patch-2_6_7-vs1_9_1_12
[linux-2.6.git] / kernel / sched.c
index a9f143b..022dabf 100644 (file)
@@ -15,6 +15,7 @@
  *             and per-CPU runqueues.  Cleanups and useful suggestions
  *             by Davide Libenzi, preemptible kernel bits by Robert Love.
  *  2003-09-03 Interactivity tuning by Con Kolivas.
+ *  2004-04-02 Scheduler domains code by Nick Piggin
  */
 
 #include <linux/mm.h>
@@ -40,7 +41,9 @@
 #include <linux/percpu.h>
 #include <linux/kthread.h>
 #include <linux/vserver/sched.h>
-#include <linux/vinline.h>
+#include <linux/vs_base.h>
+
+#include <asm/unistd.h>
 
 #ifdef CONFIG_NUMA
 #define cpu_to_node_mask(cpu) node_to_cpumask(cpu_to_node(cpu))
@@ -93,7 +96,6 @@
 #define MAX_SLEEP_AVG          (AVG_TIMESLICE * MAX_BONUS)
 #define STARVATION_LIMIT       (MAX_SLEEP_AVG)
 #define NS_MAX_SLEEP_AVG       (JIFFIES_TO_NS(MAX_SLEEP_AVG))
-#define NODE_THRESHOLD         125
 #define CREDIT_LIMIT           100
 
 /*
        (v1) * (v2_max) / (v1_max)
 
 #define DELTA(p) \
-       (SCALE(TASK_NICE(p), 40, MAX_USER_PRIO*PRIO_BONUS_RATIO/100) + \
-               INTERACTIVE_DELTA)
+       (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
 
 #define TASK_INTERACTIVE(p) \
        ((p)->prio <= (p)->static_prio - DELTA(p))
                ((MAX_TIMESLICE - MIN_TIMESLICE) * \
                        (MAX_PRIO-1 - (p)->static_prio) / (MAX_USER_PRIO-1)))
 
-static inline unsigned int task_timeslice(task_t *p)
+static unsigned int task_timeslice(task_t *p)
 {
        return BASE_TIMESLICE(p);
 }
 
+#define task_hot(p, now, sd) ((now) - (p)->timestamp < (sd)->cache_hot_time)
+
 /*
  * These are the runqueue data structures:
  */
@@ -189,7 +192,7 @@ static inline unsigned int task_timeslice(task_t *p)
 typedef struct runqueue runqueue_t;
 
 struct prio_array {
-       int nr_active;
+       unsigned int nr_active;
        unsigned long bitmap[BITMAP_SIZE];
        struct list_head queue[MAX_PRIO];
 };
@@ -203,39 +206,48 @@ struct prio_array {
  */
 struct runqueue {
        spinlock_t lock;
+
+       /*
+        * nr_running and cpu_load should be in the same cacheline because
+        * remote CPUs use both these fields when doing load calculation.
+        */
+       unsigned long nr_running;
+#ifdef CONFIG_SMP
+       unsigned long cpu_load;
+#endif
        unsigned long long nr_switches;
-       unsigned long nr_running, expired_timestamp, nr_uninterruptible,
-               timestamp_last_tick;
+       unsigned long expired_timestamp, nr_uninterruptible;
+       unsigned long long timestamp_last_tick;
        task_t *curr, *idle;
        struct mm_struct *prev_mm;
        prio_array_t *active, *expired, arrays[2];
-       int best_expired_prio, prev_cpu_load[NR_CPUS];
-#ifdef CONFIG_NUMA
-       atomic_t *node_nr_running;
-       int prev_node_load[MAX_NUMNODES];
-#endif
+       int best_expired_prio;
+       atomic_t nr_iowait;
+
+#ifdef CONFIG_SMP
+       struct sched_domain *sd;
+
+       /* For active balancing */
+       int active_balance;
+       int push_cpu;
+
        task_t *migration_thread;
        struct list_head migration_queue;
+#endif
        struct list_head hold_queue;
        int idle_tokens;
-
-       atomic_t nr_iowait;
 };
 
 static DEFINE_PER_CPU(struct runqueue, runqueues);
 
+#define for_each_domain(cpu, domain) \
+       for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
+
 #define cpu_rq(cpu)            (&per_cpu(runqueues, (cpu)))
 #define this_rq()              (&__get_cpu_var(runqueues))
 #define task_rq(p)             cpu_rq(task_cpu(p))
 #define cpu_curr(cpu)          (cpu_rq(cpu)->curr)
 
-extern unsigned long __scheduling_functions_start_here;
-extern unsigned long __scheduling_functions_end_here;
-const unsigned long scheduling_functions_start_here =
-                       (unsigned long)&__scheduling_functions_start_here;
-const unsigned long scheduling_functions_end_here =
-                       (unsigned long)&__scheduling_functions_end_here;
-
 /*
  * Default context-switch locking:
  */
@@ -245,57 +257,12 @@ const unsigned long scheduling_functions_end_here =
 # define task_running(rq, p)           ((rq)->curr == (p))
 #endif
 
-#ifdef CONFIG_NUMA
-
-/*
- * Keep track of running tasks.
- */
-
-static atomic_t node_nr_running[MAX_NUMNODES] ____cacheline_maxaligned_in_smp =
-       {[0 ...MAX_NUMNODES-1] = ATOMIC_INIT(0)};
-
-static inline void nr_running_init(struct runqueue *rq)
-{
-       rq->node_nr_running = &node_nr_running[0];
-}
-
-static inline void nr_running_inc(runqueue_t *rq)
-{
-       atomic_inc(rq->node_nr_running);
-       rq->nr_running++;
-}
-
-static inline void nr_running_dec(runqueue_t *rq)
-{
-       atomic_dec(rq->node_nr_running);
-       rq->nr_running--;
-}
-
-__init void node_nr_running_init(void)
-{
-       int i;
-
-       for (i = 0; i < NR_CPUS; i++) {
-               if (cpu_possible(i))
-                       cpu_rq(i)->node_nr_running =
-                               &node_nr_running[cpu_to_node(i)];
-       }
-}
-
-#else /* !CONFIG_NUMA */
-
-# define nr_running_init(rq)   do { } while (0)
-# define nr_running_inc(rq)    do { (rq)->nr_running++; } while (0)
-# define nr_running_dec(rq)    do { (rq)->nr_running--; } while (0)
-
-#endif /* CONFIG_NUMA */
-
 /*
  * task_rq_lock - lock the runqueue a given task resides on and disable
  * interrupts.  Note the ordering: we can safely lookup the task_rq without
  * explicitly disabling preemption.
  */
-static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
+static runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
 {
        struct runqueue *rq;
 
@@ -318,7 +285,7 @@ static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
 /*
  * rq_lock - lock a given runqueue and disable interrupts.
  */
-static inline runqueue_t *this_rq_lock(void)
+static runqueue_t *this_rq_lock(void)
 {
        runqueue_t *rq;
 
@@ -337,7 +304,7 @@ static inline void rq_unlock(runqueue_t *rq)
 /*
  * Adding/removing a task to/from a priority array:
  */
-static inline void dequeue_task(struct task_struct *p, prio_array_t *array)
+static void dequeue_task(struct task_struct *p, prio_array_t *array)
 {
        array->nr_active--;
        list_del(&p->run_list);
@@ -345,7 +312,7 @@ static inline void dequeue_task(struct task_struct *p, prio_array_t *array)
                __clear_bit(p->prio, array->bitmap);
 }
 
-static inline void enqueue_task(struct task_struct *p, prio_array_t *array)
+static void enqueue_task(struct task_struct *p, prio_array_t *array)
 {
        list_add_tail(&p->run_list, array->queue + p->prio);
        __set_bit(p->prio, array->bitmap);
@@ -353,6 +320,19 @@ static inline void enqueue_task(struct task_struct *p, prio_array_t *array)
        p->array = array;
 }
 
+/*
+ * Used by the migration code - we pull tasks from the head of the
+ * remote queue so we want these tasks to show up at the head of the
+ * local queue:
+ */
+static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
+{
+       list_add(&p->run_list, array->queue + p->prio);
+       __set_bit(p->prio, array->bitmap);
+       array->nr_active++;
+       p->array = array;
+}
+
 /*
  * effective_prio - return the priority that is based on the static
  * priority but is modified by bonuses/penalties.
@@ -393,7 +373,16 @@ static int effective_prio(task_t *p)
 static inline void __activate_task(task_t *p, runqueue_t *rq)
 {
        enqueue_task(p, rq->active);
-       nr_running_inc(rq);
+       rq->nr_running++;
+}
+
+/*
+ * __activate_idle_task - move idle task to the _front_ of runqueue.
+ */
+static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
+{
+       enqueue_task_head(p, rq->active);
+       rq->nr_running++;
 }
 
 static void recalc_task_prio(task_t *p, unsigned long long now)
@@ -476,9 +465,19 @@ static void recalc_task_prio(task_t *p, unsigned long long now)
  * Update all the scheduling statistics stuff. (sleep average
  * calculation, priority modifiers, etc.)
  */
-static inline void activate_task(task_t *p, runqueue_t *rq)
+static void activate_task(task_t *p, runqueue_t *rq, int local)
 {
-       unsigned long long now = sched_clock();
+       unsigned long long now;
+
+       now = sched_clock();
+#ifdef CONFIG_SMP
+       if (!local) {
+               /* Compensate for drifting sched_clock */
+               runqueue_t *this_rq = this_rq();
+               now = (now - this_rq->timestamp_last_tick)
+                       + rq->timestamp_last_tick;
+       }
+#endif
 
        recalc_task_prio(p, now);
 
@@ -512,9 +511,9 @@ static inline void activate_task(task_t *p, runqueue_t *rq)
 /*
  * deactivate_task - remove a task from the runqueue.
  */
-static inline void deactivate_task(struct task_struct *p, runqueue_t *rq)
+static void deactivate_task(struct task_struct *p, runqueue_t *rq)
 {
-       nr_running_dec(rq);
+       rq->nr_running--;
        if (p->state == TASK_UNINTERRUPTIBLE)
                rq->nr_uninterruptible++;
        dequeue_task(p, p->array);
@@ -528,9 +527,9 @@ static inline void deactivate_task(struct task_struct *p, runqueue_t *rq)
  * might also involve a cross-CPU call to trigger the scheduler on
  * the target CPU.
  */
-static inline void resched_task(task_t *p)
-{
 #ifdef CONFIG_SMP
+static void resched_task(task_t *p)
+{
        int need_resched, nrpolling;
 
        preempt_disable();
@@ -542,10 +541,13 @@ static inline void resched_task(task_t *p)
        if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
                smp_send_reschedule(task_cpu(p));
        preempt_enable();
+}
 #else
+static inline void resched_task(task_t *p)
+{
        set_tsk_need_resched(p);
-#endif
 }
+#endif
 
 /**
  * task_curr - is this task currently executing on a CPU?
@@ -557,40 +559,46 @@ inline int task_curr(task_t *p)
 }
 
 #ifdef CONFIG_SMP
+enum request_type {
+       REQ_MOVE_TASK,
+       REQ_SET_DOMAIN,
+};
+
 typedef struct {
        struct list_head list;
+       enum request_type type;
+
+       /* For REQ_MOVE_TASK */
        task_t *task;
+       int dest_cpu;
+
+       /* For REQ_SET_DOMAIN */
+       struct sched_domain *sd;
+
        struct completion done;
 } migration_req_t;
 
