fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / kernel / power / snapshot.c
index 8d5a598..c024606 100644 (file)
@@ -1,15 +1,16 @@
 /*
  * linux/kernel/power/snapshot.c
  *
- * This file provide system snapshot/restore functionality.
+ * This file provides system snapshot/restore functionality for swsusp.
  *
  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
+ * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  *
- * This file is released under the GPLv2, and is based on swsusp.c.
+ * This file is released under the GPLv2.
  *
  */
 
-
+#include <linux/version.h>
 #include <linux/module.h>
 #include <linux/mm.h>
 #include <linux/suspend.h>
 
 #include "power.h"
 
-struct pbe *pagedir_nosave;
-unsigned int nr_copy_pages;
+/* List of PBEs needed for restoring the pages that were allocated before
+ * the suspend and included in the suspend image, but have also been
+ * allocated by the "resume" kernel, so their contents cannot be written
+ * directly to their "original" page frames.
+ */
+struct pbe *restore_pblist;
 
-#ifdef CONFIG_HIGHMEM
-unsigned int count_highmem_pages(void)
+/* Pointer to an auxiliary buffer (1 page) */
+static void *buffer;
+
+/**
+ *     @safe_needed - on resume, for storing the PBE list and the image,
+ *     we can only use memory pages that do not conflict with the pages
+ *     used before suspend.  The unsafe pages have PageNosaveFree set
+ *     and we count them using unsafe_pages.
+ *
+ *     Each allocated image page is marked as PageNosave and PageNosaveFree
+ *     so that swsusp_free() can release it.
+ */
+
+#define PG_ANY         0
+#define PG_SAFE                1
+#define PG_UNSAFE_CLEAR        1
+#define PG_UNSAFE_KEEP 0
+
+static unsigned int allocated_unsafe_pages;
+
+static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 {
-       struct zone *zone;
-       unsigned long zone_pfn;
-       unsigned int n = 0;
+       void *res;
 
-       for_each_zone (zone)
-               if (is_highmem(zone)) {
-                       mark_free_pages(zone);
-                       for (zone_pfn = 0; zone_pfn < zone->spanned_pages; zone_pfn++) {
-                               struct page *page;
-                               unsigned long pfn = zone_pfn + zone->zone_start_pfn;
-                               if (!pfn_valid(pfn))
-                                       continue;
-                               page = pfn_to_page(pfn);
-                               if (PageReserved(page))
-                                       continue;
-                               if (PageNosaveFree(page))
-                                       continue;
-                               n++;
-                       }
+       res = (void *)get_zeroed_page(gfp_mask);
+       if (safe_needed)
+               while (res && PageNosaveFree(virt_to_page(res))) {
+                       /* The page is unsafe, mark it for swsusp_free() */
+                       SetPageNosave(virt_to_page(res));
+                       allocated_unsafe_pages++;
+                       res = (void *)get_zeroed_page(gfp_mask);
                }
-       return n;
+       if (res) {
+               SetPageNosave(virt_to_page(res));
+               SetPageNosaveFree(virt_to_page(res));
+       }
+       return res;
+}
+
+unsigned long get_safe_page(gfp_t gfp_mask)
+{
+       return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
 }
 
-struct highmem_page {
-       char *data;
+static struct page *alloc_image_page(gfp_t gfp_mask)
+{
        struct page *page;
-       struct highmem_page *next;
-};
 
-static struct highmem_page *highmem_copy;
+       page = alloc_page(gfp_mask);
+       if (page) {
+               SetPageNosave(page);
+               SetPageNosaveFree(page);
+       }
+       return page;
+}
+
+/**
+ *     free_image_page - free page represented by @addr, allocated with
+ *     get_image_page (page flags set by it must be cleared)
+ */
 
-static int save_highmem_zone(struct zone *zone)
+static inline void free_image_page(void *addr, int clear_nosave_free)
 {
-       unsigned long zone_pfn;
-       mark_free_pages(zone);
-       for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
-               struct page *page;
-               struct highmem_page *save;
-               void *kaddr;
-               unsigned long pfn = zone_pfn + zone->zone_start_pfn;
+       struct page *page;
 
-               if (!(pfn%1000))
-                       printk(".");
-               if (!pfn_valid(pfn))
-                       continue;
-               page = pfn_to_page(pfn);
-               /*
-                * This condition results from rvmalloc() sans vmalloc_32()
-                * and architectural memory reservations. This should be
-                * corrected eventually when the cases giving rise to this
-                * are better understood.
-                */
-               if (PageReserved(page))
-                       continue;
-               BUG_ON(PageNosave(page));
-               if (PageNosaveFree(page))
-                       continue;
-               save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
-               if (!save)
-                       return -ENOMEM;
-               save->next = highmem_copy;
-               save->page = page;
-               save->data = (void *) get_zeroed_page(GFP_ATOMIC);
-               if (!save->data) {
-                       kfree(save);
-                       return -ENOMEM;
-               }
-               kaddr = kmap_atomic(page, KM_USER0);
-               memcpy(save->data, kaddr, PAGE_SIZE);
-               kunmap_atomic(kaddr, KM_USER0);
-               highmem_copy = save;
-       }
-       return 0;
+       BUG_ON(!virt_addr_valid(addr));
+
+       page = virt_to_page(addr);
+
+       ClearPageNosave(page);
+       if (clear_nosave_free)
+               ClearPageNosaveFree(page);
+
+       __free_page(page);
 }
 
-int save_highmem(void)
+/* struct linked_page is used to build chains of pages */
+
+#define LINKED_PAGE_DATA_SIZE  (PAGE_SIZE - sizeof(void *))
+
+struct linked_page {
+       struct linked_page *next;
+       char data[LINKED_PAGE_DATA_SIZE];
+} __attribute__((packed));
+
+static inline void
+free_list_of_pages(struct linked_page *list, int clear_page_nosave)
 {
-       struct zone *zone;
-       int res = 0;
+       while (list) {
+               struct linked_page *lp = list->next;
 
-       pr_debug("swsusp: Saving Highmem\n");
-       for_each_zone (zone) {
-               if (is_highmem(zone))
-                       res = save_highmem_zone(zone);
-               if (res)
-                       return res;
+               free_image_page(list, clear_page_nosave);
+               list = lp;
        }
-       return 0;
 }
 
-int restore_highmem(void)
+/**
+  *    struct chain_allocator is used for allocating small objects out of
+  *    a linked list of pages called 'the chain'.
+  *
+  *    The chain grows each time when there is no room for a new object in
+  *    the current page.  The allocated objects cannot be freed individually.
+  *    It is only possible to free them all at once, by freeing the entire
+  *    chain.
+  *
+  *    NOTE: The chain allocator may be inefficient if the allocated objects
+  *    are not much smaller than PAGE_SIZE.
+  */
+
+struct chain_allocator {
+       struct linked_page *chain;      /* the chain */
+       unsigned int used_space;        /* total size of objects allocated out
+                                        * of the current page
+                                        */
+       gfp_t gfp_mask;         /* mask for allocating pages */
+       int safe_needed;        /* if set, only "safe" pages are allocated */
+};
+
+static void
+chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
+{
+       ca->chain = NULL;
+       ca->used_space = LINKED_PAGE_DATA_SIZE;
+       ca->gfp_mask = gfp_mask;
+       ca->safe_needed = safe_needed;
+}
+
+static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 {
-       printk("swsusp: Restoring Highmem\n");
-       while (highmem_copy) {
-               struct highmem_page *save = highmem_copy;
-               void *kaddr;
-               highmem_copy = save->next;
+       void *ret;
 
-               kaddr = kmap_atomic(save->page, KM_USER0);
-               memcpy(kaddr, save->data, PAGE_SIZE);
-               kunmap_atomic(kaddr, KM_USER0);
-               free_page((long) save->data);
-               kfree(save);
+       if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
+               struct linked_page *lp;
+
+               lp = get_image_page(ca->gfp_mask, ca->safe_needed);
+               if (!lp)
+                       return NULL;
+
+               lp->next = ca->chain;
+               ca->chain = lp;
+               ca->used_space = 0;
        }
-       return 0;
+       ret = ca->chain->data + ca->used_space;
+       ca->used_space += size;
+       return ret;
 }
-#endif
 
