fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / kernel / timer.c
index c64ba19..db3377b 100644 (file)
@@ -34,7 +34,9 @@
 #include <linux/cpu.h>
 #include <linux/syscalls.h>
 #include <linux/delay.h>
+#include <linux/vs_base.h>
 #include <linux/vs_cvirt.h>
+#include <linux/vs_pid.h>
 #include <linux/vserver/sched.h>
 
 #include <asm/uaccess.h>
 #include <asm/timex.h>
 #include <asm/io.h>
 
-#ifdef CONFIG_TIME_INTERPOLATION
-static void time_interpolator_update(long delta_nsec);
-#else
-#define time_interpolator_update(x)
-#endif
-
 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
 
 EXPORT_SYMBOL(jiffies_64);
@@ -56,7 +52,6 @@ EXPORT_SYMBOL(jiffies_64);
 /*
  * per-CPU timer vector definitions:
  */
-
 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
 #define TVN_SIZE (1 << TVN_BITS)
@@ -64,11 +59,6 @@ EXPORT_SYMBOL(jiffies_64);
 #define TVN_MASK (TVN_SIZE - 1)
 #define TVR_MASK (TVR_SIZE - 1)
 
-struct timer_base_s {
-       spinlock_t lock;
-       struct timer_list *running_timer;
-};
-
 typedef struct tvec_s {
        struct list_head vec[TVN_SIZE];
 } tvec_t;
@@ -78,7 +68,8 @@ typedef struct tvec_root_s {
 } tvec_root_t;
 
 struct tvec_t_base_s {
-       struct timer_base_s t_base;
+       spinlock_t lock;
+       struct timer_list *running_timer;
        unsigned long timer_jiffies;
        tvec_root_t tv1;
        tvec_t tv2;
@@ -88,13 +79,148 @@ struct tvec_t_base_s {
 } ____cacheline_aligned_in_smp;
 
 typedef struct tvec_t_base_s tvec_base_t;
-static DEFINE_PER_CPU(tvec_base_t, tvec_bases);
+
+tvec_base_t boot_tvec_bases;
+EXPORT_SYMBOL(boot_tvec_bases);
+static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
+
+/**
+ * __round_jiffies - function to round jiffies to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * __round_jiffies rounds an absolute time in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The exact rounding is skewed for each processor to avoid all
+ * processors firing at the exact same time, which could lead
+ * to lock contention or spurious cache line bouncing.
+ *
+ * The return value is the rounded version of the "j" parameter.
+ */
+unsigned long __round_jiffies(unsigned long j, int cpu)
+{
+       int rem;
+       unsigned long original = j;
+
+       /*
+        * We don't want all cpus firing their timers at once hitting the
+        * same lock or cachelines, so we skew each extra cpu with an extra
+        * 3 jiffies. This 3 jiffies came originally from the mm/ code which
+        * already did this.
+        * The skew is done by adding 3*cpunr, then round, then subtract this
+        * extra offset again.
+        */
+       j += cpu * 3;
+
+       rem = j % HZ;
+
+       /*
+        * If the target jiffie is just after a whole second (which can happen
+        * due to delays of the timer irq, long irq off times etc etc) then
+        * we should round down to the whole second, not up. Use 1/4th second
+        * as cutoff for this rounding as an extreme upper bound for this.
+        */
+       if (rem < HZ/4) /* round down */
+               j = j - rem;
+       else /* round up */
+               j = j - rem + HZ;
+
+       /* now that we have rounded, subtract the extra skew again */
+       j -= cpu * 3;
+
+       if (j <= jiffies) /* rounding ate our timeout entirely; */
+               return original;
+       return j;
+}
+EXPORT_SYMBOL_GPL(__round_jiffies);
+
+/**
+ * __round_jiffies_relative - function to round jiffies to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * __round_jiffies_relative rounds a time delta  in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The exact rounding is skewed for each processor to avoid all
+ * processors firing at the exact same time, which could lead
+ * to lock contention or spurious cache line bouncing.
+ *
+ * The return value is the rounded version of the "j" parameter.
+ */
+unsigned long __round_jiffies_relative(unsigned long j, int cpu)
+{
+       /*
+        * In theory the following code can skip a jiffy in case jiffies
+        * increments right between the addition and the later subtraction.
+        * However since the entire point of this function is to use approximate
+        * timeouts, it's entirely ok to not handle that.
+        */
+       return  __round_jiffies(j + jiffies, cpu) - jiffies;
+}
+EXPORT_SYMBOL_GPL(__round_jiffies_relative);
+
+/**
+ * round_jiffies - function to round jiffies to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ *
+ * round_jiffies rounds an absolute time in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The return value is the rounded version of the "j" parameter.
+ */
+unsigned long round_jiffies(unsigned long j)
+{
+       return __round_jiffies(j, raw_smp_processor_id());
+}
+EXPORT_SYMBOL_GPL(round_jiffies);
+
+/**
+ * round_jiffies_relative - function to round jiffies to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ *
+ * round_jiffies_relative rounds a time delta  in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The return value is the rounded version of the "j" parameter.
+ */
+unsigned long round_jiffies_relative(unsigned long j)
+{
+       return __round_jiffies_relative(j, raw_smp_processor_id());
+}
+EXPORT_SYMBOL_GPL(round_jiffies_relative);
+
 
 static inline void set_running_timer(tvec_base_t *base,
                                        struct timer_list *timer)
 {
 #ifdef CONFIG_SMP
-       base->t_base.running_timer = timer;
+       base->running_timer = timer;
 #endif
 }
 
@@ -140,16 +266,7 @@ static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
        list_add_tail(&timer->entry, vec);
 }
 
-typedef struct timer_base_s timer_base_t;
-/*
- * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases)
- * at compile time, and we need timer->base to lock the timer.
- */
-timer_base_t __init_timer_base
-       ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED };
-EXPORT_SYMBOL(__init_timer_base);
-
-/***
+/**
  * init_timer - initialize a timer.
  * @timer: the timer to be initialized
  *
@@ -159,7 +276,7 @@ EXPORT_SYMBOL(__init_timer_base);
 void fastcall init_timer(struct timer_list *timer)
 {
        timer->entry.next = NULL;
-       timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base;
+       timer->base = __raw_get_cpu_var(tvec_bases);
 }
 EXPORT_SYMBOL(init_timer);
 
