Merge to Fedora kernel-2.6.17-1.2187_FC5 patched with stable patch-2.6.17.13-vs2...
[linux-2.6.git] / mm / memory.c
index ea40537..9f75bb2 100644 (file)
@@ -34,6 +34,8 @@
  *
  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  *             (Gerhard.Wichert@pdb.siemens.de)
+ *
+ * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  */
 
 #include <linux/kernel_stat.h>
@@ -56,7 +58,7 @@
 #include <linux/swapops.h>
 #include <linux/elf.h>
 
-#ifndef CONFIG_DISCONTIGMEM
+#ifndef CONFIG_NEED_MULTIPLE_NODES
 /* use the per-pgdat data instead for discontigmem - mbligh */
 unsigned long max_mapnr;
 struct page *mem_map;
@@ -74,325 +76,558 @@ unsigned long num_physpages;
  * and ZONE_HIGHMEM.
  */
 void * high_memory;
-struct page *highmem_start_page;
 unsigned long vmalloc_earlyreserve;
 
 EXPORT_SYMBOL(num_physpages);
-EXPORT_SYMBOL(highmem_start_page);
 EXPORT_SYMBOL(high_memory);
 EXPORT_SYMBOL(vmalloc_earlyreserve);
 
+int randomize_va_space __read_mostly = 1;
+
+static int __init disable_randmaps(char *s)
+{
+       randomize_va_space = 0;
+       return 1;
+}
+__setup("norandmaps", disable_randmaps);
+
+
 /*
- * We special-case the C-O-W ZERO_PAGE, because it's such
- * a common occurrence (no need to read the page to know
- * that it's zero - better for the cache and memory subsystem).
+ * If a p?d_bad entry is found while walking page tables, report
+ * the error, before resetting entry to p?d_none.  Usually (but
+ * very seldom) called out from the p?d_none_or_clear_bad macros.
  */
-static inline void copy_cow_page(struct page * from, struct page * to, unsigned long address)
+
+void pgd_clear_bad(pgd_t *pgd)
 {
-       if (from == ZERO_PAGE(address)) {
-               clear_user_highpage(to, address);
-               return;
-       }
-       copy_user_highpage(to, from, address);
+       pgd_ERROR(*pgd);
+       pgd_clear(pgd);
+}
+
+void pud_clear_bad(pud_t *pud)
+{
+       pud_ERROR(*pud);
+       pud_clear(pud);
+}
+
+void pmd_clear_bad(pmd_t *pmd)
+{
+       pmd_ERROR(*pmd);
+       pmd_clear(pmd);
 }
 
 /*
  * Note: this doesn't free the actual pages themselves. That
  * has been handled earlier when unmapping all the memory regions.
  */
-static inline void free_one_pmd(struct mmu_gather *tlb, pmd_t * dir)
+static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
 {
-       struct page *page;
+       struct page *page = pmd_page(*pmd);
+       pmd_clear(pmd);
+       pte_lock_deinit(page);
+       pte_free_tlb(tlb, page);
+       dec_page_state(nr_page_table_pages);
+       tlb->mm->nr_ptes--;
+}
 
-       if (pmd_none(*dir))
-               return;
-       if (unlikely(pmd_bad(*dir))) {
-               pmd_ERROR(*dir);
-               pmd_clear(dir);
+static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
+                               unsigned long addr, unsigned long end,
+                               unsigned long floor, unsigned long ceiling)
+{
+       pmd_t *pmd;
+       unsigned long next;
+       unsigned long start;
+
+       start = addr;
+       pmd = pmd_offset(pud, addr);
+       do {
+               next = pmd_addr_end(addr, end);
+               if (pmd_none_or_clear_bad(pmd))
+                       continue;
+               free_pte_range(tlb, pmd);
+       } while (pmd++, addr = next, addr != end);
+
+       start &= PUD_MASK;
+       if (start < floor)
                return;
+       if (ceiling) {
+               ceiling &= PUD_MASK;
+               if (!ceiling)
+                       return;
        }
-       page = pmd_page(*dir);
-       pmd_clear(dir);
-       dec_page_state(nr_page_table_pages);
-       pte_free_tlb(tlb, page);
+       if (end - 1 > ceiling - 1)
+               return;
+
+       pmd = pmd_offset(pud, start);
+       pud_clear(pud);
+       pmd_free_tlb(tlb, pmd);
 }
 
-static inline void free_one_pgd(struct mmu_gather *tlb, pgd_t * dir)
+static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
+                               unsigned long addr, unsigned long end,
+                               unsigned long floor, unsigned long ceiling)
 {
-       int j;
-       pmd_t * pmd;
+       pud_t *pud;
+       unsigned long next;
+       unsigned long start;
 
-       if (pgd_none(*dir))
-               return;
-       if (unlikely(pgd_bad(*dir))) {
-               pgd_ERROR(*dir);
-               pgd_clear(dir);
+       start = addr;
+       pud = pud_offset(pgd, addr);
+       do {
+               next = pud_addr_end(addr, end);
+               if (pud_none_or_clear_bad(pud))
+                       continue;
+               free_pmd_range(tlb, pud, addr, next, floor, ceiling);
+       } while (pud++, addr = next, addr != end);
+
+       start &= PGDIR_MASK;
+       if (start < floor)
                return;
+       if (ceiling) {
+               ceiling &= PGDIR_MASK;
+               if (!ceiling)
+                       return;
        }
-       pmd = pmd_offset(dir, 0);
-       pgd_clear(dir);
-       for (j = 0; j < PTRS_PER_PMD ; j++)
-               free_one_pmd(tlb, pmd+j);
-       pmd_free_tlb(tlb, pmd);
+       if (end - 1 > ceiling - 1)
+               return;
+
+       pud = pud_offset(pgd, start);
+       pgd_clear(pgd);
+       pud_free_tlb(tlb, pud);
 }
 
 /*
- * This function clears all user-level page tables of a process - this
- * is needed by execve(), so that old pages aren't in the way.
+ * This function frees user-level page tables of a process.
  *
  * Must be called with pagetable lock held.
  */
-void clear_page_tables(struct mmu_gather *tlb, unsigned long first, int nr)
+void free_pgd_range(struct mmu_gather **tlb,
+                       unsigned long addr, unsigned long end,
+                       unsigned long floor, unsigned long ceiling)
 {
-       pgd_t * page_dir = tlb->mm->pgd;
+       pgd_t *pgd;
+       unsigned long next;
+       unsigned long start;
+
+       /*
+        * The next few lines have given us lots of grief...
+        *
+        * Why are we testing PMD* at this top level?  Because often
+        * there will be no work to do at all, and we'd prefer not to
+        * go all the way down to the bottom just to discover that.
+        *
+        * Why all these "- 1"s?  Because 0 represents both the bottom
+        * of the address space and the top of it (using -1 for the
+        * top wouldn't help much: the masks would do the wrong thing).
+        * The rule is that addr 0 and floor 0 refer to the bottom of
+        * the address space, but end 0 and ceiling 0 refer to the top
+        * Comparisons need to use "end - 1" and "ceiling - 1" (though
+        * that end 0 case should be mythical).
+        *
+        * Wherever addr is brought up or ceiling brought down, we must
+        * be careful to reject "the opposite 0" before it confuses the
+        * subsequent tests.  But what about where end is brought down
+        * by PMD_SIZE below? no, end can't go down to 0 there.
+        *
+        * Whereas we round start (addr) and ceiling down, by different
+        * masks at different levels, in order to test whether a table
+        * now has no other vmas using it, so can be freed, we don't
+        * bother to round floor or end up - the tests don't need that.
+        */
+
+       addr &= PMD_MASK;
+       if (addr < floor) {
+               addr += PMD_SIZE;
+               if (!addr)
+                       return;
+       }
+       if (ceiling) {
+               ceiling &= PMD_MASK;
+               if (!ceiling)
+                       return;
+       }
+       if (end - 1 > ceiling - 1)
+               end -= PMD_SIZE;
+       if (addr > end - 1)
+               return;
 
-       page_dir += first;
+       start = addr;
+       pgd = pgd_offset((*tlb)->mm, addr);
        do {
-               free_one_pgd(tlb, page_dir);
-               page_dir++;
-       } while (--nr);
+               next = pgd_addr_end(addr, end);
+               if (pgd_none_or_clear_bad(pgd))
+                       continue;
+               free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
+       } while (pgd++, addr = next, addr != end);
+
+       if (!(*tlb)->fullmm)
+               flush_tlb_pgtables((*tlb)->mm, start, end);
 }
 
-pte_t fastcall * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
+void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
+               unsigned long floor, unsigned long ceiling)
 {
-       if (!pmd_present(*pmd)) {
-               struct page *new;
-
-               spin_unlock(&mm->page_table_lock);
-               new = pte_alloc_one(mm, address);
-               spin_lock(&mm->page_table_lock);
-               if (!new)
-                       return NULL;
+       while (vma) {
+               struct vm_area_struct *next = vma->vm_next;
+               unsigned long addr = vma->vm_start;
 
                /*
-                * Because we dropped the lock, we should re-check the
-                * entry, as somebody else could have populated it..
+                * Hide vma from rmap and vmtruncate before freeing pgtables
                 */
-               if (pmd_present(*pmd)) {
-                       pte_free(new);
-                       goto out;
+               anon_vma_unlink(vma);
+               unlink_file_vma(vma);
+
+               if (is_vm_hugetlb_page(vma)) {
+                       hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
+                               floor, next? next->vm_start: ceiling);
+               } else {
+                       /*
+                        * Optimization: gather nearby vmas into one call down
+                        */
+                       while (next && next->vm_start <= vma->vm_end + PMD_SIZE
+                              && !is_vm_hugetlb_page(next)) {
+                               vma = next;
+                               next = vma->vm_next;
+                               anon_vma_unlink(vma);
+                               unlink_file_vma(vma);
+                       }
+                       free_pgd_range(tlb, addr, vma->vm_end,
+                               floor, next? next->vm_start: ceiling);
                }
+               vma = next;
+       }
+}
+
+int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
+{
+       struct page *new = pte_alloc_one(mm, address);
+       if (!new)
+               return -ENOMEM;
+
+       pte_lock_init(new);
+       spin_lock(&mm->page_table_lock);
+       if (pmd_present(*pmd)) {        /* Another has populated it */
+               pte_lock_deinit(new);
+               pte_free(new);
+       } else {
+               mm->nr_ptes++;
                inc_page_state(nr_page_table_pages);
                pmd_populate(mm, pmd, new);
        }
-out:
-       return pte_offset_map(pmd, address);
+       spin_unlock(&mm->page_table_lock);
+       return 0;
 }
 
-pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
+int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 {
-       if (!pmd_present(*pmd)) {
-               pte_t *new;
+       pte_t *new = pte_alloc_one_kernel(&init_mm, address);
+       if (!new)
+               return -ENOMEM;
+
+       spin_lock(&init_mm.page_table_lock);
+       if (pmd_present(*pmd))          /* Another has populated it */
+               pte_free_kernel(new);
+       else
+               pmd_populate_kernel(&init_mm, pmd, new);
+       spin_unlock(&init_mm.page_table_lock);
+       return 0;
+}
 
-               spin_unlock(&mm->page_table_lock);
-               new = pte_alloc_one_kernel(mm, address);
-               spin_lock(&mm->page_table_lock);
-               if (!new)
+static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
+{
+       if (file_rss)
+               add_mm_counter(mm, file_rss, file_rss);
+       if (anon_rss)
+               add_mm_counter(mm, anon_rss, anon_rss);
+}
+
+/*
+ * This function is called to print an error when a bad pte
+ * is found. For example, we might have a PFN-mapped pte in
+ * a region that doesn't allow it.
+ *
+ * The calling function must still handle the error.
+ */
+void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
+{
+       printk(KERN_ERR "Bad pte = %08llx, process = %s, "
+                       "vm_flags = %lx, vaddr = %lx\n",
+               (long long)pte_val(pte),
+               (vma->vm_mm == current->mm ? current->comm : "???"),
+               vma->vm_flags, vaddr);
+       dump_stack();
+}
+
+static inline int is_cow_mapping(unsigned int flags)
+{
+       return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
+}
+
+/*
+ * This function gets the "struct page" associated with a pte.
+ *
+ * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
+ * will have each page table entry just pointing to a raw page frame
+ * number, and as far as the VM layer is concerned, those do not have
+ * pages associated with them - even if the PFN might point to memory
+ * that otherwise is perfectly fine and has a "struct page".
+ *
+ * The way we recognize those mappings is through the rules set up
+ * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
+ * and the vm_pgoff will point to the first PFN mapped: thus every
+ * page that is a raw mapping will always honor the rule
+ *
+ *     pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
+ *
+ * and if that isn't true, the page has been COW'ed (in which case it
+ * _does_ have a "struct page" associated with it even if it is in a
+ * VM_PFNMAP range).
+ */
+struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
+{
+       unsigned long pfn = pte_pfn(pte);
+
+       if (unlikely(vma->vm_flags & VM_PFNMAP)) {
+               unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
+               if (pfn == vma->vm_pgoff + off)
                        return NULL;
+               if (!is_cow_mapping(vma->vm_flags))
+                       return NULL;
+       }
 
