patch-2_6_7-vs1_9_1_12
[linux-2.6.git] / mm / rmap.c
index f23ff9c..2dae0a8 100644 (file)
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -4,17 +4,23 @@
  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  * Released under the General Public License (GPL).
  *
+ * Simple, low overhead reverse mapping scheme.
+ * Please try to keep this thing as modular as possible.
  *
- * Simple, low overhead pte-based reverse mapping scheme.
- * This is kept modular because we may want to experiment
- * with object-based reverse mapping schemes. Please try
- * to keep this thing as modular as possible.
+ * Provides methods for unmapping each kind of mapped page:
+ * the anon methods track anonymous pages, and
+ * the file methods track pages belonging to an inode.
+ *
+ * Original design by Rik van Riel <riel@conectiva.com.br> 2001
+ * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
+ * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
+ * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
  */
 
 /*
  * Locking:
- * - the page->pte.chain is protected by the PG_maplock bit,
- *   which nests within the the mm->page_table_lock,
+ * - the page->mapcount field is protected by the PG_maplock bit,
+ *   which nests within the mm->page_table_lock,
  *   which nests within the page lock.
  * - because swapout locking is opposite to the locking order
  *   in the page fault path, the swapout path uses trylocks
 #include <linux/slab.h>
 #include <linux/init.h>
 #include <linux/rmap.h>
-#include <linux/cache.h>
-#include <linux/percpu.h>
+#include <linux/vs_memory.h>
 
-#include <asm/pgalloc.h>
-#include <asm/rmap.h>
-#include <asm/tlb.h>
 #include <asm/tlbflush.h>
 
-/*
- * Something oopsable to put for now in the page->mapping
- * of an anonymous page, to test that it is ignored.
- */
-#define ANON_MAPPING_DEBUG     ((struct address_space *) 0)
+//#define RMAP_DEBUG /* can be enabled only for debugging */
 
-static inline void clear_page_anon(struct page *page)
+kmem_cache_t *anon_vma_cachep;
+
+static inline void validate_anon_vma(struct vm_area_struct *find_vma)
 {
-       BUG_ON(page->mapping != ANON_MAPPING_DEBUG);
-       page->mapping = NULL;
-       ClearPageAnon(page);
+#ifdef RMAP_DEBUG
+       struct anon_vma *anon_vma = find_vma->anon_vma;
+       struct vm_area_struct *vma;
+       unsigned int mapcount = 0;
+       int found = 0;
+
+       list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
+               mapcount++;
+               BUG_ON(mapcount > 100000);
+               if (vma == find_vma)
+                       found = 1;
+       }
+       BUG_ON(!found);
+#endif
 }
 
-/*
- * Shared pages have a chain of pte_chain structures, used to locate
- * all the mappings to this page. We only need a pointer to the pte
- * here, the page struct for the page table page contains the process
- * it belongs to and the offset within that process.
- *
- * We use an array of pte pointers in this structure to minimise cache misses
- * while traversing reverse maps.
- */
-#define NRPTE ((L1_CACHE_BYTES - sizeof(unsigned long))/sizeof(pte_addr_t))
+/* This must be called under the mmap_sem. */
+int anon_vma_prepare(struct vm_area_struct *vma)
+{
+       struct anon_vma *anon_vma = vma->anon_vma;
+
+       might_sleep();
+       if (unlikely(!anon_vma)) {
+               struct mm_struct *mm = vma->vm_mm;
+               struct anon_vma *allocated = NULL;
+
+               anon_vma = find_mergeable_anon_vma(vma);
+               if (!anon_vma) {
+                       anon_vma = anon_vma_alloc();
+                       if (unlikely(!anon_vma))
+                               return -ENOMEM;
+                       allocated = anon_vma;
+               }
 
-/*
- * next_and_idx encodes both the address of the next pte_chain and the
- * offset of the lowest-index used pte in ptes[] (which is equal also
- * to the offset of the highest-index unused pte in ptes[], plus one).
- */
-struct pte_chain {
-       unsigned long next_and_idx;
-       pte_addr_t ptes[NRPTE];
-} ____cacheline_aligned;
+               /* page_table_lock to protect against threads */
+               spin_lock(&mm->page_table_lock);
+               if (likely(!vma->anon_vma)) {
+                       vma->anon_vma = anon_vma;
+                       list_add(&vma->anon_vma_node, &anon_vma->head);
+                       allocated = NULL;
+               }
+               spin_unlock(&mm->page_table_lock);
+               if (unlikely(allocated))
+                       anon_vma_free(allocated);
+       }
+       return 0;
+}
+
+void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
+{
+       if (!vma->anon_vma) {
+               BUG_ON(!next->anon_vma);
+               vma->anon_vma = next->anon_vma;
+               list_add(&vma->anon_vma_node, &next->anon_vma_node);
+       } else {
+               /* if they're both non-null they must be the same */
+               BUG_ON(vma->anon_vma != next->anon_vma);
+       }
+       list_del(&next->anon_vma_node);
+}
+
+void __anon_vma_link(struct vm_area_struct *vma)
+{
+       struct anon_vma *anon_vma = vma->anon_vma;
+
+       if (anon_vma) {
+               list_add(&vma->anon_vma_node, &anon_vma->head);
+               validate_anon_vma(vma);
+       }
+}
+
+void anon_vma_link(struct vm_area_struct *vma)
+{
+       struct anon_vma *anon_vma = vma->anon_vma;
+
+       if (anon_vma) {
+               spin_lock(&anon_vma->lock);
+               list_add(&vma->anon_vma_node, &anon_vma->head);
+               validate_anon_vma(vma);
+               spin_unlock(&anon_vma->lock);
+       }
+}
+
+void anon_vma_unlink(struct vm_area_struct *vma)
+{
+       struct anon_vma *anon_vma = vma->anon_vma;
+       int empty;
+
+       if (!anon_vma)
+               return;
 