@@ -175,7 +292,7 @@ static inline void detach_timer(struct timer_list *timer,
 }
 
 /*
- * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock
+ * We are using hashed locking: holding per_cpu(tvec_bases).lock
  * means that all timers which are tied to this base via timer->base are
  * locked, and the base itself is locked too.
  *
@@ -186,10 +303,11 @@ static inline void detach_timer(struct timer_list *timer,
  * possible to set timer->base = NULL and drop the lock: the timer remains
  * locked.
  */
-static timer_base_t *lock_timer_base(struct timer_list *timer,
+static tvec_base_t *lock_timer_base(struct timer_list *timer,
                                        unsigned long *flags)
+       __acquires(timer->base->lock)
 {
-       timer_base_t *base;
+       tvec_base_t *base;
 
        for (;;) {
                base = timer->base;
@@ -206,8 +324,7 @@ static timer_base_t *lock_timer_base(struct timer_list *timer,
 
 int __mod_timer(struct timer_list *timer, unsigned long expires)
 {
-       timer_base_t *base;
-       tvec_base_t *new_base;
+       tvec_base_t *base, *new_base;
        unsigned long flags;
        int ret = 0;
 
@@ -220,9 +337,9 @@ int __mod_timer(struct timer_list *timer, unsigned long expires)
                ret = 1;
        }
 
-       new_base = &__get_cpu_var(tvec_bases);
+       new_base = __get_cpu_var(tvec_bases);
 
-       if (base != &new_base->t_base) {
+       if (base != new_base) {
                /*
                 * We are trying to schedule the timer on the local CPU.
                 * However we can't change timer's base while it is running,
@@ -230,28 +347,26 @@ int __mod_timer(struct timer_list *timer, unsigned long expires)
                 * handler yet has not finished. This also guarantees that
                 * the timer is serialized wrt itself.
                 */
-               if (unlikely(base->running_timer == timer)) {
-                       /* The timer remains on a former base */
-                       new_base = container_of(base, tvec_base_t, t_base);
-               } else {
+               if (likely(base->running_timer != timer)) {
                        /* See the comment in lock_timer_base() */
                        timer->base = NULL;
                        spin_unlock(&base->lock);
-                       spin_lock(&new_base->t_base.lock);
-                       timer->base = &new_base->t_base;
+                       base = new_base;
+                       spin_lock(&base->lock);
+                       timer->base = base;
                }
        }
 
        timer->expires = expires;
-       internal_add_timer(new_base, timer);
-       spin_unlock_irqrestore(&new_base->t_base.lock, flags);
+       internal_add_timer(base, timer);
+       spin_unlock_irqrestore(&base->lock, flags);
 
        return ret;
 }
 
 EXPORT_SYMBOL(__mod_timer);
 
-/***
+/**
  * add_timer_on - start a timer on a particular CPU
  * @timer: the timer to be added
  * @cpu: the CPU to start it on
@@ -260,20 +375,21 @@ EXPORT_SYMBOL(__mod_timer);
  */
 void add_timer_on(struct timer_list *timer, int cpu)
 {
-       tvec_base_t *base = &per_cpu(tvec_bases, cpu);
+       tvec_base_t *base = per_cpu(tvec_bases, cpu);
        unsigned long flags;
 
        BUG_ON(timer_pending(timer) || !timer->function);
-       spin_lock_irqsave(&base->t_base.lock, flags);
-       timer->base = &base->t_base;
+       spin_lock_irqsave(&base->lock, flags);
+       timer->base = base;
        internal_add_timer(base, timer);
-       spin_unlock_irqrestore(&base->t_base.lock, flags);
+       spin_unlock_irqrestore(&base->lock, flags);
 }
 
 
-/***
+/**
  * mod_timer - modify a timer's timeout
  * @timer: the timer to be modified
+ * @expires: new timeout in jiffies
  *
  * mod_timer is a more efficient way to update the expire field of an
  * active timer (if the timer is inactive it will be activated)
@@ -307,7 +423,7 @@ int mod_timer(struct timer_list *timer, unsigned long expires)
 
 EXPORT_SYMBOL(mod_timer);
 
-/***
+/**
  * del_timer - deactive a timer.
  * @timer: the timer to be deactivated
  *
@@ -320,7 +436,7 @@ EXPORT_SYMBOL(mod_timer);
  */
 int del_timer(struct timer_list *timer)
 {
-       timer_base_t *base;
+       tvec_base_t *base;
        unsigned long flags;
        int ret = 0;
 
@@ -339,7 +455,10 @@ int del_timer(struct timer_list *timer)
 EXPORT_SYMBOL(del_timer);
 
 #ifdef CONFIG_SMP
-/*
+/**
+ * try_to_del_timer_sync - Try to deactivate a timer
+ * @timer: timer do del
+ *
  * This function tries to deactivate a timer. Upon successful (ret >= 0)
  * exit the timer is not queued and the handler is not running on any CPU.
  *
@@ -347,7 +466,7 @@ EXPORT_SYMBOL(del_timer);
  */
 int try_to_del_timer_sync(struct timer_list *timer)
 {
-       timer_base_t *base;
+       tvec_base_t *base;
        unsigned long flags;
        int ret = -1;
 
@@ -367,7 +486,7 @@ out:
        return ret;
 }
 
-/***
+/**
  * del_timer_sync - deactivate a timer and wait for the handler to finish.
  * @timer: the timer to be deactivated
  *
@@ -390,6 +509,7 @@ int del_timer_sync(struct timer_list *timer)
                int ret = try_to_del_timer_sync(timer);
                if (ret >= 0)
                        return ret;
+               cpu_relax();
        }
 }
 
