Fedora kernel-2.6.17-1.2142_FC4 patched with stable patch-2.6.17.4-vs2.0.2-rc26.diff
[linux-2.6.git] / kernel / sched.c
index 3f00813..60bff8b 100644 (file)
 #include <linux/smp_lock.h>
 #include <asm/mmu_context.h>
 #include <linux/interrupt.h>
+#include <linux/capability.h>
 #include <linux/completion.h>
 #include <linux/kernel_stat.h>
 #include <linux/security.h>
 #include <linux/notifier.h>
 #include <linux/profile.h>
 #include <linux/suspend.h>
+#include <linux/vmalloc.h>
 #include <linux/blkdev.h>
 #include <linux/delay.h>
 #include <linux/smp.h>
@@ -47,6 +49,7 @@
 #include <linux/syscalls.h>
 #include <linux/times.h>
 #include <linux/acct.h>
+#include <linux/kprobes.h>
 #include <asm/tlb.h>
 
 #include <asm/unistd.h>
        (v1) * (v2_max) / (v1_max)
 
 #define DELTA(p) \
-       (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
+       (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
+               INTERACTIVE_DELTA)
 
 #define TASK_INTERACTIVE(p) \
        ((p)->prio <= (p)->static_prio - DELTA(p))
 #define SCALE_PRIO(x, prio) \
        max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
 
-static inline unsigned int task_timeslice(task_t *p)
+static unsigned int task_timeslice(task_t *p)
 {
        if (p->static_prio < NICE_TO_PRIO(0))
                return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
@@ -209,7 +213,7 @@ struct runqueue {
         */
        unsigned long nr_running;
 #ifdef CONFIG_SMP
-       unsigned long cpu_load;
+       unsigned long cpu_load[3];
 #endif
        unsigned long long nr_switches;
 
@@ -238,6 +242,7 @@ struct runqueue {
 
        task_t *migration_thread;
        struct list_head migration_queue;
+       int cpu;
 #endif
 #ifdef CONFIG_VSERVER_HARDCPU
        struct list_head hold_queue;
@@ -267,22 +272,90 @@ struct runqueue {
 
 static DEFINE_PER_CPU(struct runqueue, runqueues);
 
+/*
+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
+ * See detach_destroy_domains: synchronize_sched for details.
+ *
+ * The domain tree of any CPU may only be accessed from within
+ * preempt-disabled sections.
+ */
 #define for_each_domain(cpu, domain) \
-       for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
+for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
 
 #define cpu_rq(cpu)            (&per_cpu(runqueues, (cpu)))
 #define this_rq()              (&__get_cpu_var(runqueues))
 #define task_rq(p)             cpu_rq(task_cpu(p))
 #define cpu_curr(cpu)          (cpu_rq(cpu)->curr)
 
-/*
- * Default context-switch locking:
- */
 #ifndef prepare_arch_switch
-# define prepare_arch_switch(rq, next) do { } while (0)
-# define finish_arch_switch(rq, next)  spin_unlock_irq(&(rq)->lock)
-# define task_running(rq, p)           ((rq)->curr == (p))
+# define prepare_arch_switch(next)     do { } while (0)
+#endif
+#ifndef finish_arch_switch
+# define finish_arch_switch(prev)      do { } while (0)
+#endif
+
+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
+static inline int task_running(runqueue_t *rq, task_t *p)
+{
+       return rq->curr == p;
+}
+
+static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
+{
+}
+
+static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
+{
+#ifdef CONFIG_DEBUG_SPINLOCK
+       /* this is a valid case when another task releases the spinlock */
+       rq->lock.owner = current;
+#endif
+       spin_unlock_irq(&rq->lock);
+}
+
+#else /* __ARCH_WANT_UNLOCKED_CTXSW */
+static inline int task_running(runqueue_t *rq, task_t *p)
+{
+#ifdef CONFIG_SMP
+       return p->oncpu;
+#else
+       return rq->curr == p;
+#endif
+}
+
+static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
+{
+#ifdef CONFIG_SMP
+       /*
+        * We can optimise this out completely for !SMP, because the
+        * SMP rebalancing from interrupt is the only thing that cares
+        * here.
+        */
+       next->oncpu = 1;
+#endif
+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+       spin_unlock_irq(&rq->lock);
+#else
+       spin_unlock(&rq->lock);
+#endif
+}
+
+static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
+{
+#ifdef CONFIG_SMP
+       /*
+        * After ->oncpu is cleared, the task can be moved to a different CPU.
+        * We must ensure this doesn't happen until the switch is completely
+        * finished.
+        */
+       smp_wmb();
+       prev->oncpu = 0;
+#endif
+#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+       local_irq_enable();
 #endif
+}
+#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
 
 /*
  * task_rq_lock - lock the runqueue a given task resides on and disable
@@ -316,7 +389,7 @@ static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
  * bump this up when changing the output format or the meaning of an existing
  * format, so that tools can adapt (or abort)
  */
-#define SCHEDSTAT_VERSION 11
+#define SCHEDSTAT_VERSION 12
 
 static int show_schedstat(struct seq_file *seq, void *v)
 {
@@ -345,6 +418,7 @@ static int show_schedstat(struct seq_file *seq, void *v)
 
 #ifdef CONFIG_SMP
                /* domain-specific stats */
+               preempt_disable();
                for_each_domain(cpu, sd) {
                        enum idle_type itype;
                        char mask_str[NR_CPUS];
@@ -363,11 +437,13 @@ static int show_schedstat(struct seq_file *seq, void *v)
                                    sd->lb_nobusyq[itype],
                                    sd->lb_nobusyg[itype]);
                        }
-                       seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n",
+                       seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
                            sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
-                           sd->sbe_pushed, sd->sbe_attempts,
+                           sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
+                           sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
                            sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
                }
+               preempt_enable();
 #endif
        }
        return 0;
@@ -421,22 +497,6 @@ static inline runqueue_t *this_rq_lock(void)
        return rq;
 }
 
-#ifdef CONFIG_SCHED_SMT
-static int cpu_and_siblings_are_idle(int cpu)
-{
-       int sib;
-       for_each_cpu_mask(sib, cpu_sibling_map[cpu]) {
-               if (idle_cpu(sib))
-                       continue;
-               return 0;
-       }
-
-       return 1;
-}
-#else
-#define cpu_and_siblings_are_idle(A) idle_cpu(A)
-#endif
-
 #ifdef CONFIG_SCHEDSTATS
 /*
  * Called when a process is dequeued from the active array and given
@@ -463,7 +523,7 @@ static inline void sched_info_dequeued(task_t *t)
  * long it was waiting to run.  We also note when it began so that we
  * can keep stats on how long its timeslice is.
  */
-static inline void sched_info_arrive(task_t *t)
+static void sched_info_arrive(task_t *t)
 {
        unsigned long now = jiffies, diff = 0;
        struct runqueue *rq = task_rq(t);
@@ -624,9 +684,13 @@ static int effective_prio(task_t *p)
 /*
  * __activate_task - move a task to the runqueue.
  */
-static inline void __activate_task(task_t *p, runqueue_t *rq)
+static void __activate_task(task_t *p, runqueue_t *rq)
 {
-       enqueue_task(p, rq->active);
+       prio_array_t *target = rq->active;
+
+       if (batch_task(p))
+               target = rq->expired;
+       enqueue_task(p, target);
        rq->nr_running++;
 }
 
@@ -639,41 +703,43 @@ static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
        rq->nr_running++;
 }
 
-static void recalc_task_prio(task_t *p, unsigned long long now)
+static int recalc_task_prio(task_t *p, unsigned long long now)
 {
        /* Caller must always ensure 'now >= p->timestamp' */
        unsigned long long __sleep_time = now - p->timestamp;
        unsigned long sleep_time;
 
-       if (__sleep_time > NS_MAX_SLEEP_AVG)
-               sleep_time = NS_MAX_SLEEP_AVG;
-       else
-               sleep_time = (unsigned long)__sleep_time;
+       if (batch_task(p))
+               sleep_time = 0;
+       else {
+               if (__sleep_time > NS_MAX_SLEEP_AVG)
+                       sleep_time = NS_MAX_SLEEP_AVG;
+               else
+                       sleep_time = (unsigned long)__sleep_time;
+       }
 
        if (likely(sleep_time > 0)) {
                /*
                 * User tasks that sleep a long time are categorised as
-                * idle and will get just interactive status to stay active &
-                * prevent them suddenly becoming cpu hogs and starving
-                * other processes.
+                * idle. They will only have their sleep_avg increased to a
+                * level that makes them just interactive priority to stay
+                * active yet prevent them suddenly becoming cpu hogs and
+                * starving other processes.
                 */
-               if (p->mm && p->activated != -1 &&
-                       sleep_time > INTERACTIVE_SLEEP(p)) {
-                               p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
-                                               DEF_TIMESLICE);
-               } else {
-                       /*
-                        * The lower the sleep avg a task has the more
-                        * rapidly it will rise with sleep time.
-                        */
-                       sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
+               if (p->mm && sleep_time > INTERACTIVE_SLEEP(p)) {
+                               unsigned long ceiling;
 
+                               ceiling = JIFFIES_TO_NS(MAX_SLEEP_AVG -
+                                       DEF_TIMESLICE);
+                               if (p->sleep_avg < ceiling)
+                                       p->sleep_avg = ceiling;
+               } else {
                        /*
                         * Tasks waking from uninterruptible sleep are
                         * limited in their sleep_avg rise as they
                         * are likely to be waiting on I/O
                         */
-                       if (p->activated == -1 && p->mm) {
+                       if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
                                if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
                                        sleep_time = 0;
                                else if (p->sleep_avg + sleep_time >=
@@ -698,7 +764,7 @@ static void recalc_task_prio(task_t *p, unsigned long long now)
                }
        }
 
-       p->prio = effective_prio(p);
+       return effective_prio(p);
 }
 
 /*
@@ -721,13 +787,14 @@ static void activate_task(task_t *p, runqueue_t *rq, int local)
        }
 #endif
 
-       recalc_task_prio(p, now);
+       if (!rt_task(p))
+               p->prio = recalc_task_prio(p, now);
 
        /*
         * This checks to make sure it's not an uninterruptible task
         * that is now waking up.
         */
-       if (!p->activated) {
+       if (p->sleep_type == SLEEP_NORMAL) {
                /*
                 * Tasks which were woken up by interrupts (ie. hw events)
                 * are most likely of interactive nature. So we give them
@@ -736,13 +803,13 @@ static void activate_task(task_t *p, runqueue_t *rq, int local)
                 * on a CPU, first time around:
                 */
                if (in_interrupt())
-                       p->activated = 2;
+                       p->sleep_type = SLEEP_INTERRUPTED;
                else {
                        /*
                         * Normal first-time wakeups get a credit too for
                         * on-runqueue time, but it will be weighted down:
                         */
-                       p->activated = 1;
+                       p->sleep_type = SLEEP_INTERACTIVE;
                }
        }
        p->timestamp = now;
@@ -828,21 +895,28 @@ void vx_unhold_task(struct vx_info *vxi,
 #ifdef CONFIG_SMP
 static void resched_task(task_t *p)
 {
-       int need_resched, nrpolling;
+       int cpu;
 
        assert_spin_locked(&task_rq(p)->lock);
 
-       /* minimise the chance of sending an interrupt to poll_idle() */
-       nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
-       need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
-       nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
+       if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
+               return;
+
+       set_tsk_thread_flag(p, TIF_NEED_RESCHED);
+
+       cpu = task_cpu(p);
+       if (cpu == smp_processor_id())
+               return;
 
-       if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
-               smp_send_reschedule(task_cpu(p));
+       /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
+       smp_mb();
+       if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
+               smp_send_reschedule(cpu);
 }
 #else
 static inline void resched_task(task_t *p)
 {
+       assert_spin_locked(&task_rq(p)->lock);
        set_tsk_need_resched(p);
 }
 #endif
@@ -857,22 +931,12 @@ inline int task_curr(const task_t *p)
 }
 
 #ifdef CONFIG_SMP
-enum request_type {
-       REQ_MOVE_TASK,
-       REQ_SET_DOMAIN,
-};
-
 typedef struct {
        struct list_head list;
-       enum request_type type;
 
-       /* For REQ_MOVE_TASK */
        task_t *task;
        int dest_cpu;
 
-       /* For REQ_SET_DOMAIN */
-       struct sched_domain *sd;
-
        struct completion done;
 } migration_req_t;
 
@@ -894,7 +958,6 @@ static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
        }
 
        init_completion(&req->done);
-       req->type = REQ_MOVE_TASK;
        req->task = p;
        req->dest_cpu = dest_cpu;
        list_add(&req->list, &rq->migration_queue);
@@ -910,7 +973,7 @@ static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
  * smp_call_function() if an IPI is sent by the same process we are
  * waiting to become inactive.
  */
-void wait_task_inactive(task_t * p)
+void wait_task_inactive(task_t *p)
 {
        unsigned long flags;
        runqueue_t *rq;
@@ -961,26 +1024,163 @@ void kick_process(task_t *p)
  * We want to under-estimate the load of migration sources, to
  * balance conservatively.
  */
-static inline unsigned long source_load(int cpu)
+static inline unsigned long source_load(int cpu, int type)
 {
        runqueue_t *rq = cpu_rq(cpu);
        unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
+       if (type == 0)
+               return load_now;
 
-       return min(rq->cpu_load, load_now);
+       return min(rq->cpu_load[type-1], load_now);
 }
 
 /*
  * Return a high guess at the load of a migration-target cpu
  */
-static inline unsigned long target_load(int cpu)
+static inline unsigned long target_load(int cpu, int type)
 {
        runqueue_t *rq = cpu_rq(cpu);
        unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
+       if (type == 0)
+               return load_now;
 
-       return max(rq->cpu_load, load_now);
+       return max(rq->cpu_load[type-1], load_now);
 }
 
