remove *.rej/*.orig files from patch
authorS.Çağlar Onur <caglar@cs.princeton.edu>
Tue, 2 Feb 2010 00:41:53 +0000 (00:41 +0000)
committerS.Çağlar Onur <caglar@cs.princeton.edu>
Tue, 2 Feb 2010 00:41:53 +0000 (00:41 +0000)
linux-2.6-591-chopstix-intern.patch

index c2fceef..5f81751 100644 (file)
@@ -1,7 +1,8 @@
-diff -Nurb linux-2.6.27-590/arch/Kconfig linux-2.6.27-591/arch/Kconfig
---- linux-2.6.27-590/arch/Kconfig      2010-02-01 19:42:05.000000000 -0500
-+++ linux-2.6.27-591/arch/Kconfig      2010-02-01 19:42:30.000000000 -0500
-@@ -13,9 +13,18 @@
+Index: linux-2.6.27.y/arch/Kconfig
+===================================================================
+--- linux-2.6.27.y.orig/arch/Kconfig
++++ linux-2.6.27.y/arch/Kconfig
+@@ -13,9 +13,18 @@ config OPROFILE
  
          If unsure, say N.
  
@@ -20,9 +21,10 @@ diff -Nurb linux-2.6.27-590/arch/Kconfig linux-2.6.27-591/arch/Kconfig
  config KPROBES
        bool "Kprobes"
        depends on KALLSYMS && MODULES
-diff -Nurb linux-2.6.27-590/arch/x86/kernel/asm-offsets_32.c linux-2.6.27-591/arch/x86/kernel/asm-offsets_32.c
---- linux-2.6.27-590/arch/x86/kernel/asm-offsets_32.c  2008-10-09 18:13:53.000000000 -0400
-+++ linux-2.6.27-591/arch/x86/kernel/asm-offsets_32.c  2010-02-01 19:42:30.000000000 -0500
+Index: linux-2.6.27.y/arch/x86/kernel/asm-offsets_32.c
+===================================================================
+--- linux-2.6.27.y.orig/arch/x86/kernel/asm-offsets_32.c
++++ linux-2.6.27.y/arch/x86/kernel/asm-offsets_32.c
 @@ -9,6 +9,7 @@
  #include <linux/signal.h>
  #include <linux/personality.h>
@@ -52,7 +54,7 @@ diff -Nurb linux-2.6.27-590/arch/x86/kernel/asm-offsets_32.c linux-2.6.27-591/ar
  void foo(void)
  {
        OFFSET(IA32_SIGCONTEXT_ax, sigcontext, ax);
-@@ -50,6 +62,16 @@
+@@ -50,6 +62,16 @@ void foo(void)
        OFFSET(CPUINFO_x86_vendor_id, cpuinfo_x86, x86_vendor_id);
        BLANK();
  
@@ -69,10 +71,11 @@ diff -Nurb linux-2.6.27-590/arch/x86/kernel/asm-offsets_32.c linux-2.6.27-591/ar
        OFFSET(TI_task, thread_info, task);
        OFFSET(TI_exec_domain, thread_info, exec_domain);
        OFFSET(TI_flags, thread_info, flags);
-diff -Nurb linux-2.6.27-590/arch/x86/kernel/entry_32.S linux-2.6.27-591/arch/x86/kernel/entry_32.S
---- linux-2.6.27-590/arch/x86/kernel/entry_32.S        2008-10-09 18:13:53.000000000 -0400
-+++ linux-2.6.27-591/arch/x86/kernel/entry_32.S        2010-02-01 19:42:30.000000000 -0500
-@@ -426,6 +426,33 @@
+Index: linux-2.6.27.y/arch/x86/kernel/entry_32.S
+===================================================================
+--- linux-2.6.27.y.orig/arch/x86/kernel/entry_32.S
++++ linux-2.6.27.y/arch/x86/kernel/entry_32.S
+@@ -426,6 +426,33 @@ ENTRY(system_call)
        cmpl $(nr_syscalls), %eax
        jae syscall_badsys
  syscall_call:
@@ -106,10 +109,11 @@ diff -Nurb linux-2.6.27-590/arch/x86/kernel/entry_32.S linux-2.6.27-591/arch/x86
        call *sys_call_table(,%eax,4)
        movl %eax,PT_EAX(%esp)          # store the return value
  syscall_exit:
-diff -Nurb linux-2.6.27-590/arch/x86/mm/fault.c linux-2.6.27-591/arch/x86/mm/fault.c
---- linux-2.6.27-590/arch/x86/mm/fault.c       2010-02-01 19:42:05.000000000 -0500
-+++ linux-2.6.27-591/arch/x86/mm/fault.c       2010-02-01 19:42:30.000000000 -0500
-@@ -79,6 +79,15 @@
+Index: linux-2.6.27.y/arch/x86/mm/fault.c
+===================================================================
+--- linux-2.6.27.y.orig/arch/x86/mm/fault.c
++++ linux-2.6.27.y/arch/x86/mm/fault.c
+@@ -79,6 +79,15 @@ static inline int notify_page_fault(stru
  #endif
  }
  