-static int pfn_is_nosave(unsigned long pfn)
+static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
 {
-       unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
-       unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
-       return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
+       free_list_of_pages(ca->chain, clear_page_nosave);
+       memset(ca, 0, sizeof(struct chain_allocator));
 }
 
 /**
- *     saveable - Determine whether a page should be cloned or not.
- *     @pfn:   The page
+ *     Data types related to memory bitmaps.
+ *
+ *     Memory bitmap is a structure consiting of many linked lists of
+ *     objects.  The main list's elements are of type struct zone_bitmap
+ *     and each of them corresonds to one zone.  For each zone bitmap
+ *     object there is a list of objects of type struct bm_block that
+ *     represent each blocks of bit chunks in which information is
+ *     stored.
+ *
+ *     struct memory_bitmap contains a pointer to the main list of zone
+ *     bitmap objects, a struct bm_position used for browsing the bitmap,
+ *     and a pointer to the list of pages used for allocating all of the
+ *     zone bitmap objects and bitmap block objects.
  *
- *     We save a page if it's Reserved, and not in the range of pages
- *     statically defined as 'unsaveable', or if it isn't reserved, and
- *     isn't part of a free chunk of pages.
+ *     NOTE: It has to be possible to lay out the bitmap in memory
+ *     using only allocations of order 0.  Additionally, the bitmap is
+ *     designed to work with arbitrary number of zones (this is over the
+ *     top for now, but let's avoid making unnecessary assumptions ;-).
+ *
+ *     struct zone_bitmap contains a pointer to a list of bitmap block
+ *     objects and a pointer to the bitmap block object that has been
+ *     most recently used for setting bits.  Additionally, it contains the
+ *     pfns that correspond to the start and end of the represented zone.
+ *
+ *     struct bm_block contains a pointer to the memory page in which
+ *     information is stored (in the form of a block of bit chunks
+ *     of type unsigned long each).  It also contains the pfns that
+ *     correspond to the start and end of the represented memory area and
+ *     the number of bit chunks in the block.
+ *
+ *     NOTE: Memory bitmaps are used for two types of operations only:
+ *     "set a bit" and "find the next bit set".  Moreover, the searching
+ *     is always carried out after all of the "set a bit" operations
+ *     on given bitmap.
  */
 
-static int saveable(struct zone *zone, unsigned long *zone_pfn)
-{
-       unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
-       struct page *page;
+#define BM_END_OF_MAP  (~0UL)
 
-       if (!pfn_valid(pfn))
-               return 0;
+#define BM_CHUNKS_PER_BLOCK    (PAGE_SIZE / sizeof(long))
+#define BM_BITS_PER_CHUNK      (sizeof(long) << 3)
+#define BM_BITS_PER_BLOCK      (PAGE_SIZE << 3)
 
-       page = pfn_to_page(pfn);
-       BUG_ON(PageReserved(page) && PageNosave(page));
-       if (PageNosave(page))
-               return 0;
-       if (PageReserved(page) && pfn_is_nosave(pfn))
-               return 0;
-       if (PageNosaveFree(page))
-               return 0;
+struct bm_block {
+       struct bm_block *next;          /* next element of the list */
+       unsigned long start_pfn;        /* pfn represented by the first bit */
+       unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
+       unsigned int size;      /* number of bit chunks */
+       unsigned long *data;    /* chunks of bits representing pages */
+};
 
-       return 1;
-}
+struct zone_bitmap {
+       struct zone_bitmap *next;       /* next element of the list */
+       unsigned long start_pfn;        /* minimal pfn in this zone */
+       unsigned long end_pfn;          /* maximal pfn in this zone plus 1 */
+       struct bm_block *bm_blocks;     /* list of bitmap blocks */
+       struct bm_block *cur_block;     /* recently used bitmap block */
+};
 
-unsigned int count_data_pages(void)
-{
-       struct zone *zone;
-       unsigned long zone_pfn;
-       unsigned int n = 0;
+/* strcut bm_position is used for browsing memory bitmaps */
 
-       for_each_zone (zone) {
-               if (is_highmem(zone))
-                       continue;
-               mark_free_pages(zone);
-               for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
-                       n += saveable(zone, &zone_pfn);
-       }
-       return n;
+struct bm_position {
+       struct zone_bitmap *zone_bm;
+       struct bm_block *block;
+       int chunk;
+       int bit;
+};
+
+struct memory_bitmap {
+       struct zone_bitmap *zone_bm_list;       /* list of zone bitmaps */
+       struct linked_page *p_list;     /* list of pages used to store zone
+                                        * bitmap objects and bitmap block
+                                        * objects
+                                        */
+       struct bm_position cur; /* most recently used bit position */
+};
+
+/* Functions that operate on memory bitmaps */
+
+static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
+{
+       bm->cur.chunk = 0;
+       bm->cur.bit = -1;
 }
 
-static void copy_data_pages(struct pbe *pblist)
+static void memory_bm_position_reset(struct memory_bitmap *bm)
 {
-       struct zone *zone;
-       unsigned long zone_pfn;
-       struct pbe *pbe, *p;
+       struct zone_bitmap *zone_bm;
 
-       pbe = pblist;
-       for_each_zone (zone) {
-               if (is_highmem(zone))
-                       continue;
-               mark_free_pages(zone);
-               /* This is necessary for swsusp_free() */
-               for_each_pb_page (p, pblist)
-                       SetPageNosaveFree(virt_to_page(p));
-               for_each_pbe (p, pblist)
-                       SetPageNosaveFree(virt_to_page(p->address));
-               for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
-                       if (saveable(zone, &zone_pfn)) {
-                               struct page *page;
-                               page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
-                               BUG_ON(!pbe);
-                               pbe->orig_address = (unsigned long)page_address(page);
-                               /* copy_page is not usable for copying task structs. */
-                               memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
-                               pbe = pbe->next;
-                       }
-               }
-       }
-       BUG_ON(pbe);
+       zone_bm = bm->zone_bm_list;
+       bm->cur.zone_bm = zone_bm;
+       bm->cur.block = zone_bm->bm_blocks;
+       memory_bm_reset_chunk(bm);
 }
 
+static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 
 /**
- *     free_pagedir - free pages allocated with alloc_pagedir()
+ *     create_bm_block_list - create a list of block bitmap objects
  */
 
-void free_pagedir(struct pbe *pblist)
+static inline struct bm_block *
+create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
 {
-       struct pbe *pbe;
+       struct bm_block *bblist = NULL;
+
+       while (nr_blocks-- > 0) {
+               struct bm_block *bb;
+
+               bb = chain_alloc(ca, sizeof(struct bm_block));
+               if (!bb)
+                       return NULL;
 
-       while (pblist) {
-               pbe = (pblist + PB_PAGE_SKIP)->next;
-               ClearPageNosave(virt_to_page(pblist));
-               ClearPageNosaveFree(virt_to_page(pblist));
-               free_page((unsigned long)pblist);
-               pblist = pbe;
+               bb->next = bblist;
+               bblist = bb;
        }
+       return bblist;
 }
 
 /**
- *     fill_pb_page - Create a list of PBEs on a given memory page
+ *     create_zone_bm_list - create a list of zone bitmap objects
  */
 
-static inline void fill_pb_page(struct pbe *pbpage)
+static inline struct zone_bitmap *
+create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
 {
-       struct pbe *p;
+       struct zone_bitmap *zbmlist = NULL;
 
-       p = pbpage;
-       pbpage += PB_PAGE_SKIP;
-       do
-               p->next = p + 1;
-       while (++p < pbpage);
+       while (nr_zones-- > 0) {
+               struct zone_bitmap *zbm;
+
+               zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
+               if (!zbm)
+                       return NULL;
+
+               zbm->next = zbmlist;
+               zbmlist = zbm;
+       }
+       return zbmlist;
 }
 