-#endif
+/*
+ * find_idlest_group finds and returns the least busy CPU group within the
+ * domain.
+ */
+static struct sched_group *
+find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
+{
+       struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
+       unsigned long min_load = ULONG_MAX, this_load = 0;
+       int load_idx = sd->forkexec_idx;
+       int imbalance = 100 + (sd->imbalance_pct-100)/2;
+
+       do {
+               unsigned long load, avg_load;
+               int local_group;
+               int i;
+
+               /* Skip over this group if it has no CPUs allowed */
+               if (!cpus_intersects(group->cpumask, p->cpus_allowed))
+                       goto nextgroup;
+
+               local_group = cpu_isset(this_cpu, group->cpumask);
+
+               /* Tally up the load of all CPUs in the group */
+               avg_load = 0;
+
+               for_each_cpu_mask(i, group->cpumask) {
+                       /* Bias balancing toward cpus of our domain */
+                       if (local_group)
+                               load = source_load(i, load_idx);
+                       else
+                               load = target_load(i, load_idx);
+
+                       avg_load += load;
+               }
+
+               /* Adjust by relative CPU power of the group */
+               avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
+
+               if (local_group) {
+                       this_load = avg_load;
+                       this = group;
+               } else if (avg_load < min_load) {
+                       min_load = avg_load;
+                       idlest = group;
+               }
+nextgroup:
+               group = group->next;
+       } while (group != sd->groups);
+
+       if (!idlest || 100*this_load < imbalance*min_load)
+               return NULL;
+       return idlest;
+}
+
+/*
+ * find_idlest_queue - find the idlest runqueue among the cpus in group.
+ */
+static int
+find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
+{
+       cpumask_t tmp;
+       unsigned long load, min_load = ULONG_MAX;
+       int idlest = -1;
+       int i;
+
+       /* Traverse only the allowed CPUs */
+       cpus_and(tmp, group->cpumask, p->cpus_allowed);
+
+       for_each_cpu_mask(i, tmp) {
+               load = source_load(i, 0);
+
+               if (load < min_load || (load == min_load && i == this_cpu)) {
+                       min_load = load;
+                       idlest = i;
+               }
+       }
+
+       return idlest;
+}
+
+/*
+ * sched_balance_self: balance the current task (running on cpu) in domains
+ * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
+ * SD_BALANCE_EXEC.
+ *
+ * Balance, ie. select the least loaded group.
+ *
+ * Returns the target CPU number, or the same CPU if no balancing is needed.
+ *
+ * preempt must be disabled.
+ */
+static int sched_balance_self(int cpu, int flag)
+{
+       struct task_struct *t = current;
+       struct sched_domain *tmp, *sd = NULL;
+
+       for_each_domain(cpu, tmp)
+               if (tmp->flags & flag)
+                       sd = tmp;
+
+       while (sd) {
+               cpumask_t span;
+               struct sched_group *group;
+               int new_cpu;
+               int weight;
+
+               span = sd->span;
+               group = find_idlest_group(sd, t, cpu);
+               if (!group)
+                       goto nextlevel;
+
+               new_cpu = find_idlest_cpu(group, t, cpu);
+               if (new_cpu == -1 || new_cpu == cpu)
+                       goto nextlevel;
+
+               /* Now try balancing at a lower domain level */
+               cpu = new_cpu;
+nextlevel:
+               sd = NULL;
+               weight = cpus_weight(span);
+               for_each_domain(cpu, tmp) {
+                       if (weight <= cpus_weight(tmp->span))
+                               break;
+                       if (tmp->flags & flag)
+                               sd = tmp;
+               }
+               /* while loop will break here if sd == NULL */
+       }
+
+       return cpu;
+}
+
+#endif /* CONFIG_SMP */
 
 /*
  * wake_idle() will wake a task on an idle cpu if task->cpu is
@@ -1002,14 +1202,14 @@ static int wake_idle(int cpu, task_t *p)
 
        for_each_domain(cpu, sd) {
                if (sd->flags & SD_WAKE_IDLE) {
-                       cpus_and(tmp, sd->span, cpu_online_map);
-                       cpus_and(tmp, tmp, p->cpus_allowed);
+                       cpus_and(tmp, sd->span, p->cpus_allowed);
                        for_each_cpu_mask(i, tmp) {
                                if (idle_cpu(i))
                                        return i;
                        }
                }
-               else break;
+               else
+                       break;
        }
        return cpu;
 }
@@ -1034,7 +1234,7 @@ static inline int wake_idle(int cpu, task_t *p)
  *
  * returns failure only if the task is already active.
  */
-static int try_to_wake_up(task_t * p, unsigned int state, int sync)
+static int try_to_wake_up(task_t *p, unsigned int state, int sync)
 {
        int cpu, this_cpu, success = 0;
        unsigned long flags;
@@ -1042,7 +1242,7 @@ static int try_to_wake_up(task_t * p, unsigned int state, int sync)
        runqueue_t *rq;
 #ifdef CONFIG_SMP
        unsigned long load, this_load;
-       struct sched_domain *sd;
+       struct sched_domain *sd, *this_sd = NULL;
        int new_cpu;
 #endif
 
@@ -1067,70 +1267,69 @@ static int try_to_wake_up(task_t * p, unsigned int state, int sync)
        if (unlikely(task_running(rq, p)))
                goto out_activate;
 
-#ifdef CONFIG_SCHEDSTATS
+       new_cpu = cpu;
+
        schedstat_inc(rq, ttwu_cnt);
        if (cpu == this_cpu) {
                schedstat_inc(rq, ttwu_local);
-       } else {
-               for_each_domain(this_cpu, sd) {
-                       if (cpu_isset(cpu, sd->span)) {
-                               schedstat_inc(sd, ttwu_wake_remote);
-                               break;
-                       }
+               goto out_set_cpu;
+       }
+
+       for_each_domain(this_cpu, sd) {
+               if (cpu_isset(cpu, sd->span)) {
+                       schedstat_inc(sd, ttwu_wake_remote);
+                       this_sd = sd;
+                       break;
                }
        }
-#endif
 
-       new_cpu = cpu;
-       if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
+       if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
                goto out_set_cpu;
 
-       load = source_load(cpu);
-       this_load = target_load(this_cpu);
-
        /*
-        * If sync wakeup then subtract the (maximum possible) effect of
-        * the currently running task from the load of the current CPU:
+        * Check for affine wakeup and passive balancing possibilities.
         */
-       if (sync)
-               this_load -= SCHED_LOAD_SCALE;
+       if (this_sd) {
+               int idx = this_sd->wake_idx;
+               unsigned int imbalance;
 
-       /* Don't pull the task off an idle CPU to a busy one */
-       if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2)
-               goto out_set_cpu;
+               imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
 
-       new_cpu = this_cpu; /* Wake to this CPU if we can */
+               load = source_load(cpu, idx);
+               this_load = target_load(this_cpu, idx);
 
-       /*
-        * Scan domains for affine wakeup and passive balancing
-        * possibilities.
-        */
-       for_each_domain(this_cpu, sd) {
-               unsigned int imbalance;
-               /*
-                * Start passive balancing when half the imbalance_pct
-                * limit is reached.
-                */
-               imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2;
+               new_cpu = this_cpu; /* Wake to this CPU if we can */
 
-               if ((sd->flags & SD_WAKE_AFFINE) &&
-                               !task_hot(p, rq->timestamp_last_tick, sd)) {
+               if (this_sd->flags & SD_WAKE_AFFINE) {
+                       unsigned long tl = this_load;
                        /*
-                        * This domain has SD_WAKE_AFFINE and p is cache cold
-                        * in this domain.
+                        * If sync wakeup then subtract the (maximum possible)
+                        * effect of the currently running task from the load
+                        * of the current CPU:
                         */
-                       if (cpu_isset(cpu, sd->span)) {
-                               schedstat_inc(sd, ttwu_move_affine);
+                       if (sync)
+                               tl -= SCHED_LOAD_SCALE;
+
+                       if ((tl <= load &&
+                               tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
+                               100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
+                               /*
+                                * This domain has SD_WAKE_AFFINE and
+                                * p is cache cold in this domain, and
+                                * there is no bad imbalance.
+                                */
+                               schedstat_inc(this_sd, ttwu_move_affine);
                                goto out_set_cpu;
                        }
-               } else if ((sd->flags & SD_WAKE_BALANCE) &&
-                               imbalance*this_load <= 100*load) {
-                       /*
-                        * This domain has SD_WAKE_BALANCE and there is
-                        * an imbalance.
-                        */
-                       if (cpu_isset(cpu, sd->span)) {
-                               schedstat_inc(sd, ttwu_move_balance);
+               }
+
+               /*
+                * Start passive balancing when half the imbalance_pct
+                * limit is reached.
+                */
+               if (this_sd->flags & SD_WAKE_BALANCE) {
+                       if (imbalance*this_load <= 100*load) {
+                               schedstat_inc(this_sd, ttwu_move_balance);
                                goto out_set_cpu;
                        }
                }
@@ -1158,13 +1357,24 @@ out_activate:
 #endif /* CONFIG_SMP */
        if (old_state == TASK_UNINTERRUPTIBLE) {
                rq->nr_uninterruptible--;
+               vx_uninterruptible_dec(p);
                /*
                 * Tasks on involuntary sleep don't earn
                 * sleep_avg beyond just interactive state.
                 */
-               p->activated = -1;
-       }
+               p->sleep_type = SLEEP_NONINTERACTIVE;
+       } else
+
+       /*
+        * Tasks that have marked their sleep as noninteractive get
+        * woken up with their sleep average not weighted in an
+        * interactive way.
+        */
+               if (old_state & TASK_NONINTERACTIVE)
+                       p->sleep_type = SLEEP_NONINTERACTIVE;
 
+
+       activate_task(p, rq, cpu == this_cpu);
        /*
         * Sync wakeups (i.e. those types of wakeups where the waker
         * has indicated that it will leave the CPU in short order)
@@ -1173,10 +1383,6 @@ out_activate:
         * the waker guarantees that the freshly woken up task is going
         * to be considered on this CPU.)
         */
-       activate_task(p, rq, cpu == this_cpu);
-       /* this is to get the accounting behind the load update */
-       if (old_state == TASK_UNINTERRUPTIBLE)
-               vx_uninterruptible_dec(p);
        if (!sync || cpu != this_cpu) {
                if (TASK_PREEMPTS_CURR(p, rq))
                        resched_task(rq->curr);
@@ -1191,7 +1397,7 @@ out:
        return success;
 }
 
-int fastcall wake_up_process(task_t * p)
+int fastcall wake_up_process(task_t *p)
 {
        return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
                                 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
@@ -1204,17 +1410,19 @@ int fastcall wake_up_state(task_t *p, unsigned int state)
        return try_to_wake_up(p, state, 0);
 }
 
-#ifdef CONFIG_SMP
-static int find_idlest_cpu(struct task_struct *p, int this_cpu,
-                          struct sched_domain *sd);
-#endif
-
 /*
  * Perform scheduler related setup for a newly forked process p.
  * p is forked by current.
  */
-void fastcall sched_fork(task_t *p)
+void fastcall sched_fork(task_t *p, int clone_flags)
 {
+       int cpu = get_cpu();
+
+#ifdef CONFIG_SMP
+       cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
+#endif
+       set_task_cpu(p, cpu);
+
        /*
         * We mark the process as running here, but have not actually
         * inserted it onto the runqueue yet. This guarantees that
@@ -1224,18 +1432,15 @@ void fastcall sched_fork(task_t *p)
        p->state = TASK_RUNNING;
        INIT_LIST_HEAD(&p->run_list);
        p->array = NULL;
-       spin_lock_init(&p->switch_lock);
 #ifdef CONFIG_SCHEDSTATS
        memset(&p->sched_info, 0, sizeof(p->sched_info));
 #endif
+#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
+       p->oncpu = 0;
+#endif
 #ifdef CONFIG_PREEMPT
-       /*
-        * During context-switch we hold precisely one spinlock, which
-        * schedule_tail drops. (in the common case it's this_rq()->lock,
-        * but it also can be p->switch_lock.) So we compensate with a count
-        * of 1. Also, we want to start with kernel preemption disabled.
-        */
-       p->thread_info->preempt_count = 1;
+       /* Want to start with kernel preemption disabled. */
+       task_thread_info(p)->preempt_count = 1;
 #endif
        /*
         * Share the timeslice between parent and child, thus the
@@ -1258,12 +1463,10 @@ void fastcall sched_fork(task_t *p)
                 * runqueue lock is not a problem.
                 */
                current->time_slice = 1;
-               preempt_disable();
                scheduler_tick();
-               local_irq_enable();
-               preempt_enable();
-       } else
-               local_irq_enable();
+       }
+       local_irq_enable();
+       put_cpu();
 }
 
 /*
@@ -1273,17 +1476,16 @@ void fastcall sched_fork(task_t *p)
  * that must be done for every newly created context, then puts the task
  * on the runqueue and wakes it.
  */
-void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
+void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
 {
        unsigned long flags;
        int this_cpu, cpu;
        runqueue_t *rq, *this_rq;
 
        rq = task_rq_lock(p, &flags);
-       cpu = task_cpu(p);
-       this_cpu = smp_processor_id();
-
        BUG_ON(p->state != TASK_RUNNING);
+       this_cpu = smp_processor_id();
+       cpu = task_cpu(p);
 
        /*
         * We decrease the sleep average of forking parents
@@ -1359,7 +1561,7 @@ void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
  * artificially, because any timeslice recovered here
  * was given away by the parent in the first place.)
  */
-void fastcall sched_exit(task_t * p)
+void fastcall sched_exit(task_t *p)
 {
        unsigned long flags;
        runqueue_t *rq;
@@ -1369,7 +1571,7 @@ void fastcall sched_exit(task_t * p)
         * the sleep_avg of the parent as well.
         */
        rq = task_rq_lock(p->parent, &flags);
-       if (p->first_time_slice) {
+       if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
                p->parent->time_slice += p->time_slice;
                if (unlikely(p->parent->time_slice > task_timeslice(p)))
                        p->parent->time_slice = task_timeslice(p);
@@ -1381,23 +1583,42 @@ void fastcall sched_exit(task_t * p)
        task_rq_unlock(rq, &flags);
 }
 
+/**
+ * prepare_task_switch - prepare to switch tasks
+ * @rq: the runqueue preparing to switch
+ * @next: the task we are going to switch to.
+ *
+ * This is called with the rq lock held and interrupts off. It must
+ * be paired with a subsequent finish_task_switch after the context
+ * switch.
+ *
+ * prepare_task_switch sets up locking and calls architecture specific
+ * hooks.
+ */
+static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
+{
+       prepare_lock_switch(rq, next);
+       prepare_arch_switch(next);
+}
+
 /**
  * finish_task_switch - clean up after a task-switch
+ * @rq: runqueue associated with task-switch
  * @prev: the thread we just switched away from.
  *
- * We enter this with the runqueue still locked, and finish_arch_switch()
- * will unlock it along with doing any other architecture-specific cleanup
- * actions.
+ * finish_task_switch must be called after the context switch, paired
+ * with a prepare_task_switch call before the context switch.
+ * finish_task_switch will reconcile locking set up by prepare_task_switch,
+ * and do any other architecture-specific cleanup actions.
  *
  * Note that we may have delayed dropping an mm in context_switch(). If
  * so, we finish that here outside of the runqueue lock.  (Doing it
  * with the lock held can cause deadlocks; see schedule() for
  * details.)
  */
-static inline void finish_task_switch(task_t *prev)
+static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
        __releases(rq->lock)
 {
-       runqueue_t *rq = this_rq();
        struct mm_struct *mm = rq->prev_mm;
        unsigned long prev_task_flags;
 
@@ -1415,11 +1636,18 @@ static inline void finish_task_switch(task_t *prev)
         *              Manfred Spraul <manfred@colorfullife.com>
         */
        prev_task_flags = prev->flags;
-       finish_arch_switch(rq, prev);
+       finish_arch_switch(prev);
+       finish_lock_switch(rq, prev);
        if (mm)
                mmdrop(mm);
-       if (unlikely(prev_task_flags & PF_DEAD))
+       if (unlikely(prev_task_flags & PF_DEAD)) {
+               /*
+                * Remove function-return probe instances associated with this
+                * task and put them back on the free list.
+                */
+               kprobe_flush_task(prev);
                put_task_struct(prev);
+       }
 }
 