-               /*
-                * Because we dropped the lock, we should re-check the
-                * entry, as somebody else could have populated it..
-                */
-               if (pmd_present(*pmd)) {
-                       pte_free_kernel(new);
-                       goto out;
-               }
-               pmd_populate_kernel(mm, pmd, new);
+       /*
+        * Add some anal sanity checks for now. Eventually,
+        * we should just do "return pfn_to_page(pfn)", but
+        * in the meantime we check that we get a valid pfn,
+        * and that the resulting page looks ok.
+        */
+       if (unlikely(!pfn_valid(pfn))) {
+               if (!(vma->vm_flags & VM_RESERVED))
+                       print_bad_pte(vma, pte, addr);
+               return NULL;
        }
-out:
-       return pte_offset_kernel(pmd, address);
+
+       /*
+        * NOTE! We still have PageReserved() pages in the page 
+        * tables. 
+        *
+        * The PAGE_ZERO() pages and various VDSO mappings can
+        * cause them to exist.
+        */
+       return pfn_to_page(pfn);
 }
-#define PTE_TABLE_MASK ((PTRS_PER_PTE-1) * sizeof(pte_t))
-#define PMD_TABLE_MASK ((PTRS_PER_PMD-1) * sizeof(pmd_t))
 
 /*
  * copy one vm_area from one task to the other. Assumes the page tables
  * already present in the new task to be cleared in the whole range
  * covered by this vma.
- *
- * 08Jan98 Merged into one routine from several inline routines to reduce
- *         variable count and make things faster. -jj
- *
- * dst->page_table_lock is held on entry and exit,
- * but may be dropped within pmd_alloc() and pte_alloc_map().
  */
-int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
-                       struct vm_area_struct *vma)
+
+static inline void
+copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+               pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
+               unsigned long addr, int *rss)
 {
-       pgd_t * src_pgd, * dst_pgd;
-       unsigned long address = vma->vm_start;
-       unsigned long end = vma->vm_end;
-       unsigned long cow;
+       unsigned long vm_flags = vma->vm_flags;
+       pte_t pte = *src_pte;
+       struct page *page;
 
-       if (is_vm_hugetlb_page(vma))
-               return copy_hugetlb_page_range(dst, src, vma);
+       /* pte contains position in swap or file, so copy. */
+       if (unlikely(!pte_present(pte))) {
+               if (!pte_file(pte)) {
+                       swap_duplicate(pte_to_swp_entry(pte));
+                       /* make sure dst_mm is on swapoff's mmlist. */
+                       if (unlikely(list_empty(&dst_mm->mmlist))) {
+                               spin_lock(&mmlist_lock);
+                               if (list_empty(&dst_mm->mmlist))
+                                       list_add(&dst_mm->mmlist,
+                                                &src_mm->mmlist);
+                               spin_unlock(&mmlist_lock);
+                       }
+               }
+               goto out_set_pte;
+       }
 
-       cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
-       src_pgd = pgd_offset(src, address)-1;
-       dst_pgd = pgd_offset(dst, address)-1;
+       /*
+        * If it's a COW mapping, write protect it both
+        * in the parent and the child
+        */
+       if (is_cow_mapping(vm_flags)) {
+               ptep_set_wrprotect(src_mm, addr, src_pte);
+               pte = *src_pte;
+       }
 
-       for (;;) {
-               pmd_t * src_pmd, * dst_pmd;
+       /*
+        * If it's a shared mapping, mark it clean in
+        * the child
+        */
+       if (vm_flags & VM_SHARED)
+               pte = pte_mkclean(pte);
+       pte = pte_mkold(pte);
+
+       page = vm_normal_page(vma, addr, pte);
+       if (page) {
+               get_page(page);
+               page_dup_rmap(page);
+               rss[!!PageAnon(page)]++;
+       }
 
-               src_pgd++; dst_pgd++;
-               
-               /* copy_pmd_range */
-               
-               if (pgd_none(*src_pgd))
-                       goto skip_copy_pmd_range;
-               if (unlikely(pgd_bad(*src_pgd))) {
-                       pgd_ERROR(*src_pgd);
-                       pgd_clear(src_pgd);
-skip_copy_pmd_range:   address = (address + PGDIR_SIZE) & PGDIR_MASK;
-                       if (!address || (address >= end))
-                               goto out;
+out_set_pte:
+       set_pte_at(dst_mm, addr, dst_pte, pte);
+}
+
+static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+               pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
+               unsigned long addr, unsigned long end)
+{
+       pte_t *src_pte, *dst_pte;
+       spinlock_t *src_ptl, *dst_ptl;
+       int progress = 0;
+       int rss[2];
+
+again:
+       rss[1] = rss[0] = 0;
+       dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
+       if (!dst_pte)
+               return -ENOMEM;
+       src_pte = pte_offset_map_nested(src_pmd, addr);
+       src_ptl = pte_lockptr(src_mm, src_pmd);
+       spin_lock(src_ptl);
+
+       do {
+               /*
+                * We are holding two locks at this point - either of them
+                * could generate latencies in another task on another CPU.
+                */
+               if (progress >= 32) {
+                       progress = 0;
+                       if (need_resched() ||
+                           need_lockbreak(src_ptl) ||
+                           need_lockbreak(dst_ptl))
+                               break;
+               }
+               if (pte_none(*src_pte)) {
+                       progress++;
                        continue;
                }
+               copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
+               progress += 8;
+       } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
+
+       spin_unlock(src_ptl);
+       pte_unmap_nested(src_pte - 1);
+       add_mm_rss(dst_mm, rss[0], rss[1]);
+       pte_unmap_unlock(dst_pte - 1, dst_ptl);
+       cond_resched();
+       if (addr != end)
+               goto again;
+       return 0;
+}
 
-               src_pmd = pmd_offset(src_pgd, address);
-               dst_pmd = pmd_alloc(dst, dst_pgd, address);
-               if (!dst_pmd)
-                       goto nomem;
+static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+               pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
+               unsigned long addr, unsigned long end)
+{
+       pmd_t *src_pmd, *dst_pmd;
+       unsigned long next;
 
-               do {
-                       pte_t * src_pte, * dst_pte;
-               
-                       /* copy_pte_range */
-               
-                       if (pmd_none(*src_pmd))
-                               goto skip_copy_pte_range;
-                       if (unlikely(pmd_bad(*src_pmd))) {
-                               pmd_ERROR(*src_pmd);
-                               pmd_clear(src_pmd);
-skip_copy_pte_range:
-                               address = (address + PMD_SIZE) & PMD_MASK;
-                               if (address >= end)
-                                       goto out;
-                               goto cont_copy_pmd_range;
-                       }
+       dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
+       if (!dst_pmd)
+               return -ENOMEM;
+       src_pmd = pmd_offset(src_pud, addr);
+       do {
+               next = pmd_addr_end(addr, end);
+               if (pmd_none_or_clear_bad(src_pmd))
+                       continue;
+               if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
+                                               vma, addr, next))
+                       return -ENOMEM;
+       } while (dst_pmd++, src_pmd++, addr = next, addr != end);
+       return 0;
+}
 
-                       dst_pte = pte_alloc_map(dst, dst_pmd, address);
-                       if (!dst_pte)
-                               goto nomem;
-                       spin_lock(&src->page_table_lock);       
-                       src_pte = pte_offset_map_nested(src_pmd, address);
-                       do {
-                               pte_t pte = *src_pte;
-                               struct page *page;
-                               unsigned long pfn;
-
-                               if (!vx_rsspages_avail(dst, 1)) {
-                                       spin_unlock(&src->page_table_lock);
-                                       goto nomem;
-                               }
-                               /* copy_one_pte */
-
-                               if (pte_none(pte))
-                                       goto cont_copy_pte_range_noset;
-                               /* pte contains position in swap, so copy. */
-                               if (!pte_present(pte)) {
-                                       if (!pte_file(pte))
-                                               swap_duplicate(pte_to_swp_entry(pte));
-                                       set_pte(dst_pte, pte);
-                                       goto cont_copy_pte_range_noset;
-                               }
-                               pfn = pte_pfn(pte);
-                               /* the pte points outside of valid memory, the
-                                * mapping is assumed to be good, meaningful
-                                * and not mapped via rmap - duplicate the
-                                * mapping as is.
-                                */
-                               page = NULL;
-                               if (pfn_valid(pfn)) 
-                                       page = pfn_to_page(pfn); 
+static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+               pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
+               unsigned long addr, unsigned long end)
+{
+       pud_t *src_pud, *dst_pud;
+       unsigned long next;
 
-                               if (!page || PageReserved(page)) {
-                                       set_pte(dst_pte, pte);
-                                       goto cont_copy_pte_range_noset;
-                               }
+       dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
+       if (!dst_pud)
+               return -ENOMEM;
+       src_pud = pud_offset(src_pgd, addr);
+       do {
+               next = pud_addr_end(addr, end);
+               if (pud_none_or_clear_bad(src_pud))
+                       continue;
+               if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
+                                               vma, addr, next))
+                       return -ENOMEM;
+       } while (dst_pud++, src_pud++, addr = next, addr != end);
+       return 0;
+}
 
-                               /*
-                                * If it's a COW mapping, write protect it both
-                                * in the parent and the child
-                                */
-                               if (cow) {
-                                       ptep_set_wrprotect(src_pte);
-                                       pte = *src_pte;
-                               }
+int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+               struct vm_area_struct *vma)
+{
+       pgd_t *src_pgd, *dst_pgd;
+       unsigned long next;
+       unsigned long addr = vma->vm_start;
+       unsigned long end = vma->vm_end;
 
-                               /*
-                                * If it's a shared mapping, mark it clean in
-                                * the child
-                                */
-                               if (vma->vm_flags & VM_SHARED)
-                                       pte = pte_mkclean(pte);
-                               pte = pte_mkold(pte);
-                               get_page(page);
-                               // dst->rss++;
-                               vx_rsspages_inc(dst);
-                               set_pte(dst_pte, pte);
-                               page_dup_rmap(page);
-cont_copy_pte_range_noset:
-                               address += PAGE_SIZE;
-                               if (address >= end) {
-                                       pte_unmap_nested(src_pte);
-                                       pte_unmap(dst_pte);
-                                       goto out_unlock;
-                               }
-                               src_pte++;
-                               dst_pte++;
-                       } while ((unsigned long)src_pte & PTE_TABLE_MASK);
-                       pte_unmap_nested(src_pte-1);
-                       pte_unmap(dst_pte-1);
-                       spin_unlock(&src->page_table_lock);
-                       cond_resched_lock(&dst->page_table_lock);
-cont_copy_pmd_range:
-                       src_pmd++;
-                       dst_pmd++;
-               } while ((unsigned long)src_pmd & PMD_TABLE_MASK);
+       /*
+        * Don't copy ptes where a page fault will fill them correctly.
+        * Fork becomes much lighter when there are big shared or private
+        * readonly mappings. The tradeoff is that copy_page_range is more
+        * efficient than faulting.
+        */
+       if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
+               if (!vma->anon_vma)
+                       return 0;
        }
-out_unlock:
-       spin_unlock(&src->page_table_lock);
-out:
+
+       if (is_vm_hugetlb_page(vma))
+               return copy_hugetlb_page_range(dst_mm, src_mm, vma);
+
+       dst_pgd = pgd_offset(dst_mm, addr);
+       src_pgd = pgd_offset(src_mm, addr);
+       do {
+               next = pgd_addr_end(addr, end);
+               if (pgd_none_or_clear_bad(src_pgd))
+                       continue;
+               if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
+                                               vma, addr, next))
+                       return -ENOMEM;
+       } while (dst_pgd++, src_pgd++, addr = next, addr != end);
        return 0;
-nomem:
-       return -ENOMEM;
 }
 
-static void zap_pte_range(struct mmu_gather *tlb,
-               pmd_t *pmd, unsigned long address,
-               unsigned long size, struct zap_details *details)
+static unsigned long zap_pte_range(struct mmu_gather *tlb,
+                               struct vm_area_struct *vma, pmd_t *pmd,
+                               unsigned long addr, unsigned long end,
+                               long *zap_work, struct zap_details *details)
 {
-       unsigned long offset;
-       pte_t *ptep;
+       struct mm_struct *mm = tlb->mm;
+       pte_t *pte;
+       spinlock_t *ptl;
+       int file_rss = 0;
+       int anon_rss = 0;
 