 /**
- *     create_pbe_list - Create a list of PBEs on top of a given chain
- *     of memory pages allocated with alloc_pagedir()
- */
+  *    memory_bm_create - allocate memory for a memory bitmap
+  */
 
-static inline void create_pbe_list(struct pbe *pblist, unsigned int nr_pages)
+static int
+memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
 {
-       struct pbe *pbpage, *p;
-       unsigned int num = PBES_PER_PAGE;
+       struct chain_allocator ca;
+       struct zone *zone;
+       struct zone_bitmap *zone_bm;
+       struct bm_block *bb;
+       unsigned int nr;
+
+       chain_init(&ca, gfp_mask, safe_needed);
+
+       /* Compute the number of zones */
+       nr = 0;
+       for_each_zone(zone)
+               if (populated_zone(zone))
+                       nr++;
+
+       /* Allocate the list of zones bitmap objects */
+       zone_bm = create_zone_bm_list(nr, &ca);
+       bm->zone_bm_list = zone_bm;
+       if (!zone_bm) {
+               chain_free(&ca, PG_UNSAFE_CLEAR);
+               return -ENOMEM;
+       }
 
-       for_each_pb_page (pbpage, pblist) {
-               if (num >= nr_pages)
-                       break;
+       /* Initialize the zone bitmap objects */
+       for_each_zone(zone) {
+               unsigned long pfn;
+
+               if (!populated_zone(zone))
+                       continue;
 
-               fill_pb_page(pbpage);
-               num += PBES_PER_PAGE;
+               zone_bm->start_pfn = zone->zone_start_pfn;
+               zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
+               /* Allocate the list of bitmap block objects */
+               nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
+               bb = create_bm_block_list(nr, &ca);
+               zone_bm->bm_blocks = bb;
+               zone_bm->cur_block = bb;
+               if (!bb)
+                       goto Free;
+
+               nr = zone->spanned_pages;
+               pfn = zone->zone_start_pfn;
+               /* Initialize the bitmap block objects */
+               while (bb) {
+                       unsigned long *ptr;
+
+                       ptr = get_image_page(gfp_mask, safe_needed);
+                       bb->data = ptr;
+                       if (!ptr)
+                               goto Free;
+
+                       bb->start_pfn = pfn;
+                       if (nr >= BM_BITS_PER_BLOCK) {
+                               pfn += BM_BITS_PER_BLOCK;
+                               bb->size = BM_CHUNKS_PER_BLOCK;
+                               nr -= BM_BITS_PER_BLOCK;
+                       } else {
+                               /* This is executed only once in the loop */
+                               pfn += nr;
+                               bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
+                       }
+                       bb->end_pfn = pfn;
+                       bb = bb->next;
+               }
+               zone_bm = zone_bm->next;
        }
-       if (pbpage) {
-               for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
-                       p->next = p + 1;
-               p->next = NULL;
+       bm->p_list = ca.chain;
+       memory_bm_position_reset(bm);
+       return 0;
+
+ Free:
+       bm->p_list = ca.chain;
+       memory_bm_free(bm, PG_UNSAFE_CLEAR);
+       return -ENOMEM;
+}
+
+/**
+  *    memory_bm_free - free memory occupied by the memory bitmap @bm
+  */
+
+static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
+{
+       struct zone_bitmap *zone_bm;
+
+       /* Free the list of bit blocks for each zone_bitmap object */
+       zone_bm = bm->zone_bm_list;
+       while (zone_bm) {
+               struct bm_block *bb;
+
+               bb = zone_bm->bm_blocks;
+               while (bb) {
+                       if (bb->data)
+                               free_image_page(bb->data, clear_nosave_free);
+                       bb = bb->next;
+               }
+               zone_bm = zone_bm->next;
        }
+       free_list_of_pages(bm->p_list, clear_nosave_free);
+       bm->zone_bm_list = NULL;
 }
 
 /**
- *     On resume it is necessary to trace and eventually free the unsafe
- *     pages that have been allocated, because they are needed for I/O
- *     (on x86-64 we likely will "eat" these pages once again while
- *     creating the temporary page translation tables)
+ *     memory_bm_set_bit - set the bit in the bitmap @bm that corresponds
+ *     to given pfn.  The cur_zone_bm member of @bm and the cur_block member
+ *     of @bm->cur_zone_bm are updated.
+ *
+ *     If the bit cannot be set, the function returns -EINVAL .
  */
 
-struct eaten_page {
-       struct eaten_page *next;
-       char padding[PAGE_SIZE - sizeof(void *)];
-};
+static int
+memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
+{
+       struct zone_bitmap *zone_bm;
+       struct bm_block *bb;
+
+       /* Check if the pfn is from the current zone */
+       zone_bm = bm->cur.zone_bm;
+       if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
+               zone_bm = bm->zone_bm_list;
+               /* We don't assume that the zones are sorted by pfns */
+               while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
+                       zone_bm = zone_bm->next;
+                       if (unlikely(!zone_bm))
+                               return -EINVAL;
+               }
+               bm->cur.zone_bm = zone_bm;
+       }
+       /* Check if the pfn corresponds to the current bitmap block */
+       bb = zone_bm->cur_block;
+       if (pfn < bb->start_pfn)
+               bb = zone_bm->bm_blocks;
+
+       while (pfn >= bb->end_pfn) {
+               bb = bb->next;
+               if (unlikely(!bb))
+                       return -EINVAL;
+       }
+       zone_bm->cur_block = bb;
+       pfn -= bb->start_pfn;
+       set_bit(pfn % BM_BITS_PER_CHUNK, bb->data + pfn / BM_BITS_PER_CHUNK);
+       return 0;
+}
+
+/* Two auxiliary functions for memory_bm_next_pfn */
+
+/* Find the first set bit in the given chunk, if there is one */
+
+static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
+{
+       bit++;
+       while (bit < BM_BITS_PER_CHUNK) {
+               if (test_bit(bit, chunk_p))
+                       return bit;
+
+               bit++;
+       }
+       return -1;
+}
 
-static struct eaten_page *eaten_pages = NULL;
+/* Find a chunk containing some bits set in given block of bits */
 
-void release_eaten_pages(void)
+static inline int next_chunk_in_block(int n, struct bm_block *bb)
 {
-       struct eaten_page *p, *q;
+       n++;
+       while (n < bb->size) {
+               if (bb->data[n])
+                       return n;
 
-       p = eaten_pages;
-       while (p) {
-               q = p->next;
-               /* We don't want swsusp_free() to free this page again */
-               ClearPageNosave(virt_to_page(p));
-               free_page((unsigned long)p);
-               p = q;
+               n++;
        }
-       eaten_pages = NULL;
+       return -1;
 }
 
 /**
- *     @safe_needed - on resume, for storing the PBE list and the image,
- *     we can only use memory pages that do not conflict with the pages
- *     which had been used before suspend.
+ *     memory_bm_next_pfn - find the pfn that corresponds to the next set bit
+ *     in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
+ *     returned.
  *
- *     The unsafe pages are marked with the PG_nosave_free flag
- *
- *     Allocated but unusable (ie eaten) memory pages should be marked
- *     so that swsusp_free() can release them
+ *     It is required to run memory_bm_position_reset() before the first call to
+ *     this function.
  */
 
-static inline void *alloc_image_page(gfp_t gfp_mask, int safe_needed)
+static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 {
-       void *res;
+       struct zone_bitmap *zone_bm;
+       struct bm_block *bb;
+       int chunk;
+       int bit;
 