 /**
@@ -1429,8 +1657,12 @@ static inline void finish_task_switch(task_t *prev)
 asmlinkage void schedule_tail(task_t *prev)
        __releases(rq->lock)
 {
-       finish_task_switch(prev);
-
+       runqueue_t *rq = this_rq();
+       finish_task_switch(rq, prev);
+#ifdef __ARCH_WANT_UNLOCKED_CTXSW
+       /* In this case, finish_task_switch does not reenable preemption */
+       preempt_enable();
+#endif
        if (current->set_child_tid)
                put_user(current->pid, current->set_child_tid);
 }
@@ -1485,7 +1717,7 @@ unsigned long nr_uninterruptible(void)
 {
        unsigned long i, sum = 0;
 
-       for_each_cpu(i)
+       for_each_possible_cpu(i)
                sum += cpu_rq(i)->nr_uninterruptible;
 
        /*
@@ -1502,7 +1734,7 @@ unsigned long long nr_context_switches(void)
 {
        unsigned long long i, sum = 0;
 
-       for_each_cpu(i)
+       for_each_possible_cpu(i)
                sum += cpu_rq(i)->nr_switches;
 
        return sum;
@@ -1512,17 +1744,35 @@ unsigned long nr_iowait(void)
 {
        unsigned long i, sum = 0;
 
-       for_each_cpu(i)
+       for_each_possible_cpu(i)
                sum += atomic_read(&cpu_rq(i)->nr_iowait);
 
        return sum;
 }
 
+unsigned long nr_active(void)
+{
+       unsigned long i, running = 0, uninterruptible = 0;
+
+       for_each_online_cpu(i) {
+               running += cpu_rq(i)->nr_running;
+               uninterruptible += cpu_rq(i)->nr_uninterruptible;
+       }
+
+       if (unlikely((long)uninterruptible < 0))
+               uninterruptible = 0;
+
+       return running + uninterruptible;
+}
+
 #ifdef CONFIG_SMP
 
 /*
  * double_rq_lock - safely lock two runqueues
  *
+ * We must take them in cpu order to match code in
+ * dependent_sleeper and wake_dependent_sleeper.
+ *
  * Note this does not disable interrupts like task_rq_lock,
  * you need to do so manually before calling.
  */
@@ -1534,7 +1784,7 @@ static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
                spin_lock(&rq1->lock);
                __acquire(rq2->lock);   /* Fake it out ;) */
        } else {
-               if (rq1 < rq2) {
+               if (rq1->cpu < rq2->cpu) {
                        spin_lock(&rq1->lock);
                        spin_lock(&rq2->lock);
                } else {
@@ -1570,7 +1820,7 @@ static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
        __acquires(this_rq->lock)
 {
        if (unlikely(!spin_trylock(&busiest->lock))) {
-               if (busiest < this_rq) {
+               if (busiest->cpu < this_rq->cpu) {
                        spin_unlock(&this_rq->lock);
                        spin_lock(&busiest->lock);
                        spin_lock(&this_rq->lock);
@@ -1580,66 +1830,21 @@ static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
 }
 
 /*
- * find_idlest_cpu - find the least busy runqueue.
+ * If dest_cpu is allowed for this process, migrate the task to it.
+ * This is accomplished by forcing the cpu_allowed mask to only
+ * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
+ * the cpu_allowed mask is restored.
  */
-static int find_idlest_cpu(struct task_struct *p, int this_cpu,
-                          struct sched_domain *sd)
+static void sched_migrate_task(task_t *p, int dest_cpu)
 {
-       unsigned long load, min_load, this_load;
-       int i, min_cpu;
-       cpumask_t mask;
-
-       min_cpu = UINT_MAX;
-       min_load = ULONG_MAX;
+       migration_req_t req;
+       runqueue_t *rq;
+       unsigned long flags;
 
-       cpus_and(mask, sd->span, p->cpus_allowed);
-
-       for_each_cpu_mask(i, mask) {
-               load = target_load(i);
-
-               if (load < min_load) {
-                       min_cpu = i;
-                       min_load = load;
-
-                       /* break out early on an idle CPU: */
-                       if (!min_load)
-                               break;
-               }
-       }
-
-       /* add +1 to account for the new task */
-       this_load = source_load(this_cpu) + SCHED_LOAD_SCALE;
-
-       /*
-        * Would with the addition of the new task to the
-        * current CPU there be an imbalance between this
-        * CPU and the idlest CPU?
-        *
-        * Use half of the balancing threshold - new-context is
-        * a good opportunity to balance.
-        */
-       if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
-               return min_cpu;
-
-       return this_cpu;
-}
-
-/*
- * If dest_cpu is allowed for this process, migrate the task to it.
- * This is accomplished by forcing the cpu_allowed mask to only
- * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
- * the cpu_allowed mask is restored.
- */
-static void sched_migrate_task(task_t *p, int dest_cpu)
-{
-       migration_req_t req;
-       runqueue_t *rq;
-       unsigned long flags;
-
-       rq = task_rq_lock(p, &flags);
-       if (!cpu_isset(dest_cpu, p->cpus_allowed)
-           || unlikely(cpu_is_offline(dest_cpu)))
-               goto out;
+       rq = task_rq_lock(p, &flags);
+       if (!cpu_isset(dest_cpu, p->cpus_allowed)
+           || unlikely(cpu_is_offline(dest_cpu)))
+               goto out;
 
        /* force the process onto the specified CPU */
        if (migrate_task(p, dest_cpu, &req)) {
@@ -1657,44 +1862,23 @@ out:
 }
 
 /*
- * sched_exec(): find the highest-level, exec-balance-capable
- * domain and try to migrate the task to the least loaded CPU.
- *
- * execve() is a valuable balancing opportunity, because at this point
- * the task has the smallest effective memory and cache footprint.
+ * sched_exec - execve() is a valuable balancing opportunity, because at
+ * this point the task has the smallest effective memory and cache footprint.
  */
 void sched_exec(void)
 {
-       struct sched_domain *tmp, *sd = NULL;
        int new_cpu, this_cpu = get_cpu();
-
-       /* Prefer the current CPU if there's only this task running */
-       if (this_rq()->nr_running <= 1)
-               goto out;
-
-       for_each_domain(this_cpu, tmp)
-               if (tmp->flags & SD_BALANCE_EXEC)
-                       sd = tmp;
-
-       if (sd) {
-               schedstat_inc(sd, sbe_attempts);
-               new_cpu = find_idlest_cpu(current, this_cpu, sd);
-               if (new_cpu != this_cpu) {
-                       schedstat_inc(sd, sbe_pushed);
-                       put_cpu();
-                       sched_migrate_task(current, new_cpu);
-                       return;
-               }
-       }
-out:
+       new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
        put_cpu();
+       if (new_cpu != this_cpu)
+               sched_migrate_task(current, new_cpu);
 }
 
 /*
  * pull_task - move a task from a remote runqueue to the local runqueue.
  * Both runqueues must be locked.
  */
-static inline
+static
 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
               runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
 {
@@ -1716,9 +1900,10 @@ void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
 /*
  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  */
-static inline
+static
 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
-                    struct sched_domain *sd, enum idle_type idle)
+                    struct sched_domain *sd, enum idle_type idle,
+                    int *all_pinned)
 {
        /*
         * We do not migrate tasks that are:
@@ -1726,23 +1911,24 @@ int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
         * 2) cannot be migrated to this CPU due to cpus_allowed, or
         * 3) are cache-hot on their current CPU.
         */
-       if (task_running(rq, p))
-               return 0;
        if (!cpu_isset(this_cpu, p->cpus_allowed))
                return 0;
+       *all_pinned = 0;
+
+       if (task_running(rq, p))
+               return 0;
 
        /*
         * Aggressive migration if:
-        * 1) the [whole] cpu is idle, or
+        * 1) task is cache cold, or
         * 2) too many balance attempts have failed.
         */
 
-       if (cpu_and_siblings_are_idle(this_cpu) || \
-                       sd->nr_balance_failed > sd->cache_nice_tries)
+       if (sd->nr_balance_failed > sd->cache_nice_tries)
                return 1;
 
        if (task_hot(p, rq->timestamp_last_tick, sd))
-                       return 0;
+               return 0;
        return 1;
 }
 
@@ -1755,16 +1941,18 @@ int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
  */
 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
                      unsigned long max_nr_move, struct sched_domain *sd,
-                     enum idle_type idle)
+                     enum idle_type idle, int *all_pinned)
 {
        prio_array_t *array, *dst_array;
        struct list_head *head, *curr;
-       int idx, pulled = 0;
+       int idx, pulled = 0, pinned = 0;
        task_t *tmp;
 
-       if (max_nr_move <= 0 || busiest->nr_running <= 1)
+       if (max_nr_move == 0)
                goto out;
 
+       pinned = 1;
+
        /*
         * We first consider expired tasks. Those will likely not be
         * executed in the near future, and they are most likely to
@@ -1803,7 +1991,7 @@ skip_queue:
 
        curr = curr->prev;
 
-       if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle)) {
+       if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
                if (curr != head)
                        goto skip_queue;
                idx++;
@@ -1832,6 +2020,9 @@ out:
         * inside pull_task().
         */
        schedstat_add(sd, lb_gained[idle], pulled);
+
+       if (all_pinned)
+               *all_pinned = pinned;
        return pulled;
 }
 
@@ -1842,12 +2033,20 @@ out:
  */
 static struct sched_group *
 find_busiest_group(struct sched_domain *sd, int this_cpu,
-                  unsigned long *imbalance, enum idle_type idle)
+                  unsigned long *imbalance, enum idle_type idle, int *sd_idle)
 {
        struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
        unsigned long max_load, avg_load, total_load, this_load, total_pwr;
+       unsigned long max_pull;
+       int load_idx;
 
        max_load = this_load = total_load = total_pwr = 0;
+       if (idle == NOT_IDLE)
+               load_idx = sd->busy_idx;
+       else if (idle == NEWLY_IDLE)
+               load_idx = sd->newidle_idx;
+       else
+               load_idx = sd->idle_idx;
 
        do {
                unsigned long load;
@@ -1860,11 +2059,14 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
                avg_load = 0;
 
                for_each_cpu_mask(i, group->cpumask) {
+                       if (*sd_idle && !idle_cpu(i))
+                               *sd_idle = 0;
+
                        /* Bias balancing toward cpus of our domain */
                        if (local_group)
-                               load = target_load(i);
+                               load = target_load(i, load_idx);
                        else
-                               load = source_load(i);
+                               load = source_load(i, load_idx);
 
                        avg_load += load;
                }
@@ -1878,16 +2080,14 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
                if (local_group) {
                        this_load = avg_load;
                        this = group;
-                       goto nextgroup;
                } else if (avg_load > max_load) {
                        max_load = avg_load;
                        busiest = group;
                }
-nextgroup:
                group = group->next;
        } while (group != sd->groups);
 
-       if (!busiest || this_load >= max_load)
+       if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
                goto out_balanced;
 
        avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
@@ -1907,8 +2107,12 @@ nextgroup:
         * by pulling tasks to us.  Be careful of negative numbers as they'll
         * appear as very large values with unsigned longs.
         */
+
+       /* Don't want to pull so many tasks that a group would go idle */
+       max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
+
        /* How much load to actually move to equalise the imbalance */
-       *imbalance = min((max_load - avg_load) * busiest->cpu_power,
+       *imbalance = min(max_pull * busiest->cpu_power,
                                (avg_load - this_load) * this->cpu_power)
                        / SCHED_LOAD_SCALE;
 
@@ -1956,15 +2160,9 @@ nextgroup:
 
        /* Get rid of the scaling factor, rounding down as we divide */
        *imbalance = *imbalance / SCHED_LOAD_SCALE;
-
        return busiest;
 
 out_balanced:
-       if (busiest && (idle == NEWLY_IDLE ||
-                       (idle == SCHED_IDLE && max_load > SCHED_LOAD_SCALE)) ) {
-               *imbalance = 1;
-               return busiest;
-       }
 
        *imbalance = 0;
        return NULL;
@@ -1973,14 +2171,15 @@ out_balanced:
 /*
  * find_busiest_queue - find the busiest runqueue among the cpus in group.
  */
-static runqueue_t *find_busiest_queue(struct sched_group *group)
+static runqueue_t *find_busiest_queue(struct sched_group *group,
+       enum idle_type idle)
 {
        unsigned long load, max_load = 0;
        runqueue_t *busiest = NULL;
        int i;
 
        for_each_cpu_mask(i, group->cpumask) {
-               load = source_load(i);
+               load = source_load(i, 0);
 
                if (load > max_load) {
                        max_load = load;
@@ -1991,6 +2190,12 @@ static runqueue_t *find_busiest_queue(struct sched_group *group)
        return busiest;
 }
 
+/*
+ * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
+ * so long as it is large enough.
+ */
+#define MAX_PINNED_INTERVAL    512
+
 /*
  * Check this_cpu to ensure it is balanced within domain. Attempt to move
  * tasks if there is an imbalance.
@@ -2003,32 +2208,28 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,
        struct sched_group *group;
        runqueue_t *busiest;
        unsigned long imbalance;
-       int nr_moved;
+       int nr_moved, all_pinned = 0;
+       int active_balance = 0;
+       int sd_idle = 0;
+
+       if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
+               sd_idle = 1;
 
-       spin_lock(&this_rq->lock);
        schedstat_inc(sd, lb_cnt[idle]);
 
-       group = find_busiest_group(sd, this_cpu, &imbalance, idle);
+       group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
        if (!group) {
                schedstat_inc(sd, lb_nobusyg[idle]);
                goto out_balanced;
        }
 
-       busiest = find_busiest_queue(group);
+       busiest = find_busiest_queue(group, idle);
        if (!busiest) {
                schedstat_inc(sd, lb_nobusyq[idle]);
                goto out_balanced;
        }
 
-       /*
-        * This should be "impossible", but since load
-        * balancing is inherently racy and statistical,
-        * it could happen in theory.
-        */
-       if (unlikely(busiest == this_rq)) {
-               WARN_ON(1);
-               goto out_balanced;
-       }
+       BUG_ON(busiest == this_rq);
 
        schedstat_add(sd, lb_imbalance[idle], imbalance);
 
@@ -2040,61 +2241,82 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,
                 * still unbalanced. nr_moved simply stays zero, so it is
                 * correctly treated as an imbalance.
                 */
-               double_lock_balance(this_rq, busiest);
+               double_rq_lock(this_rq, busiest);
                nr_moved = move_tasks(this_rq, this_cpu, busiest,
-                                               imbalance, sd, idle);
-               spin_unlock(&busiest->lock);
+                                       imbalance, sd, idle, &all_pinned);
+               double_rq_unlock(this_rq, busiest);
+
+               /* All tasks on this runqueue were pinned by CPU affinity */
+               if (unlikely(all_pinned))
+                       goto out_balanced;
        }
-       spin_unlock(&this_rq->lock);
 
        if (!nr_moved) {
                schedstat_inc(sd, lb_failed[idle]);
                sd->nr_balance_failed++;
 
                if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
-                       int wake = 0;
 