 /*
- * The task's runqueue lock must be held, and the new mask must be valid.
+ * The task's runqueue lock must be held.
  * Returns true if you have to wait for migration thread.
  */
-static int __set_cpus_allowed(task_t *p, cpumask_t new_mask,
-                               migration_req_t *req)
+static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
 {
        runqueue_t *rq = task_rq(p);
 
-       p->cpus_allowed = new_mask;
-       /*
-        * Can the task run on the task's current CPU? If not then
-        * migrate the thread off to a proper CPU.
-        */
-       if (cpu_isset(task_cpu(p), new_mask))
-               return 0;
-
        /*
         * If the task is not on a runqueue (and not running), then
         * it is sufficient to simply update the task's cpu field.
         */
        if (!p->array && !task_running(rq, p)) {
-               set_task_cpu(p, any_online_cpu(p->cpus_allowed));
+               set_task_cpu(p, dest_cpu);
                return 0;
        }
 
        init_completion(&req->done);
+       req->type = REQ_MOVE_TASK;
        req->task = p;
+       req->dest_cpu = dest_cpu;
        list_add(&req->list, &rq->migration_queue);
        return 1;
 }
@@ -645,6 +653,71 @@ void kick_process(task_t *p)
 
 EXPORT_SYMBOL_GPL(kick_process);
 
+/*
+ * Return a low guess at the load of a migration-source cpu.
+ *
+ * We want to under-estimate the load of migration sources, to
+ * balance conservatively.
+ */
+static inline unsigned long source_load(int cpu)
+{
+       runqueue_t *rq = cpu_rq(cpu);
+       unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
+
+       return min(rq->cpu_load, load_now);
+}
+
+/*
+ * Return a high guess at the load of a migration-target cpu
+ */
+static inline unsigned long target_load(int cpu)
+{
+       runqueue_t *rq = cpu_rq(cpu);
+       unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
+
+       return max(rq->cpu_load, load_now);
+}
+
+#endif
+
+/*
+ * wake_idle() is useful especially on SMT architectures to wake a
+ * task onto an idle sibling if we would otherwise wake it onto a
+ * busy sibling.
+ *
+ * Returns the CPU we should wake onto.
+ */
+#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
+static int wake_idle(int cpu, task_t *p)
+{
+       cpumask_t tmp;
+       runqueue_t *rq = cpu_rq(cpu);
+       struct sched_domain *sd;
+       int i;
+
+       if (idle_cpu(cpu))
+               return cpu;
+
+       sd = rq->sd;
+       if (!(sd->flags & SD_WAKE_IDLE))
+               return cpu;
+
+       cpus_and(tmp, sd->span, cpu_online_map);
+       for_each_cpu_mask(i, tmp) {
+               if (!cpu_isset(i, p->cpus_allowed))
+                       continue;
+
+               if (idle_cpu(i))
+                       return i;
+       }
+
+       return cpu;
+}
+#else
+static inline int wake_idle(int cpu, task_t *p)
+{
+       return cpu;
+}
 #endif
 
 /***
@@ -663,52 +736,129 @@ EXPORT_SYMBOL_GPL(kick_process);
  */
 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
 {
+       int cpu, this_cpu, success = 0;
        unsigned long flags;
-       int success = 0;
        long old_state;
        runqueue_t *rq;
+#ifdef CONFIG_SMP
+       unsigned long load, this_load;
+       struct sched_domain *sd;
+       int new_cpu;
+#endif
 
-repeat_lock_task:
        rq = task_rq_lock(p, &flags);
        old_state = p->state;
-       if (old_state & state) {
-               if (!p->array) {
+       if (!(old_state & state))
+               goto out;
+
+       if (p->array)
+               goto out_running;
+
+       cpu = task_cpu(p);
+       this_cpu = smp_processor_id();
+
+#ifdef CONFIG_SMP
+       if (unlikely(task_running(rq, p)))
+               goto out_activate;
+
+       new_cpu = cpu;
+
+       if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
+               goto out_set_cpu;
+
+       load = source_load(cpu);
+       this_load = target_load(this_cpu);
+
+       /*
+        * If sync wakeup then subtract the (maximum possible) effect of
+        * the currently running task from the load of the current CPU:
+        */
+       if (sync)
+               this_load -= SCHED_LOAD_SCALE;
+
+       /* Don't pull the task off an idle CPU to a busy one */
+       if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2)
+               goto out_set_cpu;
+
+       new_cpu = this_cpu; /* Wake to this CPU if we can */
+
+       /*
+        * Scan domains for affine wakeup and passive balancing
+        * possibilities.
+        */
+       for_each_domain(this_cpu, sd) {
+               unsigned int imbalance;
+               /*
+                * Start passive balancing when half the imbalance_pct
+                * limit is reached.
+                */
+               imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2;
+
+               if ( ((sd->flags & SD_WAKE_AFFINE) &&
+                               !task_hot(p, rq->timestamp_last_tick, sd))
+                       || ((sd->flags & SD_WAKE_BALANCE) &&
+                               imbalance*this_load <= 100*load) ) {
                        /*
-                        * Fast-migrate the task if it's not running or runnable
-                        * currently. Do not violate hard affinity.
+                        * Now sd has SD_WAKE_AFFINE and p is cache cold in sd
+                        * or sd has SD_WAKE_BALANCE and there is an imbalance
                         */
-                       if (unlikely(sync && !task_running(rq, p) &&
-                               (task_cpu(p) != smp_processor_id()) &&
-                                       cpu_isset(smp_processor_id(),
-                                                       p->cpus_allowed) &&
-                                       !cpu_is_offline(smp_processor_id()))) {
-                               set_task_cpu(p, smp_processor_id());
-                               task_rq_unlock(rq, &flags);
-                               goto repeat_lock_task;
-                       }
-                       if (old_state == TASK_UNINTERRUPTIBLE) {
-                               rq->nr_uninterruptible--;
-                               /*
-                                * Tasks on involuntary sleep don't earn
-                                * sleep_avg beyond just interactive state.
-                                */
-                               p->activated = -1;
-                       }
-                       if (sync && (task_cpu(p) == smp_processor_id()))
-                               __activate_task(p, rq);
-                       else {
-                               activate_task(p, rq);
-                               if (TASK_PREEMPTS_CURR(p, rq))
-                                       resched_task(rq->curr);
-                       }
-                       success = 1;
+                       if (cpu_isset(cpu, sd->span))
+                               goto out_set_cpu;
                }
-               p->state = TASK_RUNNING;
        }
+
+       new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
+out_set_cpu:
+       new_cpu = wake_idle(new_cpu, p);
+       if (new_cpu != cpu && cpu_isset(new_cpu, p->cpus_allowed)) {
+               set_task_cpu(p, new_cpu);
+               task_rq_unlock(rq, &flags);
+               /* might preempt at this point */
+               rq = task_rq_lock(p, &flags);
+               old_state = p->state;
+               if (!(old_state & state))
+                       goto out;
+               if (p->array)
+                       goto out_running;
+
+               this_cpu = smp_processor_id();
+               cpu = task_cpu(p);
+       }
+
+out_activate:
+#endif /* CONFIG_SMP */
+       if (old_state == TASK_UNINTERRUPTIBLE) {
+               rq->nr_uninterruptible--;
+               /*
+                * Tasks on involuntary sleep don't earn
+                * sleep_avg beyond just interactive state.
+                */
+               p->activated = -1;
+       }
+
+       /*
+        * Sync wakeups (i.e. those types of wakeups where the waker
+        * has indicated that it will leave the CPU in short order)
+        * don't trigger a preemption, if the woken up task will run on
+        * this cpu. (in this case the 'I will reschedule' promise of
+        * the waker guarantees that the freshly woken up task is going
+        * to be considered on this CPU.)
+        */
+       activate_task(p, rq, cpu == this_cpu);
+       if (!sync || cpu != this_cpu) {
+               if (TASK_PREEMPTS_CURR(p, rq))
+                       resched_task(rq->curr);
+       }
+       success = 1;
+
+out_running:
+       p->state = TASK_RUNNING;
+out:
        task_rq_unlock(rq, &flags);
 
        return success;
 }
+
 int fastcall wake_up_process(task_t * p)
 {
        return try_to_wake_up(p, TASK_STOPPED |
@@ -763,8 +913,8 @@ void fastcall sched_fork(task_t *p)
        p->timestamp = sched_clock();
        if (!current->time_slice) {
                /*
-                * This case is rare, it happens when the parent has only
-                * a single jiffy left from its timeslice. Taking the
+                * This case is rare, it happens when the parent has only
+                * a single jiffy left from its timeslice. Taking the
                 * runqueue lock is not a problem.
                 */
                current->time_slice = 1;
@@ -812,7 +962,7 @@ void fastcall wake_up_forked_process(task_t * p)
                list_add_tail(&p->run_list, &current->run_list);
                p->array = current->array;
                p->array->nr_active++;
-               nr_running_inc(rq);
+               rq->nr_running++;
        }
        task_rq_unlock(rq, &flags);
 }
@@ -863,7 +1013,7 @@ void fastcall sched_exit(task_t * p)
  * with the lock held can cause deadlocks; see schedule() for
  * details.)
  */
-static inline void finish_task_switch(task_t *prev)
+static void finish_task_switch(task_t *prev)
 {
        runqueue_t *rq = this_rq();
        struct mm_struct *mm = rq->prev_mm;
@@ -880,7 +1030,7 @@ static inline void finish_task_switch(task_t *prev)
         * still held, otherwise prev could be scheduled on another cpu, die
         * there before we look at prev->state, and then the reference would
         * be dropped twice.
-        *              Manfred Spraul <manfred@colorfullife.com>
+        *              Manfred Spraul <manfred@colorfullife.com>
         */
        prev_task_flags = prev->flags;
        finish_arch_switch(rq, prev);
@@ -942,7 +1092,7 @@ unsigned long nr_running(void)
 {
        unsigned long i, sum = 0;
 
-       for (i = 0; i < NR_CPUS; i++)
+       for_each_cpu(i)
                sum += cpu_rq(i)->nr_running;
 
        return sum;
@@ -952,7 +1102,7 @@ unsigned long nr_uninterruptible(void)
 {
        unsigned long i, sum = 0;
 
-       for_each_cpu(i)
+       for_each_online_cpu(i)
                sum += cpu_rq(i)->nr_uninterruptible;
 
        return sum;
@@ -962,7 +1112,7 @@ unsigned long long nr_context_switches(void)
 {
        unsigned long long i, sum = 0;
 
-       for_each_cpu(i)
+       for_each_online_cpu(i)
                sum += cpu_rq(i)->nr_switches;
 
        return sum;
@@ -972,7 +1122,7 @@ unsigned long nr_iowait(void)
 {
        unsigned long i, sum = 0;
 