@@ -399,46 +519,42 @@ EXPORT_SYMBOL(del_timer_sync);
 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
 {
        /* cascade all the timers from tv up one level */
-       struct list_head *head, *curr;
+       struct timer_list *timer, *tmp;
+       struct list_head tv_list;
+
+       list_replace_init(tv->vec + index, &tv_list);
 
-       head = tv->vec + index;
-       curr = head->next;
        /*
-        * We are removing _all_ timers from the list, so we don't  have to
-        * detach them individually, just clear the list afterwards.
+        * We are removing _all_ timers from the list, so we
+        * don't have to detach them individually.
         */
-       while (curr != head) {
-               struct timer_list *tmp;
-
-               tmp = list_entry(curr, struct timer_list, entry);
-               BUG_ON(tmp->base != &base->t_base);
-               curr = curr->next;
-               internal_add_timer(base, tmp);
+       list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
+               BUG_ON(timer->base != base);
+               internal_add_timer(base, timer);
        }
-       INIT_LIST_HEAD(head);
 
        return index;
 }
 
-/***
+#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
+
+/**
  * __run_timers - run all expired timers (if any) on this CPU.
  * @base: the timer vector to be processed.
  *
  * This function cascades all vectors and executes all expired timer
  * vectors.
  */
-#define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
-
 static inline void __run_timers(tvec_base_t *base)
 {
        struct timer_list *timer;
 
-       spin_lock_irq(&base->t_base.lock);
+       spin_lock_irq(&base->lock);
        while (time_after_eq(jiffies, base->timer_jiffies)) {
-               struct list_head work_list = LIST_HEAD_INIT(work_list);
+               struct list_head work_list;
                struct list_head *head = &work_list;
                int index = base->timer_jiffies & TVR_MASK;
+
                /*
                 * Cascade timers:
                 */
@@ -447,8 +563,8 @@ static inline void __run_timers(tvec_base_t *base)
                                (!cascade(base, &base->tv3, INDEX(1))) &&
                                        !cascade(base, &base->tv4, INDEX(2)))
                        cascade(base, &base->tv5, INDEX(3));
-               ++base->timer_jiffies; 
-               list_splice_init(base->tv1.vec + index, &work_list);
+               ++base->timer_jiffies;
+               list_replace_init(base->tv1.vec + index, &work_list);
                while (!list_empty(head)) {
                        void (*fn)(unsigned long);
                        unsigned long data;
@@ -459,7 +575,7 @@ static inline void __run_timers(tvec_base_t *base)
 
                        set_running_timer(base, timer);
                        detach_timer(timer, 1);
-                       spin_unlock_irq(&base->t_base.lock);
+                       spin_unlock_irq(&base->lock);
                        {
                                int preempt_count = preempt_count();
                                fn(data);
@@ -472,11 +588,11 @@ static inline void __run_timers(tvec_base_t *base)
                                        BUG();
                                }
                        }
-                       spin_lock_irq(&base->t_base.lock);
+                       spin_lock_irq(&base->lock);
                }
        }
        set_running_timer(base, NULL);
-       spin_unlock_irq(&base->t_base.lock);
+       spin_unlock_irq(&base->lock);
 }
 
 #ifdef CONFIG_NO_IDLE_HZ
@@ -506,8 +622,8 @@ unsigned long next_timer_interrupt(void)
        }
        hr_expires += jiffies;
 
-       base = &__get_cpu_var(tvec_bases);
-       spin_lock(&base->t_base.lock);
+       base = __get_cpu_var(tvec_bases);
+       spin_lock(&base->lock);
        expires = base->timer_jiffies + (LONG_MAX >> 1);
        list = NULL;
 
@@ -555,7 +671,23 @@ found:
                                expires = nte->expires;
                }
        }
-       spin_unlock(&base->t_base.lock);
+       spin_unlock(&base->lock);
+
+       /*
+        * It can happen that other CPUs service timer IRQs and increment
+        * jiffies, but we have not yet got a local timer tick to process
+        * the timer wheels.  In that case, the expiry time can be before
+        * jiffies, but since the high-resolution timer here is relative to
+        * jiffies, the default expression when high-resolution timers are
+        * not active,
+        *
+        *   time_before(MAX_JIFFY_OFFSET + jiffies, expires)
+        *
+        * would falsely evaluate to true.  If that is the case, just
+        * return jiffies so that we can immediately fire the local timer
+        */
+       if (time_before(expires, jiffies))
+               return jiffies;
 
        if (time_before(hr_expires, expires))
                return hr_expires;
@@ -566,12 +698,6 @@ found:
 
 /******************************************************************/
 
-/*
- * Timekeeping variables
- */
-unsigned long tick_usec = TICK_USEC;           /* USER_HZ period (usec) */
-unsigned long tick_nsec = TICK_NSEC;           /* ACTHZ period (nsec) */
-
 /* 
  * The current time 
  * wall_to_monotonic is what we need to add to xtime (or xtime corrected 
@@ -585,244 +711,393 @@ struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
 
 EXPORT_SYMBOL(xtime);
 
-/* Don't completely fail for HZ > 500.  */
-int tickadj = 500/HZ ? : 1;            /* microsecs */
 
+/* XXX - all of this timekeeping code should be later moved to time.c */
+#include <linux/clocksource.h>
+static struct clocksource *clock; /* pointer to current clocksource */
 