                        spin_lock(&busiest->lock);
+
+                       /* don't kick the migration_thread, if the curr
+                        * task on busiest cpu can't be moved to this_cpu
+                        */
+                       if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
+                               spin_unlock(&busiest->lock);
+                               all_pinned = 1;
+                               goto out_one_pinned;
+                       }
+
                        if (!busiest->active_balance) {
                                busiest->active_balance = 1;
                                busiest->push_cpu = this_cpu;
-                               wake = 1;
+                               active_balance = 1;
                        }
                        spin_unlock(&busiest->lock);
-                       if (wake)
+                       if (active_balance)
                                wake_up_process(busiest->migration_thread);
 
                        /*
                         * We've kicked active balancing, reset the failure
                         * counter.
                         */
-                       sd->nr_balance_failed = sd->cache_nice_tries;
+                       sd->nr_balance_failed = sd->cache_nice_tries+1;
                }
-
-               /*
-                * We were unbalanced, but unsuccessful in move_tasks(),
-                * so bump the balance_interval to lessen the lock contention.
-                */
-               if (sd->balance_interval < sd->max_interval)
-                       sd->balance_interval++;
-       } else {
+       } else
                sd->nr_balance_failed = 0;
 
+       if (likely(!active_balance)) {
                /* We were unbalanced, so reset the balancing interval */
                sd->balance_interval = sd->min_interval;
+       } else {
+               /*
+                * If we've begun active balancing, start to back off. This
+                * case may not be covered by the all_pinned logic if there
+                * is only 1 task on the busy runqueue (because we don't call
+                * move_tasks).
+                */
+               if (sd->balance_interval < sd->max_interval)
+                       sd->balance_interval *= 2;
        }
 
+       if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
+               return -1;
        return nr_moved;
 
 out_balanced:
-       spin_unlock(&this_rq->lock);
-
        schedstat_inc(sd, lb_balanced[idle]);
 
+       sd->nr_balance_failed = 0;
+
+out_one_pinned:
        /* tune up the balancing interval */
-       if (sd->balance_interval < sd->max_interval)
+       if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
+                       (sd->balance_interval < sd->max_interval))
                sd->balance_interval *= 2;
 
+       if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
+               return -1;
        return 0;
 }
 
@@ -2112,42 +2334,59 @@ static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
        runqueue_t *busiest = NULL;
        unsigned long imbalance;
        int nr_moved = 0;
+       int sd_idle = 0;
+
+       if (sd->flags & SD_SHARE_CPUPOWER)
+               sd_idle = 1;
 
        schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
-       group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
+       group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
        if (!group) {
-               schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
                schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
-               goto out;
+               goto out_balanced;
        }
 
-       busiest = find_busiest_queue(group);
-       if (!busiest || busiest == this_rq) {
-               schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
+       busiest = find_busiest_queue(group, NEWLY_IDLE);
+       if (!busiest) {
                schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
-               goto out;
+               goto out_balanced;
        }
 
-       /* Attempt to move tasks */
-       double_lock_balance(this_rq, busiest);
+       BUG_ON(busiest == this_rq);
 
        schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
-       nr_moved = move_tasks(this_rq, this_cpu, busiest,
-                                       imbalance, sd, NEWLY_IDLE);
-       if (!nr_moved)
-               schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
 
-       spin_unlock(&busiest->lock);
+       nr_moved = 0;
+       if (busiest->nr_running > 1) {
+               /* Attempt to move tasks */
+               double_lock_balance(this_rq, busiest);
+               nr_moved = move_tasks(this_rq, this_cpu, busiest,
+                                       imbalance, sd, NEWLY_IDLE, NULL);
+               spin_unlock(&busiest->lock);
+       }
+
+       if (!nr_moved) {
+               schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
+               if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
+                       return -1;
+       } else
+               sd->nr_balance_failed = 0;
 
-out:
        return nr_moved;
+
+out_balanced:
+       schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
+       if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
+               return -1;
+       sd->nr_balance_failed = 0;
+       return 0;
 }
 
 /*
  * idle_balance is called by schedule() if this_cpu is about to become
  * idle. Attempts to pull tasks from other CPUs.
  */
-static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
+static void idle_balance(int this_cpu, runqueue_t *this_rq)
 {
        struct sched_domain *sd;
 
@@ -2172,56 +2411,42 @@ static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
 {
        struct sched_domain *sd;
-       struct sched_group *cpu_group;
        runqueue_t *target_rq;
-       cpumask_t visited_cpus;
-       int cpu;
+       int target_cpu = busiest_rq->push_cpu;
+
+       if (busiest_rq->nr_running <= 1)
+               /* no task to move */
+               return;
+
+       target_rq = cpu_rq(target_cpu);
 
        /*
-        * Search for suitable CPUs to push tasks to in successively higher
-        * domains with SD_LOAD_BALANCE set.
+        * This condition is "impossible", if it occurs
+        * we need to fix it.  Originally reported by
+        * Bjorn Helgaas on a 128-cpu setup.
         */
-       visited_cpus = CPU_MASK_NONE;
-       for_each_domain(busiest_cpu, sd) {
-               if (!(sd->flags & SD_LOAD_BALANCE))
-                       /* no more domains to search */
-                       break;
+       BUG_ON(busiest_rq == target_rq);
 
-               schedstat_inc(sd, alb_cnt);
+       /* move a task from busiest_rq to target_rq */
+       double_lock_balance(busiest_rq, target_rq);
 
-               cpu_group = sd->groups;
-               do {
-                       for_each_cpu_mask(cpu, cpu_group->cpumask) {
-                               if (busiest_rq->nr_running <= 1)
-                                       /* no more tasks left to move */
-                                       return;
-                               if (cpu_isset(cpu, visited_cpus))
-                                       continue;
-                               cpu_set(cpu, visited_cpus);
-                               if (!cpu_and_siblings_are_idle(cpu) || cpu == busiest_cpu)
-                                       continue;
-
-                               target_rq = cpu_rq(cpu);
-                               /*
-                                * This condition is "impossible", if it occurs
-                                * we need to fix it.  Originally reported by
-                                * Bjorn Helgaas on a 128-cpu setup.
-                                */
-                               BUG_ON(busiest_rq == target_rq);
-
-                               /* move a task from busiest_rq to target_rq */
-                               double_lock_balance(busiest_rq, target_rq);
-                               if (move_tasks(target_rq, cpu, busiest_rq,
-                                               1, sd, SCHED_IDLE)) {
-                                       schedstat_inc(sd, alb_pushed);
-                               } else {
-                                       schedstat_inc(sd, alb_failed);
-                               }
-                               spin_unlock(&target_rq->lock);
-                       }
-                       cpu_group = cpu_group->next;
-               } while (cpu_group != sd->groups);
-       }
+       /* Search for an sd spanning us and the target CPU. */
+       for_each_domain(target_cpu, sd)
+               if ((sd->flags & SD_LOAD_BALANCE) &&
+                       cpu_isset(busiest_cpu, sd->span))
+                               break;
+
+       if (unlikely(sd == NULL))
+               goto out;
+
+       schedstat_inc(sd, alb_cnt);
+
+       if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
+               schedstat_inc(sd, alb_pushed);
+       else
+               schedstat_inc(sd, alb_failed);
+out:
+       spin_unlock(&target_rq->lock);
 }
 
 /*
@@ -2242,18 +2467,23 @@ static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
        unsigned long old_load, this_load;
        unsigned long j = jiffies + CPU_OFFSET(this_cpu);
        struct sched_domain *sd;
+       int i;
 
-       /* Update our load */
-       old_load = this_rq->cpu_load;
        this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
-       /*
-        * Round up the averaging division if load is increasing. This
-        * prevents us from getting stuck on 9 if the load is 10, for
-        * example.
-        */
-       if (this_load > old_load)
-               old_load++;
-       this_rq->cpu_load = (old_load + this_load) / 2;
+       /* Update our load */
+       for (i = 0; i < 3; i++) {
+               unsigned long new_load = this_load;
+               int scale = 1 << i;
+               old_load = this_rq->cpu_load[i];
+               /*
+                * Round up the averaging division if load is increasing. This
+                * prevents us from getting stuck on 9 if the load is 10, for
+                * example.
+                */
+               if (new_load > old_load)
+                       new_load += scale-1;
+               this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
+       }
 
        for_each_domain(this_cpu, sd) {
                unsigned long interval;
@@ -2272,7 +2502,11 @@ static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
 
                if (j - sd->last_balance >= interval) {
                        if (load_balance(this_cpu, this_rq, sd, idle)) {
-                               /* We've pulled tasks over so no longer idle */
+                               /*
+                                * We've pulled tasks over so either we're no
+                                * longer idle, or one of our SMT siblings is
+                                * not idle.
+                                */
                                idle = NOT_IDLE;
                        }
                        sd->last_balance += interval;
@@ -2410,8 +2644,6 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
                cpustat->idle = cputime64_add(cpustat->idle, tmp);
        /* Account for system time used */
        acct_update_integrals(p);
-       /* Update rss highwater mark */
-       update_mem_hiwater(p);
 }
 
 /*
@@ -2540,13 +2772,24 @@ out:
 }
 
 #ifdef CONFIG_SCHED_SMT
-static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
+static inline void wakeup_busy_runqueue(runqueue_t *rq)
+{
+       /* If an SMT runqueue is sleeping due to priority reasons wake it up */
+       if (rq->curr == rq->idle && rq->nr_running)
+               resched_task(rq->idle);
+}
+
+static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
 {
-       struct sched_domain *sd = this_rq->sd;
+       struct sched_domain *tmp, *sd = NULL;
        cpumask_t sibling_map;
        int i;
 
-       if (!(sd->flags & SD_SHARE_CPUPOWER))
+       for_each_domain(this_cpu, tmp)
+               if (tmp->flags & SD_SHARE_CPUPOWER)
+                       sd = tmp;
+
+       if (!sd)
                return;
 
        /*
@@ -2569,12 +2812,7 @@ static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
        for_each_cpu_mask(i, sibling_map) {
                runqueue_t *smt_rq = cpu_rq(i);
 
-               /*
-                * If an SMT sibling task is sleeping due to priority
-                * reasons wake it up now.
-                */
-               if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
-                       resched_task(smt_rq->idle);
+               wakeup_busy_runqueue(smt_rq);
        }
 
        for_each_cpu_mask(i, sibling_map)
@@ -2585,15 +2823,29 @@ static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
         */
 }
 
-static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
+/*
+ * number of 'lost' timeslices this task wont be able to fully
+ * utilize, if another task runs on a sibling. This models the
+ * slowdown effect of other tasks running on siblings:
+ */
+static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
 {
-       struct sched_domain *sd = this_rq->sd;
+       return p->time_slice * (100 - sd->per_cpu_gain) / 100;
+}
+
+static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
+{
+       struct sched_domain *tmp, *sd = NULL;
        cpumask_t sibling_map;
        prio_array_t *array;
        int ret = 0, i;
        task_t *p;
 
-       if (!(sd->flags & SD_SHARE_CPUPOWER))
+       for_each_domain(this_cpu, tmp)
+               if (tmp->flags & SD_SHARE_CPUPOWER)
+                       sd = tmp;
+
+       if (!sd)
                return 0;
 
        /*
@@ -2624,6 +2876,10 @@ static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
                runqueue_t *smt_rq = cpu_rq(i);
                task_t *smt_curr = smt_rq->curr;
 
+               /* Kernel threads do not participate in dependent sleeping */
+               if (!p->mm || !smt_curr->mm || rt_task(p))
+                       goto check_smt_task;
+
                /*
                 * If a user task with lower static priority than the
                 * running task on the SMT sibling is trying to schedule,
@@ -2632,21 +2888,45 @@ static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
                 * task from using an unfair proportion of the
                 * physical cpu's resources. -ck
                 */
-               if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
-                       task_timeslice(p) || rt_task(smt_curr)) &&
-                       p->mm && smt_curr->mm && !rt_task(p))
-                               ret = 1;
+               if (rt_task(smt_curr)) {
+                       /*
+                        * With real time tasks we run non-rt tasks only
+                        * per_cpu_gain% of the time.
+                        */
+                       if ((jiffies % DEF_TIMESLICE) >
+                               (sd->per_cpu_gain * DEF_TIMESLICE / 100))
+                                       ret = 1;
+               } else
+                       if (smt_curr->static_prio < p->static_prio &&
+                               !TASK_PREEMPTS_CURR(p, smt_rq) &&
+                               smt_slice(smt_curr, sd) > task_timeslice(p))
+                                       ret = 1;
+
+check_smt_task:
+               if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
+                       rt_task(smt_curr))
+                               continue;
+               if (!p->mm) {
+                       wakeup_busy_runqueue(smt_rq);
+                       continue;
+               }
 
                /*
-                * Reschedule a lower priority task on the SMT sibling,
-                * or wake it up if it has been put to sleep for priority
-                * reasons.
+                * Reschedule a lower priority task on the SMT sibling for
+                * it to be put to sleep, or wake it up if it has been put to
+                * sleep for priority reasons to see if it should run now.
                 */
-               if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
-                       task_timeslice(smt_curr) || rt_task(p)) &&
-                       smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
-                       (smt_curr == smt_rq->idle && smt_rq->nr_running))
-                               resched_task(smt_curr);
+               if (rt_task(p)) {
+                       if ((jiffies % DEF_TIMESLICE) >
+                               (sd->per_cpu_gain * DEF_TIMESLICE / 100))
+                                       resched_task(smt_curr);
+               } else {
+                       if (TASK_PREEMPTS_CURR(p, smt_rq) &&
+                               smt_slice(p, sd) > task_timeslice(smt_curr))
+                                       resched_task(smt_curr);
+                       else
+                               wakeup_busy_runqueue(smt_rq);
+               }
        }
 out_unlock:
        for_each_cpu_mask(i, sibling_map)
@@ -2671,7 +2951,7 @@ void fastcall add_preempt_count(int val)
        /*
         * Underflow?
         */
-       BUG_ON(((int)preempt_count() < 0));
+       BUG_ON((preempt_count() < 0));
        preempt_count() += val;
        /*
         * Spinlock count overflowing soon?
@@ -2696,6 +2976,12 @@ EXPORT_SYMBOL(sub_preempt_count);
 
 #endif
 
+static inline int interactive_sleep(enum sleep_type sleep_type)
+{
+       return (sleep_type == SLEEP_INTERACTIVE ||
+               sleep_type == SLEEP_INTERRUPTED);
+}
+
 /*
  * schedule() is the main scheduler function.
  */
@@ -2708,24 +2994,22 @@ asmlinkage void __sched schedule(void)
        struct list_head *queue;
        unsigned long long now;
        unsigned long run_time;
+       int cpu, idx, new_prio;
        struct vx_info *vxi;
 #ifdef CONFIG_VSERVER_HARDCPU
        int maxidle = -HZ;
 #endif
-       int cpu, idx;
 
        /*
         * Test if we are atomic.  Since do_exit() needs to call into
         * schedule() atomically, we ignore that path for now.
         * Otherwise, whine if we are scheduling when we should not be.
         */
-       if (likely(!current->exit_state)) {
-               if (unlikely(in_atomic())) {
-                       printk(KERN_ERR "scheduling while atomic: "
-                               "%s/0x%08x/%d\n",
-                               current->comm, preempt_count(), current->pid);
-                       dump_stack();
-               }
+       if (unlikely(in_atomic() && !current->exit_state)) {
+               printk(KERN_ERR "BUG: scheduling while atomic: "
+                       "%s/0x%08x/%d\n",
+                       current->comm, preempt_count(), current->pid);
+               dump_stack();
        }
        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 
@@ -2870,24 +3154,29 @@ go_idle:
        if (vx_info_flags(vxi, VXF_SCHED_PRIO, 0))
                vx_tokens_recalc(vxi);
 