-       if (pmd_none(*pmd))
-               return;
-       if (unlikely(pmd_bad(*pmd))) {
-               pmd_ERROR(*pmd);
-               pmd_clear(pmd);
-               return;
-       }
-       ptep = pte_offset_map(pmd, address);
-       offset = address & ~PMD_MASK;
-       if (offset + size > PMD_SIZE)
-               size = PMD_SIZE - offset;
-       size &= PAGE_MASK;
-       if (details && !details->check_mapping && !details->nonlinear_vma)
-               details = NULL;
-       for (offset=0; offset < size; ptep++, offset += PAGE_SIZE) {
-               pte_t pte = *ptep;
-               if (pte_none(pte))
+       pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
+       do {
+               pte_t ptent = *pte;
+               if (pte_none(ptent)) {
+                       (*zap_work)--;
                        continue;
-               if (pte_present(pte)) {
-                       struct page *page = NULL;
-                       unsigned long pfn = pte_pfn(pte);
-                       if (pfn_valid(pfn)) {
-                               page = pfn_to_page(pfn);
-                               if (PageReserved(page))
-                                       page = NULL;
-                       }
+               }
+
+               (*zap_work) -= PAGE_SIZE;
+
+               if (pte_present(ptent)) {
+                       struct page *page;
+
+                       page = vm_normal_page(vma, addr, ptent);
                        if (unlikely(details) && page) {
                                /*
                                 * unmap_shared_mapping_pages() wants to
@@ -411,19 +646,25 @@ static void zap_pte_range(struct mmu_gather *tlb,
                                     page->index > details->last_index))
                                        continue;
                        }
-                       pte = ptep_get_and_clear(ptep);
-                       tlb_remove_tlb_entry(tlb, ptep, address+offset);
+                       ptent = ptep_get_and_clear_full(mm, addr, pte,
+                                                       tlb->fullmm);
+                       tlb_remove_tlb_entry(tlb, pte, addr);
                        if (unlikely(!page))
                                continue;
                        if (unlikely(details) && details->nonlinear_vma
                            && linear_page_index(details->nonlinear_vma,
-                                       address+offset) != page->index)
-                               set_pte(ptep, pgoff_to_pte(page->index));
-                       if (pte_dirty(pte))
-                               set_page_dirty(page);
-                       if (pte_young(pte) && !PageAnon(page))
-                               mark_page_accessed(page);
-                       tlb->freed++;
+                                               addr) != page->index)
+                               set_pte_at(mm, addr, pte,
+                                          pgoff_to_pte(page->index));
+                       if (PageAnon(page))
+                               anon_rss--;
+                       else {
+                               if (pte_dirty(ptent))
+                                       set_page_dirty(page);
+                               if (pte_young(ptent))
+                                       mark_page_accessed(page);
+                               file_rss--;
+                       }
                        page_remove_rmap(page);
                        tlb_remove_page(tlb, page);
                        continue;
@@ -434,86 +675,111 @@ static void zap_pte_range(struct mmu_gather *tlb,
                 */
                if (unlikely(details))
                        continue;
-               if (!pte_file(pte))
-                       free_swap_and_cache(pte_to_swp_entry(pte));
-               pte_clear(ptep);
-       }
-       pte_unmap(ptep-1);
+               if (!pte_file(ptent))
+                       free_swap_and_cache(pte_to_swp_entry(ptent));
+               pte_clear_full(mm, addr, pte, tlb->fullmm);
+       } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
+
+       add_mm_rss(mm, file_rss, anon_rss);
+       pte_unmap_unlock(pte - 1, ptl);
+
+       return addr;
 }
 
-static void zap_pmd_range(struct mmu_gather *tlb,
-               pgd_t * dir, unsigned long address,
-               unsigned long size, struct zap_details *details)
+static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
+                               struct vm_area_struct *vma, pud_t *pud,
+                               unsigned long addr, unsigned long end,
+                               long *zap_work, struct zap_details *details)
 {
-       pmd_t * pmd;
-       unsigned long end;
+       pmd_t *pmd;
+       unsigned long next;
 
-       if (pgd_none(*dir))
-               return;
-       if (unlikely(pgd_bad(*dir))) {
-               pgd_ERROR(*dir);
-               pgd_clear(dir);
-               return;
-       }
-       pmd = pmd_offset(dir, address);
-       end = address + size;
-       if (end > ((address + PGDIR_SIZE) & PGDIR_MASK))
-               end = ((address + PGDIR_SIZE) & PGDIR_MASK);
+       pmd = pmd_offset(pud, addr);
        do {
-               zap_pte_range(tlb, pmd, address, end - address, details);
-               address = (address + PMD_SIZE) & PMD_MASK; 
-               pmd++;
-       } while (address && (address < end));
+               next = pmd_addr_end(addr, end);
+               if (pmd_none_or_clear_bad(pmd)) {
+                       (*zap_work)--;
+                       continue;
+               }
+               next = zap_pte_range(tlb, vma, pmd, addr, next,
+                                               zap_work, details);
+       } while (pmd++, addr = next, (addr != end && *zap_work > 0));
+
+       return addr;
 }
 
-static void unmap_page_range(struct mmu_gather *tlb,
-               struct vm_area_struct *vma, unsigned long address,
-               unsigned long end, struct zap_details *details)
+static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
+                               struct vm_area_struct *vma, pgd_t *pgd,
+                               unsigned long addr, unsigned long end,
+                               long *zap_work, struct zap_details *details)
 {
-       pgd_t * dir;
+       pud_t *pud;
+       unsigned long next;
 
-       BUG_ON(address >= end);
-       dir = pgd_offset(vma->vm_mm, address);
-       tlb_start_vma(tlb, vma);
+       pud = pud_offset(pgd, addr);
        do {
-               zap_pmd_range(tlb, dir, address, end - address, details);
-               address = (address + PGDIR_SIZE) & PGDIR_MASK;
-               dir++;
-       } while (address && (address < end));
-       tlb_end_vma(tlb, vma);
+               next = pud_addr_end(addr, end);
+               if (pud_none_or_clear_bad(pud)) {
+                       (*zap_work)--;
+                       continue;
+               }
+               next = zap_pmd_range(tlb, vma, pud, addr, next,
+                                               zap_work, details);
+       } while (pud++, addr = next, (addr != end && *zap_work > 0));
+
+       return addr;
 }
 
-/* Dispose of an entire struct mmu_gather per rescheduling point */
-#if defined(CONFIG_SMP) && defined(CONFIG_PREEMPT)
-#define ZAP_BLOCK_SIZE (FREE_PTE_NR * PAGE_SIZE)
-#endif
+static unsigned long unmap_page_range(struct mmu_gather *tlb,
+                               struct vm_area_struct *vma,
+                               unsigned long addr, unsigned long end,
+                               long *zap_work, struct zap_details *details)
+{
+       pgd_t *pgd;
+       unsigned long next;
 
-/* For UP, 256 pages at a time gives nice low latency */
-#if !defined(CONFIG_SMP) && defined(CONFIG_PREEMPT)
-#define ZAP_BLOCK_SIZE (256 * PAGE_SIZE)
-#endif
+       if (details && !details->check_mapping && !details->nonlinear_vma)
+               details = NULL;
+
+       BUG_ON(addr >= end);
+       tlb_start_vma(tlb, vma);
+       pgd = pgd_offset(vma->vm_mm, addr);
+       do {
+               next = pgd_addr_end(addr, end);
+               if (pgd_none_or_clear_bad(pgd)) {
+                       (*zap_work)--;
+                       continue;
+               }
+               next = zap_pud_range(tlb, vma, pgd, addr, next,
+                                               zap_work, details);
+       } while (pgd++, addr = next, (addr != end && *zap_work > 0));
+       tlb_end_vma(tlb, vma);
+
+       return addr;
+}
 
+#ifdef CONFIG_PREEMPT
+# define ZAP_BLOCK_SIZE        (8 * PAGE_SIZE)
+#else
 /* No preempt: go for improved straight-line efficiency */
-#if !defined(CONFIG_PREEMPT)
-#define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
+# define ZAP_BLOCK_SIZE        (1024 * PAGE_SIZE)
 #endif
 
 /**
  * unmap_vmas - unmap a range of memory covered by a list of vma's
  * @tlbp: address of the caller's struct mmu_gather
- * @mm: the controlling mm_struct
  * @vma: the starting vma
  * @start_addr: virtual address at which to start unmapping
  * @end_addr: virtual address at which to end unmapping
  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  * @details: details of nonlinear truncation or shared cache invalidation
  *
- * Returns the number of vma's which were covered by the unmapping.
+ * Returns the end address of the unmapping (restart addr if interrupted).
  *
- * Unmap all pages in the vma list.  Called under page_table_lock.
+ * Unmap all pages in the vma list.
  *
- * We aim to not hold page_table_lock for too long (for scheduling latency
- * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
+ * We aim to not hold locks for too long (for scheduling latency reasons).
+ * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
  * return the ending mmu_gather to the caller.
  *
  * Only addresses between `start' and `end' will be unmapped.
@@ -525,19 +791,19 @@ static void unmap_page_range(struct mmu_gather *tlb,
  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  * drops the lock and schedules.
  */
-int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
+unsigned long unmap_vmas(struct mmu_gather **tlbp,
                struct vm_area_struct *vma, unsigned long start_addr,
                unsigned long end_addr, unsigned long *nr_accounted,
                struct zap_details *details)
 {
-       unsigned long zap_bytes = ZAP_BLOCK_SIZE;
+       long zap_work = ZAP_BLOCK_SIZE;
        unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
        int tlb_start_valid = 0;
-       int ret = 0;
-       int atomic = details && details->atomic;
+       unsigned long start = start_addr;
+       spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
+       int fullmm = (*tlbp)->fullmm;
 
        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
-               unsigned long start;
                unsigned long end;
 
                start = max(vma->vm_start, start_addr);
@@ -550,39 +816,44 @@ int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
                if (vma->vm_flags & VM_ACCOUNT)
                        *nr_accounted += (end - start) >> PAGE_SHIFT;
 
-               ret++;
                while (start != end) {
-                       unsigned long block;
-
                        if (!tlb_start_valid) {
                                tlb_start = start;
                                tlb_start_valid = 1;
                        }
 
-                       if (is_vm_hugetlb_page(vma)) {
-                               block = end - start;
+                       if (unlikely(is_vm_hugetlb_page(vma))) {
                                unmap_hugepage_range(vma, start, end);
-                       } else {
-                               block = min(zap_bytes, end - start);
-                               unmap_page_range(*tlbp, vma, start,
-                                               start + block, details);
+                               zap_work -= (end - start) /
+                                               (HPAGE_SIZE / PAGE_SIZE);
+                               start = end;
+                       } else
+                               start = unmap_page_range(*tlbp, vma,
+                                               start, end, &zap_work, details);
+
+                       if (zap_work > 0) {
+                               BUG_ON(start != end);
+                               break;
                        }
 
-                       start += block;
-                       zap_bytes -= block;
-                       if ((long)zap_bytes > 0)
-                               continue;
-                       if (!atomic && need_resched()) {
-                               int fullmm = tlb_is_full_mm(*tlbp);
-                               tlb_finish_mmu(*tlbp, tlb_start, start);
-                               cond_resched_lock(&mm->page_table_lock);
-                               *tlbp = tlb_gather_mmu(mm, fullmm);
-                               tlb_start_valid = 0;
+                       tlb_finish_mmu(*tlbp, tlb_start, start);
+
+                       if (need_resched() ||
+                               (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
+                               if (i_mmap_lock) {
+                                       *tlbp = NULL;
+                                       goto out;
+                               }
+                               cond_resched();
                        }
-                       zap_bytes = ZAP_BLOCK_SIZE;
+
+                       *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
+                       tlb_start_valid = 0;
+                       zap_work = ZAP_BLOCK_SIZE;
                }
        }
-       return ret;
+out:
+       return start;   /* which is now the end (or restart) address */
 }
 
 /**
@@ -592,7 +863,7 @@ int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
  * @size: number of bytes to zap
  * @details: details of nonlinear truncation or shared cache invalidation
  */
-void zap_page_range(struct vm_area_struct *vma, unsigned long address,
+unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
                unsigned long size, struct zap_details *details)
 {
        struct mm_struct *mm = vma->vm_mm;
@@ -600,154 +871,143 @@ void zap_page_range(struct vm_area_struct *vma, unsigned long address,
        unsigned long end = address + size;
        unsigned long nr_accounted = 0;
 
-       if (is_vm_hugetlb_page(vma)) {
-               zap_hugepage_range(vma, address, size);
-               return;
-       }
-
        lru_add_drain();
-       spin_lock(&mm->page_table_lock);
        tlb = tlb_gather_mmu(mm, 0);
-       unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
-       tlb_finish_mmu(tlb, address, end);
-       spin_unlock(&mm->page_table_lock);
+       update_hiwater_rss(mm);
+       end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
+       if (tlb)
+               tlb_finish_mmu(tlb, address, end);
+       return end;
 }
 
 /*
  * Do a quick page-table lookup for a single page.
- * mm->page_table_lock must be held.
  */
-struct page *
-follow_page(struct mm_struct *mm, unsigned long address, int write) 
+struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
+                       unsigned int flags)
 {
        pgd_t *pgd;
+       pud_t *pud;
        pmd_t *pmd;
        pte_t *ptep, pte;
-       unsigned long pfn;
+       spinlock_t *ptl;
        struct page *page;
+       struct mm_struct *mm = vma->vm_mm;
 
-       page = follow_huge_addr(mm, address, write);
-       if (! IS_ERR(page))
-               return page;
+       page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
+       if (!IS_ERR(page)) {
+               BUG_ON(flags & FOLL_GET);
+               goto out;
+       }
 
+       page = NULL;
        pgd = pgd_offset(mm, address);
        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
-               goto out;
+               goto no_page_table;
 