-       if (safe_needed)
+       do {
+               bb = bm->cur.block;
                do {
-                       res = (void *)get_zeroed_page(gfp_mask);
-                       if (res && PageNosaveFree(virt_to_page(res))) {
-                               /* This is for swsusp_free() */
-                               SetPageNosave(virt_to_page(res));
-                               ((struct eaten_page *)res)->next = eaten_pages;
-                               eaten_pages = res;
-                       }
-               } while (res && PageNosaveFree(virt_to_page(res)));
-       else
-               res = (void *)get_zeroed_page(gfp_mask);
-       if (res) {
-               SetPageNosave(virt_to_page(res));
-               SetPageNosaveFree(virt_to_page(res));
-       }
-       return res;
+                       chunk = bm->cur.chunk;
+                       bit = bm->cur.bit;
+                       do {
+                               bit = next_bit_in_chunk(bit, bb->data + chunk);
+                               if (bit >= 0)
+                                       goto Return_pfn;
+
+                               chunk = next_chunk_in_block(chunk, bb);
+                               bit = -1;
+                       } while (chunk >= 0);
+                       bb = bb->next;
+                       bm->cur.block = bb;
+                       memory_bm_reset_chunk(bm);
+               } while (bb);
+               zone_bm = bm->cur.zone_bm->next;
+               if (zone_bm) {
+                       bm->cur.zone_bm = zone_bm;
+                       bm->cur.block = zone_bm->bm_blocks;
+                       memory_bm_reset_chunk(bm);
+               }
+       } while (zone_bm);
+       memory_bm_position_reset(bm);
+       return BM_END_OF_MAP;
+
+ Return_pfn:
+       bm->cur.chunk = chunk;
+       bm->cur.bit = bit;
+       return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
 }
 
-unsigned long get_safe_page(gfp_t gfp_mask)
+/**
+ *     snapshot_additional_pages - estimate the number of additional pages
+ *     be needed for setting up the suspend image data structures for given
+ *     zone (usually the returned value is greater than the exact number)
+ */
+
+unsigned int snapshot_additional_pages(struct zone *zone)
 {
-       return (unsigned long)alloc_image_page(gfp_mask, 1);
+       unsigned int res;
+
+       res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
+       res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
+       return 2 * res;
 }
 
+#ifdef CONFIG_HIGHMEM
 /**
- *     alloc_pagedir - Allocate the page directory.
- *
- *     First, determine exactly how many pages we need and
- *     allocate them.
- *
- *     We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
- *     struct pbe elements (pbes) and the last element in the page points
- *     to the next page.
- *
- *     On each page we set up a list of struct_pbe elements.
+ *     count_free_highmem_pages - compute the total number of free highmem
+ *     pages, system-wide.
  */
 
-struct pbe *alloc_pagedir(unsigned int nr_pages, gfp_t gfp_mask, int safe_needed)
+static unsigned int count_free_highmem_pages(void)
 {
-       unsigned int num;
-       struct pbe *pblist, *pbe;
+       struct zone *zone;
+       unsigned int cnt = 0;
 
-       if (!nr_pages)
-               return NULL;
+       for_each_zone(zone)
+               if (populated_zone(zone) && is_highmem(zone))
+                       cnt += zone->free_pages;
 
-       pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
-       pblist = alloc_image_page(gfp_mask, safe_needed);
-       /* FIXME: rewrite this ugly loop */
-       for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
-                       pbe = pbe->next, num += PBES_PER_PAGE) {
-               pbe += PB_PAGE_SKIP;
-               pbe->next = alloc_image_page(gfp_mask, safe_needed);
-       }
-       if (!pbe) { /* get_zeroed_page() failed */
-               free_pagedir(pblist);
-               pblist = NULL;
-        } else
-               create_pbe_list(pblist, nr_pages);
-       return pblist;
+       return cnt;
 }
 
 /**
- * Free pages we allocated for suspend. Suspend pages are alocated
- * before atomic copy, so we need to free them after resume.
+ *     saveable_highmem_page - Determine whether a highmem page should be
+ *     included in the suspend image.
+ *
+ *     We should save the page if it isn't Nosave or NosaveFree, or Reserved,
+ *     and it isn't a part of a free chunk of pages.
  */
 
-void swsusp_free(void)
+static struct page *saveable_highmem_page(unsigned long pfn)
 {
-       struct zone *zone;
-       unsigned long zone_pfn;
+       struct page *page;
 
-       for_each_zone(zone) {
-               for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
-                       if (pfn_valid(zone_pfn + zone->zone_start_pfn)) {
-                               struct page *page;
-                               page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
-                               if (PageNosave(page) && PageNosaveFree(page)) {
-                                       ClearPageNosave(page);
-                                       ClearPageNosaveFree(page);
-                                       free_page((long) page_address(page));
-                               }
-                       }
-       }
-}
+       if (!pfn_valid(pfn))
+               return NULL;
+
+       page = pfn_to_page(pfn);
+
+       BUG_ON(!PageHighMem(page));
+
+       if (PageNosave(page) || PageReserved(page) || PageNosaveFree(page))
+               return NULL;
 
+       return page;
+}
 
 /**
- *     enough_free_mem - Make sure we enough free memory to snapshot.
- *
- *     Returns TRUE or FALSE after checking the number of available
- *     free pages.
+ *     count_highmem_pages - compute the total number of saveable highmem
+ *     pages.
  */
 
-static int enough_free_mem(unsigned int nr_pages)
+unsigned int count_highmem_pages(void)
 {
        struct zone *zone;
        unsigned int n = 0;
 
-       for_each_zone (zone)
+       for_each_zone(zone) {
+               unsigned long pfn, max_zone_pfn;
+
                if (!is_highmem(zone))
-                       n += zone->free_pages;
-       pr_debug("swsusp: available memory: %u pages\n", n);
-       return n > (nr_pages + PAGES_FOR_IO +
-               (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE);
+                       continue;
+
+               mark_free_pages(zone);
+               max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
+               for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+                       if (saveable_highmem_page(pfn))
+                               n++;
+       }
+       return n;
 }
+#else
+static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
+static inline unsigned int count_highmem_pages(void) { return 0; }
+#endif /* CONFIG_HIGHMEM */
 
-int alloc_data_pages(struct pbe *pblist, gfp_t gfp_mask, int safe_needed)
-{
-       struct pbe *p;
+/**
+ *     pfn_is_nosave - check if given pfn is in the 'nosave' section
+ */
 
-       for_each_pbe (p, pblist) {
-               p->address = (unsigned long)alloc_image_page(gfp_mask, safe_needed);
-               if (!p->address)
-                       return -ENOMEM;
-       }
-       return 0;
+static inline int pfn_is_nosave(unsigned long pfn)
+{
+       unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
+       unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
+       return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
 }
 
-static struct pbe *swsusp_alloc(unsigned int nr_pages)
+/**
+ *     saveable - Determine whether a non-highmem page should be included in
+ *     the suspend image.
+ *
+ *     We should save the page if it isn't Nosave, and is not in the range
+ *     of pages statically defined as 'unsaveable', and it isn't a part of
+ *     a free chunk of pages.
+ */
+
+static struct page *saveable_page(unsigned long pfn)
 {
-       struct pbe *pblist;
+       struct page *page;
 
-       if (!(pblist = alloc_pagedir(nr_pages, GFP_ATOMIC | __GFP_COLD, 0))) {
-               printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
+       if (!pfn_valid(pfn))
                return NULL;
-       }
 
-       if (alloc_data_pages(pblist, GFP_ATOMIC | __GFP_COLD, 0)) {
-               printk(KERN_ERR "suspend: Allocating image pages failed.\n");
-               swsusp_free();
+       page = pfn_to_page(pfn);
+
+       BUG_ON(PageHighMem(page));
+
+       if (PageNosave(page) || PageNosaveFree(page))
+               return NULL;
+
+       if (PageReserved(page) && pfn_is_nosave(pfn))
                return NULL;
-       }
 
-       return pblist;
+       return page;
 }
 
-asmlinkage int swsusp_save(void)
+/**
+ *     count_data_pages - compute the total number of saveable non-highmem
+ *     pages.
+ */
+
+unsigned int count_data_pages(void)
 {
-       unsigned int nr_pages;
+       struct zone *zone;
+       unsigned long pfn, max_zone_pfn;
+       unsigned int n = 0;
 