-       if (!rt_task(next) && next->activated > 0) {
+       if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
                unsigned long long delta = now - next->timestamp;
                if (unlikely((long long)(now - next->timestamp) < 0))
                        delta = 0;
 
-               if (next->activated == 1)
+               if (next->sleep_type == SLEEP_INTERACTIVE)
                        delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
 
                array = next->array;
-               dequeue_task(next, array);
-               recalc_task_prio(next, next->timestamp + delta);
-               enqueue_task(next, array);
+               new_prio = recalc_task_prio(next, next->timestamp + delta);
+
+               if (unlikely(next->prio != new_prio)) {
+                       dequeue_task(next, array);
+                       next->prio = new_prio;
+                       enqueue_task(next, array);
+               }
        }
-       next->activated = 0;
+       next->sleep_type = SLEEP_NORMAL;
 switch_tasks:
        if (next == rq->idle)
                schedstat_inc(rq, sched_goidle);
        prefetch(next);
+       prefetch_stack(next);
        clear_tsk_need_resched(prev);
        rcu_qsctr_inc(task_cpu(prev));
 
@@ -2905,11 +3194,15 @@ switch_tasks:
                rq->curr = next;
                ++*switch_count;
 
-               prepare_arch_switch(rq, next);
+               prepare_task_switch(rq, next);
                prev = context_switch(rq, prev, next);
                barrier();
-
-               finish_task_switch(prev);
+               /*
+                * this_rq must be evaluated again because prev may have moved
+                * CPUs since it called schedule(), thus the 'rq' on its stack
+                * frame will be invalid.
+                */
+               finish_task_switch(this_rq(), prev);
        } else
                spin_unlock_irq(&rq->lock);
 
@@ -3011,9 +3304,10 @@ need_resched:
 
 #endif /* CONFIG_PREEMPT */
 
-int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
+int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
+                         void *key)
 {
-       task_t *p = curr->task;
+       task_t *p = curr->private;
        return try_to_wake_up(p, mode, sync);
 }
 
@@ -3053,7 +3347,7 @@ static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  * @key: is directly passed to the wakeup function
  */
 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
-                               int nr_exclusive, void *key)
+                       int nr_exclusive, void *key)
 {
        unsigned long flags;
 
@@ -3085,7 +3379,8 @@ void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  *
  * On UP it can prevent extra preemption.
  */
-void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
+void fastcall
+__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
 {
        unsigned long flags;
        int sync = 1;
@@ -3263,10 +3558,21 @@ EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
        __remove_wait_queue(q, &wait);                  \
        spin_unlock_irqrestore(&q->lock, flags);
 
+#define SLEEP_ON_BKLCHECK                              \
+       if (unlikely(!kernel_locked()) &&               \
+           sleep_on_bkl_warnings < 10) {               \
+               sleep_on_bkl_warnings++;                \
+               WARN_ON(1);                             \
+       }
+
+static int sleep_on_bkl_warnings;
+
 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
 {
        SLEEP_ON_VAR
 
+       SLEEP_ON_BKLCHECK
+
        current->state = TASK_INTERRUPTIBLE;
 
        SLEEP_ON_HEAD
@@ -3276,10 +3582,13 @@ void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
 
 EXPORT_SYMBOL(interruptible_sleep_on);
 
-long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
+long fastcall __sched
+interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
 {
        SLEEP_ON_VAR
 
+       SLEEP_ON_BKLCHECK
+
        current->state = TASK_INTERRUPTIBLE;
 
        SLEEP_ON_HEAD
@@ -3291,23 +3600,12 @@ long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long
 
 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
 
-void fastcall __sched sleep_on(wait_queue_head_t *q)
-{
-       SLEEP_ON_VAR
-
-       current->state = TASK_UNINTERRUPTIBLE;
-
-       SLEEP_ON_HEAD
-       schedule();
-       SLEEP_ON_TAIL
-}
-
-EXPORT_SYMBOL(sleep_on);
-
 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
 {
        SLEEP_ON_VAR
 
+       SLEEP_ON_BKLCHECK
+
        current->state = TASK_UNINTERRUPTIBLE;
 
        SLEEP_ON_HEAD
@@ -3337,7 +3635,7 @@ void set_user_nice(task_t *p, long nice)
         * The RT priorities are set via sched_setscheduler(), but we still
         * allow the 'normal' nice value to be set - but as expected
         * it wont have any effect on scheduling until the task is
-        * not SCHED_NORMAL:
+        * not SCHED_NORMAL/SCHED_BATCH:
         */
        if (rt_task(p)) {
                p->static_prio = NICE_TO_PRIO(nice);
@@ -3375,8 +3673,8 @@ EXPORT_SYMBOL(set_user_nice);
  */
 int can_nice(const task_t *p, const int nice)
 {
-       /* convert nice value [19,-20] to rlimit style value [0,39] */
-       int nice_rlim = 19 - nice;
+       /* convert nice value [19,-20] to rlimit style value [1,40] */
+       int nice_rlim = 20 - nice;
        return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
                capable(CAP_SYS_NICE));
 }
@@ -3445,15 +3743,7 @@ int task_nice(const task_t *p)
 {
        return TASK_NICE(p);
 }
-
-/*
- * The only users of task_nice are binfmt_elf and binfmt_elf32.
- * binfmt_elf is no longer modular, but binfmt_elf32 still is.
- * Therefore, task_nice is needed if there is a compat_mode.
- */
-#ifdef CONFIG_COMPAT
 EXPORT_SYMBOL_GPL(task_nice);
-#endif
 
 /**
  * idle_cpu - is a given cpu idle currently?
@@ -3464,8 +3754,6 @@ int idle_cpu(int cpu)
        return cpu_curr(cpu) == cpu_rq(cpu)->idle;
 }
 
-EXPORT_SYMBOL_GPL(idle_cpu);
-
 /**
  * idle_task - return the idle task for a given cpu.
  * @cpu: the processor in question.
@@ -3490,10 +3778,16 @@ static void __setscheduler(struct task_struct *p, int policy, int prio)
        BUG_ON(p->array);
        p->policy = policy;
        p->rt_priority = prio;
-       if (policy != SCHED_NORMAL)
-               p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
-       else
+       if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
+               p->prio = MAX_RT_PRIO-1 - p->rt_priority;
+       } else {
                p->prio = p->static_prio;
+               /*
+                * SCHED_BATCH tasks are treated as perpetual CPU hogs:
+                */
+               if (policy == SCHED_BATCH)
+                       p->sleep_avg = 0;
+       }
 }
 
 /**
@@ -3503,7 +3797,8 @@ static void __setscheduler(struct task_struct *p, int policy, int prio)
  * @policy: new policy.
  * @param: structure containing the new RT priority.
  */
-int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
+int sched_setscheduler(struct task_struct *p, int policy,
+                      struct sched_param *param)
 {
        int retval;
        int oldprio, oldpolicy = -1;
@@ -3516,25 +3811,44 @@ recheck:
        if (policy < 0)
                policy = oldpolicy = p->policy;
        else if (policy != SCHED_FIFO && policy != SCHED_RR &&
-                               policy != SCHED_NORMAL)
-                       return -EINVAL;
+                       policy != SCHED_NORMAL && policy != SCHED_BATCH)
+               return -EINVAL;
        /*
         * Valid priorities for SCHED_FIFO and SCHED_RR are
-        * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
+        * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
+        * SCHED_BATCH is 0.
         */
        if (param->sched_priority < 0 ||
-           param->sched_priority > MAX_USER_RT_PRIO-1)
+           (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
+           (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
                return -EINVAL;
-       if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
+       if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
+                                       != (param->sched_priority == 0))
                return -EINVAL;
 
-       if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
-           param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
-           !capable(CAP_SYS_NICE))
-               return -EPERM;
-       if ((current->euid != p->euid) && (current->euid != p->uid) &&
-           !capable(CAP_SYS_NICE))
-               return -EPERM;
+       /*
+        * Allow unprivileged RT tasks to decrease priority:
+        */
+       if (!capable(CAP_SYS_NICE)) {
+               /*
+                * can't change policy, except between SCHED_NORMAL
+                * and SCHED_BATCH:
+                */
+               if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
+                       (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
+                               !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
+                       return -EPERM;
+               /* can't increase priority */
+               if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
+                   param->sched_priority > p->rt_priority &&
+                   param->sched_priority >
+                               p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
+                       return -EPERM;
+               /* can't change other user's priorities */
+               if ((current->euid != p->euid) &&
+                   (current->euid != p->uid))
+                       return -EPERM;
+       }
 
        retval = security_task_setscheduler(p, policy, param);
        if (retval)
@@ -3574,7 +3888,8 @@ recheck:
 }
 EXPORT_SYMBOL_GPL(sched_setscheduler);
 
-static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
+static int
+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
 {
        int retval;
        struct sched_param lparam;
@@ -3604,6 +3919,10 @@ static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __use
 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
                                       struct sched_param __user *param)
 {
+       /* negative values for policy are not valid */
+       if (policy < 0)
+               return -EINVAL;
+
        return do_sched_setscheduler(pid, policy, param);
 }
 
@@ -3759,12 +4078,12 @@ asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  * method, such as ACPI for e.g.
  */
 
-cpumask_t cpu_present_map;
+cpumask_t cpu_present_map __read_mostly;
 EXPORT_SYMBOL(cpu_present_map);
 
 #ifndef CONFIG_SMP
-cpumask_t cpu_online_map = CPU_MASK_ALL;
-cpumask_t cpu_possible_map = CPU_MASK_ALL;
+cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
+cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
 #endif
 
 long sched_getaffinity(pid_t pid, cpumask_t *mask)
@@ -3781,7 +4100,7 @@ long sched_getaffinity(pid_t pid, cpumask_t *mask)
                goto out_unlock;
 
        retval = 0;
-       cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
+       cpus_and(*mask, p->cpus_allowed, cpu_online_map);
 
 out_unlock:
        read_unlock(&tasklist_lock);
@@ -3841,7 +4160,7 @@ asmlinkage long sys_sched_yield(void)
        if (rt_task(current))
                target = rq->active;
 
-       if (current->array->nr_active == 1) {
+       if (array->nr_active == 1) {
                schedstat_inc(rq, yld_act_empty);
                if (!rq->expired->nr_active)
                        schedstat_inc(rq, yld_both_empty);
@@ -3872,6 +4191,15 @@ asmlinkage long sys_sched_yield(void)
 
 static inline void __cond_resched(void)
 {
+       /*
+        * The BKS might be reacquired before we have dropped
+        * PREEMPT_ACTIVE, which could trigger a second
+        * cond_resched() call.
+        */
+       if (unlikely(preempt_count()))
+               return;
+       if (unlikely(system_state != SYSTEM_RUNNING))
+               return;
        do {
                add_preempt_count(PREEMPT_ACTIVE);
                schedule();
@@ -3898,7 +4226,7 @@ EXPORT_SYMBOL(cond_resched);
  * operations here to prevent schedule() from being called twice (once via
  * spin_unlock(), once by hand).
  */
-int cond_resched_lock(spinlock_t * lock)
+int cond_resched_lock(spinlock_t *lock)
 {
        int ret = 0;
 
@@ -3959,7 +4287,7 @@ EXPORT_SYMBOL(yield);
  */
 void __sched io_schedule(void)
 {
-       struct runqueue *rq = &per_cpu(runqueues, _smp_processor_id());
+       struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
 
        atomic_inc(&rq->nr_iowait);
        schedule();
@@ -3970,7 +4298,7 @@ EXPORT_SYMBOL(io_schedule);
 
 long __sched io_schedule_timeout(long timeout)
 {
-       struct runqueue *rq = &per_cpu(runqueues, _smp_processor_id());
+       struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
        long ret;
 
        atomic_inc(&rq->nr_iowait);
@@ -3996,6 +4324,7 @@ asmlinkage long sys_sched_get_priority_max(int policy)
                ret = MAX_USER_RT_PRIO-1;
                break;
        case SCHED_NORMAL:
+       case SCHED_BATCH:
                ret = 0;
                break;
        }
@@ -4019,6 +4348,7 @@ asmlinkage long sys_sched_get_priority_min(int policy)
                ret = 1;
                break;
        case SCHED_NORMAL:
+       case SCHED_BATCH:
                ret = 0;
        }
        return ret;
@@ -4081,7 +4411,7 @@ static inline struct task_struct *younger_sibling(struct task_struct *p)
        return list_entry(p->sibling.next,struct task_struct,sibling);
 }
 
-static void show_task(task_t * p)
+static void show_task(task_t *p)
 {
        task_t *relative;
        unsigned state;
@@ -4107,10 +4437,10 @@ static void show_task(task_t * p)
 #endif
 #ifdef CONFIG_DEBUG_STACK_USAGE
        {
-               unsigned long * n = (unsigned long *) (p->thread_info+1);
+               unsigned long *n = end_of_stack(p);
                while (!*n)
                        n++;
-               free = (unsigned long) n - (unsigned long)(p->thread_info+1);
+               free = (unsigned long)n - (unsigned long)end_of_stack(p);
        }
 #endif
        printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
@@ -4159,13 +4489,23 @@ void show_state(void)
        } while_each_thread(g, p);
 
        read_unlock(&tasklist_lock);
+       mutex_debug_show_all_locks();
 }
 
+/**
+ * init_idle - set up an idle thread for a given CPU
+ * @idle: task in question
+ * @cpu: cpu the idle task belongs to
+ *
+ * NOTE: this function does not set the idle thread's NEED_RESCHED
+ * flag, to make booting more robust.
+ */
 void __devinit init_idle(task_t *idle, int cpu)
 {
        runqueue_t *rq = cpu_rq(cpu);
        unsigned long flags;
 
+       idle->timestamp = sched_clock();
        idle->sleep_avg = 0;
        idle->array = NULL;
        idle->prio = MAX_PRIO;
@@ -4175,14 +4515,16 @@ void __devinit init_idle(task_t *idle, int cpu)
 
        spin_lock_irqsave(&rq->lock, flags);
        rq->curr = rq->idle = idle;
-       set_tsk_need_resched(idle);
+#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
+       idle->oncpu = 1;
+#endif
        spin_unlock_irqrestore(&rq->lock, flags);
 
        /* Set the preempt count _outside_ the spinlocks! */
 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
-       idle->thread_info->preempt_count = (idle->lock_depth >= 0);
+       task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
 #else
-       idle->thread_info->preempt_count = 0;
+       task_thread_info(idle)->preempt_count = 0;
 #endif
 }
 
@@ -4306,7 +4648,7 @@ out:
  * thread migration by bumping thread off CPU then 'pushing' onto
  * another runqueue.
  */
-static int migration_thread(void * data)
+static int migration_thread(void *data)
 {
        runqueue_t *rq;
        int cpu = (long)data;
@@ -4319,8 +4661,7 @@ static int migration_thread(void * data)
                struct list_head *head;
                migration_req_t *req;
 