-kmem_cache_t   *pte_chain_cache;
+       spin_lock(&anon_vma->lock);
+       validate_anon_vma(vma);
+       list_del(&vma->anon_vma_node);
 
-static inline struct pte_chain *pte_chain_next(struct pte_chain *pte_chain)
+       /* We must garbage collect the anon_vma if it's empty */
+       empty = list_empty(&anon_vma->head);
+       spin_unlock(&anon_vma->lock);
+
+       if (empty)
+               anon_vma_free(anon_vma);
+}
+
+static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
 {
-       return (struct pte_chain *)(pte_chain->next_and_idx & ~NRPTE);
+       if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
+                                               SLAB_CTOR_CONSTRUCTOR) {
+               struct anon_vma *anon_vma = data;
+
+               spin_lock_init(&anon_vma->lock);
+               INIT_LIST_HEAD(&anon_vma->head);
+       }
 }
 
-static inline struct pte_chain *pte_chain_ptr(unsigned long pte_chain_addr)
+void __init anon_vma_init(void)
 {
-       return (struct pte_chain *)(pte_chain_addr & ~NRPTE);
+       anon_vma_cachep = kmem_cache_create("anon_vma",
+               sizeof(struct anon_vma), 0, SLAB_PANIC, anon_vma_ctor, NULL);
 }
 
-static inline int pte_chain_idx(struct pte_chain *pte_chain)
+/* this needs the page->flags PG_maplock held */
+static inline void clear_page_anon(struct page *page)
 {
-       return pte_chain->next_and_idx & NRPTE;
+       BUG_ON(!page->mapping);
+       page->mapping = NULL;
+       ClearPageAnon(page);
 }
 
+/*
+ * At what user virtual address is page expected in vma?
+ */
 static inline unsigned long
-pte_chain_encode(struct pte_chain *pte_chain, int idx)
+vma_address(struct page *page, struct vm_area_struct *vma)
 {
-       return (unsigned long)pte_chain | idx;
+       pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
+       unsigned long address;
+
+       address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
+       if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
+               /* page should be within any vma from prio_tree_next */
+               BUG_ON(!PageAnon(page));
+               return -EFAULT;
+       }
+       return address;
 }
 
 /*
- * pte_chain list management policy:
- *
- * - If a page has a pte_chain list then it is shared by at least two processes,
- *   because a single sharing uses PageDirect. (Well, this isn't true yet,
- *   coz this code doesn't collapse singletons back to PageDirect on the remove
- *   path).
- * - A pte_chain list has free space only in the head member - all succeeding
- *   members are 100% full.
- * - If the head element has free space, it occurs in its leading slots.
- * - All free space in the pte_chain is at the start of the head member.
- * - Insertion into the pte_chain puts a pte pointer in the last free slot of
- *   the head member.
- * - Removal from a pte chain moves the head pte of the head member onto the
- *   victim pte and frees the head member if it became empty.
+ * Subfunctions of page_referenced: page_referenced_one called
+ * repeatedly from either page_referenced_anon or page_referenced_file.
  */
+static int page_referenced_one(struct page *page,
+       struct vm_area_struct *vma, unsigned int *mapcount)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       unsigned long address;
+       pgd_t *pgd;
+       pmd_t *pmd;
+       pte_t *pte;
+       int referenced = 0;
+
+       if (!mm->rss)
+               goto out;
+       address = vma_address(page, vma);
+       if (address == -EFAULT)
+               goto out;
+
+       if (!spin_trylock(&mm->page_table_lock))
+               goto out;
+
+       pgd = pgd_offset(mm, address);
+       if (!pgd_present(*pgd))
+               goto out_unlock;
+
+       pmd = pmd_offset(pgd, address);
+       if (!pmd_present(*pmd))
+               goto out_unlock;
+
+       pte = pte_offset_map(pmd, address);
+       if (!pte_present(*pte))
+               goto out_unmap;
+
+       if (page_to_pfn(page) != pte_pfn(*pte))
+               goto out_unmap;
+
+       if (ptep_test_and_clear_young(pte))
+               referenced++;
+
+       (*mapcount)--;
+
+out_unmap:
+       pte_unmap(pte);
+out_unlock:
+       spin_unlock(&mm->page_table_lock);
+out:
+       return referenced;
+}
+
+static inline int page_referenced_anon(struct page *page)
+{
+       unsigned int mapcount = page->mapcount;
+       struct anon_vma *anon_vma = (struct anon_vma *) page->mapping;
+       struct vm_area_struct *vma;
+       int referenced = 0;
+
+       spin_lock(&anon_vma->lock);
+       BUG_ON(list_empty(&anon_vma->head));
+       list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
+               referenced += page_referenced_one(page, vma, &mapcount);
+               if (!mapcount)
+                       break;
+       }
+       spin_unlock(&anon_vma->lock);
+       return referenced;
+}
 