-       pr_debug("swsusp: critical section: \n");
+       for_each_zone(zone) {
+               if (is_highmem(zone))
+                       continue;
 
-       drain_local_pages();
-       nr_pages = count_data_pages();
-       printk("swsusp: Need to copy %u pages\n", nr_pages);
+               mark_free_pages(zone);
+               max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
+               for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+                       if(saveable_page(pfn))
+                               n++;
+       }
+       return n;
+}
 
-       pr_debug("swsusp: pages needed: %u + %lu + %u, free: %u\n",
-                nr_pages,
-                (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE,
-                PAGES_FOR_IO, nr_free_pages());
+/* This is needed, because copy_page and memcpy are not usable for copying
+ * task structs.
+ */
+static inline void do_copy_page(long *dst, long *src)
+{
+       int n;
 
-       if (!enough_free_mem(nr_pages)) {
-               printk(KERN_ERR "swsusp: Not enough free memory\n");
-               return -ENOMEM;
-       }
+       for (n = PAGE_SIZE / sizeof(long); n; n--)
+               *dst++ = *src++;
+}
 
-       pagedir_nosave = swsusp_alloc(nr_pages);
-       if (!pagedir_nosave)
-               return -ENOMEM;
+#ifdef CONFIG_HIGHMEM
+static inline struct page *
+page_is_saveable(struct zone *zone, unsigned long pfn)
+{
+       return is_highmem(zone) ?
+                       saveable_highmem_page(pfn) : saveable_page(pfn);
+}
+
+static inline void
+copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
+{
+       struct page *s_page, *d_page;
+       void *src, *dst;
+
+       s_page = pfn_to_page(src_pfn);
+       d_page = pfn_to_page(dst_pfn);
+       if (PageHighMem(s_page)) {
+               src = kmap_atomic(s_page, KM_USER0);
+               dst = kmap_atomic(d_page, KM_USER1);
+               do_copy_page(dst, src);
+               kunmap_atomic(src, KM_USER0);
+               kunmap_atomic(dst, KM_USER1);
+       } else {
+               src = page_address(s_page);
+               if (PageHighMem(d_page)) {
+                       /* Page pointed to by src may contain some kernel
+                        * data modified by kmap_atomic()
+                        */
+                       do_copy_page(buffer, src);
+                       dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
+                       memcpy(dst, buffer, PAGE_SIZE);
+                       kunmap_atomic(dst, KM_USER0);
+               } else {
+                       dst = page_address(d_page);
+                       do_copy_page(dst, src);
+               }
+       }
+}
+#else
+#define page_is_saveable(zone, pfn)    saveable_page(pfn)
+
+static inline void
+copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
+{
+       do_copy_page(page_address(pfn_to_page(dst_pfn)),
+                       page_address(pfn_to_page(src_pfn)));
+}
+#endif /* CONFIG_HIGHMEM */
+
+static void
+copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
+{
+       struct zone *zone;
+       unsigned long pfn;
+
+       for_each_zone(zone) {
+               unsigned long max_zone_pfn;
+
+               mark_free_pages(zone);
+               max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
+               for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+                       if (page_is_saveable(zone, pfn))
+                               memory_bm_set_bit(orig_bm, pfn);
+       }
+       memory_bm_position_reset(orig_bm);
+       memory_bm_position_reset(copy_bm);
+       do {
+               pfn = memory_bm_next_pfn(orig_bm);
+               if (likely(pfn != BM_END_OF_MAP))
+                       copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
+       } while (pfn != BM_END_OF_MAP);
+}
+
+/* Total number of image pages */
+static unsigned int nr_copy_pages;
+/* Number of pages needed for saving the original pfns of the image pages */
+static unsigned int nr_meta_pages;
+
+/**
+ *     swsusp_free - free pages allocated for the suspend.
+ *
+ *     Suspend pages are alocated before the atomic copy is made, so we
+ *     need to release them after the resume.
+ */
+
+void swsusp_free(void)
+{
+       struct zone *zone;
+       unsigned long pfn, max_zone_pfn;
+
+       for_each_zone(zone) {
+               max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
+               for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+                       if (pfn_valid(pfn)) {
+                               struct page *page = pfn_to_page(pfn);
+
+                               if (PageNosave(page) && PageNosaveFree(page)) {
+                                       ClearPageNosave(page);
+                                       ClearPageNosaveFree(page);
+                                       __free_page(page);
+                               }
+                       }
+       }
+       nr_copy_pages = 0;
+       nr_meta_pages = 0;
+       restore_pblist = NULL;
+       buffer = NULL;
+}
+
+#ifdef CONFIG_HIGHMEM
+/**
+  *    count_pages_for_highmem - compute the number of non-highmem pages
+  *    that will be necessary for creating copies of highmem pages.
+  */
+
+static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
+{
+       unsigned int free_highmem = count_free_highmem_pages();
+
+       if (free_highmem >= nr_highmem)
+               nr_highmem = 0;
+       else
+               nr_highmem -= free_highmem;
+
+       return nr_highmem;
+}
+#else
+static unsigned int
+count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ *     enough_free_mem - Make sure we have enough free memory for the
+ *     snapshot image.
+ */
+
+static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
+{
+       struct zone *zone;
+       unsigned int free = 0, meta = 0;
+
+       for_each_zone(zone) {
+               meta += snapshot_additional_pages(zone);
+               if (!is_highmem(zone))
+                       free += zone->free_pages;
+       }
+
+       nr_pages += count_pages_for_highmem(nr_highmem);
+       pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
+               nr_pages, PAGES_FOR_IO, meta, free);
+
+       return free > nr_pages + PAGES_FOR_IO + meta;
+}
+
+#ifdef CONFIG_HIGHMEM
+/**
+ *     get_highmem_buffer - if there are some highmem pages in the suspend
+ *     image, we may need the buffer to copy them and/or load their data.
+ */
+
+static inline int get_highmem_buffer(int safe_needed)
+{
+       buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
+       return buffer ? 0 : -ENOMEM;
+}
+
+/**
+ *     alloc_highmem_image_pages - allocate some highmem pages for the image.
+ *     Try to allocate as many pages as needed, but if the number of free
+ *     highmem pages is lesser than that, allocate them all.
+ */
+
+static inline unsigned int
+alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
+{
+       unsigned int to_alloc = count_free_highmem_pages();
+
+       if (to_alloc > nr_highmem)
+               to_alloc = nr_highmem;
+
+       nr_highmem -= to_alloc;
+       while (to_alloc-- > 0) {
+               struct page *page;
+
+               page = alloc_image_page(__GFP_HIGHMEM);
+               memory_bm_set_bit(bm, page_to_pfn(page));
+       }
+       return nr_highmem;
+}
+#else
+static inline int get_highmem_buffer(int safe_needed) { return 0; }
+
+static inline unsigned int
+alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ *     swsusp_alloc - allocate memory for the suspend image
+ *
+ *     We first try to allocate as many highmem pages as there are
+ *     saveable highmem pages in the system.  If that fails, we allocate
+ *     non-highmem pages for the copies of the remaining highmem ones.
+ *
+ *     In this approach it is likely that the copies of highmem pages will
+ *     also be located in the high memory, because of the way in which
+ *     copy_data_pages() works.
+ */
+
+static int
+swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
+               unsigned int nr_pages, unsigned int nr_highmem)
+{
+       int error;
+
+       error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
+       if (error)
+               goto Free;
+
+       error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
+       if (error)
+               goto Free;
+
+       if (nr_highmem > 0) {
+               error = get_highmem_buffer(PG_ANY);
+               if (error)
+                       goto Free;
+
+               nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
+       }
+       while (nr_pages-- > 0) {
+               struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
+
+               if (!page)
+                       goto Free;
+
+               memory_bm_set_bit(copy_bm, page_to_pfn(page));
+       }
+       return 0;
+
+ Free:
+       swsusp_free();
+       return -ENOMEM;
+}
+
+/* Memory bitmap used for marking saveable pages (during suspend) or the
+ * suspend image pages (during resume)
+ */
+static struct memory_bitmap orig_bm;
+/* Memory bitmap used on suspend for marking allocated pages that will contain
+ * the copies of saveable pages.  During resume it is initially used for
+ * marking the suspend image pages, but then its set bits are duplicated in
+ * @orig_bm and it is released.  Next, on systems with high memory, it may be
+ * used for marking "safe" highmem pages, but it has to be reinitialized for
+ * this purpose.
+ */
+static struct memory_bitmap copy_bm;
+
+asmlinkage int swsusp_save(void)
+{
+       unsigned int nr_pages, nr_highmem;
+
+       printk("swsusp: critical section: \n");
+
+       drain_local_pages();
+       nr_pages = count_data_pages();
+       nr_highmem = count_highmem_pages();
+       printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
+
+       if (!enough_free_mem(nr_pages, nr_highmem)) {
+               printk(KERN_ERR "swsusp: Not enough free memory\n");
+               return -ENOMEM;
+       }
+
+       if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
+               printk(KERN_ERR "swsusp: Memory allocation failed\n");
+               return -ENOMEM;
+       }
 