-               if (current->flags & PF_FREEZE)
-                       refrigerator(PF_FREEZE);
+               try_to_freeze();
 
                spin_lock_irq(&rq->lock);
 
@@ -4345,17 +4686,9 @@ static int migration_thread(void * data)
                req = list_entry(head->next, migration_req_t, list);
                list_del_init(head->next);
 
-               if (req->type == REQ_MOVE_TASK) {
-                       spin_unlock(&rq->lock);
-                       __migrate_task(req->task, cpu, req->dest_cpu);
-                       local_irq_enable();
-               } else if (req->type == REQ_SET_DOMAIN) {
-                       rq->sd = req->sd;
-                       spin_unlock_irq(&rq->lock);
-               } else {
-                       spin_unlock_irq(&rq->lock);
-                       WARN_ON(1);
-               }
+               spin_unlock(&rq->lock);
+               __migrate_task(req->task, cpu, req->dest_cpu);
+               local_irq_enable();
 
                complete(&req->done);
        }
@@ -4559,7 +4892,8 @@ static int migration_call(struct notifier_block *nfb, unsigned long action,
 #ifdef CONFIG_HOTPLUG_CPU
        case CPU_UP_CANCELED:
                /* Unbind it from offline cpu so it can run.  Fall thru. */
-               kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
+               kthread_bind(cpu_rq(cpu)->migration_thread,
+                            any_online_cpu(cpu_online_map));
                kthread_stop(cpu_rq(cpu)->migration_thread);
                cpu_rq(cpu)->migration_thread = NULL;
                break;
@@ -4586,7 +4920,6 @@ static int migration_call(struct notifier_block *nfb, unsigned long action,
                        migration_req_t *req;
                        req = list_entry(rq->migration_queue.next,
                                         migration_req_t, list);
-                       BUG_ON(req->type != REQ_MOVE_TASK);
                        list_del_init(&req->list);
                        complete(&req->done);
                }
@@ -4600,7 +4933,7 @@ static int migration_call(struct notifier_block *nfb, unsigned long action,
 /* Register at highest priority so that task migration (migrate_all_tasks)
  * happens before everything else.
  */
-static struct notifier_block __devinitdata migration_notifier = {
+static struct notifier_block migration_notifier = {
        .notifier_call = migration_call,
        .priority = 10
 };
@@ -4617,12 +4950,17 @@ int __init migration_init(void)
 #endif
 
 #ifdef CONFIG_SMP
-#define SCHED_DOMAIN_DEBUG
+#undef SCHED_DOMAIN_DEBUG
 #ifdef SCHED_DOMAIN_DEBUG
 static void sched_domain_debug(struct sched_domain *sd, int cpu)
 {
        int level = 0;
 
+       if (!sd) {
+               printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
+               return;
+       }
+
        printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
 
        do {
@@ -4705,41 +5043,85 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
 #define sched_domain_debug(sd, cpu) {}
 #endif
 
-/*
- * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
- * hold the hotplug lock.
- */
-void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
+static int sd_degenerate(struct sched_domain *sd)
 {
-       migration_req_t req;
-       unsigned long flags;
-       runqueue_t *rq = cpu_rq(cpu);
-       int local = 1;
-
-       sched_domain_debug(sd, cpu);
-
-       spin_lock_irqsave(&rq->lock, flags);
+       if (cpus_weight(sd->span) == 1)
+               return 1;
 
-       if (cpu == smp_processor_id() || !cpu_online(cpu)) {
-               rq->sd = sd;
-       } else {
-               init_completion(&req.done);
-               req.type = REQ_SET_DOMAIN;
-               req.sd = sd;
-               list_add(&req.list, &rq->migration_queue);
-               local = 0;
+       /* Following flags need at least 2 groups */
+       if (sd->flags & (SD_LOAD_BALANCE |
+                        SD_BALANCE_NEWIDLE |
+                        SD_BALANCE_FORK |
+                        SD_BALANCE_EXEC)) {
+               if (sd->groups != sd->groups->next)
+                       return 0;
        }
 
-       spin_unlock_irqrestore(&rq->lock, flags);
+       /* Following flags don't use groups */
+       if (sd->flags & (SD_WAKE_IDLE |
+                        SD_WAKE_AFFINE |
+                        SD_WAKE_BALANCE))
+               return 0;
 
-       if (!local) {
-               wake_up_process(rq->migration_thread);
-               wait_for_completion(&req.done);
+       return 1;
+}
+
+static int sd_parent_degenerate(struct sched_domain *sd,
+                                               struct sched_domain *parent)
+{
+       unsigned long cflags = sd->flags, pflags = parent->flags;
+
+       if (sd_degenerate(parent))
+               return 1;
+
+       if (!cpus_equal(sd->span, parent->span))
+               return 0;
+
+       /* Does parent contain flags not in child? */
+       /* WAKE_BALANCE is a subset of WAKE_AFFINE */
+       if (cflags & SD_WAKE_AFFINE)
+               pflags &= ~SD_WAKE_BALANCE;
+       /* Flags needing groups don't count if only 1 group in parent */
+       if (parent->groups == parent->groups->next) {
+               pflags &= ~(SD_LOAD_BALANCE |
+                               SD_BALANCE_NEWIDLE |
+                               SD_BALANCE_FORK |
+                               SD_BALANCE_EXEC);
+       }
+       if (~cflags & pflags)
+               return 0;
+
+       return 1;
+}
+
+/*
+ * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
+ * hold the hotplug lock.
+ */
+static void cpu_attach_domain(struct sched_domain *sd, int cpu)
+{
+       runqueue_t *rq = cpu_rq(cpu);
+       struct sched_domain *tmp;
+
+       /* Remove the sched domains which do not contribute to scheduling. */
+       for (tmp = sd; tmp; tmp = tmp->parent) {
+               struct sched_domain *parent = tmp->parent;
+               if (!parent)
+                       break;
+               if (sd_parent_degenerate(tmp, parent))
+                       tmp->parent = parent->parent;
        }
+
+       if (sd && sd_degenerate(sd))
+               sd = sd->parent;
+
+       sched_domain_debug(sd, cpu);
+
+       rcu_assign_pointer(rq->sd, sd);
 }
 
 /* cpus with isolated domains */
-cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
+static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
 
 /* Setup the mask of cpus configured for isolated domains */
 static int __init isolated_cpu_setup(char *str)
@@ -4767,8 +5149,8 @@ __setup ("isolcpus=", isolated_cpu_setup);
  * covered by the given span, and will set each group's ->cpumask correctly,
  * and ->cpu_power to 0.
  */
-void __devinit init_sched_build_groups(struct sched_group groups[],
-                       cpumask_t span, int (*group_fn)(int cpu))
+static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
+                                   int (*group_fn)(int cpu))
 {
        struct sched_group *first = NULL, *last = NULL;
        cpumask_t covered = CPU_MASK_NONE;
@@ -4801,15 +5183,584 @@ void __devinit init_sched_build_groups(struct sched_group groups[],
        last->next = first;
 }
 
+#define SD_NODES_PER_DOMAIN 16
+
+/*
+ * Self-tuning task migration cost measurement between source and target CPUs.
+ *
+ * This is done by measuring the cost of manipulating buffers of varying
+ * sizes. For a given buffer-size here are the steps that are taken:
+ *
+ * 1) the source CPU reads+dirties a shared buffer
+ * 2) the target CPU reads+dirties the same shared buffer
+ *
+ * We measure how long they take, in the following 4 scenarios:
+ *
+ *  - source: CPU1, target: CPU2 | cost1
+ *  - source: CPU2, target: CPU1 | cost2
+ *  - source: CPU1, target: CPU1 | cost3
+ *  - source: CPU2, target: CPU2 | cost4
+ *
+ * We then calculate the cost3+cost4-cost1-cost2 difference - this is
+ * the cost of migration.
+ *
+ * We then start off from a small buffer-size and iterate up to larger
+ * buffer sizes, in 5% steps - measuring each buffer-size separately, and
+ * doing a maximum search for the cost. (The maximum cost for a migration
+ * normally occurs when the working set size is around the effective cache
+ * size.)
+ */
+#define SEARCH_SCOPE           2
+#define MIN_CACHE_SIZE         (64*1024U)
+#define DEFAULT_CACHE_SIZE     (5*1024*1024U)
+#define ITERATIONS             1
+#define SIZE_THRESH            130
+#define COST_THRESH            130
+
+/*
+ * The migration cost is a function of 'domain distance'. Domain
+ * distance is the number of steps a CPU has to iterate down its
+ * domain tree to share a domain with the other CPU. The farther
+ * two CPUs are from each other, the larger the distance gets.
+ *
+ * Note that we use the distance only to cache measurement results,
+ * the distance value is not used numerically otherwise. When two
+ * CPUs have the same distance it is assumed that the migration
+ * cost is the same. (this is a simplification but quite practical)
+ */
+#define MAX_DOMAIN_DISTANCE 32
 