 /**
- ** VM stuff below this comment
- **/
+ * page_referenced_file - referenced check for object-based rmap
+ * @page: the page we're checking references on.
+ *
+ * For an object-based mapped page, find all the places it is mapped and
+ * check/clear the referenced flag.  This is done by following the page->mapping
+ * pointer, then walking the chain of vmas it holds.  It returns the number
+ * of references it found.
+ *
+ * This function is only called from page_referenced for object-based pages.
+ *
+ * The spinlock address_space->i_mmap_lock is tried.  If it can't be gotten,
+ * assume a reference count of 0, so try_to_unmap will then have a go.
+ */
+static inline int page_referenced_file(struct page *page)
+{
+       unsigned int mapcount = page->mapcount;
+       struct address_space *mapping = page->mapping;
+       pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
+       struct vm_area_struct *vma = NULL;
+       struct prio_tree_iter iter;
+       int referenced = 0;
+
+       if (!spin_trylock(&mapping->i_mmap_lock))
+               return 0;
+
+       while ((vma = vma_prio_tree_next(vma, &mapping->i_mmap,
+                                       &iter, pgoff, pgoff)) != NULL) {
+               if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
+                                 == (VM_LOCKED|VM_MAYSHARE)) {
+                       referenced++;
+                       break;
+               }
+               referenced += page_referenced_one(page, vma, &mapcount);
+               if (!mapcount)
+                       break;
+       }
+
+       spin_unlock(&mapping->i_mmap_lock);
+       return referenced;
+}
 
 /**
  * page_referenced - test if the page was referenced
  * @page: the page to test
  *
  * Quick test_and_clear_referenced for all mappings to a page,
- * returns the number of processes which referenced the page.
+ * returns the number of ptes which referenced the page.
  * Caller needs to hold the rmap lock.
- *
- * If the page has a single-entry pte_chain, collapse that back to a PageDirect
- * representation.  This way, it's only done under memory pressure.
  */
-int fastcall page_referenced(struct page * page)
+int page_referenced(struct page *page)
 {
-       struct pte_chain *pc;
        int referenced = 0;
 
        if (page_test_and_clear_young(page))
@@ -135,218 +318,183 @@ int fastcall page_referenced(struct page * page)
        if (TestClearPageReferenced(page))
                referenced++;
 
-       if (PageDirect(page)) {
-               pte_t *pte = rmap_ptep_map(page->pte.direct);
-               if (ptep_test_and_clear_young(pte))
-                       referenced++;
-               rmap_ptep_unmap(pte);
-       } else {
-               int nr_chains = 0;
-
-               /* Check all the page tables mapping this page. */
-               for (pc = page->pte.chain; pc; pc = pte_chain_next(pc)) {
-                       int i;
-
-                       for (i = pte_chain_idx(pc); i < NRPTE; i++) {
-                               pte_addr_t pte_paddr = pc->ptes[i];
-                               pte_t *p;
-
-                               p = rmap_ptep_map(pte_paddr);
-                               if (ptep_test_and_clear_young(p))
-                                       referenced++;
-                               rmap_ptep_unmap(p);
-                               nr_chains++;
-                       }
-               }
-               if (nr_chains == 1) {
-                       pc = page->pte.chain;
-                       page->pte.direct = pc->ptes[NRPTE-1];
-                       SetPageDirect(page);
-                       pc->ptes[NRPTE-1] = 0;
-                       __pte_chain_free(pc);
-               }
+       if (page->mapcount && page->mapping) {
+               if (PageAnon(page))
+                       referenced += page_referenced_anon(page);
+               else
+                       referenced += page_referenced_file(page);
        }
        return referenced;
 }
 
 /**
- * page_add_rmap - add reverse mapping entry to a page
- * @page: the page to add the mapping to
- * @ptep: the page table entry mapping this page
+ * page_add_anon_rmap - add pte mapping to an anonymous page
+ * @page:      the page to add the mapping to
+ * @vma:       the vm area in which the mapping is added
+ * @address:   the user virtual address mapped
  *
- * Add a new pte reverse mapping to a page.
  * The caller needs to hold the mm->page_table_lock.
  */
-struct pte_chain * fastcall
-page_add_rmap(struct page *page, pte_t *ptep, struct pte_chain *pte_chain)
+void page_add_anon_rmap(struct page *page,
+       struct vm_area_struct *vma, unsigned long address)
 {
-       pte_addr_t pte_paddr = ptep_to_paddr(ptep);
-       struct pte_chain *cur_pte_chain;
+       struct anon_vma *anon_vma = vma->anon_vma;
+       pgoff_t index;
 
-       if (PageReserved(page))
-               return pte_chain;
+       BUG_ON(PageReserved(page));
+       BUG_ON(!anon_vma);
 