        /* During allocating of suspend pagedir, new cold pages may appear.
         * Kill them.
         */
        drain_local_pages();
-       copy_data_pages(pagedir_nosave);
+       copy_data_pages(&copy_bm, &orig_bm);
 
        /*
         * End of critical section. From now on, we can write to memory,
@@ -503,8 +1015,725 @@ asmlinkage int swsusp_save(void)
         * touch swap space! Except we must write out our image of course.
         */
 
+       nr_pages += nr_highmem;
        nr_copy_pages = nr_pages;
+       nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
 
        printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages);
+
+       return 0;
+}
+
+static void init_header(struct swsusp_info *info)
+{
+       memset(info, 0, sizeof(struct swsusp_info));
+       info->version_code = LINUX_VERSION_CODE;
+       info->num_physpages = num_physpages;
+       memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
+       info->cpus = num_online_cpus();
+       info->image_pages = nr_copy_pages;
+       info->pages = nr_copy_pages + nr_meta_pages + 1;
+       info->size = info->pages;
+       info->size <<= PAGE_SHIFT;
+}
+
+/**
+ *     pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
+ *     are stored in the array @buf[] (1 page at a time)
+ */
+
+static inline void
+pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
+{
+       int j;
+
+       for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
+               buf[j] = memory_bm_next_pfn(bm);
+               if (unlikely(buf[j] == BM_END_OF_MAP))
+                       break;
+       }
+}
+
+/**
+ *     snapshot_read_next - used for reading the system memory snapshot.
+ *
+ *     On the first call to it @handle should point to a zeroed
+ *     snapshot_handle structure.  The structure gets updated and a pointer
+ *     to it should be passed to this function every next time.
+ *
+ *     The @count parameter should contain the number of bytes the caller
+ *     wants to read from the snapshot.  It must not be zero.
+ *
+ *     On success the function returns a positive number.  Then, the caller
+ *     is allowed to read up to the returned number of bytes from the memory
+ *     location computed by the data_of() macro.  The number returned
+ *     may be smaller than @count, but this only happens if the read would
+ *     cross a page boundary otherwise.
+ *
+ *     The function returns 0 to indicate the end of data stream condition,
+ *     and a negative number is returned on error.  In such cases the
+ *     structure pointed to by @handle is not updated and should not be used
+ *     any more.
+ */
+
+int snapshot_read_next(struct snapshot_handle *handle, size_t count)
+{
+       if (handle->cur > nr_meta_pages + nr_copy_pages)
+               return 0;
+
+       if (!buffer) {
+               /* This makes the buffer be freed by swsusp_free() */
+               buffer = get_image_page(GFP_ATOMIC, PG_ANY);
+               if (!buffer)
+                       return -ENOMEM;
+       }
+       if (!handle->offset) {
+               init_header((struct swsusp_info *)buffer);
+               handle->buffer = buffer;
+               memory_bm_position_reset(&orig_bm);
+               memory_bm_position_reset(&copy_bm);
+       }
+       if (handle->prev < handle->cur) {
+               if (handle->cur <= nr_meta_pages) {
+                       memset(buffer, 0, PAGE_SIZE);
+                       pack_pfns(buffer, &orig_bm);
+               } else {
+                       struct page *page;
+
+                       page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
+                       if (PageHighMem(page)) {
+                               /* Highmem pages are copied to the buffer,
+                                * because we can't return with a kmapped
+                                * highmem page (we may not be called again).
+                                */
+                               void *kaddr;
+
+                               kaddr = kmap_atomic(page, KM_USER0);
+                               memcpy(buffer, kaddr, PAGE_SIZE);
+                               kunmap_atomic(kaddr, KM_USER0);
+                               handle->buffer = buffer;
+                       } else {
+                               handle->buffer = page_address(page);
+                       }
+               }
+               handle->prev = handle->cur;
+       }
+       handle->buf_offset = handle->cur_offset;
+       if (handle->cur_offset + count >= PAGE_SIZE) {
+               count = PAGE_SIZE - handle->cur_offset;
+               handle->cur_offset = 0;
+               handle->cur++;
+       } else {
+               handle->cur_offset += count;
+       }
+       handle->offset += count;
+       return count;
+}
+
+/**
+ *     mark_unsafe_pages - mark the pages that cannot be used for storing
+ *     the image during resume, because they conflict with the pages that
+ *     had been used before suspend
+ */
+
+static int mark_unsafe_pages(struct memory_bitmap *bm)
+{
+       struct zone *zone;
+       unsigned long pfn, max_zone_pfn;
+
+       /* Clear page flags */
+       for_each_zone(zone) {
+               max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
+               for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+                       if (pfn_valid(pfn))
+                               ClearPageNosaveFree(pfn_to_page(pfn));
+       }
+
+       /* Mark pages that correspond to the "original" pfns as "unsafe" */
+       memory_bm_position_reset(bm);
+       do {
+               pfn = memory_bm_next_pfn(bm);
+               if (likely(pfn != BM_END_OF_MAP)) {
+                       if (likely(pfn_valid(pfn)))
+                               SetPageNosaveFree(pfn_to_page(pfn));
+                       else
+                               return -EFAULT;
+               }
+       } while (pfn != BM_END_OF_MAP);
+
+       allocated_unsafe_pages = 0;
+
+       return 0;
+}
+
+static void
+duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
+{
+       unsigned long pfn;
+
+       memory_bm_position_reset(src);
+       pfn = memory_bm_next_pfn(src);
+       while (pfn != BM_END_OF_MAP) {
+               memory_bm_set_bit(dst, pfn);
+               pfn = memory_bm_next_pfn(src);
+       }
+}
+
+static inline int check_header(struct swsusp_info *info)
+{
+       char *reason = NULL;
+
+       if (info->version_code != LINUX_VERSION_CODE)
+               reason = "kernel version";
+       if (info->num_physpages != num_physpages)
+               reason = "memory size";
+       if (strcmp(info->uts.sysname,init_utsname()->sysname))
+               reason = "system type";
+       if (strcmp(info->uts.release,init_utsname()->release))
+               reason = "kernel release";
+       if (strcmp(info->uts.version,init_utsname()->version))
+               reason = "version";
+       if (strcmp(info->uts.machine,init_utsname()->machine))
+               reason = "machine";
+       if (reason) {
+               printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
+               return -EPERM;
+       }
+       return 0;
+}
+
+/**
+ *     load header - check the image header and copy data from it
+ */
+
+static int
+load_header(struct swsusp_info *info)
+{
+       int error;
+
+       restore_pblist = NULL;
+       error = check_header(info);
+       if (!error) {
+               nr_copy_pages = info->image_pages;
+               nr_meta_pages = info->pages - info->image_pages - 1;
+       }
+       return error;
+}
+
+/**
+ *     unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
+ *     the corresponding bit in the memory bitmap @bm
+ */
+
+static inline void
+unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
+{
+       int j;
+
+       for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
+               if (unlikely(buf[j] == BM_END_OF_MAP))
+                       break;
+
+               memory_bm_set_bit(bm, buf[j]);
+       }
+}
+
+/* List of "safe" pages that may be used to store data loaded from the suspend
+ * image
+ */
+static struct linked_page *safe_pages_list;
+
+#ifdef CONFIG_HIGHMEM
+/* struct highmem_pbe is used for creating the list of highmem pages that
+ * should be restored atomically during the resume from disk, because the page
+ * frames they have occupied before the suspend are in use.
+ */
+struct highmem_pbe {
+       struct page *copy_page; /* data is here now */
+       struct page *orig_page; /* data was here before the suspend */