-       pmd = pmd_offset(pgd, address);
-       if (pmd_none(*pmd))
-               goto out;
-       if (pmd_huge(*pmd))
-               return follow_huge_pmd(mm, address, pmd, write);
-       if (unlikely(pmd_bad(*pmd)))
+       pud = pud_offset(pgd, address);
+       if (pud_none(*pud) || unlikely(pud_bad(*pud)))
+               goto no_page_table;
+       
+       pmd = pmd_offset(pud, address);
+       if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
+               goto no_page_table;
+
+       if (pmd_huge(*pmd)) {
+               BUG_ON(flags & FOLL_GET);
+               page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
                goto out;
+       }
 
-       ptep = pte_offset_map(pmd, address);
+       ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
        if (!ptep)
                goto out;
 
        pte = *ptep;
-       pte_unmap(ptep);
-       if (pte_present(pte)) {
-               if (write && !pte_write(pte))
-                       goto out;
-               pfn = pte_pfn(pte);
-               if (pfn_valid(pfn)) {
-                       page = pfn_to_page(pfn);
-                       if (write && !pte_dirty(pte) && !PageDirty(page))
-                               set_page_dirty(page);
-                       mark_page_accessed(page);
-                       return page;
-               }
+       if (!pte_present(pte))
+               goto unlock;
+       if ((flags & FOLL_WRITE) && !pte_write(pte))
+               goto unlock;
+       page = vm_normal_page(vma, address, pte);
+       if (unlikely(!page))
+               goto unlock;
+
+       if (flags & FOLL_GET)
+               get_page(page);
+       if (flags & FOLL_TOUCH) {
+               if ((flags & FOLL_WRITE) &&
+                   !pte_dirty(pte) && !PageDirty(page))
+                       set_page_dirty(page);
+               mark_page_accessed(page);
        }
-
+unlock:
+       pte_unmap_unlock(ptep, ptl);
 out:
-       return NULL;
-}
-
-/* 
- * Given a physical address, is there a useful struct page pointing to
- * it?  This may become more complex in the future if we start dealing
- * with IO-aperture pages for direct-IO.
- */
-
-static inline struct page *get_page_map(struct page *page)
-{
-       if (!pfn_valid(page_to_pfn(page)))
-               return NULL;
        return page;
-}
-
-
-static inline int
-untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
-                        unsigned long address)
-{
-       pgd_t *pgd;
-       pmd_t *pmd;
-
-       /* Check if the vma is for an anonymous mapping. */
-       if (vma->vm_ops && vma->vm_ops->nopage)
-               return 0;
-
-       /* Check if page directory entry exists. */
-       pgd = pgd_offset(mm, address);
-       if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
-               return 1;
-
-       /* Check if page middle directory entry exists. */
-       pmd = pmd_offset(pgd, address);
-       if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
-               return 1;
 
-       /* There is a pte slot for 'address' in 'mm'. */
-       return 0;
+no_page_table:
+       /*
+        * When core dumping an enormous anonymous area that nobody
+        * has touched so far, we don't want to allocate page tables.
+        */
+       if (flags & FOLL_ANON) {
+               page = ZERO_PAGE(address);
+               if (flags & FOLL_GET)
+                       get_page(page);
+               BUG_ON(flags & FOLL_WRITE);
+       }
+       return page;
 }
 
-
 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
                unsigned long start, int len, int write, int force,
                struct page **pages, struct vm_area_struct **vmas)
 {
        int i;
-       unsigned int flags;
+       unsigned int vm_flags;
 
        /* 
         * Require read or write permissions.
         * If 'force' is set, we only require the "MAY" flags.
         */
-       flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
-       flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
+       vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
+       vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
        i = 0;
 
        do {
-               struct vm_area_struct * vma;
+               struct vm_area_struct *vma;
+               unsigned int foll_flags;
 
                vma = find_extend_vma(mm, start);
                if (!vma && in_gate_area(tsk, start)) {
                        unsigned long pg = start & PAGE_MASK;
                        struct vm_area_struct *gate_vma = get_gate_vma(tsk);
                        pgd_t *pgd;
+                       pud_t *pud;
                        pmd_t *pmd;
                        pte_t *pte;
                        if (write) /* user gate pages are read-only */
                                return i ? : -EFAULT;
-                       pgd = pgd_offset_gate(mm, pg);
-                       if (!pgd)
-                               return i ? : -EFAULT;
-                       pmd = pmd_offset(pgd, pg);
-                       if (!pmd)
+                       if (pg > TASK_SIZE)
+                               pgd = pgd_offset_k(pg);
+                       else
+                               pgd = pgd_offset_gate(mm, pg);
+                       BUG_ON(pgd_none(*pgd));
+                       pud = pud_offset(pgd, pg);
+                       BUG_ON(pud_none(*pud));
+                       pmd = pmd_offset(pud, pg);
+                       if (pmd_none(*pmd))
                                return i ? : -EFAULT;
                        pte = pte_offset_map(pmd, pg);
-                       if (!pte)
-                               return i ? : -EFAULT;
-                       if (!pte_present(*pte)) {
+                       if (pte_none(*pte)) {
                                pte_unmap(pte);
                                return i ? : -EFAULT;
                        }
                        if (pages) {
-                               pages[i] = pte_page(*pte);
-                               get_page(pages[i]);
+                               struct page *page = vm_normal_page(gate_vma, start, *pte);
+                               pages[i] = page;
+                               if (page)
+                                       get_page(page);
                        }
                        pte_unmap(pte);
                        if (vmas)
@@ -758,8 +1018,28 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
                        continue;
                }
 
-               if (!vma || (pages && (vma->vm_flags & VM_IO))
-                               || !(flags & vma->vm_flags))
+#ifdef CONFIG_XEN
+               if (vma && (vma->vm_flags & VM_FOREIGN)) {
+                       struct page **map = vma->vm_private_data;
+                       int offset = (start - vma->vm_start) >> PAGE_SHIFT;
+                       if (map[offset] != NULL) {
+                               if (pages) {
+                                       struct page *page = map[offset];
+                                       
+                                       pages[i] = page;
+                                       get_page(page);
+                               }
+                               if (vmas)
+                                       vmas[i] = vma;
+                               i++;
+                               start += PAGE_SIZE;
+                               len--;
+                               continue;
+                       }
+               }
+#endif
+               if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
+                               || !(vm_flags & vma->vm_flags))
                        return i ? : -EFAULT;
 
                if (is_vm_hugetlb_page(vma)) {
@@ -767,25 +1047,35 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
                                                &start, &len, i);
                        continue;
                }
-               spin_lock(&mm->page_table_lock);
+
+               foll_flags = FOLL_TOUCH;
+               if (pages)
+                       foll_flags |= FOLL_GET;
+               if (!write && !(vma->vm_flags & VM_LOCKED) &&
+                   (!vma->vm_ops || !vma->vm_ops->nopage))
+                       foll_flags |= FOLL_ANON;
+
                do {
-                       struct page *map;
-                       int lookup_write = write;
-                       while (!(map = follow_page(mm, start, lookup_write))) {
+                       struct page *page;
+
+                       if (write)
+                               foll_flags |= FOLL_WRITE;
+
+                       cond_resched();
+                       while (!(page = follow_page(vma, start, foll_flags))) {
+                               int ret;
+                               ret = __handle_mm_fault(mm, vma, start,
+                                               foll_flags & FOLL_WRITE);
                                /*
-                                * Shortcut for anonymous pages. We don't want
-                                * to force the creation of pages tables for
-                                * insanly big anonymously mapped areas that
-                                * nobody touched so far. This is important
-                                * for doing a core dump for these mappings.
+                                * The VM_FAULT_WRITE bit tells us that do_wp_page has
+                                * broken COW when necessary, even if maybe_mkwrite
+                                * decided not to set pte_write. We can thus safely do
+                                * subsequent page lookups as if they were reads.
                                 */
-                               if (!lookup_write &&
-                                   untouched_anonymous_page(mm,vma,start)) {
-                                       map = ZERO_PAGE(start);
-                                       break;
-                               }
-                               spin_unlock(&mm->page_table_lock);
-                               switch (handle_mm_fault(mm,vma,start,write)) {
+                               if (ret & VM_FAULT_WRITE)
+                                       foll_flags &= ~FOLL_WRITE;
+                               
+                               switch (ret & ~VM_FAULT_WRITE) {
                                case VM_FAULT_MINOR:
                                        tsk->min_flt++;
                                        break;
@@ -799,201 +1089,414 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
                                default:
                                        BUG();
                                }
-                               /*
-                                * Now that we have performed a write fault
-                                * and surely no longer have a shared page we
-                                * shouldn't write, we shouldn't ignore an
-                                * unwritable page in the page table if
-                                * we are forcing write access.
-                                */
-                               lookup_write = write && !force;
-                               spin_lock(&mm->page_table_lock);
                        }
                        if (pages) {
-                               pages[i] = get_page_map(map);
-                               if (!pages[i]) {
-                                       spin_unlock(&mm->page_table_lock);
-                                       while (i--)
-                                               page_cache_release(pages[i]);
-                                       i = -EFAULT;
-                                       goto out;
-                               }
-                               flush_dcache_page(pages[i]);
-                               if (!PageReserved(pages[i]))
-                                       page_cache_get(pages[i]);
+                               pages[i] = page;
+
+                               flush_anon_page(page, start);
+                               flush_dcache_page(page);
                        }
                        if (vmas)
                                vmas[i] = vma;
                        i++;
                        start += PAGE_SIZE;
                        len--;
-               } while(len && start < vma->vm_end);
-               spin_unlock(&mm->page_table_lock);
-       } while(len);
-out:
+               } while (len && start < vma->vm_end);
+       } while (len);
        return i;
 }
-
 EXPORT_SYMBOL(get_user_pages);
 
-static void zeromap_pte_range(pte_t * pte, unsigned long address,
-                                     unsigned long size, pgprot_t prot)
+static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
+                       unsigned long addr, unsigned long end, pgprot_t prot)
 {
-       unsigned long end;
+       pte_t *pte;
+       spinlock_t *ptl;
 
-       address &= ~PMD_MASK;
-       end = address + size;
-       if (end > PMD_SIZE)
-               end = PMD_SIZE;
+       pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
+       if (!pte)
+               return -ENOMEM;
        do {
-               pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot));
+               struct page *page = ZERO_PAGE(addr);
+               pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
+               page_cache_get(page);
+               page_add_file_rmap(page);
+               inc_mm_counter(mm, file_rss);
                BUG_ON(!pte_none(*pte));
-               set_pte(pte, zero_pte);
-               address += PAGE_SIZE;
-               pte++;
-       } while (address && (address < end));
+               set_pte_at(mm, addr, pte, zero_pte);
+       } while (pte++, addr += PAGE_SIZE, addr != end);
+       pte_unmap_unlock(pte - 1, ptl);
+       return 0;
 }
 
-static inline int zeromap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address,
-                                    unsigned long size, pgprot_t prot)
+static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
+                       unsigned long addr, unsigned long end, pgprot_t prot)
 {
-       unsigned long base, end;
+       pmd_t *pmd;
+       unsigned long next;
 
-       base = address & PGDIR_MASK;
-       address &= ~PGDIR_MASK;
-       end = address + size;
-       if (end > PGDIR_SIZE)
-               end = PGDIR_SIZE;
+       pmd = pmd_alloc(mm, pud, addr);
+       if (!pmd)
+               return -ENOMEM;
        do {
-               pte_t * pte = pte_alloc_map(mm, pmd, base + address);
-               if (!pte)
+               next = pmd_addr_end(addr, end);
+               if (zeromap_pte_range(mm, pmd, addr, next, prot))
                        return -ENOMEM;
-               zeromap_pte_range(pte, base + address, end - address, prot);
-               pte_unmap(pte);
-               address = (address + PMD_SIZE) & PMD_MASK;
-               pmd++;
-       } while (address && (address < end));
+       } while (pmd++, addr = next, addr != end);
        return 0;
 }
 
-int zeromap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size, pgprot_t prot)
+static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
+                       unsigned long addr, unsigned long end, pgprot_t prot)
 {
-       int error = 0;
-       pgd_t * dir;
-       unsigned long beg = address;
-       unsigned long end = address + size;
-       struct mm_struct *mm = vma->vm_mm;
+       pud_t *pud;
+       unsigned long next;
 
-       dir = pgd_offset(mm, address);
-       flush_cache_range(vma, beg, end);
-       if (address >= end)
-               BUG();
+       pud = pud_alloc(mm, pgd, addr);
+       if (!pud)
+               return -ENOMEM;
+       do {
+               next = pud_addr_end(addr, end);
+               if (zeromap_pmd_range(mm, pud, addr, next, prot))
+                       return -ENOMEM;
+       } while (pud++, addr = next, addr != end);
+       return 0;
+}
 