-#ifdef ARCH_HAS_SCHED_DOMAIN
-extern void __devinit arch_init_sched_domains(void);
-extern void __devinit arch_destroy_sched_domains(void);
+static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
+               { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
+/*
+ * Architectures may override the migration cost and thus avoid
+ * boot-time calibration. Unit is nanoseconds. Mostly useful for
+ * virtualized hardware:
+ */
+#ifdef CONFIG_DEFAULT_MIGRATION_COST
+                       CONFIG_DEFAULT_MIGRATION_COST
 #else
+                       -1LL
+#endif
+};
+
+/*
+ * Allow override of migration cost - in units of microseconds.
+ * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
+ * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
+ */
+static int __init migration_cost_setup(char *str)
+{
+       int ints[MAX_DOMAIN_DISTANCE+1], i;
+
+       str = get_options(str, ARRAY_SIZE(ints), ints);
+
+       printk("#ints: %d\n", ints[0]);
+       for (i = 1; i <= ints[0]; i++) {
+               migration_cost[i-1] = (unsigned long long)ints[i]*1000;
+               printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
+       }
+       return 1;
+}
+
+__setup ("migration_cost=", migration_cost_setup);
+
+/*
+ * Global multiplier (divisor) for migration-cutoff values,
+ * in percentiles. E.g. use a value of 150 to get 1.5 times
+ * longer cache-hot cutoff times.
+ *
+ * (We scale it from 100 to 128 to long long handling easier.)
+ */
+
+#define MIGRATION_FACTOR_SCALE 128
+
+static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
+
+static int __init setup_migration_factor(char *str)
+{
+       get_option(&str, &migration_factor);
+       migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
+       return 1;
+}
+
+__setup("migration_factor=", setup_migration_factor);
+
+/*
+ * Estimated distance of two CPUs, measured via the number of domains
+ * we have to pass for the two CPUs to be in the same span:
+ */
+static unsigned long domain_distance(int cpu1, int cpu2)
+{
+       unsigned long distance = 0;
+       struct sched_domain *sd;
+
+       for_each_domain(cpu1, sd) {
+               WARN_ON(!cpu_isset(cpu1, sd->span));
+               if (cpu_isset(cpu2, sd->span))
+                       return distance;
+               distance++;
+       }
+       if (distance >= MAX_DOMAIN_DISTANCE) {
+               WARN_ON(1);
+               distance = MAX_DOMAIN_DISTANCE-1;
+       }
+
+       return distance;
+}
+
+static unsigned int migration_debug;
+
+static int __init setup_migration_debug(char *str)
+{
+       get_option(&str, &migration_debug);
+       return 1;
+}
+
+__setup("migration_debug=", setup_migration_debug);
+
+/*
+ * Maximum cache-size that the scheduler should try to measure.
+ * Architectures with larger caches should tune this up during
+ * bootup. Gets used in the domain-setup code (i.e. during SMP
+ * bootup).
+ */
+unsigned int max_cache_size;
+
+static int __init setup_max_cache_size(char *str)
+{
+       get_option(&str, &max_cache_size);
+       return 1;
+}
+
+__setup("max_cache_size=", setup_max_cache_size);
+
+/*
+ * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
+ * is the operation that is timed, so we try to generate unpredictable
+ * cachemisses that still end up filling the L2 cache:
+ */
+static void touch_cache(void *__cache, unsigned long __size)
+{
+       unsigned long size = __size/sizeof(long), chunk1 = size/3,
+                       chunk2 = 2*size/3;
+       unsigned long *cache = __cache;
+       int i;
+
+       for (i = 0; i < size/6; i += 8) {
+               switch (i % 6) {
+                       case 0: cache[i]++;
+                       case 1: cache[size-1-i]++;
+                       case 2: cache[chunk1-i]++;
+                       case 3: cache[chunk1+i]++;
+                       case 4: cache[chunk2-i]++;
+                       case 5: cache[chunk2+i]++;
+               }
+       }
+}
+
+/*
+ * Measure the cache-cost of one task migration. Returns in units of nsec.
+ */
+static unsigned long long measure_one(void *cache, unsigned long size,
+                                     int source, int target)
+{
+       cpumask_t mask, saved_mask;
+       unsigned long long t0, t1, t2, t3, cost;
+
+       saved_mask = current->cpus_allowed;
+
+       /*
+        * Flush source caches to RAM and invalidate them:
+        */
+       sched_cacheflush();
+
+       /*
+        * Migrate to the source CPU:
+        */
+       mask = cpumask_of_cpu(source);
+       set_cpus_allowed(current, mask);
+       WARN_ON(smp_processor_id() != source);
+
+       /*
+        * Dirty the working set:
+        */
+       t0 = sched_clock();
+       touch_cache(cache, size);
+       t1 = sched_clock();
+
+       /*
+        * Migrate to the target CPU, dirty the L2 cache and access
+        * the shared buffer. (which represents the working set
+        * of a migrated task.)
+        */
+       mask = cpumask_of_cpu(target);
+       set_cpus_allowed(current, mask);
+       WARN_ON(smp_processor_id() != target);
+
+       t2 = sched_clock();
+       touch_cache(cache, size);
+       t3 = sched_clock();
+
+       cost = t1-t0 + t3-t2;
+
+       if (migration_debug >= 2)
+               printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
+                       source, target, t1-t0, t1-t0, t3-t2, cost);
+       /*
+        * Flush target caches to RAM and invalidate them:
+        */
+       sched_cacheflush();
+
+       set_cpus_allowed(current, saved_mask);
+
+       return cost;
+}
+
+/*
+ * Measure a series of task migrations and return the average
+ * result. Since this code runs early during bootup the system
+ * is 'undisturbed' and the average latency makes sense.
+ *
+ * The algorithm in essence auto-detects the relevant cache-size,
+ * so it will properly detect different cachesizes for different
+ * cache-hierarchies, depending on how the CPUs are connected.
+ *
+ * Architectures can prime the upper limit of the search range via
+ * max_cache_size, otherwise the search range defaults to 20MB...64K.
+ */
+static unsigned long long
+measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
+{
+       unsigned long long cost1, cost2;
+       int i;
+
+       /*
+        * Measure the migration cost of 'size' bytes, over an
+        * average of 10 runs:
+        *
+        * (We perturb the cache size by a small (0..4k)
+        *  value to compensate size/alignment related artifacts.
+        *  We also subtract the cost of the operation done on
+        *  the same CPU.)
+        */
+       cost1 = 0;
+
+       /*
+        * dry run, to make sure we start off cache-cold on cpu1,
+        * and to get any vmalloc pagefaults in advance:
+        */
+       measure_one(cache, size, cpu1, cpu2);
+       for (i = 0; i < ITERATIONS; i++)
+               cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
+
+       measure_one(cache, size, cpu2, cpu1);
+       for (i = 0; i < ITERATIONS; i++)
+               cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
+
+       /*
+        * (We measure the non-migrating [cached] cost on both
+        *  cpu1 and cpu2, to handle CPUs with different speeds)
+        */
+       cost2 = 0;
+
+       measure_one(cache, size, cpu1, cpu1);
+       for (i = 0; i < ITERATIONS; i++)
+               cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
+
+       measure_one(cache, size, cpu2, cpu2);
+       for (i = 0; i < ITERATIONS; i++)
+               cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
+
+       /*
+        * Get the per-iteration migration cost:
+        */
+       do_div(cost1, 2*ITERATIONS);
+       do_div(cost2, 2*ITERATIONS);
+
+       return cost1 - cost2;
+}
+
+static unsigned long long measure_migration_cost(int cpu1, int cpu2)
+{
+       unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
+       unsigned int max_size, size, size_found = 0;
+       long long cost = 0, prev_cost;
+       void *cache;
+
+       /*
+        * Search from max_cache_size*5 down to 64K - the real relevant
+        * cachesize has to lie somewhere inbetween.
+        */
+       if (max_cache_size) {
+               max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
+               size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
+       } else {
+               /*
+                * Since we have no estimation about the relevant
+                * search range
+                */
+               max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
+               size = MIN_CACHE_SIZE;
+       }
+
+       if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
+               printk("cpu %d and %d not both online!\n", cpu1, cpu2);
+               return 0;
+       }
+
+       /*
+        * Allocate the working set:
+        */
+       cache = vmalloc(max_size);
+       if (!cache) {
+               printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
+               return 1000000; // return 1 msec on very small boxen
+       }
+
+       while (size <= max_size) {
+               prev_cost = cost;
+               cost = measure_cost(cpu1, cpu2, cache, size);
+
+               /*
+                * Update the max:
+                */
+               if (cost > 0) {
+                       if (max_cost < cost) {
+                               max_cost = cost;
+                               size_found = size;
+                       }
+               }
+               /*
+                * Calculate average fluctuation, we use this to prevent
+                * noise from triggering an early break out of the loop:
+                */
+               fluct = abs(cost - prev_cost);
+               avg_fluct = (avg_fluct + fluct)/2;
+
+               if (migration_debug)
+                       printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
+                               cpu1, cpu2, size,
+                               (long)cost / 1000000,
+                               ((long)cost / 100000) % 10,
+                               (long)max_cost / 1000000,
+                               ((long)max_cost / 100000) % 10,
+                               domain_distance(cpu1, cpu2),
+                               cost, avg_fluct);
+
+               /*
+                * If we iterated at least 20% past the previous maximum,
+                * and the cost has dropped by more than 20% already,
+                * (taking fluctuations into account) then we assume to
+                * have found the maximum and break out of the loop early:
+                */
+               if (size_found && (size*100 > size_found*SIZE_THRESH))
+                       if (cost+avg_fluct <= 0 ||
+                               max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
+
+                               if (migration_debug)
+                                       printk("-> found max.\n");
+                               break;
+                       }
+               /*
+                * Increase the cachesize in 10% steps:
+                */
+               size = size * 10 / 9;
+       }
+
+       if (migration_debug)
+               printk("[%d][%d] working set size found: %d, cost: %Ld\n",
+                       cpu1, cpu2, size_found, max_cost);
+
+       vfree(cache);
+
+       /*
+        * A task is considered 'cache cold' if at least 2 times
+        * the worst-case cost of migration has passed.
+        *
+        * (this limit is only listened to if the load-balancing
+        * situation is 'nice' - if there is a large imbalance we
+        * ignore it for the sake of CPU utilization and
+        * processing fairness.)
+        */
+       return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
+}
+
+static void calibrate_migration_costs(const cpumask_t *cpu_map)
+{
+       int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
+       unsigned long j0, j1, distance, max_distance = 0;
+       struct sched_domain *sd;
+
+       j0 = jiffies;
+
+       /*
+        * First pass - calculate the cacheflush times:
+        */
+       for_each_cpu_mask(cpu1, *cpu_map) {
+               for_each_cpu_mask(cpu2, *cpu_map) {
+                       if (cpu1 == cpu2)
+                               continue;
+                       distance = domain_distance(cpu1, cpu2);
+                       max_distance = max(max_distance, distance);
+                       /*
+                        * No result cached yet?
+                        */
+                       if (migration_cost[distance] == -1LL)
+                               migration_cost[distance] =
+                                       measure_migration_cost(cpu1, cpu2);
+               }
+       }
+       /*
+        * Second pass - update the sched domain hierarchy with
+        * the new cache-hot-time estimations:
+        */
+       for_each_cpu_mask(cpu, *cpu_map) {
+               distance = 0;
+               for_each_domain(cpu, sd) {
+                       sd->cache_hot_time = migration_cost[distance];
+                       distance++;
+               }
+       }
+       /*
+        * Print the matrix:
+        */
+       if (migration_debug)
+               printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
+                       max_cache_size,
+#ifdef CONFIG_X86
+                       cpu_khz/1000
+#else
+                       -1
+#endif
+               );
+       if (system_state == SYSTEM_BOOTING) {
+               if (num_online_cpus() > 1) {
+                       printk("migration_cost=");
+                       for (distance = 0; distance <= max_distance; distance++) {
+                               if (distance)
+                                       printk(",");
+                               printk("%ld", (long)migration_cost[distance] / 1000);
+                       }
+                       printk("\n");
+               }
+       }
+       j1 = jiffies;
+       if (migration_debug)
+               printk("migration: %ld seconds\n", (j1-j0)/HZ);
+
+       /*
+        * Move back to the original CPU. NUMA-Q gets confused
+        * if we migrate to another quad during bootup.
+        */
+       if (raw_smp_processor_id() != orig_cpu) {
+               cpumask_t mask = cpumask_of_cpu(orig_cpu),
+                       saved_mask = current->cpus_allowed;
+
+               set_cpus_allowed(current, mask);
+               set_cpus_allowed(current, saved_mask);
+       }
+}
+
+#ifdef CONFIG_NUMA
+
+/**
+ * find_next_best_node - find the next node to include in a sched_domain
+ * @node: node whose sched_domain we're building
+ * @used_nodes: nodes already in the sched_domain
+ *
+ * Find the next node to include in a given scheduling domain.  Simply
+ * finds the closest node not already in the @used_nodes map.
+ *
+ * Should use nodemask_t.
+ */
+static int find_next_best_node(int node, unsigned long *used_nodes)
+{
+       int i, n, val, min_val, best_node = 0;
+
+       min_val = INT_MAX;
+
+       for (i = 0; i < MAX_NUMNODES; i++) {
+               /* Start at @node */
+               n = (node + i) % MAX_NUMNODES;
+
+               if (!nr_cpus_node(n))
+                       continue;
+
+               /* Skip already used nodes */
+               if (test_bit(n, used_nodes))
+                       continue;
+
+               /* Simple min distance search */
+               val = node_distance(node, n);
+
+               if (val < min_val) {
+                       min_val = val;
+                       best_node = n;
+               }
+       }
+
+       set_bit(best_node, used_nodes);
+       return best_node;
+}
+
+/**
+ * sched_domain_node_span - get a cpumask for a node's sched_domain
+ * @node: node whose cpumask we're constructing
+ * @size: number of nodes to include in this span
+ *
+ * Given a node, construct a good cpumask for its sched_domain to span.  It
+ * should be one that prevents unnecessary balancing, but also spreads tasks
+ * out optimally.
+ */
+static cpumask_t sched_domain_node_span(int node)
+{
+       int i;
+       cpumask_t span, nodemask;
+       DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
+
+       cpus_clear(span);
+       bitmap_zero(used_nodes, MAX_NUMNODES);
+
+       nodemask = node_to_cpumask(node);
+       cpus_or(span, span, nodemask);
+       set_bit(node, used_nodes);
+
+       for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
+               int next_node = find_next_best_node(node, used_nodes);
+               nodemask = node_to_cpumask(next_node);
+               cpus_or(span, span, nodemask);
+       }
+
+       return span;
+}
+#endif
+
+/*
+ * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
+ * can switch it on easily if needed.
+ */
 #ifdef CONFIG_SCHED_SMT
 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
 static struct sched_group sched_group_cpus[NR_CPUS];
-static int __devinit cpu_to_cpu_group(int cpu)
+static int cpu_to_cpu_group(int cpu)
+{
+       return cpu;
+}
+#endif
+
+#ifdef CONFIG_SCHED_MC
+static DEFINE_PER_CPU(struct sched_domain, core_domains);
+static struct sched_group sched_group_core[NR_CPUS];
+#endif
+
+#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
+static int cpu_to_core_group(int cpu)
+{
+       return first_cpu(cpu_sibling_map[cpu]);
+}
+#elif defined(CONFIG_SCHED_MC)
+static int cpu_to_core_group(int cpu)
 {
        return cpu;
 }
@@ -4817,9 +5768,12 @@ static int __devinit cpu_to_cpu_group(int cpu)
 
 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
 static struct sched_group sched_group_phys[NR_CPUS];
-static int __devinit cpu_to_phys_group(int cpu)
+static int cpu_to_phys_group(int cpu)
 {
-#ifdef CONFIG_SCHED_SMT
+#if defined(CONFIG_SCHED_MC)
+       cpumask_t mask = cpu_coregroup_map(cpu);
+       return first_cpu(mask);
+#elif defined(CONFIG_SCHED_SMT)
        return first_cpu(cpu_sibling_map[cpu]);
 #else
        return cpu;
@@ -4827,74 +5781,112 @@ static int __devinit cpu_to_phys_group(int cpu)
 }
 
 #ifdef CONFIG_NUMA
-
+/*
+ * The init_sched_build_groups can't handle what we want to do with node
+ * groups, so roll our own. Now each node has its own list of groups which
+ * gets dynamically allocated.
+ */
 static DEFINE_PER_CPU(struct sched_domain, node_domains);
-static struct sched_group sched_group_nodes[MAX_NUMNODES];
-static int __devinit cpu_to_node_group(int cpu)
+static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
+
+static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
+static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
+
+static int cpu_to_allnodes_group(int cpu)
 {
        return cpu_to_node(cpu);
 }
-#endif
-
-#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
-/*
- * The domains setup code relies on siblings not spanning
- * multiple nodes. Make sure the architecture has a proper
- * siblings map:
- */
-static void check_sibling_maps(void)
+static void init_numa_sched_groups_power(struct sched_group *group_head)
 {
-       int i, j;
+       struct sched_group *sg = group_head;
+       int j;
 
-       for_each_online_cpu(i) {
-               for_each_cpu_mask(j, cpu_sibling_map[i]) {
-                       if (cpu_to_node(i) != cpu_to_node(j)) {
-                               printk(KERN_INFO "warning: CPU %d siblings map "
-                                       "to different node - isolating "
-                                       "them.\n", i);
-                               cpu_sibling_map[i] = cpumask_of_cpu(i);
-                               break;
-                       }
+       if (!sg)
+               return;
+next_sg:
+       for_each_cpu_mask(j, sg->cpumask) {
+               struct sched_domain *sd;
+
+               sd = &per_cpu(phys_domains, j);
+               if (j != first_cpu(sd->groups->cpumask)) {
+                       /*
+                        * Only add "power" once for each
+                        * physical package.
+                        */
+                       continue;
                }
+
+               sg->cpu_power += sd->groups->cpu_power;
        }
+       sg = sg->next;
+       if (sg != group_head)
+               goto next_sg;
 }
 #endif
 
 /*
- * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
+ * Build sched domains for a given set of cpus and attach the sched domains
+ * to the individual cpus
  */
-static void __devinit arch_init_sched_domains(void)
+void build_sched_domains(const cpumask_t *cpu_map)
 {
        int i;
-       cpumask_t cpu_default_map;
+#ifdef CONFIG_NUMA
+       struct sched_group **sched_group_nodes = NULL;
+       struct sched_group *sched_group_allnodes = NULL;
 
-#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
-       check_sibling_maps();
-#endif
        /*
-        * Setup mask for cpus without special case scheduling requirements.
-        * For now this just excludes isolated cpus, but could be used to
-        * exclude other special cases in the future.
+        * Allocate the per-node list of sched groups
         */
-       cpus_complement(cpu_default_map, cpu_isolated_map);
-       cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
+       sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
+                                          GFP_ATOMIC);
+       if (!sched_group_nodes) {
+               printk(KERN_WARNING "Can not alloc sched group node list\n");
+               return;
+       }
+       sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
+#endif
 
        /*
-        * Set up domains. Isolated domains just stay on the dummy domain.
+        * Set up domains for cpus specified by the cpu_map.
         */
-       for_each_cpu_mask(i, cpu_default_map) {
+       for_each_cpu_mask(i, *cpu_map) {
                int group;
                struct sched_domain *sd = NULL, *p;
                cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
 
-               cpus_and(nodemask, nodemask, cpu_default_map);
+               cpus_and(nodemask, nodemask, *cpu_map);
 
 #ifdef CONFIG_NUMA
+               if (cpus_weight(*cpu_map)
+                               > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
+                       if (!sched_group_allnodes) {
+                               sched_group_allnodes
+                                       = kmalloc(sizeof(struct sched_group)
+                                                       * MAX_NUMNODES,
+                                                 GFP_KERNEL);
+                               if (!sched_group_allnodes) {
+                                       printk(KERN_WARNING
+                                       "Can not alloc allnodes sched group\n");
+                                       break;
+                               }
+                               sched_group_allnodes_bycpu[i]
+                                               = sched_group_allnodes;
+                       }
+                       sd = &per_cpu(allnodes_domains, i);
+                       *sd = SD_ALLNODES_INIT;
+                       sd->span = *cpu_map;
+                       group = cpu_to_allnodes_group(i);
+                       sd->groups = &sched_group_allnodes[group];
+                       p = sd;
+               } else
+                       p = NULL;
+
                sd = &per_cpu(node_domains, i);
-               group = cpu_to_node_group(i);
                *sd = SD_NODE_INIT;
-               sd->span = cpu_default_map;
-               sd->groups = &sched_group_nodes[group];
+               sd->span = sched_domain_node_span(cpu_to_node(i));
+               sd->parent = p;
+               cpus_and(sd->span, sd->span, *cpu_map);
 #endif
 
                p = sd;
@@ -4905,13 +5897,24 @@ static void __devinit arch_init_sched_domains(void)
                sd->parent = p;
                sd->groups = &sched_group_phys[group];
 