-       rmap_lock(page);
+       index = (address - vma->vm_start) >> PAGE_SHIFT;
+       index += vma->vm_pgoff;
+       index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
 
-       if (page->pte.direct == 0) {
-               page->pte.direct = pte_paddr;
-               SetPageDirect(page);
-               if (!page->mapping) {
-                       SetPageAnon(page);
-                       page->mapping = ANON_MAPPING_DEBUG;
-               }
+       /*
+        * Setting and clearing PG_anon must always happen inside
+        * page_map_lock to avoid races between mapping and
+        * unmapping on different processes of the same
+        * shared cow swapcache page. And while we take the
+        * page_map_lock PG_anon cannot change from under us.
+        * Actually PG_anon cannot change under fork either
+        * since fork holds a reference on the page so it cannot
+        * be unmapped under fork and in turn copy_page_range is
+        * allowed to read PG_anon outside the page_map_lock.
+        */
+       page_map_lock(page);
+       if (!page->mapcount) {
+               BUG_ON(PageAnon(page));
+               BUG_ON(page->mapping);
+               SetPageAnon(page);
+               page->index = index;
+               page->mapping = (struct address_space *) anon_vma;
                inc_page_state(nr_mapped);
-               goto out;
-       }
-
-       if (PageDirect(page)) {
-               /* Convert a direct pointer into a pte_chain */
-               ClearPageDirect(page);
-               pte_chain->ptes[NRPTE-1] = page->pte.direct;
-               pte_chain->ptes[NRPTE-2] = pte_paddr;
-               pte_chain->next_and_idx = pte_chain_encode(NULL, NRPTE-2);
-               page->pte.direct = 0;
-               page->pte.chain = pte_chain;
-               pte_chain = NULL;       /* We consumed it */
-               goto out;
-       }
-
-       cur_pte_chain = page->pte.chain;
-       if (cur_pte_chain->ptes[0]) {   /* It's full */
-               pte_chain->next_and_idx = pte_chain_encode(cur_pte_chain,
-                                                               NRPTE - 1);
-               page->pte.chain = pte_chain;
-               pte_chain->ptes[NRPTE-1] = pte_paddr;
-               pte_chain = NULL;       /* We consumed it */
-               goto out;
+       } else {
+               BUG_ON(!PageAnon(page));
+               BUG_ON(page->index != index);
+               BUG_ON(page->mapping != (struct address_space *) anon_vma);
        }
-       cur_pte_chain->ptes[pte_chain_idx(cur_pte_chain) - 1] = pte_paddr;
-       cur_pte_chain->next_and_idx--;
-out:
-       rmap_unlock(page);
-       return pte_chain;
+       page->mapcount++;
+       page_map_unlock(page);
 }
 
 /**
- * page_remove_rmap - take down reverse mapping to a page
- * @page: page to remove mapping from
- * @ptep: page table entry to remove
+ * page_add_file_rmap - add pte mapping to a file page
+ * @page: the page to add the mapping to
  *
- * Removes the reverse mapping from the pte_chain of the page,
- * after that the caller can clear the page table entry and free
- * the page.
- * Caller needs to hold the mm->page_table_lock.
+ * The caller needs to hold the mm->page_table_lock.
  */
-void fastcall page_remove_rmap(struct page *page, pte_t *ptep)
+void page_add_file_rmap(struct page *page)
 {
-       pte_addr_t pte_paddr = ptep_to_paddr(ptep);
-       struct pte_chain *pc;
-
+       BUG_ON(PageAnon(page));
        if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
                return;
 
-       rmap_lock(page);
+       page_map_lock(page);
+       if (!page->mapcount)
+               inc_page_state(nr_mapped);
+       page->mapcount++;
+       page_map_unlock(page);
+}
 
-       if (!page_mapped(page))
-               goto out_unlock;        /* remap_page_range() from a driver? */
+/**
+ * page_remove_rmap - take down pte mapping from a page
+ * @page: page to remove mapping from
+ *
+ * Caller needs to hold the mm->page_table_lock.
+ */
+void page_remove_rmap(struct page *page)
+{
+       BUG_ON(PageReserved(page));
+       BUG_ON(!page->mapcount);
 
-       if (PageDirect(page)) {
-               if (page->pte.direct == pte_paddr) {
-                       page->pte.direct = 0;
-                       ClearPageDirect(page);
-                       goto out;
-               }
-       } else {
-               struct pte_chain *start = page->pte.chain;
-               struct pte_chain *next;
-               int victim_i = pte_chain_idx(start);
-
-               for (pc = start; pc; pc = next) {
-                       int i;
-
-                       next = pte_chain_next(pc);
-                       if (next)
-                               prefetch(next);
-                       for (i = pte_chain_idx(pc); i < NRPTE; i++) {
-                               pte_addr_t pa = pc->ptes[i];
-
-                               if (pa != pte_paddr)
-                                       continue;
-                               pc->ptes[i] = start->ptes[victim_i];
-                               start->ptes[victim_i] = 0;
-                               if (victim_i == NRPTE-1) {
-                                       /* Emptied a pte_chain */
-                                       page->pte.chain = pte_chain_next(start);
-                                       __pte_chain_free(start);
-                               } else {
-                                       start->next_and_idx++;
-                               }
-                               goto out;
-                       }
-               }
-       }
-out:
-       if (!page_mapped(page)) {
+       page_map_lock(page);
+       page->mapcount--;
+       if (!page->mapcount) {
                if (page_test_and_clear_dirty(page))
                        set_page_dirty(page);
                if (PageAnon(page))
                        clear_page_anon(page);
                dec_page_state(nr_mapped);
        }
-out_unlock:
-       rmap_unlock(page);
+       page_map_unlock(page);
 }
 