-       spin_lock(&mm->page_table_lock);
+int zeromap_page_range(struct vm_area_struct *vma,
+                       unsigned long addr, unsigned long size, pgprot_t prot)
+{
+       pgd_t *pgd;
+       unsigned long next;
+       unsigned long end = addr + size;
+       struct mm_struct *mm = vma->vm_mm;
+       int err;
+
+       BUG_ON(addr >= end);
+       pgd = pgd_offset(mm, addr);
+       flush_cache_range(vma, addr, end);
        do {
-               pmd_t *pmd = pmd_alloc(mm, dir, address);
-               error = -ENOMEM;
-               if (!pmd)
-                       break;
-               error = zeromap_pmd_range(mm, pmd, address, end - address, prot);
-               if (error)
+               next = pgd_addr_end(addr, end);
+               err = zeromap_pud_range(mm, pgd, addr, next, prot);
+               if (err)
                        break;
-               address = (address + PGDIR_SIZE) & PGDIR_MASK;
-               dir++;
-       } while (address && (address < end));
-       /*
-        * Why flush? zeromap_pte_range has a BUG_ON for !pte_none()
-        */
-       flush_tlb_range(vma, beg, end);
-       spin_unlock(&mm->page_table_lock);
-       return error;
+       } while (pgd++, addr = next, addr != end);
+       return err;
 }
 
+pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
+{
+       pgd_t * pgd = pgd_offset(mm, addr);
+       pud_t * pud = pud_alloc(mm, pgd, addr);
+       if (pud) {
+               pmd_t * pmd = pmd_alloc(mm, pud, addr);
+               if (pmd)
+                       return pte_alloc_map_lock(mm, pmd, addr, ptl);
+       }
+       return NULL;
+}
+
+/*
+ * This is the old fallback for page remapping.
+ *
+ * For historical reasons, it only allows reserved pages. Only
+ * old drivers should use this, and they needed to mark their
+ * pages reserved for the old functions anyway.
+ */
+static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
+{
+       int retval;
+       pte_t *pte;
+       spinlock_t *ptl;  
+
+       retval = -EINVAL;
+       if (PageAnon(page))
+               goto out;
+       retval = -ENOMEM;
+       flush_dcache_page(page);
+       pte = get_locked_pte(mm, addr, &ptl);
+       if (!pte)
+               goto out;
+       retval = -EBUSY;
+       if (!pte_none(*pte))
+               goto out_unlock;
+
+       /* Ok, finally just insert the thing.. */
+       get_page(page);
+       inc_mm_counter(mm, file_rss);
+       page_add_file_rmap(page);
+       set_pte_at(mm, addr, pte, mk_pte(page, prot));
+
+       retval = 0;
+out_unlock:
+       pte_unmap_unlock(pte, ptl);
+out:
+       return retval;
+}
+
+/*
+ * This allows drivers to insert individual pages they've allocated
+ * into a user vma.
+ *
+ * The page has to be a nice clean _individual_ kernel allocation.
+ * If you allocate a compound page, you need to have marked it as
+ * such (__GFP_COMP), or manually just split the page up yourself
+ * (see split_page()).
+ *
+ * NOTE! Traditionally this was done with "remap_pfn_range()" which
+ * took an arbitrary page protection parameter. This doesn't allow
+ * that. Your vma protection will have to be set up correctly, which
+ * means that if you want a shared writable mapping, you'd better
+ * ask for a shared writable mapping!
+ *
+ * The page does not need to be reserved.
+ */
+int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
+{
+       if (addr < vma->vm_start || addr >= vma->vm_end)
+               return -EFAULT;
+       if (!page_count(page))
+               return -EINVAL;
+       vma->vm_flags |= VM_INSERTPAGE;
+       return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
+}
+EXPORT_SYMBOL(vm_insert_page);
+
 /*
  * maps a range of physical memory into the requested pages. the old
  * mappings are removed. any references to nonexistent pages results
  * in null mappings (currently treated as "copy-on-access")
  */
-static inline void remap_pte_range(pte_t * pte, unsigned long address, unsigned long size,
-       unsigned long phys_addr, pgprot_t prot)
+static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
+                       unsigned long addr, unsigned long end,
+                       unsigned long pfn, pgprot_t prot)
 {
-       unsigned long end;
-       unsigned long pfn;
+       pte_t *pte;
+       spinlock_t *ptl;
 
-       address &= ~PMD_MASK;
-       end = address + size;
-       if (end > PMD_SIZE)
-               end = PMD_SIZE;
-       pfn = phys_addr >> PAGE_SHIFT;
+       pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
+       if (!pte)
+               return -ENOMEM;
        do {
                BUG_ON(!pte_none(*pte));
-               if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
-                       set_pte(pte, pfn_pte(pfn, prot));
-               address += PAGE_SIZE;
+               set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
                pfn++;
-               pte++;
-       } while (address && (address < end));
+       } while (pte++, addr += PAGE_SIZE, addr != end);
+       pte_unmap_unlock(pte - 1, ptl);
+       return 0;
 }
 
-static inline int remap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size,
-       unsigned long phys_addr, pgprot_t prot)
+static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
+                       unsigned long addr, unsigned long end,
+                       unsigned long pfn, pgprot_t prot)
 {
-       unsigned long base, end;
+       pmd_t *pmd;
+       unsigned long next;
 
-       base = address & PGDIR_MASK;
-       address &= ~PGDIR_MASK;
-       end = address + size;
-       if (end > PGDIR_SIZE)
-               end = PGDIR_SIZE;
-       phys_addr -= address;
+       pfn -= addr >> PAGE_SHIFT;
+       pmd = pmd_alloc(mm, pud, addr);
+       if (!pmd)
+               return -ENOMEM;
        do {
-               pte_t * pte = pte_alloc_map(mm, pmd, base + address);
-               if (!pte)
+               next = pmd_addr_end(addr, end);
+               if (remap_pte_range(mm, pmd, addr, next,
+                               pfn + (addr >> PAGE_SHIFT), prot))
                        return -ENOMEM;
-               remap_pte_range(pte, base + address, end - address, address + phys_addr, prot);
-               pte_unmap(pte);
-               address = (address + PMD_SIZE) & PMD_MASK;
-               pmd++;
-       } while (address && (address < end));
+       } while (pmd++, addr = next, addr != end);
+       return 0;
+}
+
+static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
+                       unsigned long addr, unsigned long end,
+                       unsigned long pfn, pgprot_t prot)
+{
+       pud_t *pud;
+       unsigned long next;
+
+       pfn -= addr >> PAGE_SHIFT;
+       pud = pud_alloc(mm, pgd, addr);
+       if (!pud)
+               return -ENOMEM;
+       do {
+               next = pud_addr_end(addr, end);
+               if (remap_pmd_range(mm, pud, addr, next,
+                               pfn + (addr >> PAGE_SHIFT), prot))
+                       return -ENOMEM;
+       } while (pud++, addr = next, addr != end);
        return 0;
 }
 
 /*  Note: this is only safe if the mm semaphore is held when called. */
-int remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long phys_addr, unsigned long size, pgprot_t prot)
+int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
+                   unsigned long pfn, unsigned long size, pgprot_t prot)
 {
-       int error = 0;
-       pgd_t * dir;
-       unsigned long beg = from;
-       unsigned long end = from + size;
+       pgd_t *pgd;
+       unsigned long next;
+       unsigned long end = addr + PAGE_ALIGN(size);
        struct mm_struct *mm = vma->vm_mm;
+       int err;
+
+       /*
+        * Physically remapped pages are special. Tell the
+        * rest of the world about it:
+        *   VM_IO tells people not to look at these pages
+        *      (accesses can have side effects).
+        *   VM_RESERVED is specified all over the place, because
+        *      in 2.4 it kept swapout's vma scan off this vma; but
+        *      in 2.6 the LRU scan won't even find its pages, so this
+        *      flag means no more than count its pages in reserved_vm,
+        *      and omit it from core dump, even when VM_IO turned off.
+        *   VM_PFNMAP tells the core MM that the base pages are just
+        *      raw PFN mappings, and do not have a "struct page" associated
+        *      with them.
+        *
+        * There's a horrible special case to handle copy-on-write
+        * behaviour that some programs depend on. We mark the "original"
+        * un-COW'ed pages by matching them up with "vma->vm_pgoff".
+        */
+       if (is_cow_mapping(vma->vm_flags)) {
+               if (addr != vma->vm_start || end != vma->vm_end)
+                       return -EINVAL;
+               vma->vm_pgoff = pfn;
+       }
+
+       vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
+
+       BUG_ON(addr >= end);
+       pfn -= addr >> PAGE_SHIFT;
+       pgd = pgd_offset(mm, addr);
+       flush_cache_range(vma, addr, end);
+       do {
+               next = pgd_addr_end(addr, end);
+               err = remap_pud_range(mm, pgd, addr, next,
+                               pfn + (addr >> PAGE_SHIFT), prot);
+               if (err)
+                       break;
+       } while (pgd++, addr = next, addr != end);
+       return err;
+}
+EXPORT_SYMBOL(remap_pfn_range);
+
+#ifdef CONFIG_XEN
+static inline int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
+                                    unsigned long addr, unsigned long end,
+                                    pte_fn_t fn, void *data)
+{
+       pte_t *pte;
+       int err;
+       struct page *pmd_page;
+       spinlock_t *ptl;
+
+       pte = (mm == &init_mm) ?
+               pte_alloc_kernel(pmd, addr) :
+               pte_alloc_map_lock(mm, pmd, addr, &ptl);
+       if (!pte)
+               return -ENOMEM;
+
+       BUG_ON(pmd_huge(*pmd));
 
-       phys_addr -= from;
-       dir = pgd_offset(mm, from);
-       flush_cache_range(vma, beg, end);
-       if (from >= end)
-               BUG();
+       pmd_page = pmd_page(*pmd);
+
+       do {
+               err = fn(pte, pmd_page, addr, data);
+               if (err)
+                       break;
+       } while (pte++, addr += PAGE_SIZE, addr != end);
+
+       if (mm != &init_mm)
+               pte_unmap_unlock(pte-1, ptl);
+       return err;
+}
+
+static inline int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
+                                    unsigned long addr, unsigned long end,
+                                    pte_fn_t fn, void *data)
+{
+       pmd_t *pmd;
+       unsigned long next;
+       int err;
+
+       pmd = pmd_alloc(mm, pud, addr);
+       if (!pmd)
+               return -ENOMEM;
+       do {
+               next = pmd_addr_end(addr, end);
+               err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
+               if (err)
+                       break;
+       } while (pmd++, addr = next, addr != end);
+       return err;
+}
+
+static inline int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
+                                    unsigned long addr, unsigned long end,
+                                    pte_fn_t fn, void *data)
+{
+       pud_t *pud;
+       unsigned long next;
+       int err;
+
+       pud = pud_alloc(mm, pgd, addr);
+       if (!pud)
+               return -ENOMEM;
+       do {
+               next = pud_addr_end(addr, end);
+               err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
+               if (err)
+                       break;
+       } while (pud++, addr = next, addr != end);
+       return err;
+}
+
+/*
+ * Scan a region of virtual memory, filling in page tables as necessary
+ * and calling a provided function on each leaf page table.
+ */
+int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
+                       unsigned long size, pte_fn_t fn, void *data)
+{
+       pgd_t *pgd;
+       unsigned long next;
+       unsigned long end = addr + size;
+       int err;
 
-       spin_lock(&mm->page_table_lock);
+       BUG_ON(addr >= end);
+       pgd = pgd_offset(mm, addr);
        do {
-               pmd_t *pmd = pmd_alloc(mm, dir, from);
-               error = -ENOMEM;
-               if (!pmd)
-                       break;
-               error = remap_pmd_range(mm, pmd, from, end - from, phys_addr + from, prot);
-               if (error)
+               next = pgd_addr_end(addr, end);
+               err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
+               if (err)
                        break;
-               from = (from + PGDIR_SIZE) & PGDIR_MASK;
-               dir++;
-       } while (from && (from < end));
-       /*
-        * Why flush? remap_pte_range has a BUG_ON for !pte_none()
-        */
-       flush_tlb_range(vma, beg, end);
-       spin_unlock(&mm->page_table_lock);
-       return error;
+       } while (pgd++, addr = next, addr != end);
+       return err;
 }
+EXPORT_SYMBOL_GPL(apply_to_page_range);
+#endif
 
-EXPORT_SYMBOL(remap_page_range);
+/*
+ * handle_pte_fault chooses page fault handler according to an entry
+ * which was read non-atomically.  Before making any commitment, on
+ * those architectures or configurations (e.g. i386 with PAE) which
+ * might give a mix of unmatched parts, do_swap_page and do_file_page
+ * must check under lock before unmapping the pte and proceeding
+ * (but do_wp_page is only called after already making such a check;
+ * and do_anonymous_page and do_no_page can safely check later on).
+ */
+static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
+                               pte_t *page_table, pte_t orig_pte)
+{
+       int same = 1;
+#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
+       if (sizeof(pte_t) > sizeof(unsigned long)) {
+               spinlock_t *ptl = pte_lockptr(mm, pmd);
+               spin_lock(ptl);
+               same = pte_same(*page_table, orig_pte);
+               spin_unlock(ptl);
+       }
+#endif
+       pte_unmap(page_table);
+       return same;
+}
 
 /*
  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
@@ -1008,19 +1511,31 @@ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
        return pte;
 }
 
-/*
- * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
- */
-static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, 
-               pte_t *page_table)
+static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
 {
-       pte_t entry;
+       /*
+        * If the source page was a PFN mapping, we don't have
+        * a "struct page" for it. We do a best-effort copy by
+        * just copying from the original user address. If that
+        * fails, we just zero-fill it. Live with it.
+        */
+       if (unlikely(!src)) {
+               void *kaddr = kmap_atomic(dst, KM_USER0);
+               void __user *uaddr = (void __user *)(va & PAGE_MASK);
 