-       for_each_cpu(i)
+       for_each_online_cpu(i)
                sum += atomic_read(&cpu_rq(i)->nr_iowait);
 
        return sum;
@@ -984,7 +1134,7 @@ unsigned long nr_iowait(void)
  * Note this does not disable interrupts like task_rq_lock,
  * you need to do so manually before calling.
  */
-static inline void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
+static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
 {
        if (rq1 == rq2)
                spin_lock(&rq1->lock);
@@ -1005,252 +1155,228 @@ static inline void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
  * Note this does not restore interrupts like task_rq_unlock,
  * you need to do so manually after calling.
  */
-static inline void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
+static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
 {
        spin_unlock(&rq1->lock);
        if (rq1 != rq2)
                spin_unlock(&rq2->lock);
 }
 
-#ifdef CONFIG_NUMA
+enum idle_type
+{
+       IDLE,
+       NOT_IDLE,
+       NEWLY_IDLE,
+};
+
+#ifdef CONFIG_SMP
+
 /*
- * If dest_cpu is allowed for this process, migrate the task to it.
- * This is accomplished by forcing the cpu_allowed mask to only
- * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
- * the cpu_allowed mask is restored.
+ * find_idlest_cpu - find the least busy runqueue.
  */
-static void sched_migrate_task(task_t *p, int dest_cpu)
+static int find_idlest_cpu(struct task_struct *p, int this_cpu,
+                          struct sched_domain *sd)
 {
-       runqueue_t *rq;
-       migration_req_t req;
-       unsigned long flags;
-       cpumask_t old_mask, new_mask = cpumask_of_cpu(dest_cpu);
+       unsigned long load, min_load, this_load;
+       int i, min_cpu;
+       cpumask_t mask;
 
-       lock_cpu_hotplug();
-       rq = task_rq_lock(p, &flags);
-       old_mask = p->cpus_allowed;
-       if (!cpu_isset(dest_cpu, old_mask) || !cpu_online(dest_cpu))
-               goto out;
+       min_cpu = UINT_MAX;
+       min_load = ULONG_MAX;
 
-       /* force the process onto the specified CPU */
-       if (__set_cpus_allowed(p, new_mask, &req)) {
-               /* Need to wait for migration thread. */
-               task_rq_unlock(rq, &flags);
-               wake_up_process(rq->migration_thread);
-               wait_for_completion(&req.done);
+       cpus_and(mask, sd->span, cpu_online_map);
+       cpus_and(mask, mask, p->cpus_allowed);
 
-               /* If we raced with sys_sched_setaffinity, don't
-                * restore mask. */
-               rq = task_rq_lock(p, &flags);
-               if (likely(cpus_equal(p->cpus_allowed, new_mask))) {
-                       /* Restore old mask: won't need migration
-                        * thread, since current cpu is allowed. */
-                       BUG_ON(__set_cpus_allowed(p, old_mask, NULL));
+       for_each_cpu_mask(i, mask) {
+               load = target_load(i);
+
+               if (load < min_load) {
+                       min_cpu = i;
+                       min_load = load;
+
+                       /* break out early on an idle CPU: */
+                       if (!min_load)
+                               break;
                }
        }
-out:
-       task_rq_unlock(rq, &flags);
-       unlock_cpu_hotplug();
+
+       /* add +1 to account for the new task */
+       this_load = source_load(this_cpu) + SCHED_LOAD_SCALE;
+
+       /*
+        * Would with the addition of the new task to the
+        * current CPU there be an imbalance between this
+        * CPU and the idlest CPU?
+        *
+        * Use half of the balancing threshold - new-context is
+        * a good opportunity to balance.
+        */
+       if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
+               return min_cpu;
+
+       return this_cpu;
 }
 
 /*
- * Find the least loaded CPU.  Slightly favor the current CPU by
- * setting its runqueue length as the minimum to start.
+ * wake_up_forked_thread - wake up a freshly forked thread.
+ *
+ * This function will do some initial scheduler statistics housekeeping
+ * that must be done for every newly created context, and it also does
+ * runqueue balancing.
  */
-static int sched_best_cpu(struct task_struct *p)
+void fastcall wake_up_forked_thread(task_t * p)
 {
-       int i, minload, load, best_cpu, node = 0;
-       cpumask_t cpumask;
+       unsigned long flags;
+       int this_cpu = get_cpu(), cpu;
+       struct sched_domain *tmp, *sd = NULL;
+       runqueue_t *this_rq = cpu_rq(this_cpu), *rq;
 
-       best_cpu = task_cpu(p);
-       if (cpu_rq(best_cpu)->nr_running <= 2)
-               return best_cpu;
+       /*
+        * Find the largest domain that this CPU is part of that
+        * is willing to balance on clone:
+        */
+       for_each_domain(this_cpu, tmp)
+               if (tmp->flags & SD_BALANCE_CLONE)
+                       sd = tmp;
+       if (sd)
+               cpu = find_idlest_cpu(p, this_cpu, sd);
+       else
+               cpu = this_cpu;
 
-       minload = 10000000;
-       for_each_node_with_cpus(i) {
-               /*
-                * Node load is always divided by nr_cpus_node to normalise
-                * load values in case cpu count differs from node to node.
-                * We first multiply node_nr_running by 10 to get a little
-                * better resolution.
-                */
-               load = 10 * atomic_read(&node_nr_running[i]) / nr_cpus_node(i);
-               if (load < minload) {
-                       minload = load;
-                       node = i;
-               }
+       local_irq_save(flags);
+lock_again:
+       rq = cpu_rq(cpu);
+       double_rq_lock(this_rq, rq);
+
+       BUG_ON(p->state != TASK_RUNNING);
+
+       /*
+        * We did find_idlest_cpu() unlocked, so in theory
+        * the mask could have changed - just dont migrate
+        * in this case:
+        */
+       if (unlikely(!cpu_isset(cpu, p->cpus_allowed))) {
+               cpu = this_cpu;
+               double_rq_unlock(this_rq, rq);
+               goto lock_again;
        }
+       /*
+        * We decrease the sleep average of forking parents
+        * and children as well, to keep max-interactive tasks
+        * from forking tasks that are max-interactive.
+        */
+       current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
+               PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
 
-       minload = 10000000;
-       cpumask = node_to_cpumask(node);
-       for (i = 0; i < NR_CPUS; ++i) {
-               if (!cpu_isset(i, cpumask))
-                       continue;
-               if (cpu_rq(i)->nr_running < minload) {
-                       best_cpu = i;
-                       minload = cpu_rq(i)->nr_running;
+       p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
+               CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
+
+       p->interactive_credit = 0;
+
+       p->prio = effective_prio(p);
+       set_task_cpu(p, cpu);
+
+       if (cpu == this_cpu) {
+               if (unlikely(!current->array))
+                       __activate_task(p, rq);
+               else {
+                       p->prio = current->prio;
+                       list_add_tail(&p->run_list, &current->run_list);
+                       p->array = current->array;
+                       p->array->nr_active++;
+                       rq->nr_running++;
                }
+       } else {
+               /* Not the local CPU - must adjust timestamp */
+               p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
+                                       + rq->timestamp_last_tick;
+               __activate_task(p, rq);
+               if (TASK_PREEMPTS_CURR(p, rq))
+                       resched_task(rq->curr);
        }
-       return best_cpu;
+
+       double_rq_unlock(this_rq, rq);
+       local_irq_restore(flags);
+       put_cpu();
 }
 
-void sched_balance_exec(void)
+/*
+ * If dest_cpu is allowed for this process, migrate the task to it.
+ * This is accomplished by forcing the cpu_allowed mask to only
+ * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
+ * the cpu_allowed mask is restored.
+ */
+static void sched_migrate_task(task_t *p, int dest_cpu)
 {
-       int new_cpu;
+       migration_req_t req;
+       runqueue_t *rq;
+       unsigned long flags;
 
-       if (numnodes > 1) {
-               new_cpu = sched_best_cpu(current);
-               if (new_cpu != smp_processor_id())
-                       sched_migrate_task(current, new_cpu);
+       rq = task_rq_lock(p, &flags);
+       if (!cpu_isset(dest_cpu, p->cpus_allowed)
+           || unlikely(cpu_is_offline(dest_cpu)))
+               goto out;
+
+       /* force the process onto the specified CPU */
+       if (migrate_task(p, dest_cpu, &req)) {
+               /* Need to wait for migration thread (might exit: take ref). */
+               struct task_struct *mt = rq->migration_thread;
+               get_task_struct(mt);
+               task_rq_unlock(rq, &flags);
+               wake_up_process(mt);
+               put_task_struct(mt);
+               wait_for_completion(&req.done);
+               return;
        }
+out:
+       task_rq_unlock(rq, &flags);
 }
 
 /*
- * Find the busiest node. All previous node loads contribute with a
- * geometrically deccaying weight to the load measure:
- *      load_{t} = load_{t-1}/2 + nr_node_running_{t}
- * This way sudden load peaks are flattened out a bit.
- * Node load is divided by nr_cpus_node() in order to compare nodes
- * of different cpu count but also [first] multiplied by 10 to
- * provide better resolution.
+ * sched_balance_exec(): find the highest-level, exec-balance-capable
+ * domain and try to migrate the task to the least loaded CPU.
+ *
+ * execve() is a valuable balancing opportunity, because at this point
+ * the task has the smallest effective memory and cache footprint.
  */
-static int find_busiest_node(int this_node)
+void sched_balance_exec(void)
 {
-       int i, node = -1, load, this_load, maxload;
+       struct sched_domain *tmp, *sd = NULL;
+       int new_cpu, this_cpu = get_cpu();
 
-       if (!nr_cpus_node(this_node))
-               return node;
-       this_load = maxload = (this_rq()->prev_node_load[this_node] >> 1)
-               + (10 * atomic_read(&node_nr_running[this_node])
-               / nr_cpus_node(this_node));
-       this_rq()->prev_node_load[this_node] = this_load;
-       for_each_node_with_cpus(i) {
-               if (i == this_node)
-                       continue;
-               load = (this_rq()->prev_node_load[i] >> 1)
-                       + (10 * atomic_read(&node_nr_running[i])
-                       / nr_cpus_node(i));
-               this_rq()->prev_node_load[i] = load;
-               if (load > maxload && (100*load > NODE_THRESHOLD*this_load)) {
-                       maxload = load;
-                       node = i;
+       /* Prefer the current CPU if there's only this task running */
+       if (this_rq()->nr_running <= 1)
+               goto out;
+
+       for_each_domain(this_cpu, tmp)
+               if (tmp->flags & SD_BALANCE_EXEC)
+                       sd = tmp;
+
+       if (sd) {
+               new_cpu = find_idlest_cpu(current, this_cpu, sd);
+               if (new_cpu != this_cpu) {
+                       put_cpu();
+                       sched_migrate_task(current, new_cpu);
+                       return;
                }
        }
-       return node;
+out:
+       put_cpu();
 }
 