+       struct highmem_pbe *next;
+};
+
+/* List of highmem PBEs needed for restoring the highmem pages that were
+ * allocated before the suspend and included in the suspend image, but have
+ * also been allocated by the "resume" kernel, so their contents cannot be
+ * written directly to their "original" page frames.
+ */
+static struct highmem_pbe *highmem_pblist;
+
+/**
+ *     count_highmem_image_pages - compute the number of highmem pages in the
+ *     suspend image.  The bits in the memory bitmap @bm that correspond to the
+ *     image pages are assumed to be set.
+ */
+
+static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
+{
+       unsigned long pfn;
+       unsigned int cnt = 0;
+
+       memory_bm_position_reset(bm);
+       pfn = memory_bm_next_pfn(bm);
+       while (pfn != BM_END_OF_MAP) {
+               if (PageHighMem(pfn_to_page(pfn)))
+                       cnt++;
+
+               pfn = memory_bm_next_pfn(bm);
+       }
+       return cnt;
+}
+
+/**
+ *     prepare_highmem_image - try to allocate as many highmem pages as
+ *     there are highmem image pages (@nr_highmem_p points to the variable
+ *     containing the number of highmem image pages).  The pages that are
+ *     "safe" (ie. will not be overwritten when the suspend image is
+ *     restored) have the corresponding bits set in @bm (it must be
+ *     unitialized).
+ *
+ *     NOTE: This function should not be called if there are no highmem
+ *     image pages.
+ */
+
+static unsigned int safe_highmem_pages;
+
+static struct memory_bitmap *safe_highmem_bm;
+
+static int
+prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
+{
+       unsigned int to_alloc;
+
+       if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
+               return -ENOMEM;
+
+       if (get_highmem_buffer(PG_SAFE))
+               return -ENOMEM;
+
+       to_alloc = count_free_highmem_pages();
+       if (to_alloc > *nr_highmem_p)
+               to_alloc = *nr_highmem_p;
+       else
+               *nr_highmem_p = to_alloc;
+
+       safe_highmem_pages = 0;
+       while (to_alloc-- > 0) {
+               struct page *page;
+
+               page = alloc_page(__GFP_HIGHMEM);
+               if (!PageNosaveFree(page)) {
+                       /* The page is "safe", set its bit the bitmap */
+                       memory_bm_set_bit(bm, page_to_pfn(page));
+                       safe_highmem_pages++;
+               }
+               /* Mark the page as allocated */
+               SetPageNosave(page);
+               SetPageNosaveFree(page);
+       }
+       memory_bm_position_reset(bm);
+       safe_highmem_bm = bm;
+       return 0;
+}
+
+/**
+ *     get_highmem_page_buffer - for given highmem image page find the buffer
+ *     that suspend_write_next() should set for its caller to write to.
+ *
+ *     If the page is to be saved to its "original" page frame or a copy of
+ *     the page is to be made in the highmem, @buffer is returned.  Otherwise,
+ *     the copy of the page is to be made in normal memory, so the address of
+ *     the copy is returned.
+ *
+ *     If @buffer is returned, the caller of suspend_write_next() will write
+ *     the page's contents to @buffer, so they will have to be copied to the
+ *     right location on the next call to suspend_write_next() and it is done
+ *     with the help of copy_last_highmem_page().  For this purpose, if
+ *     @buffer is returned, @last_highmem page is set to the page to which
+ *     the data will have to be copied from @buffer.
+ */
+
+static struct page *last_highmem_page;
+
+static void *
+get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
+{
+       struct highmem_pbe *pbe;
+       void *kaddr;
+
+       if (PageNosave(page) && PageNosaveFree(page)) {
+               /* We have allocated the "original" page frame and we can
+                * use it directly to store the loaded page.
+                */
+               last_highmem_page = page;
+               return buffer;
+       }
+       /* The "original" page frame has not been allocated and we have to
+        * use a "safe" page frame to store the loaded page.
+        */
+       pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
+       if (!pbe) {
+               swsusp_free();
+               return NULL;
+       }
+       pbe->orig_page = page;
+       if (safe_highmem_pages > 0) {
+               struct page *tmp;
+
+               /* Copy of the page will be stored in high memory */
+               kaddr = buffer;
+               tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
+               safe_highmem_pages--;
+               last_highmem_page = tmp;
+               pbe->copy_page = tmp;
+       } else {
+               /* Copy of the page will be stored in normal memory */
+               kaddr = safe_pages_list;
+               safe_pages_list = safe_pages_list->next;
+               pbe->copy_page = virt_to_page(kaddr);
+       }
+       pbe->next = highmem_pblist;
+       highmem_pblist = pbe;
+       return kaddr;
+}
+
+/**
+ *     copy_last_highmem_page - copy the contents of a highmem image from
+ *     @buffer, where the caller of snapshot_write_next() has place them,
+ *     to the right location represented by @last_highmem_page .
+ */
+
+static void copy_last_highmem_page(void)
+{
+       if (last_highmem_page) {
+               void *dst;
+
+               dst = kmap_atomic(last_highmem_page, KM_USER0);
+               memcpy(dst, buffer, PAGE_SIZE);
+               kunmap_atomic(dst, KM_USER0);
+               last_highmem_page = NULL;
+       }
+}
+
+static inline int last_highmem_page_copied(void)
+{
+       return !last_highmem_page;
+}
+
+static inline void free_highmem_data(void)
+{
+       if (safe_highmem_bm)
+               memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
+
+       if (buffer)
+               free_image_page(buffer, PG_UNSAFE_CLEAR);
+}
+#else
+static inline int get_safe_write_buffer(void) { return 0; }
+
+static unsigned int
+count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
+
+static inline int
+prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
+{
+       return 0;
+}
+
+static inline void *
+get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
+{
+       return NULL;
+}
+
+static inline void copy_last_highmem_page(void) {}
+static inline int last_highmem_page_copied(void) { return 1; }
+static inline void free_highmem_data(void) {}
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ *     prepare_image - use the memory bitmap @bm to mark the pages that will
+ *     be overwritten in the process of restoring the system memory state
+ *     from the suspend image ("unsafe" pages) and allocate memory for the
+ *     image.
+ *
+ *     The idea is to allocate a new memory bitmap first and then allocate
+ *     as many pages as needed for the image data, but not to assign these
+ *     pages to specific tasks initially.  Instead, we just mark them as
+ *     allocated and create a lists of "safe" pages that will be used
+ *     later.  On systems with high memory a list of "safe" highmem pages is
+ *     also created.
+ */
+
+#define PBES_PER_LINKED_PAGE   (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
+
+static int
+prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
+{
+       unsigned int nr_pages, nr_highmem;
+       struct linked_page *sp_list, *lp;
+       int error;
+
+       /* If there is no highmem, the buffer will not be necessary */
+       free_image_page(buffer, PG_UNSAFE_CLEAR);
+       buffer = NULL;
+
+       nr_highmem = count_highmem_image_pages(bm);
+       error = mark_unsafe_pages(bm);
+       if (error)
+               goto Free;
+
+       error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
+       if (error)
+               goto Free;
+
+       duplicate_memory_bitmap(new_bm, bm);
+       memory_bm_free(bm, PG_UNSAFE_KEEP);
+       if (nr_highmem > 0) {
+               error = prepare_highmem_image(bm, &nr_highmem);
+               if (error)
+                       goto Free;
+       }
+       /* Reserve some safe pages for potential later use.
+        *
+        * NOTE: This way we make sure there will be enough safe pages for the
+        * chain_alloc() in get_buffer().  It is a bit wasteful, but
+        * nr_copy_pages cannot be greater than 50% of the memory anyway.
+        */
+       sp_list = NULL;
+       /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
+       nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