-/*
- * phase-lock loop variables
+#ifdef CONFIG_GENERIC_TIME
+/**
+ * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
+ *
+ * private function, must hold xtime_lock lock when being
+ * called. Returns the number of nanoseconds since the
+ * last call to update_wall_time() (adjusted by NTP scaling)
  */
-/* TIME_ERROR prevents overwriting the CMOS clock */
-int time_state = TIME_OK;              /* clock synchronization status */
-int time_status = STA_UNSYNC;          /* clock status bits            */
-long time_offset;                      /* time adjustment (us)         */
-long time_constant = 2;                        /* pll time constant            */
-long time_tolerance = MAXFREQ;         /* frequency tolerance (ppm)    */
-long time_precision = 1;               /* clock precision (us)         */
-long time_maxerror = NTP_PHASE_LIMIT;  /* maximum error (us)           */
-long time_esterror = NTP_PHASE_LIMIT;  /* estimated error (us)         */
-static long time_phase;                        /* phase offset (scaled us)     */
-long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
-                                       /* frequency offset (scaled ppm)*/
-static long time_adj;                  /* tick adjust (scaled 1 / HZ)  */
-long time_reftime;                     /* time at last adjustment (s)  */
-long time_adjust;
-long time_next_adjust;
+static inline s64 __get_nsec_offset(void)
+{
+       cycle_t cycle_now, cycle_delta;
+       s64 ns_offset;
 
-/*
- * this routine handles the overflow of the microsecond field
+       /* read clocksource: */
+       cycle_now = clocksource_read(clock);
+
+       /* calculate the delta since the last update_wall_time: */
+       cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
+
+       /* convert to nanoseconds: */
+       ns_offset = cyc2ns(clock, cycle_delta);
+
+       return ns_offset;
+}
+
+/**
+ * __get_realtime_clock_ts - Returns the time of day in a timespec
+ * @ts:                pointer to the timespec to be set
  *
- * The tricky bits of code to handle the accurate clock support
- * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
- * They were originally developed for SUN and DEC kernels.
- * All the kudos should go to Dave for this stuff.
+ * Returns the time of day in a timespec. Used by
+ * do_gettimeofday() and get_realtime_clock_ts().
+ */
+static inline void __get_realtime_clock_ts(struct timespec *ts)
+{
+       unsigned long seq;
+       s64 nsecs;
+
+       do {
+               seq = read_seqbegin(&xtime_lock);
+
+               *ts = xtime;
+               nsecs = __get_nsec_offset();
+
+       } while (read_seqretry(&xtime_lock, seq));
+
+       timespec_add_ns(ts, nsecs);
+}
+
+/**
+ * getnstimeofday - Returns the time of day in a timespec
+ * @ts:                pointer to the timespec to be set
  *
+ * Returns the time of day in a timespec.
  */
-static void second_overflow(void)
+void getnstimeofday(struct timespec *ts)
 {
-       long ltemp;
+       __get_realtime_clock_ts(ts);
+}
 
-       /* Bump the maxerror field */
-       time_maxerror += time_tolerance >> SHIFT_USEC;
-       if (time_maxerror > NTP_PHASE_LIMIT) {
-               time_maxerror = NTP_PHASE_LIMIT;
-               time_status |= STA_UNSYNC;
-       }
+EXPORT_SYMBOL(getnstimeofday);
 
-       /*
-        * Leap second processing. If in leap-insert state at the end of the
-        * day, the system clock is set back one second; if in leap-delete
-        * state, the system clock is set ahead one second. The microtime()
-        * routine or external clock driver will insure that reported time is
-        * always monotonic. The ugly divides should be replaced.
-        */
-       switch (time_state) {
-       case TIME_OK:
-               if (time_status & STA_INS)
-                       time_state = TIME_INS;
-               else if (time_status & STA_DEL)
-                       time_state = TIME_DEL;
-               break;
-       case TIME_INS:
-               if (xtime.tv_sec % 86400 == 0) {
-                       xtime.tv_sec--;
-                       wall_to_monotonic.tv_sec++;
-                       /*
-                        * The timer interpolator will make time change
-                        * gradually instead of an immediate jump by one second
-                        */
-                       time_interpolator_update(-NSEC_PER_SEC);
-                       time_state = TIME_OOP;
-                       clock_was_set();
-                       printk(KERN_NOTICE "Clock: inserting leap second "
-                                       "23:59:60 UTC\n");
-               }
-               break;
-       case TIME_DEL:
-               if ((xtime.tv_sec + 1) % 86400 == 0) {
-                       xtime.tv_sec++;
-                       wall_to_monotonic.tv_sec--;
-                       /*
-                        * Use of time interpolator for a gradual change of
-                        * time
-                        */
-                       time_interpolator_update(NSEC_PER_SEC);
-                       time_state = TIME_WAIT;
-                       clock_was_set();
-                       printk(KERN_NOTICE "Clock: deleting leap second "
-                                       "23:59:59 UTC\n");
-               }
-               break;
-       case TIME_OOP:
-               time_state = TIME_WAIT;
-               break;
-       case TIME_WAIT:
-               if (!(time_status & (STA_INS | STA_DEL)))
-               time_state = TIME_OK;
-       }
+/**
+ * do_gettimeofday - Returns the time of day in a timeval
+ * @tv:                pointer to the timeval to be set
+ *
+ * NOTE: Users should be converted to using get_realtime_clock_ts()
+ */
+void do_gettimeofday(struct timeval *tv)
+{
+       struct timespec now;
 
-       /*
-        * Compute the phase adjustment for the next second. In PLL mode, the
-        * offset is reduced by a fixed factor times the time constant. In FLL
-        * mode the offset is used directly. In either mode, the maximum phase
-        * adjustment for each second is clamped so as to spread the adjustment
-        * over not more than the number of seconds between updates.
-        */
-       ltemp = time_offset;
-       if (!(time_status & STA_FLL))
-               ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
-       ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
-       ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
-       time_offset -= ltemp;
-       time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
+       __get_realtime_clock_ts(&now);
+       tv->tv_sec = now.tv_sec;
+       tv->tv_usec = now.tv_nsec/1000;
+}
 
-       /*
-        * Compute the frequency estimate and additional phase adjustment due
-        * to frequency error for the next second. When the PPS signal is
-        * engaged, gnaw on the watchdog counter and update the frequency
-        * computed by the pll and the PPS signal.
-        */
-       pps_valid++;
-       if (pps_valid == PPS_VALID) {   /* PPS signal lost */
-               pps_jitter = MAXTIME;
-               pps_stabil = MAXFREQ;
-               time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
-                               STA_PPSWANDER | STA_PPSERROR);
-       }
-       ltemp = time_freq + pps_freq;
-       time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
+EXPORT_SYMBOL(do_gettimeofday);
+/**
+ * do_settimeofday - Sets the time of day
+ * @tv:                pointer to the timespec variable containing the new time
+ *
+ * Sets the time of day to the new time and update NTP and notify hrtimers
+ */
+int do_settimeofday(struct timespec *tv)
+{
+       unsigned long flags;
+       time_t wtm_sec, sec = tv->tv_sec;
+       long wtm_nsec, nsec = tv->tv_nsec;
 