-#endif /* CONFIG_NUMA */
-
-#ifdef CONFIG_SMP
-
 /*
- * double_lock_balance - lock the busiest runqueue
- *
- * this_rq is locked already. Recalculate nr_running if we have to
- * drop the runqueue lock.
+ * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  */
-static inline
-unsigned int double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest,
-                                int this_cpu, int idle,
-                                unsigned int nr_running)
+static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
 {
        if (unlikely(!spin_trylock(&busiest->lock))) {
                if (busiest < this_rq) {
                        spin_unlock(&this_rq->lock);
                        spin_lock(&busiest->lock);
                        spin_lock(&this_rq->lock);
-                       /* Need to recalculate nr_running */
-                       if (idle || (this_rq->nr_running >
-                                       this_rq->prev_cpu_load[this_cpu]))
-                               nr_running = this_rq->nr_running;
-                       else
-                               nr_running = this_rq->prev_cpu_load[this_cpu];
                } else
                        spin_lock(&busiest->lock);
        }
-       return nr_running;
-}
-
-/*
- * find_busiest_queue - find the busiest runqueue among the cpus in cpumask.
- */
-static inline
-runqueue_t *find_busiest_queue(runqueue_t *this_rq, int this_cpu, int idle,
-                              int *imbalance, cpumask_t cpumask)
-{
-       int nr_running, load, max_load, i;
-       runqueue_t *busiest, *rq_src;
-
-       /*
-        * We search all runqueues to find the most busy one.
-        * We do this lockless to reduce cache-bouncing overhead,
-        * we re-check the 'best' source CPU later on again, with
-        * the lock held.
-        *
-        * We fend off statistical fluctuations in runqueue lengths by
-        * saving the runqueue length (as seen by the balancing CPU) during
-        * the previous load-balancing operation and using the smaller one
-        * of the current and saved lengths. If a runqueue is long enough
-        * for a longer amount of time then we recognize it and pull tasks
-        * from it.
-        *
-        * The 'current runqueue length' is a statistical maximum variable,
-        * for that one we take the longer one - to avoid fluctuations in
-        * the other direction. So for a load-balance to happen it needs
-        * stable long runqueue on the target CPU and stable short runqueue
-        * on the local runqueue.
-        *
-        * We make an exception if this CPU is about to become idle - in
-        * that case we are less picky about moving a task across CPUs and
-        * take what can be taken.
-        */
-       if (idle || (this_rq->nr_running > this_rq->prev_cpu_load[this_cpu]))
-               nr_running = this_rq->nr_running;
-       else
-               nr_running = this_rq->prev_cpu_load[this_cpu];
-
-       busiest = NULL;
-       max_load = 1;
-       for (i = 0; i < NR_CPUS; i++) {
-               if (!cpu_isset(i, cpumask))
-                       continue;
-
-               rq_src = cpu_rq(i);
-               if (idle || (rq_src->nr_running < this_rq->prev_cpu_load[i]))
-                       load = rq_src->nr_running;
-               else
-                       load = this_rq->prev_cpu_load[i];
-               this_rq->prev_cpu_load[i] = rq_src->nr_running;
-
-               if ((load > max_load) && (rq_src != this_rq)) {
-                       busiest = rq_src;
-                       max_load = load;
-               }
-       }
-
-       if (likely(!busiest))
-               goto out;
-
-       *imbalance = max_load - nr_running;
-
-       /* It needs an at least ~25% imbalance to trigger balancing. */
-       if (!idle && ((*imbalance)*4 < max_load)) {
-               busiest = NULL;
-               goto out;
-       }
-
-       nr_running = double_lock_balance(this_rq, busiest, this_cpu,
-                                        idle, nr_running);
-       /*
-        * Make sure nothing changed since we checked the
-        * runqueue length.
-        */
-       if (busiest->nr_running <= nr_running) {
-               spin_unlock(&busiest->lock);
-               busiest = NULL;
-       }
-out:
-       return busiest;
 }
 
 /*
@@ -1259,86 +1385,83 @@ out:
  */
 static inline
 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
-              runqueue_t *this_rq, int this_cpu)
+              runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
 {
        dequeue_task(p, src_array);
-       nr_running_dec(src_rq);
+       src_rq->nr_running--;
        set_task_cpu(p, this_cpu);
-       nr_running_inc(this_rq);
-       enqueue_task(p, this_rq->active);
-       p->timestamp = sched_clock() -
-                               (src_rq->timestamp_last_tick - p->timestamp);
+       this_rq->nr_running++;
+       enqueue_task(p, this_array);
+       p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
+                               + this_rq->timestamp_last_tick;
        /*
         * Note that idle threads have a prio of MAX_PRIO, for this test
         * to be always true for them.
         */
        if (TASK_PREEMPTS_CURR(p, this_rq))
-               set_need_resched();
+               resched_task(this_rq->curr);
 }
 
 /*
  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  */
 static inline
-int can_migrate_task(task_t *tsk, runqueue_t *rq, int this_cpu, int idle)
+int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
+                    struct sched_domain *sd, enum idle_type idle)
 {
-       unsigned long delta = rq->timestamp_last_tick - tsk->timestamp;
-
        /*
         * We do not migrate tasks that are:
         * 1) running (obviously), or
         * 2) cannot be migrated to this CPU due to cpus_allowed, or
         * 3) are cache-hot on their current CPU.
         */
-       if (task_running(rq, tsk))
-               return 0;
-       if (!cpu_isset(this_cpu, tsk->cpus_allowed))
+       if (task_running(rq, p))
                return 0;
-       if (!idle && (delta <= JIFFIES_TO_NS(cache_decay_ticks)))
+       if (!cpu_isset(this_cpu, p->cpus_allowed))
                return 0;
+
+       /* Aggressive migration if we've failed balancing */
+       if (idle == NEWLY_IDLE ||
+                       sd->nr_balance_failed < sd->cache_nice_tries) {
+               if (task_hot(p, rq->timestamp_last_tick, sd))
+                       return 0;
+       }
+
        return 1;
 }
 
 /*
- * Current runqueue is empty, or rebalance tick: if there is an
- * inbalance (current runqueue is too short) then pull from
- * busiest runqueue(s).
+ * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
+ * as part of a balancing operation within "domain". Returns the number of
+ * tasks moved.
  *
- * We call this with the current runqueue locked,
- * irqs disabled.
+ * Called with both runqueues locked.
  */
-static void load_balance(runqueue_t *this_rq, int idle, cpumask_t cpumask)
+static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
+                     unsigned long max_nr_move, struct sched_domain *sd,
+                     enum idle_type idle)
 {
-       int imbalance, idx, this_cpu = smp_processor_id();
-       runqueue_t *busiest;
-       prio_array_t *array;
+       prio_array_t *array, *dst_array;
        struct list_head *head, *curr;
+       int idx, pulled = 0;
        task_t *tmp;
 
-       if (cpu_is_offline(this_cpu))
-               goto out;
-
-       busiest = find_busiest_queue(this_rq, this_cpu, idle,
-                                    &imbalance, cpumask);
-       if (!busiest)
+       if (max_nr_move <= 0 || busiest->nr_running <= 1)
                goto out;
 
-       /*
-        * We only want to steal a number of tasks equal to 1/2 the imbalance,
-        * otherwise we'll just shift the imbalance to the new queue:
-        */
-       imbalance /= 2;
-
        /*
         * We first consider expired tasks. Those will likely not be
         * executed in the near future, and they are most likely to
         * be cache-cold, thus switching CPUs has the least effect
         * on them.
         */
-       if (busiest->expired->nr_active)
+       if (busiest->expired->nr_active) {
                array = busiest->expired;
-       else
+               dst_array = this_rq->expired;
+       } else {
                array = busiest->active;
+               dst_array = this_rq->active;
+       }
 
