
+       err = ext4_mark_inode_dirty(handle, inode);
+       handle->h_sync = 1;
+       ext4_journal_stop(handle);
+       ext4_std_error(inode->i_sb, err);
+
+       return err;
+}