-/**
- * try_to_unmap_one - worker function for try_to_unmap
- * @page: page to unmap
- * @ptep: page table entry to unmap from page
- *
- * Internal helper function for try_to_unmap, called for each page
- * table entry mapping a page. Because locking order here is opposite
- * to the locking order used by the page fault path, we use trylocks.
- * Locking:
- *         page lock                   shrink_list(), trylock
- *             rmap lock               shrink_list()
- *                 mm->page_table_lock try_to_unmap_one(), trylock
+/*
+ * Subfunctions of try_to_unmap: try_to_unmap_one called
+ * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  */
-static int fastcall try_to_unmap_one(struct page * page, pte_addr_t paddr)
+static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
 {
-       pte_t *ptep = rmap_ptep_map(paddr);
-       unsigned long address = ptep_to_address(ptep);
-       struct mm_struct * mm = ptep_to_mm(ptep);
-       struct vm_area_struct * vma;
-       pte_t pte;
-       int ret;
-
-       if (!mm)
-               BUG();
+       struct mm_struct *mm = vma->vm_mm;
+       unsigned long address;
+       pgd_t *pgd;
+       pmd_t *pmd;
+       pte_t *pte;
+       pte_t pteval;
+       int ret = SWAP_AGAIN;
+
+       if (!mm->rss)
+               goto out;
+       address = vma_address(page, vma);
+       if (address == -EFAULT)
+               goto out;
 
        /*
         * We need the page_table_lock to protect us from page faults,
         * munmap, fork, etc...
         */
-       if (!spin_trylock(&mm->page_table_lock)) {
-               rmap_ptep_unmap(ptep);
-               return SWAP_AGAIN;
-       }
+       if (!spin_trylock(&mm->page_table_lock))
+               goto out;
 
-       /* unmap_vmas drops page_table_lock with vma unlinked */
-       vma = find_vma(mm, address);
-       if (!vma) {
-               ret = SWAP_FAIL;
+       pgd = pgd_offset(mm, address);
+       if (!pgd_present(*pgd))
                goto out_unlock;
+
+       pmd = pmd_offset(pgd, address);
+       if (!pmd_present(*pmd))
+               goto out_unlock;
+
+       pte = pte_offset_map(pmd, address);
+       if (!pte_present(*pte))
+               goto out_unmap;
+
+       if (page_to_pfn(page) != pte_pfn(*pte))
+               goto out_unmap;
+
+       /*
+        * If the page is mlock()d, we cannot swap it out.
+        * If it's recently referenced (perhaps page_referenced
+        * skipped over this mm) then we should reactivate it.
+        */
+       if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) ||
+                       ptep_test_and_clear_young(pte)) {
+               ret = SWAP_FAIL;
+               goto out_unmap;
        }
 
-       /* The page is mlock()d, we cannot swap it out. */
-       if (vma->vm_flags & VM_LOCKED) {
+       /*
+        * Don't pull an anonymous page out from under get_user_pages.
+        * GUP carefully breaks COW and raises page count (while holding
+        * page_table_lock, as we have here) to make sure that the page
+        * cannot be freed.  If we unmap that page here, a user write
+        * access to the virtual address will bring back the page, but
+        * its raised count will (ironically) be taken to mean it's not
+        * an exclusive swap page, do_wp_page will replace it by a copy
+        * page, and the user never get to see the data GUP was holding
+        * the original page for.
+        */
+       if (PageSwapCache(page) &&
+           page_count(page) != page->mapcount + 2) {
                ret = SWAP_FAIL;
-               goto out_unlock;
+               goto out_unmap;
        }
 
        /* Nuke the page table entry. */
        flush_cache_page(vma, address);
-       pte = ptep_clear_flush(vma, address, ptep);
+       pteval = ptep_clear_flush(vma, address, pte);
+
+       /* Move the dirty bit to the physical page now the pte is gone. */
+       if (pte_dirty(pteval))
+               set_page_dirty(page);
 
        if (PageAnon(page)) {
                swp_entry_t entry = { .val = page->private };
@@ -356,190 +504,285 @@ static int fastcall try_to_unmap_one(struct page * page, pte_addr_t paddr)
                 */
                BUG_ON(!PageSwapCache(page));
                swap_duplicate(entry);
-               set_pte(ptep, swp_entry_to_pte(entry));
-               BUG_ON(pte_file(*ptep));
-       } else {
-               /*
-                * If a nonlinear mapping then store the file page offset
-                * in the pte.
-                */
-               BUG_ON(!page->mapping);
-               if (page->index != linear_page_index(vma, address)) {
-                       set_pte(ptep, pgoff_to_pte(page->index));
-                       BUG_ON(!pte_file(*ptep));
-               }
+               set_pte(pte, swp_entry_to_pte(entry));
+               BUG_ON(pte_file(*pte));
        }
 