 new_array:
        /* Start searching at priority 0: */
@@ -1349,118 +1472,492 @@ skip_bitmap:
        else
                idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
        if (idx >= MAX_PRIO) {
-               if (array == busiest->expired) {
+               if (array == busiest->expired && busiest->active->nr_active) {
                        array = busiest->active;
+                       dst_array = this_rq->active;
                        goto new_array;
                }
-               goto out_unlock;
+               goto out;
+       }
+
+       head = array->queue + idx;
+       curr = head->prev;
+skip_queue:
+       tmp = list_entry(curr, task_t, run_list);
+
+       curr = curr->prev;
+
+       if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle)) {
+               if (curr != head)
+                       goto skip_queue;
+               idx++;
+               goto skip_bitmap;
+       }
+       pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
+       pulled++;
+
+       /* We only want to steal up to the prescribed number of tasks. */
+       if (pulled < max_nr_move) {
+               if (curr != head)
+                       goto skip_queue;
+               idx++;
+               goto skip_bitmap;
+       }
+out:
+       return pulled;
+}
+
+/*
+ * find_busiest_group finds and returns the busiest CPU group within the
+ * domain. It calculates and returns the number of tasks which should be
+ * moved to restore balance via the imbalance parameter.
+ */
+static struct sched_group *
+find_busiest_group(struct sched_domain *sd, int this_cpu,
+                  unsigned long *imbalance, enum idle_type idle)
+{
+       struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
+       unsigned long max_load, avg_load, total_load, this_load, total_pwr;
+
+       max_load = this_load = total_load = total_pwr = 0;
+
+       do {
+               cpumask_t tmp;
+               unsigned long load;
+               int local_group;
+               int i, nr_cpus = 0;
+
+               local_group = cpu_isset(this_cpu, group->cpumask);
+
+               /* Tally up the load of all CPUs in the group */
+               avg_load = 0;
+               cpus_and(tmp, group->cpumask, cpu_online_map);
+               if (unlikely(cpus_empty(tmp)))
+                       goto nextgroup;
+
+               for_each_cpu_mask(i, tmp) {
+                       /* Bias balancing toward cpus of our domain */
+                       if (local_group)
+                               load = target_load(i);
+                       else
+                               load = source_load(i);
+
+                       nr_cpus++;
+                       avg_load += load;
+               }
+
+               if (!nr_cpus)
+                       goto nextgroup;
+
+               total_load += avg_load;
+               total_pwr += group->cpu_power;
+
+               /* Adjust by relative CPU power of the group */
+               avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
+
+               if (local_group) {
+                       this_load = avg_load;
+                       this = group;
+                       goto nextgroup;
+               } else if (avg_load > max_load) {
+                       max_load = avg_load;
+                       busiest = group;
+               }
+nextgroup:
+               group = group->next;
+       } while (group != sd->groups);
+
+       if (!busiest || this_load >= max_load)
+               goto out_balanced;
+
+       avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
+
+       if (this_load >= avg_load ||
+                       100*max_load <= sd->imbalance_pct*this_load)
+               goto out_balanced;
+
+       /*
+        * We're trying to get all the cpus to the average_load, so we don't
+        * want to push ourselves above the average load, nor do we wish to
+        * reduce the max loaded cpu below the average load, as either of these
+        * actions would just result in more rebalancing later, and ping-pong
+        * tasks around. Thus we look for the minimum possible imbalance.
+        * Negative imbalances (*we* are more loaded than anyone else) will
+        * be counted as no imbalance for these purposes -- we can't fix that
+        * by pulling tasks to us.  Be careful of negative numbers as they'll
+        * appear as very large values with unsigned longs.
+        */
+       *imbalance = min(max_load - avg_load, avg_load - this_load);
+
+       /* How much load to actually move to equalise the imbalance */
+       *imbalance = (*imbalance * min(busiest->cpu_power, this->cpu_power))
+                               / SCHED_LOAD_SCALE;
+
+       if (*imbalance < SCHED_LOAD_SCALE - 1) {
+               unsigned long pwr_now = 0, pwr_move = 0;
+               unsigned long tmp;
+
+               if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
+                       *imbalance = 1;
+                       return busiest;
+               }
+
+               /*
+                * OK, we don't have enough imbalance to justify moving tasks,
+                * however we may be able to increase total CPU power used by
+                * moving them.
+                */
+
+               pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
+               pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
+               pwr_now /= SCHED_LOAD_SCALE;
+
+               /* Amount of load we'd subtract */
+               tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
+               if (max_load > tmp)
+                       pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
+                                                       max_load - tmp);
+
+               /* Amount of load we'd add */
+               tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
+               if (max_load < tmp)
+                       tmp = max_load;
+               pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
+               pwr_move /= SCHED_LOAD_SCALE;
+
+               /* Move if we gain another 8th of a CPU worth of throughput */
+               if (pwr_move < pwr_now + SCHED_LOAD_SCALE / 8)
+                       goto out_balanced;
+
+               *imbalance = 1;
+               return busiest;
+       }
+
+       /* Get rid of the scaling factor, rounding down as we divide */
+       *imbalance = (*imbalance + 1) / SCHED_LOAD_SCALE;
+
+       return busiest;
+
+out_balanced:
+       if (busiest && (idle == NEWLY_IDLE ||
+                       (idle == IDLE && max_load > SCHED_LOAD_SCALE)) ) {
+               *imbalance = 1;
+               return busiest;
+       }
+
+       *imbalance = 0;
+       return NULL;
+}
+
+/*
+ * find_busiest_queue - find the busiest runqueue among the cpus in group.
+ */
+static runqueue_t *find_busiest_queue(struct sched_group *group)
+{
+       cpumask_t tmp;
+       unsigned long load, max_load = 0;
+       runqueue_t *busiest = NULL;
+       int i;
+
+       cpus_and(tmp, group->cpumask, cpu_online_map);
+       for_each_cpu_mask(i, tmp) {
+               load = source_load(i);
+
+               if (load > max_load) {
+                       max_load = load;
+                       busiest = cpu_rq(i);
+               }
+       }
+
+       return busiest;
+}
+
+/*
+ * Check this_cpu to ensure it is balanced within domain. Attempt to move
+ * tasks if there is an imbalance.
+ *
+ * Called with this_rq unlocked.
+ */
+static int load_balance(int this_cpu, runqueue_t *this_rq,
+                       struct sched_domain *sd, enum idle_type idle)
+{
+       struct sched_group *group;
+       runqueue_t *busiest;
+       unsigned long imbalance;
+       int nr_moved;
+
+       spin_lock(&this_rq->lock);
+
+       group = find_busiest_group(sd, this_cpu, &imbalance, idle);
+       if (!group)
+               goto out_balanced;
+
+       busiest = find_busiest_queue(group);
+       if (!busiest)
+               goto out_balanced;
+       /*
+        * This should be "impossible", but since load
+        * balancing is inherently racy and statistical,
+        * it could happen in theory.
+        */
+       if (unlikely(busiest == this_rq)) {
+               WARN_ON(1);
+               goto out_balanced;
+       }
+
+       nr_moved = 0;
+       if (busiest->nr_running > 1) {
+               /*
+                * Attempt to move tasks. If find_busiest_group has found
+                * an imbalance but busiest->nr_running <= 1, the group is
+                * still unbalanced. nr_moved simply stays zero, so it is
+                * correctly treated as an imbalance.
+                */
+               double_lock_balance(this_rq, busiest);
+               nr_moved = move_tasks(this_rq, this_cpu, busiest,
+                                               imbalance, sd, idle);
+               spin_unlock(&busiest->lock);
+       }
+       spin_unlock(&this_rq->lock);
+
+       if (!nr_moved) {
+               sd->nr_balance_failed++;
+
+               if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
+                       int wake = 0;
+
+                       spin_lock(&busiest->lock);
+                       if (!busiest->active_balance) {
+                               busiest->active_balance = 1;
+                               busiest->push_cpu = this_cpu;
+                               wake = 1;
+                       }
+                       spin_unlock(&busiest->lock);
+                       if (wake)
+                               wake_up_process(busiest->migration_thread);
+
+                       /*
+                        * We've kicked active balancing, reset the failure
+                        * counter.
+                        */
+                       sd->nr_balance_failed = sd->cache_nice_tries;
+               }
+       } else
+               sd->nr_balance_failed = 0;
+
+       /* We were unbalanced, so reset the balancing interval */
+       sd->balance_interval = sd->min_interval;
+
+       return nr_moved;
+
+out_balanced:
+       spin_unlock(&this_rq->lock);
+
+       /* tune up the balancing interval */
+       if (sd->balance_interval < sd->max_interval)
+               sd->balance_interval *= 2;
+
+       return 0;
+}
+
+/*
+ * Check this_cpu to ensure it is balanced within domain. Attempt to move
+ * tasks if there is an imbalance.
+ *
+ * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
+ * this_rq is locked.
+ */
+static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
+                               struct sched_domain *sd)
+{
+       struct sched_group *group;
+       runqueue_t *busiest = NULL;
+       unsigned long imbalance;
+       int nr_moved = 0;
+
+       group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
+       if (!group)
+               goto out;
+
+       busiest = find_busiest_queue(group);
+       if (!busiest || busiest == this_rq)
+               goto out;
+
+       /* Attempt to move tasks */
+       double_lock_balance(this_rq, busiest);
+
+       nr_moved = move_tasks(this_rq, this_cpu, busiest,
+                                       imbalance, sd, NEWLY_IDLE);
+
+       spin_unlock(&busiest->lock);
+
+out:
+       return nr_moved;
+}
+
+/*
+ * idle_balance is called by schedule() if this_cpu is about to become
+ * idle. Attempts to pull tasks from other CPUs.
+ */
+static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
+{
+       struct sched_domain *sd;
+
+       for_each_domain(this_cpu, sd) {
+               if (sd->flags & SD_BALANCE_NEWIDLE) {
+                       if (load_balance_newidle(this_cpu, this_rq, sd)) {
+                               /* We've pulled tasks over so stop searching */
+                               break;
+                       }
+               }
+       }
+}
+
+/*
+ * active_load_balance is run by migration threads. It pushes a running
+ * task off the cpu. It can be required to correctly have at least 1 task
+ * running on each physical CPU where possible, and not have a physical /
+ * logical imbalance.
+ *
+ * Called with busiest locked.
+ */
+static void active_load_balance(runqueue_t *busiest, int busiest_cpu)
+{
+       struct sched_domain *sd;
+       struct sched_group *group, *busy_group;
+       int i;
+
+       if (busiest->nr_running <= 1)
+               return;
+
+       for_each_domain(busiest_cpu, sd)
+               if (cpu_isset(busiest->push_cpu, sd->span))
+                       break;
+       if (!sd) {
+               WARN_ON(1);
+               return;
        }
 
-       head = array->queue + idx;
-       curr = head->prev;
-skip_queue:
-       tmp = list_entry(curr, task_t, run_list);
+       group = sd->groups;
+       while (!cpu_isset(busiest_cpu, group->cpumask))
+               group = group->next;
+       busy_group = group;
 
-       curr = curr->prev;
+       group = sd->groups;
+       do {
+               cpumask_t tmp;
+               runqueue_t *rq;
+               int push_cpu = 0;
 
-       if (!can_migrate_task(tmp, busiest, this_cpu, idle)) {
-               if (curr != head)
-                       goto skip_queue;
-               idx++;
-               goto skip_bitmap;
-       }
-       pull_task(busiest, array, tmp, this_rq, this_cpu);
+               if (group == busy_group)
+                       goto next_group;
 
-       /* Only migrate one task if we are idle */
-       if (!idle && --imbalance) {
-               if (curr != head)
-                       goto skip_queue;
-               idx++;
-               goto skip_bitmap;
-       }
-out_unlock:
-       spin_unlock(&busiest->lock);
-out:
-       ;
+               cpus_and(tmp, group->cpumask, cpu_online_map);
+               if (!cpus_weight(tmp))
+                       goto next_group;
+
+               for_each_cpu_mask(i, tmp) {
+                       if (!idle_cpu(i))
+                               goto next_group;
+                       push_cpu = i;
+               }
+
+               rq = cpu_rq(push_cpu);
+
+               /*
+                * This condition is "impossible", but since load
+                * balancing is inherently a bit racy and statistical,
+                * it can trigger.. Reported by Bjorn Helgaas on a
+                * 128-cpu setup.
+                */
+               if (unlikely(busiest == rq))
+                       goto next_group;
+               double_lock_balance(busiest, rq);
+               move_tasks(rq, push_cpu, busiest, 1, sd, IDLE);
+               spin_unlock(&rq->lock);
+next_group:
+               group = group->next;
+       } while (group != sd->groups);
 }
 
 /*
- * One of the idle_cpu_tick() and busy_cpu_tick() functions will
- * get called every timer tick, on every CPU. Our balancing action
- * frequency and balancing agressivity depends on whether the CPU is
- * idle or not.
+ * rebalance_tick will get called every timer tick, on every CPU.
  *
- * busy-rebalance every 200 msecs. idle-rebalance every 1 msec. (or on
- * systems with HZ=100, every 10 msecs.)
+ * It checks each scheduling domain to see if it is due to be balanced,
+ * and initiates a balancing operation if so.
  *
- * On NUMA, do a node-rebalance every 400 msecs.
+ * Balancing parameters are set up in arch_init_sched_domains.
  */
-#define IDLE_REBALANCE_TICK (HZ/1000 ?: 1)
-#define BUSY_REBALANCE_TICK (HZ/5 ?: 1)
-#define IDLE_NODE_REBALANCE_TICK (IDLE_REBALANCE_TICK * 5)
-#define BUSY_NODE_REBALANCE_TICK (BUSY_REBALANCE_TICK * 2)
-
-#ifdef CONFIG_NUMA
-static void balance_node(runqueue_t *this_rq, int idle, int this_cpu)
-{
-       int node = find_busiest_node(cpu_to_node(this_cpu));
 
-       if (node >= 0) {
-               cpumask_t cpumask = node_to_cpumask(node);
-               cpu_set(this_cpu, cpumask);
-               spin_lock(&this_rq->lock);
-               load_balance(this_rq, idle, cpumask);
-               spin_unlock(&this_rq->lock);
-       }
-}
-#endif
+/* Don't have all balancing operations going off at once */
+#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
 
-static void rebalance_tick(runqueue_t *this_rq, int idle)
+static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
+                          enum idle_type idle)
 {
-#ifdef CONFIG_NUMA
-       int this_cpu = smp_processor_id();
-#endif
-       unsigned long j = jiffies;
+       unsigned long old_load, this_load;
+       unsigned long j = jiffies + CPU_OFFSET(this_cpu);
+       struct sched_domain *sd;
 