+#ifdef CONFIG_SCHED_MC
+               p = sd;
+               sd = &per_cpu(core_domains, i);
+               group = cpu_to_core_group(i);
+               *sd = SD_MC_INIT;
+               sd->span = cpu_coregroup_map(i);
+               cpus_and(sd->span, sd->span, *cpu_map);
+               sd->parent = p;
+               sd->groups = &sched_group_core[group];
+#endif
+
 #ifdef CONFIG_SCHED_SMT
                p = sd;
                sd = &per_cpu(cpu_domains, i);
                group = cpu_to_cpu_group(i);
                *sd = SD_SIBLING_INIT;
                sd->span = cpu_sibling_map[i];
-               cpus_and(sd->span, sd->span, cpu_default_map);
+               cpus_and(sd->span, sd->span, *cpu_map);
                sd->parent = p;
                sd->groups = &sched_group_cpus[group];
 #endif
@@ -4919,9 +5922,9 @@ static void __devinit arch_init_sched_domains(void)
 
 #ifdef CONFIG_SCHED_SMT
        /* Set up CPU (sibling) groups */
-       for_each_online_cpu(i) {
+       for_each_cpu_mask(i, *cpu_map) {
                cpumask_t this_sibling_map = cpu_sibling_map[i];
-               cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
+               cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
                if (i != first_cpu(this_sibling_map))
                        continue;
 
@@ -4930,11 +5933,24 @@ static void __devinit arch_init_sched_domains(void)
        }
 #endif
 
+#ifdef CONFIG_SCHED_MC
+       /* Set up multi-core groups */
+       for_each_cpu_mask(i, *cpu_map) {
+               cpumask_t this_core_map = cpu_coregroup_map(i);
+               cpus_and(this_core_map, this_core_map, *cpu_map);
+               if (i != first_cpu(this_core_map))
+                       continue;
+               init_sched_build_groups(sched_group_core, this_core_map,
+                                       &cpu_to_core_group);
+       }
+#endif
+
+
        /* Set up physical groups */
        for (i = 0; i < MAX_NUMNODES; i++) {
                cpumask_t nodemask = node_to_cpumask(i);
 
-               cpus_and(nodemask, nodemask, cpu_default_map);
+               cpus_and(nodemask, nodemask, *cpu_map);
                if (cpus_empty(nodemask))
                        continue;
 
@@ -4944,12 +5960,81 @@ static void __devinit arch_init_sched_domains(void)
 
 #ifdef CONFIG_NUMA
        /* Set up node groups */
-       init_sched_build_groups(sched_group_nodes, cpu_default_map,
-                                       &cpu_to_node_group);
+       if (sched_group_allnodes)
+               init_sched_build_groups(sched_group_allnodes, *cpu_map,
+                                       &cpu_to_allnodes_group);
+
+       for (i = 0; i < MAX_NUMNODES; i++) {
+               /* Set up node groups */
+               struct sched_group *sg, *prev;
+               cpumask_t nodemask = node_to_cpumask(i);
+               cpumask_t domainspan;
+               cpumask_t covered = CPU_MASK_NONE;
+               int j;
+
+               cpus_and(nodemask, nodemask, *cpu_map);
+               if (cpus_empty(nodemask)) {
+                       sched_group_nodes[i] = NULL;
+                       continue;
+               }
+
+               domainspan = sched_domain_node_span(i);
+               cpus_and(domainspan, domainspan, *cpu_map);
+
+               sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
+               sched_group_nodes[i] = sg;
+               for_each_cpu_mask(j, nodemask) {
+                       struct sched_domain *sd;
+                       sd = &per_cpu(node_domains, j);
+                       sd->groups = sg;
+                       if (sd->groups == NULL) {
+                               /* Turn off balancing if we have no groups */
+                               sd->flags = 0;
+                       }
+               }
+               if (!sg) {
+                       printk(KERN_WARNING
+                       "Can not alloc domain group for node %d\n", i);
+                       continue;
+               }
+               sg->cpu_power = 0;
+               sg->cpumask = nodemask;
+               cpus_or(covered, covered, nodemask);
+               prev = sg;
+
+               for (j = 0; j < MAX_NUMNODES; j++) {
+                       cpumask_t tmp, notcovered;
+                       int n = (i + j) % MAX_NUMNODES;
+
+                       cpus_complement(notcovered, covered);
+                       cpus_and(tmp, notcovered, *cpu_map);
+                       cpus_and(tmp, tmp, domainspan);
+                       if (cpus_empty(tmp))
+                               break;
+
+                       nodemask = node_to_cpumask(n);
+                       cpus_and(tmp, tmp, nodemask);
+                       if (cpus_empty(tmp))
+                               continue;
+
+                       sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
+                       if (!sg) {
+                               printk(KERN_WARNING
+                               "Can not alloc domain group for node %d\n", j);
+                               break;
+                       }
+                       sg->cpu_power = 0;
+                       sg->cpumask = tmp;
+                       cpus_or(covered, covered, tmp);
+                       prev->next = sg;
+                       prev = sg;
+               }
+               prev->next = sched_group_nodes[i];
+       }
 #endif
 
        /* Calculate CPU power for physical packages and nodes */
-       for_each_cpu_mask(i, cpu_default_map) {
+       for_each_cpu_mask(i, *cpu_map) {
                int power;
                struct sched_domain *sd;
 #ifdef CONFIG_SCHED_SMT
@@ -4957,67 +6042,170 @@ static void __devinit arch_init_sched_domains(void)
                power = SCHED_LOAD_SCALE;
                sd->groups->cpu_power = power;
 #endif
+#ifdef CONFIG_SCHED_MC
+               sd = &per_cpu(core_domains, i);
+               power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
+                                           * SCHED_LOAD_SCALE / 10;
+               sd->groups->cpu_power = power;
 
+               sd = &per_cpu(phys_domains, i);
+
+               /*
+                * This has to be < 2 * SCHED_LOAD_SCALE
+                * Lets keep it SCHED_LOAD_SCALE, so that
+                * while calculating NUMA group's cpu_power
+                * we can simply do
+                *  numa_group->cpu_power += phys_group->cpu_power;
+                *
+                * See "only add power once for each physical pkg"
+                * comment below
+                */
+               sd->groups->cpu_power = SCHED_LOAD_SCALE;
+#else
                sd = &per_cpu(phys_domains, i);
                power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
                                (cpus_weight(sd->groups->cpumask)-1) / 10;
                sd->groups->cpu_power = power;
+#endif
+       }
 
 #ifdef CONFIG_NUMA
-               if (i == first_cpu(sd->groups->cpumask)) {
-                       /* Only add "power" once for each physical package. */
-                       sd = &per_cpu(node_domains, i);
-                       sd->groups->cpu_power += power;
-               }
+       for (i = 0; i < MAX_NUMNODES; i++)
+               init_numa_sched_groups_power(sched_group_nodes[i]);
+
+       init_numa_sched_groups_power(sched_group_allnodes);
 #endif
-       }
 
        /* Attach the domains */
-       for_each_online_cpu(i) {
+       for_each_cpu_mask(i, *cpu_map) {
                struct sched_domain *sd;
 #ifdef CONFIG_SCHED_SMT
                sd = &per_cpu(cpu_domains, i);
+#elif defined(CONFIG_SCHED_MC)
+               sd = &per_cpu(core_domains, i);
 #else
                sd = &per_cpu(phys_domains, i);
 #endif
                cpu_attach_domain(sd, i);
        }
+       /*
+        * Tune cache-hot values:
+        */
+       calibrate_migration_costs(cpu_map);
 }
-
-#ifdef CONFIG_HOTPLUG_CPU
-static void __devinit arch_destroy_sched_domains(void)
+/*
+ * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
+ */
+static void arch_init_sched_domains(const cpumask_t *cpu_map)
 {
-       /* Do nothing: everything is statically allocated. */
+       cpumask_t cpu_default_map;
+
+       /*
+        * Setup mask for cpus without special case scheduling requirements.
+        * For now this just excludes isolated cpus, but could be used to
+        * exclude other special cases in the future.
+        */
+       cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
+
+       build_sched_domains(&cpu_default_map);
 }
+
+static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
+{
+#ifdef CONFIG_NUMA
+       int i;
+       int cpu;
+
+       for_each_cpu_mask(cpu, *cpu_map) {
+               struct sched_group *sched_group_allnodes
+                       = sched_group_allnodes_bycpu[cpu];
+               struct sched_group **sched_group_nodes
+                       = sched_group_nodes_bycpu[cpu];
+
+               if (sched_group_allnodes) {
+                       kfree(sched_group_allnodes);
+                       sched_group_allnodes_bycpu[cpu] = NULL;
+               }
+
+               if (!sched_group_nodes)
+                       continue;
+
+               for (i = 0; i < MAX_NUMNODES; i++) {
+                       cpumask_t nodemask = node_to_cpumask(i);
+                       struct sched_group *oldsg, *sg = sched_group_nodes[i];
+
+                       cpus_and(nodemask, nodemask, *cpu_map);
+                       if (cpus_empty(nodemask))
+                               continue;
+
+                       if (sg == NULL)
+                               continue;
+                       sg = sg->next;
+next_sg:
+                       oldsg = sg;
+                       sg = sg->next;
+                       kfree(oldsg);
+                       if (oldsg != sched_group_nodes[i])
+                               goto next_sg;
+               }
+               kfree(sched_group_nodes);
+               sched_group_nodes_bycpu[cpu] = NULL;
+       }
 #endif
+}
 
-#endif /* ARCH_HAS_SCHED_DOMAIN */
+/*
+ * Detach sched domains from a group of cpus specified in cpu_map
+ * These cpus will now be attached to the NULL domain
+ */
+static void detach_destroy_domains(const cpumask_t *cpu_map)
+{
+       int i;
+
+       for_each_cpu_mask(i, *cpu_map)
+               cpu_attach_domain(NULL, i);
+       synchronize_sched();
+       arch_destroy_sched_domains(cpu_map);
+}
 
 /*
- * Initial dummy domain for early boot and for hotplug cpu. Being static,
- * it is initialized to zero, so all balancing flags are cleared which is
- * what we want.
+ * Partition sched domains as specified by the cpumasks below.
+ * This attaches all cpus from the cpumasks to the NULL domain,
+ * waits for a RCU quiescent period, recalculates sched
+ * domain information and then attaches them back to the
+ * correct sched domains
+ * Call with hotplug lock held
  */
-static struct sched_domain sched_domain_dummy;
+void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
+{
+       cpumask_t change_map;
+
+       cpus_and(*partition1, *partition1, cpu_online_map);
+       cpus_and(*partition2, *partition2, cpu_online_map);
+       cpus_or(change_map, *partition1, *partition2);
+
+       /* Detach sched domains from all of the affected cpus */
+       detach_destroy_domains(&change_map);
+       if (!cpus_empty(*partition1))
+               build_sched_domains(partition1);
+       if (!cpus_empty(*partition2))
+               build_sched_domains(partition2);
+}
 
 #ifdef CONFIG_HOTPLUG_CPU
 /*
  * Force a reinitialization of the sched domains hierarchy.  The domains
  * and groups cannot be updated in place without racing with the balancing
- * code, so we temporarily attach all running cpus to a "dummy" domain
+ * code, so we temporarily attach all running cpus to the NULL domain
  * which will prevent rebalancing while the sched domains are recalculated.
  */
 static int update_sched_domains(struct notifier_block *nfb,
                                unsigned long action, void *hcpu)
 {
-       int i;
-
        switch (action) {
        case CPU_UP_PREPARE:
        case CPU_DOWN_PREPARE:
-               for_each_online_cpu(i)
-                       cpu_attach_domain(&sched_domain_dummy, i);
-               arch_destroy_sched_domains();
+               detach_destroy_domains(&cpu_online_map);
                return NOTIFY_OK;
 
        case CPU_UP_CANCELED:
@@ -5033,7 +6221,7 @@ static int update_sched_domains(struct notifier_block *nfb,
        }
 
        /* The hotplug lock is already held by cpu_up/cpu_down */
-       arch_init_sched_domains();
+       arch_init_sched_domains(&cpu_online_map);
 
        return NOTIFY_OK;
 }
@@ -5042,7 +6230,7 @@ static int update_sched_domains(struct notifier_block *nfb,
 void __init sched_init_smp(void)
 {
        lock_cpu_hotplug();
-       arch_init_sched_domains();
+       arch_init_sched_domains(&cpu_online_map);
        unlock_cpu_hotplug();
        /* XXX: Theoretical race here - CPU may be hotplugged now */
        hotcpu_notifier(update_sched_domains, 0);
@@ -5067,22 +6255,25 @@ void __init sched_init(void)
        runqueue_t *rq;
        int i, j, k;
 
-       for (i = 0; i < NR_CPUS; i++) {
+       for_each_possible_cpu(i) {
                prio_array_t *array;
 
                rq = cpu_rq(i);
                spin_lock_init(&rq->lock);
+               rq->nr_running = 0;
                rq->active = rq->arrays;
                rq->expired = rq->arrays + 1;
                rq->best_expired_prio = MAX_PRIO;
 
 #ifdef CONFIG_SMP
-               rq->sd = &sched_domain_dummy;
-               rq->cpu_load = 0;
+               rq->sd = NULL;
+               for (j = 1; j < 3; j++)
+                       rq->cpu_load[j] = 0;
                rq->active_balance = 0;
                rq->push_cpu = 0;
                rq->migration_thread = NULL;
                INIT_LIST_HEAD(&rq->migration_queue);
+               rq->cpu = i;
 #endif
                atomic_set(&rq->nr_iowait, 0);
 #ifdef CONFIG_VSERVER_HARDCPU
@@ -5126,7 +6317,7 @@ void __might_sleep(char *file, int line)
                if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
                        return;
                prev_jiffy = jiffies;
-               printk(KERN_ERR "Debug: sleeping function called from invalid"
+               printk(KERN_ERR "BUG: sleeping function called from invalid"
                                " context at %s:%d\n", file, line);
                printk("in_atomic():%d, irqs_disabled():%d\n",
                        in_atomic(), irqs_disabled());
@@ -5168,3 +6359,47 @@ void normalize_rt_tasks(void)
 }
 
 #endif /* CONFIG_MAGIC_SYSRQ */
+
+#ifdef CONFIG_IA64
+/*
+ * These functions are only useful for the IA64 MCA handling.
+ *
+ * They can only be called when the whole system has been
+ * stopped - every CPU needs to be quiescent, and no scheduling
+ * activity can take place. Using them for anything else would
+ * be a serious bug, and as a result, they aren't even visible
+ * under any other configuration.
+ */
+
+/**
+ * curr_task - return the current task for a given cpu.
+ * @cpu: the processor in question.
+ *
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
+ */
+task_t *curr_task(int cpu)
+{
+       return cpu_curr(cpu);
+}
+
+/**
+ * set_curr_task - set the current task for a given cpu.
+ * @cpu: the processor in question.
+ * @p: the task pointer to set.
+ *
+ * Description: This function must only be used when non-maskable interrupts
+ * are serviced on a separate stack.  It allows the architecture to switch the
+ * notion of the current task on a cpu in a non-blocking manner.  This function
+ * must be called with all CPU's synchronized, and interrupts disabled, the
+ * and caller must save the original value of the current task (see
+ * curr_task() above) and restore that value before reenabling interrupts and
+ * re-starting the system.
+ *
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
+ */
+void set_curr_task(int cpu, task_t *p)
+{
+       cpu_curr(cpu) = p;
+}
+
+#endif