-       flush_cache_page(vma, address);
-       entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
-                             vma);
-       ptep_establish(vma, address, page_table, entry);
-       update_mmu_cache(vma, address, entry);
+               /*
+                * This really shouldn't fail, because the page is there
+                * in the page tables. But it might just be unreadable,
+                * in which case we just give up and fill the result with
+                * zeroes.
+                */
+               if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
+                       memset(kaddr, 0, PAGE_SIZE);
+               kunmap_atomic(kaddr, KM_USER0);
+               return;
+               
+       }
+       copy_user_highpage(dst, src, va);
 }
 
 /*
@@ -1028,9 +1543,6 @@ static inline void break_cow(struct vm_area_struct * vma, struct page * new_page
  * to a shared page. It is done by copying the page to a new address
  * and decrementing the shared-page counter for the old page.
  *
- * Goto-purists beware: the only reason for goto's here is that it results
- * in better assembly code.. The "default" path will see no jumps at all.
- *
  * Note that this routine assumes that the protection checks have been
  * done by the caller (the low-level page fault routine in most cases).
  * Thus we can safely just mark it writable once we've done any necessary
@@ -1040,101 +1552,196 @@ static inline void break_cow(struct vm_area_struct * vma, struct page * new_page
  * change only once the write actually happens. This avoids a few races,
  * and potentially makes it more efficient.
  *
- * We hold the mm semaphore and the page_table_lock on entry and exit
- * with the page_table_lock released.
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), with pte both mapped and locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
  */
-static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
-       unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
+static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
+               unsigned long address, pte_t *page_table, pmd_t *pmd,
+               spinlock_t *ptl, pte_t orig_pte)
 {
        struct page *old_page, *new_page;
-       unsigned long pfn = pte_pfn(pte);
        pte_t entry;
+       int ret = VM_FAULT_MINOR;
 
-       if (unlikely(!pfn_valid(pfn))) {
-               /*
-                * This should really halt the system so it can be debugged or
-                * at least the kernel stops what it's doing before it corrupts
-                * data, but for the moment just pretend this is OOM.
-                */
-               pte_unmap(page_table);
-               printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
-                               address);
-               spin_unlock(&mm->page_table_lock);
-               return VM_FAULT_OOM;
-       }
-       old_page = pfn_to_page(pfn);
+       old_page = vm_normal_page(vma, address, orig_pte);
+       if (!old_page)
+               goto gotten;
 
-       if (!TestSetPageLocked(old_page)) {
+       if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
                int reuse = can_share_swap_page(old_page);
                unlock_page(old_page);
                if (reuse) {
-                       flush_cache_page(vma, address);
-                       entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
-                                             vma);
+                       flush_cache_page(vma, address, pte_pfn(orig_pte));
+                       entry = pte_mkyoung(orig_pte);
+                       entry = maybe_mkwrite(pte_mkdirty(entry), vma);
                        ptep_set_access_flags(vma, address, page_table, entry, 1);
                        update_mmu_cache(vma, address, entry);
-                       pte_unmap(page_table);
-                       spin_unlock(&mm->page_table_lock);
-                       return VM_FAULT_MINOR;
+                       lazy_mmu_prot_update(entry);
+                       ret |= VM_FAULT_WRITE;
+                       goto unlock;
                }
        }
-       pte_unmap(page_table);
 
        /*
         * Ok, we need to copy. Oh, well..
         */
-       if (!PageReserved(old_page))
-               page_cache_get(old_page);
-       spin_unlock(&mm->page_table_lock);
+       page_cache_get(old_page);
+gotten:
+       pte_unmap_unlock(page_table, ptl);
 
        if (unlikely(anon_vma_prepare(vma)))
-               goto no_new_page;
-       new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
-       if (!new_page)
-               goto no_new_page;
-       copy_cow_page(old_page,new_page,address);
+               goto oom;
+       if (old_page == ZERO_PAGE(address)) {
+               new_page = alloc_zeroed_user_highpage(vma, address);
+               if (!new_page)
+                       goto oom;
+       } else {
+               new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
+               if (!new_page)
+                       goto oom;
+               cow_user_page(new_page, old_page, address);
+       }
 
        /*
         * Re-check the pte - we dropped the lock
         */
-       spin_lock(&mm->page_table_lock);
-       page_table = pte_offset_map(pmd, address);
-       if (likely(pte_same(*page_table, pte))) {
-               if (PageReserved(old_page))
-                       // ++mm->rss;
-                       vx_rsspages_inc(mm);
-               else
+       page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+       if (likely(pte_same(*page_table, orig_pte))) {
+               if (old_page) {
                        page_remove_rmap(old_page);
-               break_cow(vma, new_page, address, page_table);
+                       if (!PageAnon(old_page)) {
+                               dec_mm_counter(mm, file_rss);
+                               inc_mm_counter(mm, anon_rss);
+                       }
+               } else
+                       inc_mm_counter(mm, anon_rss);
+               flush_cache_page(vma, address, pte_pfn(orig_pte));
+               entry = mk_pte(new_page, vma->vm_page_prot);
+               entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+               ptep_establish(vma, address, page_table, entry);
+               update_mmu_cache(vma, address, entry);
+               lazy_mmu_prot_update(entry);
                lru_cache_add_active(new_page);
-               page_add_anon_rmap(new_page, vma, address);
+               page_add_new_anon_rmap(new_page, vma, address);
 
                /* Free the old page.. */
                new_page = old_page;
+               ret |= VM_FAULT_WRITE;
        }
-       pte_unmap(page_table);
-       page_cache_release(new_page);
-       page_cache_release(old_page);
-       spin_unlock(&mm->page_table_lock);
-       return VM_FAULT_MINOR;
-
-no_new_page:
-       page_cache_release(old_page);
+       if (new_page)
+               page_cache_release(new_page);
+       if (old_page)
+               page_cache_release(old_page);
+unlock:
+       pte_unmap_unlock(page_table, ptl);
+       return ret;
+oom:
+       if (old_page)
+               page_cache_release(old_page);
        return VM_FAULT_OOM;
 }
 
 /*
- * Helper function for unmap_mapping_range().
+ * Helper functions for unmap_mapping_range().
+ *
+ * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
+ *
+ * We have to restart searching the prio_tree whenever we drop the lock,
+ * since the iterator is only valid while the lock is held, and anyway
+ * a later vma might be split and reinserted earlier while lock dropped.
+ *
+ * The list of nonlinear vmas could be handled more efficiently, using
+ * a placeholder, but handle it in the same way until a need is shown.
+ * It is important to search the prio_tree before nonlinear list: a vma
+ * may become nonlinear and be shifted from prio_tree to nonlinear list
+ * while the lock is dropped; but never shifted from list to prio_tree.
+ *
+ * In order to make forward progress despite restarting the search,
+ * vm_truncate_count is used to mark a vma as now dealt with, so we can
+ * quickly skip it next time around.  Since the prio_tree search only
+ * shows us those vmas affected by unmapping the range in question, we
+ * can't efficiently keep all vmas in step with mapping->truncate_count:
+ * so instead reset them all whenever it wraps back to 0 (then go to 1).
+ * mapping->truncate_count and vma->vm_truncate_count are protected by
+ * i_mmap_lock.
+ *
+ * In order to make forward progress despite repeatedly restarting some
+ * large vma, note the restart_addr from unmap_vmas when it breaks out:
+ * and restart from that address when we reach that vma again.  It might
+ * have been split or merged, shrunk or extended, but never shifted: so
+ * restart_addr remains valid so long as it remains in the vma's range.
+ * unmap_mapping_range forces truncate_count to leap over page-aligned
+ * values so we can save vma's restart_addr in its truncate_count field.
  */
-static inline void unmap_mapping_range_list(struct prio_tree_root *root,
+#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
+
+static void reset_vma_truncate_counts(struct address_space *mapping)
+{
+       struct vm_area_struct *vma;
+       struct prio_tree_iter iter;
+
+       vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
+               vma->vm_truncate_count = 0;
+       list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
+               vma->vm_truncate_count = 0;
+}
+
+static int unmap_mapping_range_vma(struct vm_area_struct *vma,
+               unsigned long start_addr, unsigned long end_addr,
+               struct zap_details *details)
+{
+       unsigned long restart_addr;
+       int need_break;
+
+again:
+       restart_addr = vma->vm_truncate_count;
+       if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
+               start_addr = restart_addr;
+               if (start_addr >= end_addr) {
+                       /* Top of vma has been split off since last time */
+                       vma->vm_truncate_count = details->truncate_count;
+                       return 0;
+               }
+       }
+
+       restart_addr = zap_page_range(vma, start_addr,
+                                       end_addr - start_addr, details);
+       need_break = need_resched() ||
+                       need_lockbreak(details->i_mmap_lock);
+
+       if (restart_addr >= end_addr) {
+               /* We have now completed this vma: mark it so */
+               vma->vm_truncate_count = details->truncate_count;
+               if (!need_break)
+                       return 0;
+       } else {
+               /* Note restart_addr in vma's truncate_count field */
+               vma->vm_truncate_count = restart_addr;
+               if (!need_break)
+                       goto again;
+       }
+
+       spin_unlock(details->i_mmap_lock);
+       cond_resched();
+       spin_lock(details->i_mmap_lock);
+       return -EINTR;
+}
+
+static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
                                            struct zap_details *details)
 {
        struct vm_area_struct *vma;
        struct prio_tree_iter iter;
        pgoff_t vba, vea, zba, zea;
 
+restart:
        vma_prio_tree_foreach(vma, &iter, root,
                        details->first_index, details->last_index) {
+               /* Skip quickly over those we have already dealt with */
+               if (vma->vm_truncate_count == details->truncate_count)
+                       continue;
+
                vba = vma->vm_pgoff;
                vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
                /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
@@ -1144,9 +1751,35 @@ static inline void unmap_mapping_range_list(struct prio_tree_root *root,
                zea = details->last_index;
                if (zea > vea)
                        zea = vea;
-               zap_page_range(vma,
+
+               if (unmap_mapping_range_vma(vma,
                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
-                       (zea - zba + 1) << PAGE_SHIFT, details);
+                       ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
+                               details) < 0)
+                       goto restart;
+       }
+}
+
+static inline void unmap_mapping_range_list(struct list_head *head,
+                                           struct zap_details *details)
+{
+       struct vm_area_struct *vma;
+
+       /*
+        * In nonlinear VMAs there is no correspondence between virtual address
+        * offset and file offset.  So we must perform an exhaustive search
+        * across *all* the pages in each nonlinear VMA, not just the pages
+        * whose virtual address lies outside the file truncation point.
+        */
+restart:
+       list_for_each_entry(vma, head, shared.vm_set.list) {
+               /* Skip quickly over those we have already dealt with */
+               if (vma->vm_truncate_count == details->truncate_count)
+                       continue;
+               details->nonlinear_vma = vma;
+               if (unmap_mapping_range_vma(vma, vma->vm_start,
+                                       vma->vm_end, details) < 0)
+                       goto restart;
        }
 }
 
@@ -1154,7 +1787,7 @@ static inline void unmap_mapping_range_list(struct prio_tree_root *root,
  * unmap_mapping_range - unmap the portion of all mmaps
  * in the specified address_space corresponding to the specified
  * page range in the underlying file.
- * @address_space: the address space containing mmaps to be unmapped.
+ * @mapping: the address space containing mmaps to be unmapped.
  * @holebegin: byte in first page to unmap, relative to the start of
  * the underlying file.  This will be rounded down to a PAGE_SIZE
  * boundary.  Note that this is different from vmtruncate(), which
@@ -1185,32 +1818,34 @@ void unmap_mapping_range(struct address_space *mapping,
        details.nonlinear_vma = NULL;
        details.first_index = hba;
        details.last_index = hba + hlen - 1;
-       details.atomic = 1;     /* A spinlock is held */
        if (details.last_index < details.first_index)
                details.last_index = ULONG_MAX;
+       details.i_mmap_lock = &mapping->i_mmap_lock;
 
        spin_lock(&mapping->i_mmap_lock);
-       /* Protect against page fault */
-       atomic_inc(&mapping->truncate_count);
-
-       if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
-               unmap_mapping_range_list(&mapping->i_mmap, &details);
 