+       /* Update our load */
+       old_load = this_rq->cpu_load;
+       this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
        /*
-        * First do inter-node rebalancing, then intra-node rebalancing,
-        * if both events happen in the same tick. The inter-node
-        * rebalancing does not necessarily have to create a perfect
-        * balance within the node, since we load-balance the most loaded
-        * node with the current CPU. (ie. other CPUs in the local node
-        * are not balanced.)
+        * Round up the averaging division if load is increasing. This
+        * prevents us from getting stuck on 9 if the load is 10, for
+        * example.
         */
-       if (idle) {
-#ifdef CONFIG_NUMA
-               if (!(j % IDLE_NODE_REBALANCE_TICK))
-                       balance_node(this_rq, idle, this_cpu);
-#endif
-               if (!(j % IDLE_REBALANCE_TICK)) {
-                       spin_lock(&this_rq->lock);
-                       load_balance(this_rq, idle, cpu_to_node_mask(this_cpu));
-                       spin_unlock(&this_rq->lock);
+       if (this_load > old_load)
+               old_load++;
+       this_rq->cpu_load = (old_load + this_load) / 2;
+
+       for_each_domain(this_cpu, sd) {
+               unsigned long interval = sd->balance_interval;
+
+               if (idle != IDLE)
+                       interval *= sd->busy_factor;
+
+               /* scale ms to jiffies */
+               interval = msecs_to_jiffies(interval);
+               if (unlikely(!interval))
+                       interval = 1;
+
+               if (j - sd->last_balance >= interval) {
+                       if (load_balance(this_cpu, this_rq, sd, idle)) {
+                               /* We've pulled tasks over so no longer idle */
+                               idle = NOT_IDLE;
+                       }
+                       sd->last_balance += interval;
                }
-               return;
-       }
-#ifdef CONFIG_NUMA
-       if (!(j % BUSY_NODE_REBALANCE_TICK))
-               balance_node(this_rq, idle, this_cpu);
-#endif
-       if (!(j % BUSY_REBALANCE_TICK)) {
-               spin_lock(&this_rq->lock);
-               load_balance(this_rq, idle, cpu_to_node_mask(this_cpu));
-               spin_unlock(&this_rq->lock);
        }
 }
 #else
 /*
  * on UP we do not need to balance between CPUs:
  */
-static inline void rebalance_tick(runqueue_t *this_rq, int idle)
+static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
+{
+}
+static inline void idle_balance(int cpu, runqueue_t *rq)
 {
 }
 #endif
 
+static inline int wake_priority_sleeper(runqueue_t *rq)
+{
+#ifdef CONFIG_SCHED_SMT
+       /*
+        * If an SMT sibling task has been put to sleep for priority
+        * reasons reschedule the idle task to see if it can now run.
+        */
+       if (rq->nr_running) {
+               resched_task(rq->idle);
+               return 1;
+       }
+#endif
+       return 0;
+}
+
 DEFINE_PER_CPU(struct kernel_stat, kstat);
 
 EXPORT_PER_CPU_SYMBOL(kstat);
@@ -1517,7 +2014,9 @@ void scheduler_tick(int user_ticks, int sys_ticks)
                        cpustat->iowait += sys_ticks;
                else
                        cpustat->idle += sys_ticks;
-               rebalance_tick(rq, 1);
+               if (wake_priority_sleeper(rq))
+                       goto out;
+               rebalance_tick(cpu, rq, IDLE);
                return;
        }
        if (TASK_NICE(p) > 0)
@@ -1601,8 +2100,93 @@ void scheduler_tick(int user_ticks, int sys_ticks)
 out_unlock:
        spin_unlock(&rq->lock);
 out:
-       rebalance_tick(rq, 0);
+       rebalance_tick(cpu, rq, NOT_IDLE);
+}
+
+#ifdef CONFIG_SCHED_SMT
+static inline void wake_sleeping_dependent(int cpu, runqueue_t *rq)
+{
+       int i;
+       struct sched_domain *sd = rq->sd;
+       cpumask_t sibling_map;
+
+       if (!(sd->flags & SD_SHARE_CPUPOWER))
+               return;
+
+       cpus_and(sibling_map, sd->span, cpu_online_map);
+       for_each_cpu_mask(i, sibling_map) {
+               runqueue_t *smt_rq;
+
+               if (i == cpu)
+                       continue;
+
+               smt_rq = cpu_rq(i);
+
+               /*
+                * If an SMT sibling task is sleeping due to priority
+                * reasons wake it up now.
+                */
+               if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
+                       resched_task(smt_rq->idle);
+       }
+}
+
+static inline int dependent_sleeper(int cpu, runqueue_t *rq, task_t *p)
+{
+       struct sched_domain *sd = rq->sd;
+       cpumask_t sibling_map;
+       int ret = 0, i;
+
+       if (!(sd->flags & SD_SHARE_CPUPOWER))
+               return 0;
+
+       cpus_and(sibling_map, sd->span, cpu_online_map);
+       for_each_cpu_mask(i, sibling_map) {
+               runqueue_t *smt_rq;
+               task_t *smt_curr;
+
+               if (i == cpu)
+                       continue;
+
+               smt_rq = cpu_rq(i);
+               smt_curr = smt_rq->curr;
+
+               /*
+                * If a user task with lower static priority than the
+                * running task on the SMT sibling is trying to schedule,
+                * delay it till there is proportionately less timeslice
+                * left of the sibling task to prevent a lower priority
+                * task from using an unfair proportion of the
+                * physical cpu's resources. -ck
+                */
+               if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
+                       task_timeslice(p) || rt_task(smt_curr)) &&
+                       p->mm && smt_curr->mm && !rt_task(p))
+                               ret = 1;
+
+               /*
+                * Reschedule a lower priority task on the SMT sibling,
+                * or wake it up if it has been put to sleep for priority
+                * reasons.
+                */
+               if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
+                       task_timeslice(smt_curr) || rt_task(p)) &&
+                       smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
+                       (smt_curr == smt_rq->idle && smt_rq->nr_running))
+                               resched_task(smt_curr);
+       }
+       return ret;
 }
+#else
+static inline void wake_sleeping_dependent(int cpu, runqueue_t *rq)
+{
+}
+
+static inline int dependent_sleeper(int cpu, runqueue_t *rq, task_t *p)
+{
+       return 0;
+}
+#endif
 
 /*
  * schedule() is the main scheduler function.
@@ -1620,7 +2204,7 @@ asmlinkage void __sched schedule(void)
        struct vx_info *vxi;
        int maxidle = -HZ;
 #endif
-       int idx;
+       int cpu, idx;
 
        /*
         * Test if we are atomic.  Since do_exit() needs to call into
@@ -1701,13 +2285,13 @@ need_resched:
 
 pick_next:
 #endif
+       cpu = smp_processor_id();
        if (unlikely(!rq->nr_running)) {
-#ifdef CONFIG_SMP
-               load_balance(rq, 1, cpu_to_node_mask(smp_processor_id()));
-#endif
+               idle_balance(cpu, rq);
                if (!rq->nr_running) {
                        next = rq->idle;
                        rq->expired_timestamp = 0;
+                       wake_sleeping_dependent(cpu, rq);
                        goto switch_tasks;
                }
        }
@@ -1728,6 +2312,11 @@ pick_next:
        queue = array->queue + idx;
        next = list_entry(queue->next, task_t, run_list);
 
+       if (dependent_sleeper(cpu, rq, next)) {
+               next = rq->idle;
+               goto switch_tasks;
+       }
+
 #ifdef CONFIG_VSERVER_HARDCPU          
        vxi = next->vx_info;
        if (vxi && __vx_flags(vxi->vx_flags,
@@ -1823,7 +2412,7 @@ need_resched:
 EXPORT_SYMBOL(preempt_schedule);
 #endif /* CONFIG_PREEMPT */
 
-int default_wake_function(wait_queue_t *curr, unsigned mode, int sync)
+int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
 {
        task_t *p = curr->task;
        return try_to_wake_up(p, mode, sync);
@@ -1841,7 +2430,7 @@ EXPORT_SYMBOL(default_wake_function);
  * zero in this (rare) case, and we handle it by continuing to scan the queue.
  */
 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
-                            int nr_exclusive, int sync)
+                            int nr_exclusive, int sync, void *key)
 {
        struct list_head *tmp, *next;
 
@@ -1850,7 +2439,7 @@ static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
                unsigned flags;
                curr = list_entry(tmp, wait_queue_t, task_list);
                flags = curr->flags;
-               if (curr->func(curr, mode, sync) &&
+               if (curr->func(curr, mode, sync, key) &&
                    (flags & WQ_FLAG_EXCLUSIVE) &&
                    !--nr_exclusive)
                        break;
@@ -1863,12 +2452,13 @@ static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  * @mode: which threads
  * @nr_exclusive: how many wake-one or wake-many threads to wake up
  */
-void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
+void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
+                               int nr_exclusive, void *key)
 {
        unsigned long flags;
 
        spin_lock_irqsave(&q->lock, flags);
-       __wake_up_common(q, mode, nr_exclusive, 0);
+       __wake_up_common(q, mode, nr_exclusive, 0, key);
        spin_unlock_irqrestore(&q->lock, flags);
 }
 
@@ -1879,7 +2469,7 @@ EXPORT_SYMBOL(__wake_up);
  */
 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
 {
-       __wake_up_common(q, mode, 1, 0);
+       __wake_up_common(q, mode, 1, 0, NULL);
 }
 
 /**
@@ -1898,15 +2488,16 @@ void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
 {
        unsigned long flags;
+       int sync = 1;
 
        if (unlikely(!q))
                return;
 
+       if (unlikely(!nr_exclusive))
+               sync = 0;
+
        spin_lock_irqsave(&q->lock, flags);
-       if (likely(nr_exclusive))
-               __wake_up_common(q, mode, nr_exclusive, 1);
-       else
-               __wake_up_common(q, mode, nr_exclusive, 0);
+       __wake_up_common(q, mode, nr_exclusive, sync, NULL);
        spin_unlock_irqrestore(&q->lock, flags);
 }
 EXPORT_SYMBOL_GPL(__wake_up_sync);     /* For internal use only */
@@ -1918,7 +2509,7 @@ void fastcall complete(struct completion *x)
        spin_lock_irqsave(&x->wait.lock, flags);
        x->done++;
        __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
-                        1, 0);
+                        1, 0, NULL);
        spin_unlock_irqrestore(&x->wait.lock, flags);
 }
 EXPORT_SYMBOL(complete);
@@ -1930,7 +2521,7 @@ void fastcall complete_all(struct completion *x)
        spin_lock_irqsave(&x->wait.lock, flags);
        x->done += UINT_MAX/2;
        __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
-                        0, 0);
+                        0, 0, NULL);
        spin_unlock_irqrestore(&x->wait.lock, flags);
 }
 EXPORT_SYMBOL(complete_all);
@@ -2077,7 +2668,7 @@ out_unlock:
 
 EXPORT_SYMBOL(set_user_nice);
 
-#ifndef __alpha__
+#ifdef __ARCH_WANT_SYS_NICE
 
 /*
  * sys_nice - change the priority of the current process.
@@ -2261,7 +2852,7 @@ static int setscheduler(pid_t pid, int policy, struct sched_param __user *param)
                if (task_running(rq, p)) {
                        if (p->prio > oldprio)
                                resched_task(rq->curr);
-               } else if (p->prio < rq->curr->prio)
+               } else if (TASK_PREEMPTS_CURR(p, rq))
                        resched_task(rq->curr);
        }
 
@@ -2430,6 +3021,7 @@ asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
        if (len < real_len)
                return -EINVAL;
 