-       /* Move the dirty bit to the physical page now the pte is gone. */
-       if (pte_dirty(pte))
-               set_page_dirty(page);
-
        // mm->rss--;
        vx_rsspages_dec(mm);
+       BUG_ON(!page->mapcount);
+       page->mapcount--;
        page_cache_release(page);
-       ret = SWAP_SUCCESS;
 
+out_unmap:
+       pte_unmap(pte);
 out_unlock:
-       rmap_ptep_unmap(ptep);
        spin_unlock(&mm->page_table_lock);
+out:
        return ret;
 }
 
-/**
- * try_to_unmap - try to remove all page table mappings to a page
- * @page: the page to get unmapped
+/*
+ * objrmap doesn't work for nonlinear VMAs because the assumption that
+ * offset-into-file correlates with offset-into-virtual-addresses does not hold.
+ * Consequently, given a particular page and its ->index, we cannot locate the
+ * ptes which are mapping that page without an exhaustive linear search.
  *
- * Tries to remove all the page table entries which are mapping this
- * page, used in the pageout path.  Caller must hold the page lock
- * and its rmap lock.  Return values are:
+ * So what this code does is a mini "virtual scan" of each nonlinear VMA which
+ * maps the file to which the target page belongs.  The ->vm_private_data field
+ * holds the current cursor into that scan.  Successive searches will circulate
+ * around the vma's virtual address space.
  *
- * SWAP_SUCCESS        - we succeeded in removing all mappings
- * SWAP_AGAIN  - we missed a trylock, try again later
- * SWAP_FAIL   - the page is unswappable
+ * So as more replacement pressure is applied to the pages in a nonlinear VMA,
+ * more scanning pressure is placed against them as well.   Eventually pages
+ * will become fully unmapped and are eligible for eviction.
+ *
+ * For very sparsely populated VMAs this is a little inefficient - chances are
+ * there there won't be many ptes located within the scan cluster.  In this case
+ * maybe we could scan further - to the end of the pte page, perhaps.
  */
-int fastcall try_to_unmap(struct page * page)
+#define CLUSTER_SIZE   min(32*PAGE_SIZE, PMD_SIZE)
+#define CLUSTER_MASK   (~(CLUSTER_SIZE - 1))
+
+static int try_to_unmap_cluster(unsigned long cursor,
+       unsigned int *mapcount, struct vm_area_struct *vma)
 {
-       struct pte_chain *pc, *next_pc, *start;
-       int ret = SWAP_SUCCESS;
-       int victim_i;
-
-       /* This page should not be on the pageout lists. */
-       if (PageReserved(page))
-               BUG();
-       if (!PageLocked(page))
-               BUG();
-
-       if (PageDirect(page)) {
-               ret = try_to_unmap_one(page, page->pte.direct);
-               if (ret == SWAP_SUCCESS) {
-                       page->pte.direct = 0;
-                       ClearPageDirect(page);
-               }
-               goto out;
-       }
+       struct mm_struct *mm = vma->vm_mm;
+       pgd_t *pgd;
+       pmd_t *pmd;
+       pte_t *pte;
+       pte_t pteval;
+       struct page *page;
+       unsigned long address;
+       unsigned long end;
+       unsigned long pfn;
 