+       /* serialize i_size write against truncate_count write */
+       smp_wmb();
+       /* Protect against page faults, and endless unmapping loops */
+       mapping->truncate_count++;
        /*
-        * In nonlinear VMAs there is no correspondence between virtual address
-        * offset and file offset.  So we must perform an exhaustive search
-        * across *all* the pages in each nonlinear VMA, not just the pages
-        * whose virtual address lies outside the file truncation point.
+        * For archs where spin_lock has inclusive semantics like ia64
+        * this smp_mb() will prevent to read pagetable contents
+        * before the truncate_count increment is visible to
+        * other cpus.
         */
-       if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) {
-               struct vm_area_struct *vma;
-               list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
-                                               shared.vm_set.list) {
-                       details.nonlinear_vma = vma;
-                       zap_page_range(vma, vma->vm_start,
-                               vma->vm_end - vma->vm_start, &details);
-               }
+       smp_mb();
+       if (unlikely(is_restart_addr(mapping->truncate_count))) {
+               if (mapping->truncate_count == 0)
+                       reset_vma_truncate_counts(mapping);
+               mapping->truncate_count++;
        }
+       details.truncate_count = mapping->truncate_count;
+
+       if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
+               unmap_mapping_range_tree(&mapping->i_mmap, &details);
+       if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
+               unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
        spin_unlock(&mapping->i_mmap_lock);
 }
 EXPORT_SYMBOL(unmap_mapping_range);
@@ -1242,7 +1877,7 @@ int vmtruncate(struct inode * inode, loff_t offset)
        goto out_truncate;
 
 do_expand:
-       limit = current->rlim[RLIMIT_FSIZE].rlim_cur;
+       limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
        if (limit != RLIM_INFINITY && offset > limit)
                goto out_sig;
        if (offset > inode->i_sb->s_maxbytes)
@@ -1260,9 +1895,32 @@ out_big:
 out_busy:
        return -ETXTBSY;
 }
-
 EXPORT_SYMBOL(vmtruncate);
 
+int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
+{
+       struct address_space *mapping = inode->i_mapping;
+
+       /*
+        * If the underlying filesystem is not going to provide
+        * a way to truncate a range of blocks (punch a hole) -
+        * we should return failure right now.
+        */
+       if (!inode->i_op || !inode->i_op->truncate_range)
+               return -ENOSYS;
+
+       mutex_lock(&inode->i_mutex);
+       down_write(&inode->i_alloc_sem);
+       unmap_mapping_range(mapping, offset, (end - offset), 1);
+       truncate_inode_pages_range(mapping, offset, end);
+       inode->i_op->truncate_range(inode, offset, end);
+       up_write(&inode->i_alloc_sem);
+       mutex_unlock(&inode->i_mutex);
+
+       return 0;
+}
+EXPORT_SYMBOL(vmtruncate_range);
+
 /* 
  * Primitive swap readahead code. We simply read an aligned block of
  * (1 << page_cluster) entries in the swap area. This method is chosen
@@ -1320,38 +1978,38 @@ void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struc
 }
 
 /*
- * We hold the mm semaphore and the page_table_lock on entry and
- * should release the pagetable lock on exit..
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), and pte mapped but not yet locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
  */
-static int do_swap_page(struct mm_struct * mm,
-       struct vm_area_struct * vma, unsigned long address,
-       pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
+static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
+               unsigned long address, pte_t *page_table, pmd_t *pmd,
+               int write_access, pte_t orig_pte)
 {
+       spinlock_t *ptl;
        struct page *page;
-       swp_entry_t entry = pte_to_swp_entry(orig_pte);
+       swp_entry_t entry;
        pte_t pte;
        int ret = VM_FAULT_MINOR;
 
-       pte_unmap(page_table);
-       spin_unlock(&mm->page_table_lock);
+       if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
+               goto out;
+
+       entry = pte_to_swp_entry(orig_pte);
+again:
        page = lookup_swap_cache(entry);
        if (!page) {
                swapin_readahead(entry, address, vma);
                page = read_swap_cache_async(entry, vma, address);
                if (!page) {
                        /*
-                        * Back out if somebody else faulted in this pte while
-                        * we released the page table lock.
+                        * Back out if somebody else faulted in this pte
+                        * while we released the pte lock.
                         */
-                       spin_lock(&mm->page_table_lock);
-                       page_table = pte_offset_map(pmd, address);
+                       page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
                        if (likely(pte_same(*page_table, orig_pte)))
                                ret = VM_FAULT_OOM;
-                       else
-                               ret = VM_FAULT_MINOR;
-                       pte_unmap(page_table);
-                       spin_unlock(&mm->page_table_lock);
-                       goto out;
+                       goto unlock;
                }
 
                /* Had to read the page from swap area: Major fault */
@@ -1366,116 +2024,124 @@ static int do_swap_page(struct mm_struct * mm,
        }
        mark_page_accessed(page);
        lock_page(page);
+       if (!PageSwapCache(page)) {
+               /* Page migration has occured */
+               unlock_page(page);
+               page_cache_release(page);
+               goto again;
+       }
 
        /*
-        * Back out if somebody else faulted in this pte while we
-        * released the page table lock.
+        * Back out if somebody else already faulted in this pte.
         */
-       spin_lock(&mm->page_table_lock);
-       page_table = pte_offset_map(pmd, address);
-       if (unlikely(!pte_same(*page_table, orig_pte))) {
-               pte_unmap(page_table);
-               spin_unlock(&mm->page_table_lock);
-               unlock_page(page);
-               page_cache_release(page);
-               ret = VM_FAULT_MINOR;
-               goto out;
+       page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+       if (unlikely(!pte_same(*page_table, orig_pte)))
+               goto out_nomap;
+
+       if (unlikely(!PageUptodate(page))) {
+               ret = VM_FAULT_SIGBUS;
+               goto out_nomap;
        }
 
        /* The page isn't present yet, go ahead with the fault. */
-               
-       swap_free(entry);
-       if (vm_swap_full())
-               remove_exclusive_swap_page(page);
 
-       // mm->rss++;
-       vx_rsspages_inc(mm);
+       inc_mm_counter(mm, anon_rss);
        pte = mk_pte(page, vma->vm_page_prot);
        if (write_access && can_share_swap_page(page)) {
                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
                write_access = 0;
        }
-       unlock_page(page);
 
        flush_icache_page(vma, page);
-       set_pte(page_table, pte);
+       set_pte_at(mm, address, page_table, pte);
        page_add_anon_rmap(page, vma, address);
 
+       swap_free(entry);
+       if (vm_swap_full())
+               remove_exclusive_swap_page(page);
+       unlock_page(page);
+
        if (write_access) {
                if (do_wp_page(mm, vma, address,
-                               page_table, pmd, pte) == VM_FAULT_OOM)
+                               page_table, pmd, ptl, pte) == VM_FAULT_OOM)
                        ret = VM_FAULT_OOM;
                goto out;
        }
 
        /* No need to invalidate - it was non-present before */
        update_mmu_cache(vma, address, pte);
-       pte_unmap(page_table);
-       spin_unlock(&mm->page_table_lock);
+       lazy_mmu_prot_update(pte);
+unlock:
+       pte_unmap_unlock(page_table, ptl);
 out:
        return ret;
+out_nomap:
+       pte_unmap_unlock(page_table, ptl);
+       unlock_page(page);
+       page_cache_release(page);
+       return ret;
 }
 
 /*
- * We are called with the MM semaphore and page_table_lock
- * spinlock held to protect against concurrent faults in
- * multithreaded programs. 
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), and pte mapped but not yet locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
  */
-static int
-do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
-               pte_t *page_table, pmd_t *pmd, int write_access,
-               unsigned long addr)
+static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
+               unsigned long address, pte_t *page_table, pmd_t *pmd,
+               int write_access)
 {
+       struct page *page;
+       spinlock_t *ptl;
        pte_t entry;
-       struct page * page = ZERO_PAGE(addr);
 
-       /* Read-only mapping of ZERO_PAGE. */
-       entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
-
-       /* ..except if it's a write access */
        if (write_access) {
                /* Allocate our own private page. */
                pte_unmap(page_table);
-               spin_unlock(&mm->page_table_lock);
 
-               if (unlikely(anon_vma_prepare(vma)))
-                       goto no_mem;
                if (!vx_rsspages_avail(mm, 1))
-                       goto no_mem;
-
-               page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
+                       goto oom;
+               if (unlikely(anon_vma_prepare(vma)))
+                       goto oom;
+               page = alloc_zeroed_user_highpage(vma, address);
                if (!page)
-                       goto no_mem;
-               clear_user_highpage(page, addr);
+                       goto oom;
 
-               spin_lock(&mm->page_table_lock);
-               page_table = pte_offset_map(pmd, addr);
+               entry = mk_pte(page, vma->vm_page_prot);
+               entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 
-               if (!pte_none(*page_table)) {
-                       pte_unmap(page_table);
-                       page_cache_release(page);
-                       spin_unlock(&mm->page_table_lock);
-                       goto out;
-               }
-               // mm->rss++;
-               vx_rsspages_inc(mm);
-               entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
-                                                        vma->vm_page_prot)),
-                                     vma);
+               page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+               if (!pte_none(*page_table))
+                       goto release;
+               inc_mm_counter(mm, anon_rss);
                lru_cache_add_active(page);
-               mark_page_accessed(page);
-               page_add_anon_rmap(page, vma, addr);
+               page_add_new_anon_rmap(page, vma, address);
+       } else {
+               /* Map the ZERO_PAGE - vm_page_prot is readonly */
+               page = ZERO_PAGE(address);
+               page_cache_get(page);
+               entry = mk_pte(page, vma->vm_page_prot);
+
+               ptl = pte_lockptr(mm, pmd);
+               spin_lock(ptl);
+               if (!pte_none(*page_table))
+                       goto release;
+               inc_mm_counter(mm, file_rss);
+               page_add_file_rmap(page);
        }
 
-       set_pte(page_table, entry);
-       pte_unmap(page_table);
+       set_pte_at(mm, address, page_table, entry);
 
        /* No need to invalidate - it was non-present before */
-       update_mmu_cache(vma, addr, entry);
-       spin_unlock(&mm->page_table_lock);
-out:
+       update_mmu_cache(vma, address, entry);
+       lazy_mmu_prot_update(entry);
+unlock:
+       pte_unmap_unlock(page_table, ptl);
        return VM_FAULT_MINOR;
-no_mem:
+release:
+       page_cache_release(page);
+       goto unlock;
+oom:
        return VM_FAULT_OOM;
 }
 
@@ -1488,41 +2154,48 @@ no_mem:
  * As this is called only for pages that do not currently exist, we
  * do not need to flush old virtual caches or the TLB.
  *
- * This is called with the MM semaphore held and the page table
- * spinlock held. Exit with the spinlock released.
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), and pte mapped but not yet locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
  */
-static int
-do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
-       unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
+static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
+               unsigned long address, pte_t *page_table, pmd_t *pmd,
+               int write_access)
 {
-       struct page * new_page;
+       spinlock_t *ptl;
+       struct page *new_page;
        struct address_space *mapping = NULL;
        pte_t entry;
-       int sequence = 0;
+       unsigned int sequence = 0;
        int ret = VM_FAULT_MINOR;
        int anon = 0;
 
-       if (!vma->vm_ops || !vma->vm_ops->nopage)
-               return do_anonymous_page(mm, vma, page_table,
-                                       pmd, write_access, address);
        pte_unmap(page_table);
-       spin_unlock(&mm->page_table_lock);
+       BUG_ON(vma->vm_flags & VM_PFNMAP);
 
        if (vma->vm_file) {
                mapping = vma->vm_file->f_mapping;
-               sequence = atomic_read(&mapping->truncate_count);
+               sequence = mapping->truncate_count;
+               smp_rmb(); /* serializes i_size against truncate_count */
        }
-       smp_rmb();  /* Prevent CPU from reordering lock-free ->nopage() */
 retry:
+       /* FIXME: is that check useful here? */
+       if (!vx_rsspages_avail(mm, 1))
+               return VM_FAULT_OOM;
        new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
+       /*
+        * No smp_rmb is needed here as long as there's a full
+        * spin_lock/unlock sequence inside the ->nopage callback
+        * (for the pagecache lookup) that acts as an implicit
+        * smp_mb() and prevents the i_size read to happen
+        * after the next truncate_count read.
+        */
 
        /* no page was available -- either SIGBUS or OOM */
        if (new_page == NOPAGE_SIGBUS)
                return VM_FAULT_SIGBUS;
        if (new_page == NOPAGE_OOM)
                return VM_FAULT_OOM;
-       if (!vx_rsspages_avail(mm, 1))
-               return VM_FAULT_OOM;
 
        /*
         * Should we do an early C-O-W break?
@@ -1541,20 +2214,20 @@ retry:
                anon = 1;
        }
 
-       spin_lock(&mm->page_table_lock);
+       page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
        /*
         * For a file-backed vma, someone could have truncated or otherwise
         * invalidated this page.  If unmap_mapping_range got called,
         * retry getting the page.
         */
-       if (mapping &&
-             (unlikely(sequence != atomic_read(&mapping->truncate_count)))) {
-               sequence = atomic_read(&mapping->truncate_count);
-               spin_unlock(&mm->page_table_lock);
+       if (mapping && unlikely(sequence != mapping->truncate_count)) {
+               pte_unmap_unlock(page_table, ptl);
                page_cache_release(new_page);
+               cond_resched();
+               sequence = mapping->truncate_count;
+               smp_rmb();
                goto retry;
        }
-       page_table = pte_offset_map(pmd, address);
 