-#if HZ == 100
-       /*
-        * Compensate for (HZ==100) != (1 << SHIFT_HZ).  Add 25% and 3.125% to
-        * get 128.125; => only 0.125% error (p. 14)
-        */
-       time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
-#endif
-#if HZ == 250
-       /*
-        * Compensate for (HZ==250) != (1 << SHIFT_HZ).  Add 1.5625% and
-        * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
-        */
-       time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
-#endif
-#if HZ == 1000
-       /*
-        * Compensate for (HZ==1000) != (1 << SHIFT_HZ).  Add 1.5625% and
-        * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
-        */
-       time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
+       if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
+               return -EINVAL;
+
+       write_seqlock_irqsave(&xtime_lock, flags);
+
+       nsec -= __get_nsec_offset();
+
+       wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
+       wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
+
+       set_normalized_timespec(&xtime, sec, nsec);
+       set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
+
+       clock->error = 0;
+       ntp_clear();
+
+       write_sequnlock_irqrestore(&xtime_lock, flags);
+
+       /* signal hrtimers about time change */
+       clock_was_set();
+
+       return 0;
+}
+
+EXPORT_SYMBOL(do_settimeofday);
+
+/**
+ * change_clocksource - Swaps clocksources if a new one is available
+ *
+ * Accumulates current time interval and initializes new clocksource
+ */
+static int change_clocksource(void)
+{
+       struct clocksource *new;
+       cycle_t now;
+       u64 nsec;
+       new = clocksource_get_next();
+       if (clock != new) {
+               now = clocksource_read(new);
+               nsec =  __get_nsec_offset();
+               timespec_add_ns(&xtime, nsec);
+
+               clock = new;
+               clock->cycle_last = now;
+               printk(KERN_INFO "Time: %s clocksource has been installed.\n",
+                      clock->name);
+               return 1;
+       } else if (clock->update_callback) {
+               return clock->update_callback();
+       }
+       return 0;
+}
+#else
+static inline int change_clocksource(void)
+{
+       return 0;
+}
 #endif
+
+/**
+ * timeofday_is_continuous - check to see if timekeeping is free running
+ */
+int timekeeping_is_continuous(void)
+{
+       unsigned long seq;
+       int ret;
+
+       do {
+               seq = read_seqbegin(&xtime_lock);
+
+               ret = clock->is_continuous;
+
+       } while (read_seqretry(&xtime_lock, seq));
+
+       return ret;
 }
 
 /*
- * Returns how many microseconds we need to add to xtime this tick
- * in doing an adjustment requested with adjtime.
+ * timekeeping_init - Initializes the clocksource and common timekeeping values
  */
-static long adjtime_adjustment(void)
+void __init timekeeping_init(void)
 {
-       long time_adjust_step;
+       unsigned long flags;
 
-       time_adjust_step = time_adjust;
-       if (time_adjust_step) {
-               /*
-                * We are doing an adjtime thing.  Prepare time_adjust_step to
-                * be within bounds.  Note that a positive time_adjust means we
-                * want the clock to run faster.
-                *
-                * Limit the amount of the step to be in the range
-                * -tickadj .. +tickadj
-                */
-               time_adjust_step = min(time_adjust_step, (long)tickadj);
-               time_adjust_step = max(time_adjust_step, (long)-tickadj);
-       }
-       return time_adjust_step;
+       write_seqlock_irqsave(&xtime_lock, flags);
+
+       ntp_clear();
+
+       clock = clocksource_get_next();
+       clocksource_calculate_interval(clock, tick_nsec);
+       clock->cycle_last = clocksource_read(clock);
+
+       write_sequnlock_irqrestore(&xtime_lock, flags);
+}
+
+
+static int timekeeping_suspended;
+/**
+ * timekeeping_resume - Resumes the generic timekeeping subsystem.
+ * @dev:       unused
+ *
+ * This is for the generic clocksource timekeeping.
+ * xtime/wall_to_monotonic/jiffies/etc are
+ * still managed by arch specific suspend/resume code.
+ */
+static int timekeeping_resume(struct sys_device *dev)
+{
+       unsigned long flags;
+
+       write_seqlock_irqsave(&xtime_lock, flags);
+       /* restart the last cycle value */
+       clock->cycle_last = clocksource_read(clock);
+       clock->error = 0;
+       timekeeping_suspended = 0;
+       write_sequnlock_irqrestore(&xtime_lock, flags);
+       return 0;
+}
+
+static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
+{
+       unsigned long flags;
+
+       write_seqlock_irqsave(&xtime_lock, flags);
+       timekeeping_suspended = 1;
+       write_sequnlock_irqrestore(&xtime_lock, flags);
+       return 0;
 }
 
-/* in the NTP reference this is called "hardclock()" */
-static void update_wall_time_one_tick(void)
+/* sysfs resume/suspend bits for timekeeping */
+static struct sysdev_class timekeeping_sysclass = {
+       .resume         = timekeeping_resume,
+       .suspend        = timekeeping_suspend,
+       set_kset_name("timekeeping"),
+};
+
+static struct sys_device device_timer = {
+       .id             = 0,
+       .cls            = &timekeeping_sysclass,
+};
+
+static int __init timekeeping_init_device(void)
 {
-       long time_adjust_step, delta_nsec;
+       int error = sysdev_class_register(&timekeeping_sysclass);
+       if (!error)
+               error = sysdev_register(&device_timer);
+       return error;
+}
+
+device_initcall(timekeeping_init_device);
+
+/*
+ * If the error is already larger, we look ahead even further
+ * to compensate for late or lost adjustments.
+ */
+static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
+                                                s64 *offset)
+{
+       s64 tick_error, i;
+       u32 look_ahead, adj;
+       s32 error2, mult;
 