+       nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
+       while (nr_pages > 0) {
+               lp = get_image_page(GFP_ATOMIC, PG_SAFE);
+               if (!lp) {
+                       error = -ENOMEM;
+                       goto Free;
+               }
+               lp->next = sp_list;
+               sp_list = lp;
+               nr_pages--;
+       }
+       /* Preallocate memory for the image */
+       safe_pages_list = NULL;
+       nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
+       while (nr_pages > 0) {
+               lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
+               if (!lp) {
+                       error = -ENOMEM;
+                       goto Free;
+               }
+               if (!PageNosaveFree(virt_to_page(lp))) {
+                       /* The page is "safe", add it to the list */
+                       lp->next = safe_pages_list;
+                       safe_pages_list = lp;
+               }
+               /* Mark the page as allocated */
+               SetPageNosave(virt_to_page(lp));
+               SetPageNosaveFree(virt_to_page(lp));
+               nr_pages--;
+       }
+       /* Free the reserved safe pages so that chain_alloc() can use them */
+       while (sp_list) {
+               lp = sp_list->next;
+               free_image_page(sp_list, PG_UNSAFE_CLEAR);
+               sp_list = lp;
+       }
+       return 0;
+
+ Free:
+       swsusp_free();
+       return error;
+}
+
+/**
+ *     get_buffer - compute the address that snapshot_write_next() should
+ *     set for its caller to write to.
+ */
+
+static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
+{
+       struct pbe *pbe;
+       struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
+
+       if (PageHighMem(page))
+               return get_highmem_page_buffer(page, ca);
+
+       if (PageNosave(page) && PageNosaveFree(page))
+               /* We have allocated the "original" page frame and we can
+                * use it directly to store the loaded page.
+                */
+               return page_address(page);
+
+       /* The "original" page frame has not been allocated and we have to
+        * use a "safe" page frame to store the loaded page.
+        */
+       pbe = chain_alloc(ca, sizeof(struct pbe));
+       if (!pbe) {
+               swsusp_free();
+               return NULL;
+       }
+       pbe->orig_address = page_address(page);
+       pbe->address = safe_pages_list;
+       safe_pages_list = safe_pages_list->next;
+       pbe->next = restore_pblist;
+       restore_pblist = pbe;
+       return pbe->address;
+}
+
+/**
+ *     snapshot_write_next - used for writing the system memory snapshot.
+ *
+ *     On the first call to it @handle should point to a zeroed
+ *     snapshot_handle structure.  The structure gets updated and a pointer
+ *     to it should be passed to this function every next time.
+ *
+ *     The @count parameter should contain the number of bytes the caller
+ *     wants to write to the image.  It must not be zero.
+ *
+ *     On success the function returns a positive number.  Then, the caller
+ *     is allowed to write up to the returned number of bytes to the memory
+ *     location computed by the data_of() macro.  The number returned
+ *     may be smaller than @count, but this only happens if the write would
+ *     cross a page boundary otherwise.
+ *
+ *     The function returns 0 to indicate the "end of file" condition,
+ *     and a negative number is returned on error.  In such cases the
+ *     structure pointed to by @handle is not updated and should not be used
+ *     any more.
+ */
+
+int snapshot_write_next(struct snapshot_handle *handle, size_t count)
+{
+       static struct chain_allocator ca;
+       int error = 0;
+
+       /* Check if we have already loaded the entire image */
+       if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
+               return 0;
+
+       if (handle->offset == 0) {
+               if (!buffer)
+                       /* This makes the buffer be freed by swsusp_free() */
+                       buffer = get_image_page(GFP_ATOMIC, PG_ANY);
+
+               if (!buffer)
+                       return -ENOMEM;
+
+               handle->buffer = buffer;
+       }
+       handle->sync_read = 1;
+       if (handle->prev < handle->cur) {
+               if (handle->prev == 0) {
+                       error = load_header(buffer);
+                       if (error)
+                               return error;
+
+                       error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
+                       if (error)
+                               return error;
+
+               } else if (handle->prev <= nr_meta_pages) {
+                       unpack_orig_pfns(buffer, &copy_bm);
+                       if (handle->prev == nr_meta_pages) {
+                               error = prepare_image(&orig_bm, &copy_bm);
+                               if (error)
+                                       return error;
+
+                               chain_init(&ca, GFP_ATOMIC, PG_SAFE);
+                               memory_bm_position_reset(&orig_bm);
+                               restore_pblist = NULL;
+                               handle->buffer = get_buffer(&orig_bm, &ca);
+                               handle->sync_read = 0;
+                               if (!handle->buffer)
+                                       return -ENOMEM;
+                       }
+               } else {
+                       copy_last_highmem_page();
+                       handle->buffer = get_buffer(&orig_bm, &ca);
+                       if (handle->buffer != buffer)
+                               handle->sync_read = 0;
+               }
+               handle->prev = handle->cur;
+       }
+       handle->buf_offset = handle->cur_offset;
+       if (handle->cur_offset + count >= PAGE_SIZE) {
+               count = PAGE_SIZE - handle->cur_offset;
+               handle->cur_offset = 0;
+               handle->cur++;
+       } else {
+               handle->cur_offset += count;
+       }
+       handle->offset += count;
+       return count;
+}
+
+/**
+ *     snapshot_write_finalize - must be called after the last call to
+ *     snapshot_write_next() in case the last page in the image happens
+ *     to be a highmem page and its contents should be stored in the
+ *     highmem.  Additionally, it releases the memory that will not be
+ *     used any more.
+ */
+
+void snapshot_write_finalize(struct snapshot_handle *handle)
+{
+       copy_last_highmem_page();
+       /* Free only if we have loaded the image entirely */
+       if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
+               memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
+               free_highmem_data();
+       }
+}
+
+int snapshot_image_loaded(struct snapshot_handle *handle)
+{
+       return !(!nr_copy_pages || !last_highmem_page_copied() ||
+                       handle->cur <= nr_meta_pages + nr_copy_pages);
+}
+
+#ifdef CONFIG_HIGHMEM
+/* Assumes that @buf is ready and points to a "safe" page */
+static inline void
+swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
+{
+       void *kaddr1, *kaddr2;
+
+       kaddr1 = kmap_atomic(p1, KM_USER0);
+       kaddr2 = kmap_atomic(p2, KM_USER1);
+       memcpy(buf, kaddr1, PAGE_SIZE);
+       memcpy(kaddr1, kaddr2, PAGE_SIZE);
+       memcpy(kaddr2, buf, PAGE_SIZE);
+       kunmap_atomic(kaddr1, KM_USER0);
+       kunmap_atomic(kaddr2, KM_USER1);
+}
+
+/**
+ *     restore_highmem - for each highmem page that was allocated before
+ *     the suspend and included in the suspend image, and also has been
+ *     allocated by the "resume" kernel swap its current (ie. "before
+ *     resume") contents with the previous (ie. "before suspend") one.
+ *
+ *     If the resume eventually fails, we can call this function once
+ *     again and restore the "before resume" highmem state.
+ */
+
+int restore_highmem(void)
+{
+       struct highmem_pbe *pbe = highmem_pblist;
+       void *buf;
+
+       if (!pbe)
+               return 0;
+
+       buf = get_image_page(GFP_ATOMIC, PG_SAFE);
+       if (!buf)
+               return -ENOMEM;
+
+       while (pbe) {
+               swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
+               pbe = pbe->next;
+       }
+       free_image_page(buf, PG_UNSAFE_CLEAR);
        return 0;
 }
+#endif /* CONFIG_HIGHMEM */