        /*
         * This silly early PAGE_DIRTY setting removes a race
@@ -1568,67 +2241,67 @@ retry:
         */
        /* Only go through if we didn't race with anybody else... */
        if (pte_none(*page_table)) {
-               if (!PageReserved(new_page))
-                       // ++mm->rss;
-                       vx_rsspages_inc(mm);
                flush_icache_page(vma, new_page);
                entry = mk_pte(new_page, vma->vm_page_prot);
                if (write_access)
                        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
-               set_pte(page_table, entry);
+               set_pte_at(mm, address, page_table, entry);
                if (anon) {
+                       inc_mm_counter(mm, anon_rss);
                        lru_cache_add_active(new_page);
-                       page_add_anon_rmap(new_page, vma, address);
-               } else
+                       page_add_new_anon_rmap(new_page, vma, address);
+               } else {
+                       inc_mm_counter(mm, file_rss);
                        page_add_file_rmap(new_page);
-               pte_unmap(page_table);
+               }
        } else {
                /* One of our sibling threads was faster, back out. */
-               pte_unmap(page_table);
                page_cache_release(new_page);
-               spin_unlock(&mm->page_table_lock);
-               goto out;
+               goto unlock;
        }
 
        /* no need to invalidate: a not-present page shouldn't be cached */
        update_mmu_cache(vma, address, entry);
-       spin_unlock(&mm->page_table_lock);
-out:
+       lazy_mmu_prot_update(entry);
+unlock:
+       pte_unmap_unlock(page_table, ptl);
        return ret;
 oom:
        page_cache_release(new_page);
-       ret = VM_FAULT_OOM;
-       goto out;
+       return VM_FAULT_OOM;
 }
 
 /*
  * Fault of a previously existing named mapping. Repopulate the pte
  * from the encoded file_pte if possible. This enables swappable
  * nonlinear vmas.
+ *
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), and pte mapped but not yet locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
  */
-static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
-       unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
+static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
+               unsigned long address, pte_t *page_table, pmd_t *pmd,
+               int write_access, pte_t orig_pte)
 {
-       unsigned long pgoff;
+       pgoff_t pgoff;
        int err;
 
-       BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
-       /*
-        * Fall back to the linear mapping if the fs does not support
-        * ->populate:
-        */
-       if (!vma->vm_ops || !vma->vm_ops->populate || 
-                       (write_access && !(vma->vm_flags & VM_SHARED))) {
-               pte_clear(pte);
-               return do_no_page(mm, vma, address, write_access, pte, pmd);
-       }
-
-       pgoff = pte_to_pgoff(*pte);
+       if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
+               return VM_FAULT_MINOR;
 
-       pte_unmap(pte);
-       spin_unlock(&mm->page_table_lock);
+       if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
+               /*
+                * Page table corrupted: show pte and kill process.
+                */
+               print_bad_pte(vma, orig_pte, address);
+               return VM_FAULT_OOM;
+       }
+       /* We can then assume vm->vm_ops && vma->vm_ops->populate */
 
-       err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
+       pgoff = pte_to_pgoff(orig_pte);
+       err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
+                                       vma->vm_page_prot, pgoff, 0);
        if (err == -ENOMEM)
                return VM_FAULT_OOM;
        if (err)
@@ -1645,116 +2318,158 @@ static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
  * with external mmu caches can use to update those (ie the Sparc or
  * PowerPC hashed page tables that act as extended TLBs).
  *
- * Note the "page_table_lock". It is to protect against kswapd removing
- * pages from under us. Note that kswapd only ever _removes_ pages, never
- * adds them. As such, once we have noticed that the page is not present,
- * we can drop the lock early.
- *
- * The adding of pages is protected by the MM semaphore (which we hold),
- * so we don't need to worry about a page being suddenly been added into
- * our VM.
- *
- * We enter with the pagetable spinlock held, we are supposed to
- * release it when done.
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), and pte mapped but not yet locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
  */
 static inline int handle_pte_fault(struct mm_struct *mm,
-       struct vm_area_struct * vma, unsigned long address,
-       int write_access, pte_t *pte, pmd_t *pmd)
+               struct vm_area_struct *vma, unsigned long address,
+               pte_t *pte, pmd_t *pmd, int write_access)
 {
        pte_t entry;
+       pte_t old_entry;
+       spinlock_t *ptl;
 
-       entry = *pte;
+       old_entry = entry = *pte;
        if (!pte_present(entry)) {
-               /*
-                * If it truly wasn't present, we know that kswapd
-                * and the PTE updates will not touch it later. So
-                * drop the lock.
-                */
-               if (pte_none(entry))
-                       return do_no_page(mm, vma, address, write_access, pte, pmd);
+               if (pte_none(entry)) {
+                       if (!vma->vm_ops || !vma->vm_ops->nopage)
+                               return do_anonymous_page(mm, vma, address,
+                                       pte, pmd, write_access);
+                       return do_no_page(mm, vma, address,
+                                       pte, pmd, write_access);
+               }
                if (pte_file(entry))
-                       return do_file_page(mm, vma, address, write_access, pte, pmd);
-               return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
+                       return do_file_page(mm, vma, address,
+                                       pte, pmd, write_access, entry);
+               return do_swap_page(mm, vma, address,
+                                       pte, pmd, write_access, entry);
        }
 
+       ptl = pte_lockptr(mm, pmd);
+       spin_lock(ptl);
+       if (unlikely(!pte_same(*pte, entry)))
+               goto unlock;
        if (write_access) {
                if (!pte_write(entry))
-                       return do_wp_page(mm, vma, address, pte, pmd, entry);
-
+                       return do_wp_page(mm, vma, address,
+                                       pte, pmd, ptl, entry);
                entry = pte_mkdirty(entry);
        }
        entry = pte_mkyoung(entry);
-       ptep_set_access_flags(vma, address, pte, entry, write_access);
-       update_mmu_cache(vma, address, entry);
-       pte_unmap(pte);
-       spin_unlock(&mm->page_table_lock);
+       if (!pte_same(old_entry, entry)) {
+               ptep_set_access_flags(vma, address, pte, entry, write_access);
+               update_mmu_cache(vma, address, entry);
+               lazy_mmu_prot_update(entry);
+       } else {
+               /*
+                * This is needed only for protection faults but the arch code
+                * is not yet telling us if this is a protection fault or not.
+                * This still avoids useless tlb flushes for .text page faults
+                * with threads.
+                */
+               if (write_access)
+                       flush_tlb_page(vma, address);
+       }
+unlock:
+       pte_unmap_unlock(pte, ptl);
        return VM_FAULT_MINOR;
 }
 
 /*
  * By the time we get here, we already hold the mm semaphore
  */
-int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
-       unsigned long address, int write_access)
+int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+               unsigned long address, int write_access)
 {
        pgd_t *pgd;
+       pud_t *pud;
        pmd_t *pmd;
+       pte_t *pte;
 
        __set_current_state(TASK_RUNNING);
-       pgd = pgd_offset(mm, address);
 
        inc_page_state(pgfault);
 
-       if (is_vm_hugetlb_page(vma))
-               return VM_FAULT_SIGBUS; /* mapping truncation does this. */
+       if (unlikely(is_vm_hugetlb_page(vma)))
+               return hugetlb_fault(mm, vma, address, write_access);
 
-       /*
-        * We need the page table lock to synchronize with kswapd
-        * and the SMP-safe atomic PTE updates.
-        */
-       spin_lock(&mm->page_table_lock);
-       pmd = pmd_alloc(mm, pgd, address);
+       pgd = pgd_offset(mm, address);
+       pud = pud_alloc(mm, pgd, address);
+       if (!pud)
+               return VM_FAULT_OOM;
+       pmd = pmd_alloc(mm, pud, address);
+       if (!pmd)
+               return VM_FAULT_OOM;
+       pte = pte_alloc_map(mm, pmd, address);
+       if (!pte)
+               return VM_FAULT_OOM;
 
-       if (pmd) {
-               pte_t * pte = pte_alloc_map(mm, pmd, address);
-               if (pte)
-                       return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
-       }
-       spin_unlock(&mm->page_table_lock);
-       return VM_FAULT_OOM;
+       return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
 }
 
+EXPORT_SYMBOL_GPL(__handle_mm_fault);
+
+#ifndef __PAGETABLE_PUD_FOLDED
 /*
- * Allocate page middle directory.
- *
- * We've already handled the fast-path in-line, and we own the
- * page table lock.
- *
- * On a two-level page table, this ends up actually being entirely
- * optimized away.
+ * Allocate page upper directory.
+ * We've already handled the fast-path in-line.
  */
-pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
+int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
 {
-       pmd_t *new;
+       pud_t *new = pud_alloc_one(mm, address);
+       if (!new)
+               return -ENOMEM;
 
-       spin_unlock(&mm->page_table_lock);
-       new = pmd_alloc_one(mm, address);
        spin_lock(&mm->page_table_lock);
+       if (pgd_present(*pgd))          /* Another has populated it */
+               pud_free(new);
+       else
+               pgd_populate(mm, pgd, new);
+       spin_unlock(&mm->page_table_lock);
+       return 0;
+}
+#else
+/* Workaround for gcc 2.96 */
+int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
+{
+       return 0;
+}
+#endif /* __PAGETABLE_PUD_FOLDED */
+
+#ifndef __PAGETABLE_PMD_FOLDED
+/*
+ * Allocate page middle directory.
+ * We've already handled the fast-path in-line.
+ */
+int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
+{
+       pmd_t *new = pmd_alloc_one(mm, address);
        if (!new)
-               return NULL;
+               return -ENOMEM;
 
-       /*
-        * Because we dropped the lock, we should re-check the
-        * entry, as somebody else could have populated it..
-        */
-       if (pgd_present(*pgd)) {
+       spin_lock(&mm->page_table_lock);
+#ifndef __ARCH_HAS_4LEVEL_HACK
+       if (pud_present(*pud))          /* Another has populated it */
                pmd_free(new);
-               goto out;
-       }
-       pgd_populate(mm, pgd, new);
-out:
-       return pmd_offset(pgd, address);
+       else
+               pud_populate(mm, pud, new);
+#else
+       if (pgd_present(*pud))          /* Another has populated it */
+               pmd_free(new);
+       else
+               pgd_populate(mm, pud, new);
+#endif /* __ARCH_HAS_4LEVEL_HACK */
+       spin_unlock(&mm->page_table_lock);
+       return 0;
+}
+#else
+/* Workaround for gcc 2.96 */
+int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
+{
+       return 0;
 }
+#endif /* __PAGETABLE_PMD_FOLDED */
 
 int make_pages_present(unsigned long addr, unsigned long end)
 {
@@ -1765,10 +2480,8 @@ int make_pages_present(unsigned long addr, unsigned long end)
        if (!vma)
                return -1;
        write = (vma->vm_flags & VM_WRITE) != 0;
-       if (addr >= end)
-               BUG();
-       if (end > vma->vm_end)
-               BUG();
+       BUG_ON(addr >= end);
+       BUG_ON(end > vma->vm_end);
        len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
        ret = get_user_pages(current, current->mm, addr,
                        len, write, 0, NULL, NULL);
@@ -1785,19 +2498,21 @@ struct page * vmalloc_to_page(void * vmalloc_addr)
        unsigned long addr = (unsigned long) vmalloc_addr;
        struct page *page = NULL;
        pgd_t *pgd = pgd_offset_k(addr);
+       pud_t *pud;
        pmd_t *pmd;
        pte_t *ptep, pte;
   
        if (!pgd_none(*pgd)) {
-               pmd = pmd_offset(pgd, addr);
-               if (!pmd_none(*pmd)) {
-                       preempt_disable();
-                       ptep = pte_offset_map(pmd, addr);
-                       pte = *ptep;
-                       if (pte_present(pte))
-                               page = pte_page(pte);
-                       pte_unmap(ptep);
-                       preempt_enable();
+               pud = pud_offset(pgd, addr);
+               if (!pud_none(*pud)) {
+                       pmd = pmd_offset(pud, addr);
+                       if (!pmd_none(*pmd)) {
+                               ptep = pte_offset_map(pmd, addr);
+                               pte = *ptep;
+                               if (pte_present(pte))
+                                       page = pte_page(pte);
+                               pte_unmap(ptep);
+                       }
                }
        }
        return page;
@@ -1805,10 +2520,20 @@ struct page * vmalloc_to_page(void * vmalloc_addr)
 
 EXPORT_SYMBOL(vmalloc_to_page);
 
-#if !defined(CONFIG_ARCH_GATE_AREA)
+/*
+ * Map a vmalloc()-space virtual address to the physical page frame number.
+ */
+unsigned long vmalloc_to_pfn(void * vmalloc_addr)
+{
+       return page_to_pfn(vmalloc_to_page(vmalloc_addr));
+}
+
+EXPORT_SYMBOL(vmalloc_to_pfn);
+
+#if !defined(__HAVE_ARCH_GATE_AREA)
 
 #if defined(AT_SYSINFO_EHDR)
-struct vm_area_struct gate_vma;
+static struct vm_area_struct gate_vma;
 
 static int __init gate_vma_init(void)
 {
@@ -1831,7 +2556,7 @@ struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
 #endif
 }
 
-int in_gate_area(struct task_struct *task, unsigned long addr)
+int in_gate_area_no_task(unsigned long addr)
 {
 #ifdef AT_SYSINFO_EHDR
        if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
@@ -1840,4 +2565,4 @@ int in_gate_area(struct task_struct *task, unsigned long addr)
        return 0;
 }
 
-#endif
+#endif /* __HAVE_ARCH_GATE_AREA */