-       time_adjust_step = adjtime_adjustment();
-       if (time_adjust_step)
-               /* Reduce by this step the amount of time left  */
-               time_adjust -= time_adjust_step;
-       delta_nsec = tick_nsec + time_adjust_step * 1000;
        /*
-        * Advance the phase, once it gets to one microsecond, then
-        * advance the tick more.
+        * Use the current error value to determine how much to look ahead.
+        * The larger the error the slower we adjust for it to avoid problems
+        * with losing too many ticks, otherwise we would overadjust and
+        * produce an even larger error.  The smaller the adjustment the
+        * faster we try to adjust for it, as lost ticks can do less harm
+        * here.  This is tuned so that an error of about 1 msec is adusted
+        * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
         */
-       time_phase += time_adj;
-       if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
-               long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
-               time_phase -= ltemp << (SHIFT_SCALE - 10);
-               delta_nsec += ltemp;
-       }
-       xtime.tv_nsec += delta_nsec;
-       time_interpolator_update(delta_nsec);
+       error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
+       error2 = abs(error2);
+       for (look_ahead = 0; error2 > 0; look_ahead++)
+               error2 >>= 2;
 
-       /* Changes by adjtime() do not take effect till next tick. */
-       if (time_next_adjust != 0) {
-               time_adjust = time_next_adjust;
-               time_next_adjust = 0;
+       /*
+        * Now calculate the error in (1 << look_ahead) ticks, but first
+        * remove the single look ahead already included in the error.
+        */
+       tick_error = current_tick_length() >>
+               (TICK_LENGTH_SHIFT - clock->shift + 1);
+       tick_error -= clock->xtime_interval >> 1;
+       error = ((error - tick_error) >> look_ahead) + tick_error;
+
+       /* Finally calculate the adjustment shift value.  */
+       i = *interval;
+       mult = 1;
+       if (error < 0) {
+               error = -error;
+               *interval = -*interval;
+               *offset = -*offset;
+               mult = -1;
        }
+       for (adj = 0; error > i; adj++)
+               error >>= 1;
+
+       *interval <<= adj;
+       *offset <<= adj;
+       return mult << adj;
 }
 
 /*
- * Return how long ticks are at the moment, that is, how much time
- * update_wall_time_one_tick will add to xtime next time we call it
- * (assuming no calls to do_adjtimex in the meantime).
- * The return value is in fixed-point nanoseconds with SHIFT_SCALE-10
- * bits to the right of the binary point.
- * This function has no side-effects.
+ * Adjust the multiplier to reduce the error value,
+ * this is optimized for the most common adjustments of -1,0,1,
+ * for other values we can do a bit more work.
  */
-u64 current_tick_length(void)
+static void clocksource_adjust(struct clocksource *clock, s64 offset)
 {
-       long delta_nsec;
+       s64 error, interval = clock->cycle_interval;
+       int adj;
+
+       error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
+       if (error > interval) {
+               error >>= 2;
+               if (likely(error <= interval))
+                       adj = 1;
+               else
+                       adj = clocksource_bigadjust(error, &interval, &offset);
+       } else if (error < -interval) {
+               error >>= 2;
+               if (likely(error >= -interval)) {
+                       adj = -1;
+                       interval = -interval;
+                       offset = -offset;
+               } else
+                       adj = clocksource_bigadjust(error, &interval, &offset);
+       } else
+               return;
 
-       delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
-       return ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj;
+       clock->mult += adj;
+       clock->xtime_interval += interval;
+       clock->xtime_nsec -= offset;
+       clock->error -= (interval - offset) <<
+                       (TICK_LENGTH_SHIFT - clock->shift);
 }
 
-/*
- * Using a loop looks inefficient, but "ticks" is
- * usually just one (we shouldn't be losing ticks,
- * we're doing this this way mainly for interrupt
- * latency reasons, not because we think we'll
- * have lots of lost timer ticks
+/**
+ * update_wall_time - Uses the current clocksource to increment the wall time
+ *
+ * Called from the timer interrupt, must hold a write on xtime_lock.
  */
-static void update_wall_time(unsigned long ticks)
+static void update_wall_time(void)
 {
-       do {
-               ticks--;
-               update_wall_time_one_tick();
-               if (xtime.tv_nsec >= 1000000000) {
-                       xtime.tv_nsec -= 1000000000;
+       cycle_t offset;
+
+       /* Make sure we're fully resumed: */
+       if (unlikely(timekeeping_suspended))
+               return;
+
+#ifdef CONFIG_GENERIC_TIME
+       offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
+#else
+       offset = clock->cycle_interval;
+#endif
+       clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
+
+       /* normally this loop will run just once, however in the
+        * case of lost or late ticks, it will accumulate correctly.
+        */
+       while (offset >= clock->cycle_interval) {
+               /* accumulate one interval */
+               clock->xtime_nsec += clock->xtime_interval;
+               clock->cycle_last += clock->cycle_interval;
+               offset -= clock->cycle_interval;
+
+               if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
+                       clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
                        xtime.tv_sec++;
                        second_overflow();
                }
-       } while (ticks);
+
+               /* interpolator bits */
+               time_interpolator_update(clock->xtime_interval
+                                               >> clock->shift);
+
+               /* accumulate error between NTP and clock interval */
+               clock->error += current_tick_length();
+               clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
+       }
+
+       /* correct the clock when NTP error is too big */
+       clocksource_adjust(clock, offset);
+
+       /* store full nanoseconds into xtime */
+       xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
+       clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
+
+       /* check to see if there is a new clocksource to use */
+       if (change_clocksource()) {
+               clock->error = 0;
+               clock->xtime_nsec = 0;
+               clocksource_calculate_interval(clock, tick_nsec);
+       }
 }
 