-       start = page->pte.chain;
-       victim_i = pte_chain_idx(start);
-       for (pc = start; pc; pc = next_pc) {
-               int i;
-
-               next_pc = pte_chain_next(pc);
-               if (next_pc)
-                       prefetch(next_pc);
-               for (i = pte_chain_idx(pc); i < NRPTE; i++) {
-                       pte_addr_t pte_paddr = pc->ptes[i];
-
-                       switch (try_to_unmap_one(page, pte_paddr)) {
-                       case SWAP_SUCCESS:
-                               /*
-                                * Release a slot.  If we're releasing the
-                                * first pte in the first pte_chain then
-                                * pc->ptes[i] and start->ptes[victim_i] both
-                                * refer to the same thing.  It works out.
-                                */
-                               pc->ptes[i] = start->ptes[victim_i];
-                               start->ptes[victim_i] = 0;
-                               victim_i++;
-                               if (victim_i == NRPTE) {
-                                       page->pte.chain = pte_chain_next(start);
-                                       __pte_chain_free(start);
-                                       start = page->pte.chain;
-                                       victim_i = 0;
-                               } else {
-                                       start->next_and_idx++;
-                               }
-                               break;
-                       case SWAP_AGAIN:
-                               /* Skip this pte, remembering status. */
-                               ret = SWAP_AGAIN;
-                               continue;
-                       case SWAP_FAIL:
-                               ret = SWAP_FAIL;
-                               goto out;
-                       }
-               }
-       }
-out:
-       if (!page_mapped(page)) {
-               if (page_test_and_clear_dirty(page))
+       /*
+        * We need the page_table_lock to protect us from page faults,
+        * munmap, fork, etc...
+        */
+       if (!spin_trylock(&mm->page_table_lock))
+               return SWAP_FAIL;
+
+       address = (vma->vm_start + cursor) & CLUSTER_MASK;
+       end = address + CLUSTER_SIZE;
+       if (address < vma->vm_start)
+               address = vma->vm_start;
+       if (end > vma->vm_end)
+               end = vma->vm_end;
+
+       pgd = pgd_offset(mm, address);
+       if (!pgd_present(*pgd))
+               goto out_unlock;
+
+       pmd = pmd_offset(pgd, address);
+       if (!pmd_present(*pmd))
+               goto out_unlock;
+
+       for (pte = pte_offset_map(pmd, address);
+                       address < end; pte++, address += PAGE_SIZE) {
+
+               if (!pte_present(*pte))
+                       continue;
+
+               pfn = pte_pfn(*pte);
+               if (!pfn_valid(pfn))
+                       continue;
+
+               page = pfn_to_page(pfn);
+               BUG_ON(PageAnon(page));
+               if (PageReserved(page))
+                       continue;
+
+               if (ptep_test_and_clear_young(pte))
+                       continue;
+
+               /* Nuke the page table entry. */
+               flush_cache_page(vma, address);
+               pteval = ptep_clear_flush(vma, address, pte);
+
+               /* If nonlinear, store the file page offset in the pte. */
+               if (page->index != linear_page_index(vma, address))
+                       set_pte(pte, pgoff_to_pte(page->index));
+
+               /* Move the dirty bit to the physical page now the pte is gone. */
+               if (pte_dirty(pteval))
                        set_page_dirty(page);
-               if (PageAnon(page))
-                       clear_page_anon(page);
-               dec_page_state(nr_mapped);
-               ret = SWAP_SUCCESS;
-       }
-       return ret;
-}
 
-/**
- ** No more VM stuff below this comment, only pte_chain helper
- ** functions.
- **/
+               page_remove_rmap(page);
+               page_cache_release(page);
+               // mm->rss--;
+               vx_rsspages_dec(mm);
+               (*mapcount)--;
+       }
 
-static void pte_chain_ctor(void *p, kmem_cache_t *cachep, unsigned long flags)
-{
-       struct pte_chain *pc = p;
+       pte_unmap(pte);
 
-       memset(pc, 0, sizeof(*pc));
+out_unlock:
+       spin_unlock(&mm->page_table_lock);
+       return SWAP_AGAIN;
 }
 
-DEFINE_PER_CPU(struct pte_chain *, local_pte_chain) = 0;
-
-/**
- * __pte_chain_free - free pte_chain structure
- * @pte_chain: pte_chain struct to free
- */
-void __pte_chain_free(struct pte_chain *pte_chain)
+static inline int try_to_unmap_anon(struct page *page)
 {
-       struct pte_chain **pte_chainp;
-
-       pte_chainp = &get_cpu_var(local_pte_chain);
-       if (pte_chain->next_and_idx)
-               pte_chain->next_and_idx = 0;
-       if (*pte_chainp)
-               kmem_cache_free(pte_chain_cache, *pte_chainp);
-       *pte_chainp = pte_chain;
-       put_cpu_var(local_pte_chain);
+       struct anon_vma *anon_vma = (struct anon_vma *) page->mapping;
+       struct vm_area_struct *vma;
+       int ret = SWAP_AGAIN;
+
+       spin_lock(&anon_vma->lock);
+       BUG_ON(list_empty(&anon_vma->head));
+       list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
+               ret = try_to_unmap_one(page, vma);
+               if (ret == SWAP_FAIL || !page->mapcount)
+                       break;
+       }
+       spin_unlock(&anon_vma->lock);
+       return ret;
 }
 
-/*
- * pte_chain_alloc(): allocate a pte_chain structure for use by page_add_rmap().
+/**
+ * try_to_unmap_file - unmap file page using the object-based rmap method
+ * @page: the page to unmap
+ *
+ * Find all the mappings of a page using the mapping pointer and the vma chains
+ * contained in the address_space struct it points to.
+ *
+ * This function is only called from try_to_unmap for object-based pages.
  *
- * The caller of page_add_rmap() must perform the allocation because
- * page_add_rmap() is invariably called under spinlock.  Often, page_add_rmap()
- * will not actually use the pte_chain, because there is space available in one
- * of the existing pte_chains which are attached to the page.  So the case of
- * allocating and then freeing a single pte_chain is specially optimised here,
- * with a one-deep per-cpu cache.
+ * The spinlock address_space->i_mmap_lock is tried.  If it can't be gotten,
+ * return a temporary error.
  */
-struct pte_chain *pte_chain_alloc(int gfp_flags)
+static inline int try_to_unmap_file(struct page *page)
 {
-       struct pte_chain *ret;
-       struct pte_chain **pte_chainp;
+       struct address_space *mapping = page->mapping;
+       pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
+       struct vm_area_struct *vma = NULL;
+       struct prio_tree_iter iter;
+       int ret = SWAP_AGAIN;
+       unsigned long cursor;
+       unsigned long max_nl_cursor = 0;
+       unsigned long max_nl_size = 0;
+       unsigned int mapcount;
+
+       if (!spin_trylock(&mapping->i_mmap_lock))
+               return ret;
+
+       while ((vma = vma_prio_tree_next(vma, &mapping->i_mmap,
+                                       &iter, pgoff, pgoff)) != NULL) {
+               ret = try_to_unmap_one(page, vma);
+               if (ret == SWAP_FAIL || !page->mapcount)
+                       goto out;
+       }
 