+       lock_cpu_hotplug();
        read_lock(&tasklist_lock);
 
        retval = -ESRCH;
@@ -2442,6 +3034,7 @@ asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
 
 out_unlock:
        read_unlock(&tasklist_lock);
+       unlock_cpu_hotplug();
        if (retval)
                return retval;
        if (copy_to_user(user_mask_ptr, &mask, real_len))
@@ -2460,6 +3053,7 @@ asmlinkage long sys_sched_yield(void)
 {
        runqueue_t *rq = this_rq_lock();
        prio_array_t *array = current->array;
+       prio_array_t *target = rq->expired;
 
        /*
         * We implement yielding by moving the task into the expired
@@ -2468,16 +3062,15 @@ asmlinkage long sys_sched_yield(void)
         * (special rule: RT tasks will just roundrobin in the active
         *  array.)
         */
-       if (likely(!rt_task(current))) {
-               dequeue_task(current, array);
-               enqueue_task(current, rq->expired);
-       } else {
-               list_del(&current->run_list);
-               list_add_tail(&current->run_list, array->queue + current->prio);
-       }
+       if (unlikely(rt_task(current)))
+               target = rq->active;
+
+       dequeue_task(current, array);
+       enqueue_task(current, target);
+
        /*
         * Since we are going to call schedule() anyway, there's
-        * no need to preempt:
+        * no need to preempt or enable interrupts:
         */
        _raw_spin_unlock(&rq->lock);
        preempt_enable_no_resched();
@@ -2720,7 +3313,7 @@ void show_state(void)
        read_unlock(&tasklist_lock);
 }
 
-void __init init_idle(task_t *idle, int cpu)
+void __devinit init_idle(task_t *idle, int cpu)
 {
        runqueue_t *idle_rq = cpu_rq(cpu), *rq = cpu_rq(task_cpu(idle));
        unsigned long flags;
@@ -2747,13 +3340,13 @@ void __init init_idle(task_t *idle, int cpu)
 }
 
 /*
- * In a system that switches off the HZ timer idle_cpu_mask
+ * In a system that switches off the HZ timer nohz_cpu_mask
  * indicates which cpus entered this state. This is used
  * in the rcu update to wait only for active cpus. For system
- * which do not switch off the HZ timer idle_cpu_mask should
+ * which do not switch off the HZ timer nohz_cpu_mask should
  * always be CPU_MASK_NONE.
  */
-cpumask_t idle_cpu_mask = CPU_MASK_NONE;
+cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
 
 #ifdef CONFIG_SMP
 /*
@@ -2794,7 +3387,12 @@ int set_cpus_allowed(task_t *p, cpumask_t new_mask)
                goto out;
        }
 
-       if (__set_cpus_allowed(p, new_mask, &req)) {
+       p->cpus_allowed = new_mask;
+       /* Can the task run on the task's current CPU? If so, we're done */
+       if (cpu_isset(task_cpu(p), new_mask))
+               goto out;
+
+       if (migrate_task(p, any_online_cpu(new_mask), &req)) {
                /* Need help from migration thread: drop lock and wait. */
                task_rq_unlock(rq, &flags);
                wake_up_process(rq->migration_thread);
@@ -2808,28 +3406,51 @@ out:
 
 EXPORT_SYMBOL_GPL(set_cpus_allowed);
 
-/* Move (not current) task off this cpu, onto dest cpu. */
-static void move_task_away(struct task_struct *p, int dest_cpu)
+/*
+ * Move (not current) task off this cpu, onto dest cpu.  We're doing
+ * this because either it can't run here any more (set_cpus_allowed()
+ * away from this CPU, or CPU going down), or because we're
+ * attempting to rebalance this task on exec (sched_balance_exec).
+ *
+ * So we race with normal scheduler movements, but that's OK, as long
+ * as the task is no longer on this CPU.
+ */
+static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
 {
-       runqueue_t *rq_dest;
+       runqueue_t *rq_dest, *rq_src;
+
+       if (unlikely(cpu_is_offline(dest_cpu)))
+               return;
 
+       rq_src  = cpu_rq(src_cpu);
        rq_dest = cpu_rq(dest_cpu);
 
-       double_rq_lock(this_rq(), rq_dest);
-       if (task_cpu(p) != smp_processor_id())
-               goto out; /* Already moved */
+       double_rq_lock(rq_src, rq_dest);
+       /* Already moved. */
+       if (task_cpu(p) != src_cpu)
+               goto out;
+       /* Affinity changed (again). */
+       if (!cpu_isset(dest_cpu, p->cpus_allowed))
+               goto out;
 
        set_task_cpu(p, dest_cpu);
        if (p->array) {
-               deactivate_task(p, this_rq());
-               activate_task(p, rq_dest);
-               if (p->prio < rq_dest->curr->prio)
+               /*
+                * Sync timestamp with rq_dest's before activating.
+                * The same thing could be achieved by doing this step
+                * afterwards, and pretending it was a local activate.
+                * This way is cleaner and logically correct.
+                */
+               p->timestamp = p->timestamp - rq_src->timestamp_last_tick
+                               + rq_dest->timestamp_last_tick;
+               deactivate_task(p, rq_src);
+               activate_task(p, rq_dest, 0);
+               if (TASK_PREEMPTS_CURR(p, rq_dest))
                        resched_task(rq_dest->curr);
        }
-       p->timestamp = rq_dest->timestamp_last_tick;
 
 out:
-       double_rq_unlock(this_rq(), rq_dest);
+       double_rq_unlock(rq_src, rq_dest);
 }
 
 /*
@@ -2845,6 +3466,7 @@ static int migration_thread(void * data)
        rq = cpu_rq(cpu);
        BUG_ON(rq->migration_thread != current);
 
+       set_current_state(TASK_INTERRUPTIBLE);
        while (!kthread_should_stop()) {
                struct list_head *head;
                migration_req_t *req;
@@ -2853,40 +3475,66 @@ static int migration_thread(void * data)
                        refrigerator(PF_FREEZE);
 
                spin_lock_irq(&rq->lock);
+
+               if (cpu_is_offline(cpu)) {
+                       spin_unlock_irq(&rq->lock);
+                       goto wait_to_die;
+               }
+
+               if (rq->active_balance) {
+                       active_load_balance(rq, cpu);
+                       rq->active_balance = 0;
+               }
+
                head = &rq->migration_queue;
-               current->state = TASK_INTERRUPTIBLE;
+
                if (list_empty(head)) {
                        spin_unlock_irq(&rq->lock);
                        schedule();
+                       set_current_state(TASK_INTERRUPTIBLE);
                        continue;
                }
                req = list_entry(head->next, migration_req_t, list);
                list_del_init(head->next);
-               spin_unlock(&rq->lock);
 
-               move_task_away(req->task,
-                              any_online_cpu(req->task->cpus_allowed));
-               local_irq_enable();
+               if (req->type == REQ_MOVE_TASK) {
+                       spin_unlock(&rq->lock);
+                       __migrate_task(req->task, smp_processor_id(),
+                                       req->dest_cpu);
+                       local_irq_enable();
+               } else if (req->type == REQ_SET_DOMAIN) {
+                       rq->sd = req->sd;
+                       spin_unlock_irq(&rq->lock);
+               } else {
+                       spin_unlock_irq(&rq->lock);
+                       WARN_ON(1);
+               }
+
                complete(&req->done);
        }
+       __set_current_state(TASK_RUNNING);
+       return 0;
+
+wait_to_die:
+       /* Wait for kthread_stop */
+       set_current_state(TASK_INTERRUPTIBLE);
+       while (!kthread_should_stop()) {
+               schedule();
+               set_current_state(TASK_INTERRUPTIBLE);
+       }
+       __set_current_state(TASK_RUNNING);
        return 0;
 }
 
 #ifdef CONFIG_HOTPLUG_CPU
-/* migrate_all_tasks - function to migrate all the tasks from the
- * current cpu caller must have already scheduled this to the target
- * cpu via set_cpus_allowed.  Machine is stopped.  */
-void migrate_all_tasks(void)
+/* migrate_all_tasks - function to migrate all tasks from the dead cpu.  */
+static void migrate_all_tasks(int src_cpu)
 {
        struct task_struct *tsk, *t;
-       int dest_cpu, src_cpu;
+       int dest_cpu;
        unsigned int node;
 
-       /* We're nailed to this CPU. */
-       src_cpu = smp_processor_id();
-
-       /* Not required, but here for neatness. */
-       write_lock(&tasklist_lock);
+       write_lock_irq(&tasklist_lock);
 
        /* watch out for per node tasks, let's stay on this node */
        node = cpu_to_node(src_cpu);
@@ -2922,10 +3570,36 @@ void migrate_all_tasks(void)
                                       tsk->pid, tsk->comm, src_cpu);
                }
 
-               move_task_away(tsk, dest_cpu);
+               __migrate_task(tsk, src_cpu, dest_cpu);
        } while_each_thread(t, tsk);
 
-       write_unlock(&tasklist_lock);
+       write_unlock_irq(&tasklist_lock);
+}
+
+/* Schedules idle task to be the next runnable task on current CPU.
+ * It does so by boosting its priority to highest possible and adding it to
+ * the _front_ of runqueue. Used by CPU offline code.
+ */
+void sched_idle_next(void)
+{
+       int cpu = smp_processor_id();
+       runqueue_t *rq = this_rq();
+       struct task_struct *p = rq->idle;
+       unsigned long flags;
+
+       /* cpu has to be offline */
+       BUG_ON(cpu_online(cpu));
+
+       /* Strictly not necessary since rest of the CPUs are stopped by now
+        * and interrupts disabled on current cpu.
+        */
+       spin_lock_irqsave(&rq->lock, flags);
+
+       __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
+       /* Add idle task to _front_ of it's priority queue */
+       __activate_idle_task(p, rq);
+
+       spin_unlock_irqrestore(&rq->lock, flags);
 }
 #endif /* CONFIG_HOTPLUG_CPU */
 
@@ -2961,18 +3635,47 @@ static int migration_call(struct notifier_block *nfb, unsigned long action,
        case CPU_UP_CANCELED:
                /* Unbind it from offline cpu so it can run.  Fall thru. */
                kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
-       case CPU_DEAD:
                kthread_stop(cpu_rq(cpu)->migration_thread);
                cpu_rq(cpu)->migration_thread = NULL;
-               BUG_ON(cpu_rq(cpu)->nr_running != 0);
+               break;
+       case CPU_DEAD:
+               migrate_all_tasks(cpu);
+               rq = cpu_rq(cpu);
+               kthread_stop(rq->migration_thread);
+               rq->migration_thread = NULL;
+               /* Idle task back to normal (off runqueue, low prio) */
+               rq = task_rq_lock(rq->idle, &flags);
+               deactivate_task(rq->idle, rq);
+               rq->idle->static_prio = MAX_PRIO;
+               __setscheduler(rq->idle, SCHED_NORMAL, 0);
+               task_rq_unlock(rq, &flags);
+               BUG_ON(rq->nr_running != 0);
+
+               /* No need to migrate the tasks: it was best-effort if
+                * they didn't do lock_cpu_hotplug().  Just wake up
+                * the requestors. */
+               spin_lock_irq(&rq->lock);
+               while (!list_empty(&rq->migration_queue)) {
+                       migration_req_t *req;
+                       req = list_entry(rq->migration_queue.next,
+                                        migration_req_t, list);
+                       BUG_ON(req->type != REQ_MOVE_TASK);
+                       list_del_init(&req->list);
+                       complete(&req->done);
+               }
+               spin_unlock_irq(&rq->lock);
                break;
 #endif
        }
        return NOTIFY_OK;
 }
 