 /*
@@ -851,7 +1126,7 @@ void update_process_times(int user_tick)
  */
 static unsigned long count_active_tasks(void)
 {
-       return (nr_running() + nr_uninterruptible()) * FIXED_1;
+       return nr_active() * FIXED_1;
 }
 
 /*
@@ -876,24 +1151,23 @@ static inline void calc_load(unsigned long ticks)
        static int count = LOAD_FREQ;
 
        count -= ticks;
-       if (count < 0) {
-               count += LOAD_FREQ;
+       if (unlikely(count < 0)) {
                active_tasks = count_active_tasks();
-               CALC_LOAD(avenrun[0], EXP_1, active_tasks);
-               CALC_LOAD(avenrun[1], EXP_5, active_tasks);
-               CALC_LOAD(avenrun[2], EXP_15, active_tasks);
+               do {
+                       CALC_LOAD(avenrun[0], EXP_1, active_tasks);
+                       CALC_LOAD(avenrun[1], EXP_5, active_tasks);
+                       CALC_LOAD(avenrun[2], EXP_15, active_tasks);
+                       count += LOAD_FREQ;
+               } while (count < 0);
        }
 }
 
-/* jiffies at the most recent update of wall time */
-unsigned long wall_jiffies = INITIAL_JIFFIES;
-
 /*
  * This read-write spinlock protects us from races in SMP while
  * playing with xtime and avenrun.
  */
 #ifndef ARCH_HAVE_XTIME_LOCK
-seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
+__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
 
 EXPORT_SYMBOL(xtime_lock);
 #endif
@@ -903,7 +1177,7 @@ EXPORT_SYMBOL(xtime_lock);
  */
 static void run_timer_softirq(struct softirq_action *h)
 {
-       tvec_base_t *base = &__get_cpu_var(tvec_bases);
+       tvec_base_t *base = __get_cpu_var(tvec_bases);
 
        hrtimer_run_queues();
        if (time_after_eq(jiffies, base->timer_jiffies))
@@ -916,21 +1190,16 @@ static void run_timer_softirq(struct softirq_action *h)
 void run_local_timers(void)
 {
        raise_softirq(TIMER_SOFTIRQ);
+       softlockup_tick();
 }
 
 /*
  * Called by the timer interrupt. xtime_lock must already be taken
  * by the timer IRQ!
  */
-static inline void update_times(void)
+static inline void update_times(unsigned long ticks)
 {
-       unsigned long ticks;
-
-       ticks = jiffies - wall_jiffies;
-       if (ticks) {
-               wall_jiffies += ticks;
-               update_wall_time(ticks);
-       }
+       update_wall_time();
        calc_load(ticks);
 }
   
@@ -940,13 +1209,10 @@ static inline void update_times(void)
  * jiffies is defined in the linker script...
  */
 
-void do_timer(struct pt_regs *regs)
+void do_timer(unsigned long ticks)
 {
-       jiffies_64++;
-       /* prevent loading jiffies before storing new jiffies_64 value. */
-       barrier();
-       update_times();
-       softlockup_tick(regs);
+       jiffies_64 += ticks;
+       update_times(ticks);
 }
 
 #ifdef __ARCH_WANT_SYS_ALARM
@@ -957,19 +1223,7 @@ void do_timer(struct pt_regs *regs)
  */
 asmlinkage unsigned long sys_alarm(unsigned int seconds)
 {
-       struct itimerval it_new, it_old;
-       unsigned int oldalarm;
-
-       it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
-       it_new.it_value.tv_sec = seconds;
-       it_new.it_value.tv_usec = 0;
-       do_setitimer(ITIMER_REAL, &it_new, &it_old);
-       oldalarm = it_old.it_value.tv_sec;
-       /* ehhh.. We can't return 0 if we have an alarm pending.. */
-       /* And we'd better return too much than too little anyway */
-       if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000)
-               oldalarm++;
-       return oldalarm;
+       return alarm_setitimer(seconds);
 }
 
 #endif
@@ -990,9 +1244,9 @@ asmlinkage long sys_getpid(void)
 }
 
 /*
- * Accessing ->real_parent is not SMP-safe, it could
+ * Accessing ->parent is not SMP-safe, it could
  * change from under us. However, we can use a stale
- * value of ->real_parent under rcu_read_lock(), see
+ * value of ->parent under rcu_read_lock(), see
  * release_task()->call_rcu(delayed_put_task_struct).
  */
 asmlinkage long sys_getppid(void)
@@ -1000,9 +1254,8 @@ asmlinkage long sys_getppid(void)
        int pid;
 
        rcu_read_lock();
-       pid = rcu_dereference(current->real_parent)->tgid;
+       pid = rcu_dereference(current->parent)->tgid;
        rcu_read_unlock();
-
        return vx_map_pid(pid);
 }
 
@@ -1048,7 +1301,7 @@ asmlinkage long sys_getegid(void)
 
 static void process_timeout(unsigned long __data)
 {
-       wake_up_process((task_t *)__data);
+       wake_up_process((struct task_struct *)__data);
 }
 
 /**
@@ -1102,11 +1355,10 @@ fastcall signed long __sched schedule_timeout(signed long timeout)
                 * should never happens anyway). You just have the printk()
                 * that will tell you if something is gone wrong and where.
                 */
-               if (timeout < 0)
-               {
+               if (timeout < 0) {
                        printk(KERN_ERR "schedule_timeout: wrong timeout "
-                               "value %lx from %p\n", timeout,
-                               __builtin_return_address(0));
+                               "value %lx\n", timeout);
+                       dump_stack();
                        current->state = TASK_RUNNING;
                        goto out;
                }
@@ -1150,8 +1402,9 @@ asmlinkage long sys_gettid(void)
        return current->pid;
 }
 
-/*
+/**
  * sys_sysinfo - fill in sysinfo struct
+ * @info: pointer to buffer to fill
  */ 
 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
 {
@@ -1241,13 +1494,50 @@ asmlinkage long sys_sysinfo(struct sysinfo __user *info)
        return 0;
 }
 