-       might_sleep_if(gfp_flags & __GFP_WAIT);
+       if (list_empty(&mapping->i_mmap_nonlinear))
+               goto out;
 
-       pte_chainp = &get_cpu_var(local_pte_chain);
-       if (*pte_chainp) {
-               ret = *pte_chainp;
-               *pte_chainp = NULL;
-               put_cpu_var(local_pte_chain);
-       } else {
-               put_cpu_var(local_pte_chain);
-               ret = kmem_cache_alloc(pte_chain_cache, gfp_flags);
+       list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
+                                               shared.vm_set.list) {
+               if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
+                       continue;
+               cursor = (unsigned long) vma->vm_private_data;
+               if (cursor > max_nl_cursor)
+                       max_nl_cursor = cursor;
+               cursor = vma->vm_end - vma->vm_start;
+               if (cursor > max_nl_size)
+                       max_nl_size = cursor;
        }
+
+       if (max_nl_size == 0)   /* any nonlinears locked or reserved */
+               goto out;
+
+       /*
+        * We don't try to search for this page in the nonlinear vmas,
+        * and page_referenced wouldn't have found it anyway.  Instead
+        * just walk the nonlinear vmas trying to age and unmap some.
+        * The mapcount of the page we came in with is irrelevant,
+        * but even so use it as a guide to how hard we should try?
+        */
+       mapcount = page->mapcount;
+       page_map_unlock(page);
+       cond_resched_lock(&mapping->i_mmap_lock);
+
+       max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
+       if (max_nl_cursor == 0)
+               max_nl_cursor = CLUSTER_SIZE;
+
+       do {
+               list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
+                                               shared.vm_set.list) {
+                       if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
+                               continue;
+                       cursor = (unsigned long) vma->vm_private_data;
+                       while (vma->vm_mm->rss &&
+                               cursor < max_nl_cursor &&
+                               cursor < vma->vm_end - vma->vm_start) {
+                               ret = try_to_unmap_cluster(
+                                               cursor, &mapcount, vma);
+                               if (ret == SWAP_FAIL)
+                                       break;
+                               cursor += CLUSTER_SIZE;
+                               vma->vm_private_data = (void *) cursor;
+                               if ((int)mapcount <= 0)
+                                       goto relock;
+                       }
+                       if (ret != SWAP_FAIL)
+                               vma->vm_private_data =
+                                       (void *) max_nl_cursor;
+                       ret = SWAP_AGAIN;
+               }
+               cond_resched_lock(&mapping->i_mmap_lock);
+               max_nl_cursor += CLUSTER_SIZE;
+       } while (max_nl_cursor <= max_nl_size);
+
+       /*
+        * Don't loop forever (perhaps all the remaining pages are
+        * in locked vmas).  Reset cursor on all unreserved nonlinear
+        * vmas, now forgetting on which ones it had fallen behind.
+        */
+       list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
+                                               shared.vm_set.list) {
+               if (!(vma->vm_flags & VM_RESERVED))
+                       vma->vm_private_data = 0;
+       }
+relock:
+       page_map_lock(page);
+out:
+       spin_unlock(&mapping->i_mmap_lock);
        return ret;
 }
 
-void __init pte_chain_init(void)
+/**
+ * try_to_unmap - try to remove all page table mappings to a page
+ * @page: the page to get unmapped
+ *
+ * Tries to remove all the page table entries which are mapping this
+ * page, used in the pageout path.  Caller must hold the page lock
+ * and its rmap lock.  Return values are:
+ *
+ * SWAP_SUCCESS        - we succeeded in removing all mappings
+ * SWAP_AGAIN  - we missed a trylock, try again later
+ * SWAP_FAIL   - the page is unswappable
+ */
+int try_to_unmap(struct page *page)
 {
-       pte_chain_cache = kmem_cache_create(    "pte_chain",
-                                               sizeof(struct pte_chain),
-                                               sizeof(struct pte_chain),
-                                               0,
-                                               pte_chain_ctor,
-                                               NULL);
-
-       if (!pte_chain_cache)
-               panic("failed to create pte_chain cache!\n");
+       int ret;
+
+       BUG_ON(PageReserved(page));
+       BUG_ON(!PageLocked(page));
+       BUG_ON(!page->mapcount);
+
+       if (PageAnon(page))
+               ret = try_to_unmap_anon(page);
+       else
+               ret = try_to_unmap_file(page);
+
+       if (!page->mapcount) {
+               if (page_test_and_clear_dirty(page))
+                       set_page_dirty(page);
+               if (PageAnon(page))
+                       clear_page_anon(page);
+               dec_page_state(nr_mapped);
+               ret = SWAP_SUCCESS;
+       }
+       return ret;
 }