+/* Register at highest priority so that task migration (migrate_all_tasks)
+ * happens before everything else.
+ */
 static struct notifier_block __devinitdata migration_notifier = {
        .notifier_call = migration_call,
+       .priority = 10
 };
 
 int __init migration_init(void)
@@ -3001,24 +3704,299 @@ int __init migration_init(void)
 spinlock_t kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
 EXPORT_SYMBOL(kernel_flag);
 
+#ifdef CONFIG_SMP
+/* Attach the domain 'sd' to 'cpu' as its base domain */
+void cpu_attach_domain(struct sched_domain *sd, int cpu)
+{
+       migration_req_t req;
+       unsigned long flags;
+       runqueue_t *rq = cpu_rq(cpu);
+       int local = 1;
+
+       lock_cpu_hotplug();
+
+       spin_lock_irqsave(&rq->lock, flags);
+
+       if (cpu == smp_processor_id() || !cpu_online(cpu)) {
+               rq->sd = sd;
+       } else {
+               init_completion(&req.done);
+               req.type = REQ_SET_DOMAIN;
+               req.sd = sd;
+               list_add(&req.list, &rq->migration_queue);
+               local = 0;
+       }
+
+       spin_unlock_irqrestore(&rq->lock, flags);
+
+       if (!local) {
+               wake_up_process(rq->migration_thread);
+               wait_for_completion(&req.done);
+       }
+
+       unlock_cpu_hotplug();
+}
+
+#ifdef ARCH_HAS_SCHED_DOMAIN
+extern void __init arch_init_sched_domains(void);
+#else
+static struct sched_group sched_group_cpus[NR_CPUS];
+static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
+#ifdef CONFIG_NUMA
+static struct sched_group sched_group_nodes[MAX_NUMNODES];
+static DEFINE_PER_CPU(struct sched_domain, node_domains);
+static void __init arch_init_sched_domains(void)
+{
+       int i;
+       struct sched_group *first_node = NULL, *last_node = NULL;
+
+       /* Set up domains */
+       for_each_cpu(i) {
+               int node = cpu_to_node(i);
+               cpumask_t nodemask = node_to_cpumask(node);
+               struct sched_domain *node_sd = &per_cpu(node_domains, i);
+               struct sched_domain *cpu_sd = &per_cpu(cpu_domains, i);
+
+               *node_sd = SD_NODE_INIT;
+               node_sd->span = cpu_possible_map;
+               node_sd->groups = &sched_group_nodes[cpu_to_node(i)];
+
+               *cpu_sd = SD_CPU_INIT;
+               cpus_and(cpu_sd->span, nodemask, cpu_possible_map);
+               cpu_sd->groups = &sched_group_cpus[i];
+               cpu_sd->parent = node_sd;
+       }
+
+       /* Set up groups */
+       for (i = 0; i < MAX_NUMNODES; i++) {
+               cpumask_t tmp = node_to_cpumask(i);
+               cpumask_t nodemask;
+               struct sched_group *first_cpu = NULL, *last_cpu = NULL;
+               struct sched_group *node = &sched_group_nodes[i];
+               int j;
+
+               cpus_and(nodemask, tmp, cpu_possible_map);
+
+               if (cpus_empty(nodemask))
+                       continue;
+
+               node->cpumask = nodemask;
+               node->cpu_power = SCHED_LOAD_SCALE * cpus_weight(node->cpumask);
+
+               for_each_cpu_mask(j, node->cpumask) {
+                       struct sched_group *cpu = &sched_group_cpus[j];
+
+                       cpus_clear(cpu->cpumask);
+                       cpu_set(j, cpu->cpumask);
+                       cpu->cpu_power = SCHED_LOAD_SCALE;
+
+                       if (!first_cpu)
+                               first_cpu = cpu;
+                       if (last_cpu)
+                               last_cpu->next = cpu;
+                       last_cpu = cpu;
+               }
+               last_cpu->next = first_cpu;
+
+               if (!first_node)
+                       first_node = node;
+               if (last_node)
+                       last_node->next = node;
+               last_node = node;
+       }
+       last_node->next = first_node;
+
+       mb();
+       for_each_cpu(i) {
+               struct sched_domain *cpu_sd = &per_cpu(cpu_domains, i);
+               cpu_attach_domain(cpu_sd, i);
+       }
+}
+
+#else /* !CONFIG_NUMA */
+static void __init arch_init_sched_domains(void)
+{
+       int i;
+       struct sched_group *first_cpu = NULL, *last_cpu = NULL;
+
+       /* Set up domains */
+       for_each_cpu(i) {
+               struct sched_domain *cpu_sd = &per_cpu(cpu_domains, i);
+
+               *cpu_sd = SD_CPU_INIT;
+               cpu_sd->span = cpu_possible_map;
+               cpu_sd->groups = &sched_group_cpus[i];
+       }
+
+       /* Set up CPU groups */
+       for_each_cpu_mask(i, cpu_possible_map) {
+               struct sched_group *cpu = &sched_group_cpus[i];
+
+               cpus_clear(cpu->cpumask);
+               cpu_set(i, cpu->cpumask);
+               cpu->cpu_power = SCHED_LOAD_SCALE;
+
+               if (!first_cpu)
+                       first_cpu = cpu;
+               if (last_cpu)
+                       last_cpu->next = cpu;
+               last_cpu = cpu;
+       }
+       last_cpu->next = first_cpu;
+
+       mb(); /* domains were modified outside the lock */
+       for_each_cpu(i) {
+               struct sched_domain *cpu_sd = &per_cpu(cpu_domains, i);
+               cpu_attach_domain(cpu_sd, i);
+       }
+}
+
+#endif /* CONFIG_NUMA */
+#endif /* ARCH_HAS_SCHED_DOMAIN */
+
+#define SCHED_DOMAIN_DEBUG
+#ifdef SCHED_DOMAIN_DEBUG
+void sched_domain_debug(void)
+{
+       int i;
+
+       for_each_cpu(i) {
+               runqueue_t *rq = cpu_rq(i);
+               struct sched_domain *sd;
+               int level = 0;
+
+               sd = rq->sd;
+
+               printk(KERN_DEBUG "CPU%d: %s\n",
+                               i, (cpu_online(i) ? " online" : "offline"));
+
+               do {
+                       int j;
+                       char str[NR_CPUS];
+                       struct sched_group *group = sd->groups;
+                       cpumask_t groupmask, tmp;
+
+                       cpumask_scnprintf(str, NR_CPUS, sd->span);
+                       cpus_clear(groupmask);
+
+                       printk(KERN_DEBUG);
+                       for (j = 0; j < level + 1; j++)
+                               printk(" ");
+                       printk("domain %d: span %s\n", level, str);
+
+                       if (!cpu_isset(i, sd->span))
+                               printk(KERN_DEBUG "ERROR domain->span does not contain CPU%d\n", i);
+                       if (!cpu_isset(i, group->cpumask))
+                               printk(KERN_DEBUG "ERROR domain->groups does not contain CPU%d\n", i);
+                       if (!group->cpu_power)
+                               printk(KERN_DEBUG "ERROR domain->cpu_power not set\n");
+
+                       printk(KERN_DEBUG);
+                       for (j = 0; j < level + 2; j++)
+                               printk(" ");
+                       printk("groups:");
+                       do {
+                               if (!group) {
+                                       printk(" ERROR: NULL");
+                                       break;
+                               }
+
+                               if (!cpus_weight(group->cpumask))
+                                       printk(" ERROR empty group:");
+
+                               cpus_and(tmp, groupmask, group->cpumask);
+                               if (cpus_weight(tmp) > 0)
+                                       printk(" ERROR repeated CPUs:");
+
+                               cpus_or(groupmask, groupmask, group->cpumask);
+
+                               cpumask_scnprintf(str, NR_CPUS, group->cpumask);
+                               printk(" %s", str);
+
+                               group = group->next;
+                       } while (group != sd->groups);
+                       printk("\n");
+
+                       if (!cpus_equal(sd->span, groupmask))
+                               printk(KERN_DEBUG "ERROR groups don't span domain->span\n");
+
+                       level++;
+                       sd = sd->parent;
+
+                       if (sd) {
+                               cpus_and(tmp, groupmask, sd->span);
+                               if (!cpus_equal(tmp, groupmask))
+                                       printk(KERN_DEBUG "ERROR parent span is not a superset of domain->span\n");
+                       }
+
+               } while (sd);
+       }
+}
+#else
+#define sched_domain_debug() {}
+#endif
+
+void __init sched_init_smp(void)
+{
+       arch_init_sched_domains();
+       sched_domain_debug();
+}
+#else
+void __init sched_init_smp(void)
+{
+}
+#endif /* CONFIG_SMP */
+
+int in_sched_functions(unsigned long addr)
+{
+       /* Linker adds these: start and end of __sched functions */
+       extern char __sched_text_start[], __sched_text_end[];
+       return addr >= (unsigned long)__sched_text_start
+               && addr < (unsigned long)__sched_text_end;
+}
+
 void __init sched_init(void)
 {
        runqueue_t *rq;
        int i, j, k;
 
+#ifdef CONFIG_SMP
+       /* Set up an initial dummy domain for early boot */
+       static struct sched_domain sched_domain_init;
+       static struct sched_group sched_group_init;
+       cpumask_t cpu_mask_all = CPU_MASK_ALL;
+
+       memset(&sched_domain_init, 0, sizeof(struct sched_domain));
+       sched_domain_init.span = cpu_mask_all;
+       sched_domain_init.groups = &sched_group_init;
+       sched_domain_init.last_balance = jiffies;
+       sched_domain_init.balance_interval = INT_MAX; /* Don't balance */
+
+       memset(&sched_group_init, 0, sizeof(struct sched_group));
+       sched_group_init.cpumask = cpu_mask_all;
+       sched_group_init.next = &sched_group_init;
+       sched_group_init.cpu_power = SCHED_LOAD_SCALE;
+#endif
+
        for (i = 0; i < NR_CPUS; i++) {
                prio_array_t *array;
 
                rq = cpu_rq(i);
+               spin_lock_init(&rq->lock);
                rq->active = rq->arrays;
                rq->expired = rq->arrays + 1;
                rq->best_expired_prio = MAX_PRIO;
 
-               spin_lock_init(&rq->lock);
+#ifdef CONFIG_SMP
+               rq->sd = &sched_domain_init;
+               rq->cpu_load = 0;
+               rq->active_balance = 0;
+               rq->push_cpu = 0;
+               rq->migration_thread = NULL;
                INIT_LIST_HEAD(&rq->migration_queue);
+#endif
                INIT_LIST_HEAD(&rq->hold_queue);
                atomic_set(&rq->nr_iowait, 0);
-               nr_running_init(rq);
 
                for (j = 0; j < 2; j++) {
                        array = rq->arrays + j;
@@ -3040,8 +4018,6 @@ void __init sched_init(void)
        set_task_cpu(current, smp_processor_id());
        wake_up_forked_process(current);
 
-       init_timers();
-
        /*
         * The boot idle thread does lazy MMU switching as well:
         */