-static void __devinit init_timers_cpu(int cpu)
+/*
+ * lockdep: we want to track each per-CPU base as a separate lock-class,
+ * but timer-bases are kmalloc()-ed, so we need to attach separate
+ * keys to them:
+ */
+static struct lock_class_key base_lock_keys[NR_CPUS];
+
+static int __devinit init_timers_cpu(int cpu)
 {
        int j;
        tvec_base_t *base;
+       static char __devinitdata tvec_base_done[NR_CPUS];
+
+       if (!tvec_base_done[cpu]) {
+               static char boot_done;
+
+               if (boot_done) {
+                       /*
+                        * The APs use this path later in boot
+                        */
+                       base = kmalloc_node(sizeof(*base), GFP_KERNEL,
+                                               cpu_to_node(cpu));
+                       if (!base)
+                               return -ENOMEM;
+                       memset(base, 0, sizeof(*base));
+                       per_cpu(tvec_bases, cpu) = base;
+               } else {
+                       /*
+                        * This is for the boot CPU - we use compile-time
+                        * static initialisation because per-cpu memory isn't
+                        * ready yet and because the memory allocators are not
+                        * initialised either.
+                        */
+                       boot_done = 1;
+                       base = &boot_tvec_bases;
+               }
+               tvec_base_done[cpu] = 1;
+       } else {
+               base = per_cpu(tvec_bases, cpu);
+       }
+
+       spin_lock_init(&base->lock);
+       lockdep_set_class(&base->lock, base_lock_keys + cpu);
 
-       base = &per_cpu(tvec_bases, cpu);
-       spin_lock_init(&base->t_base.lock);
        for (j = 0; j < TVN_SIZE; j++) {
                INIT_LIST_HEAD(base->tv5.vec + j);
                INIT_LIST_HEAD(base->tv4.vec + j);
@@ -1258,6 +1548,7 @@ static void __devinit init_timers_cpu(int cpu)
                INIT_LIST_HEAD(base->tv1.vec + j);
 
        base->timer_jiffies = jiffies;
+       return 0;
 }
 
 #ifdef CONFIG_HOTPLUG_CPU
@@ -1268,7 +1559,7 @@ static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
        while (!list_empty(head)) {
                timer = list_entry(head->next, struct timer_list, entry);
                detach_timer(timer, 0);
-               timer->base = &new_base->t_base;
+               timer->base = new_base;
                internal_add_timer(new_base, timer);
        }
 }
@@ -1280,15 +1571,15 @@ static void __devinit migrate_timers(int cpu)
        int i;
 
        BUG_ON(cpu_online(cpu));
-       old_base = &per_cpu(tvec_bases, cpu);
-       new_base = &get_cpu_var(tvec_bases);
+       old_base = per_cpu(tvec_bases, cpu);
+       new_base = get_cpu_var(tvec_bases);
 
        local_irq_disable();
-       spin_lock(&new_base->t_base.lock);
-       spin_lock(&old_base->t_base.lock);
+       spin_lock(&new_base->lock);
+       spin_lock(&old_base->lock);
+
+       BUG_ON(old_base->running_timer);
 
-       if (old_base->t_base.running_timer)
-               BUG();
        for (i = 0; i < TVR_SIZE; i++)
                migrate_timer_list(new_base, old_base->tv1.vec + i);
        for (i = 0; i < TVN_SIZE; i++) {
@@ -1298,20 +1589,21 @@ static void __devinit migrate_timers(int cpu)
                migrate_timer_list(new_base, old_base->tv5.vec + i);
        }
 
-       spin_unlock(&old_base->t_base.lock);
-       spin_unlock(&new_base->t_base.lock);
+       spin_unlock(&old_base->lock);
+       spin_unlock(&new_base->lock);
        local_irq_enable();
        put_cpu_var(tvec_bases);
 }
 #endif /* CONFIG_HOTPLUG_CPU */
 
-static int __devinit timer_cpu_notify(struct notifier_block *self, 
+static int __cpuinit timer_cpu_notify(struct notifier_block *self,
                                unsigned long action, void *hcpu)
 {
        long cpu = (long)hcpu;
        switch(action) {
        case CPU_UP_PREPARE:
-               init_timers_cpu(cpu);
+               if (init_timers_cpu(cpu) < 0)
+                       return NOTIFY_BAD;
                break;
 #ifdef CONFIG_HOTPLUG_CPU
        case CPU_DEAD:
@@ -1324,15 +1616,17 @@ static int __devinit timer_cpu_notify(struct notifier_block *self,
        return NOTIFY_OK;
 }
 
-static struct notifier_block __devinitdata timers_nb = {
+static struct notifier_block __cpuinitdata timers_nb = {
        .notifier_call  = timer_cpu_notify,
 };
 
 
 void __init init_timers(void)
 {
-       timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
+       int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
                                (void *)(long)smp_processor_id());
+
+       BUG_ON(err == NOTIFY_BAD);
        register_cpu_notifier(&timers_nb);
        open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
 }
@@ -1417,7 +1711,7 @@ unsigned long time_interpolator_get_offset(void)
 #define INTERPOLATOR_ADJUST 65536
 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
 
-static void time_interpolator_update(long delta_nsec)
+void time_interpolator_update(long delta_nsec)
 {
        u64 counter;
        unsigned long offset;
@@ -1454,7 +1748,7 @@ static void time_interpolator_update(long delta_nsec)
         */
        if (jiffies % INTERPOLATOR_ADJUST == 0)
        {
-               if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC)
+               if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
                        time_interpolator->nsec_per_cyc--;
                if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
                        time_interpolator->nsec_per_cyc++;
@@ -1478,8 +1772,7 @@ register_time_interpolator(struct time_interpolator *ti)
        unsigned long flags;
 
        /* Sanity check */
-       if (ti->frequency == 0 || ti->mask == 0)
-               BUG();
+       BUG_ON(ti->frequency == 0 || ti->mask == 0);
 
        ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
        spin_lock(&time_interpolator_lock);