@@ -125,9 +129,10 @@ diff -Nurb linux-2.6.27-590/arch/x86/mm/fault.c linux-2.6.27-591/arch/x86/mm/fau
  /*
   * X86_32
   * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
-diff -Nurb linux-2.6.27-590/drivers/oprofile/cpu_buffer.c linux-2.6.27-591/drivers/oprofile/cpu_buffer.c
---- linux-2.6.27-590/drivers/oprofile/cpu_buffer.c     2008-10-09 18:13:53.000000000 -0400
-+++ linux-2.6.27-591/drivers/oprofile/cpu_buffer.c     2010-02-01 19:42:30.000000000 -0500
+Index: linux-2.6.27.y/drivers/oprofile/cpu_buffer.c
+===================================================================
+--- linux-2.6.27.y.orig/drivers/oprofile/cpu_buffer.c
++++ linux-2.6.27.y/drivers/oprofile/cpu_buffer.c
 @@ -21,6 +21,7 @@
  #include <linux/oprofile.h>
  #include <linux/vmalloc.h>
@@ -136,7 +141,7 @@ diff -Nurb linux-2.6.27-590/drivers/oprofile/cpu_buffer.c linux-2.6.27-591/drive
   
  #include "event_buffer.h"
  #include "cpu_buffer.h"
-@@ -147,6 +148,17 @@
+@@ -147,6 +148,17 @@ static void increment_head(struct oprofi
                b->head_pos = 0;
  }
  
@@ -154,7 +159,7 @@ diff -Nurb linux-2.6.27-590/drivers/oprofile/cpu_buffer.c linux-2.6.27-591/drive
  static inline void
  add_sample(struct oprofile_cpu_buffer * cpu_buf,
             unsigned long pc, unsigned long event)
-@@ -155,6 +167,7 @@
+@@ -155,6 +167,7 @@ add_sample(struct oprofile_cpu_buffer * 
        entry->eip = pc;
        entry->event = event;
        increment_head(cpu_buf);
@@ -162,7 +167,7 @@ diff -Nurb linux-2.6.27-590/drivers/oprofile/cpu_buffer.c linux-2.6.27-591/drive
  }
  
  static inline void
-@@ -250,8 +263,28 @@
+@@ -250,8 +263,28 @@ void oprofile_add_sample(struct pt_regs 
  {
        int is_kernel = !user_mode(regs);
        unsigned long pc = profile_pc(regs);
@@ -191,9 +196,10 @@ diff -Nurb linux-2.6.27-590/drivers/oprofile/cpu_buffer.c linux-2.6.27-591/drive
  }
  
  void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
-diff -Nurb linux-2.6.27-590/fs/bio.c linux-2.6.27-591/fs/bio.c
---- linux-2.6.27-590/fs/bio.c  2008-10-09 18:13:53.000000000 -0400
-+++ linux-2.6.27-591/fs/bio.c  2010-02-01 19:42:30.000000000 -0500
+Index: linux-2.6.27.y/fs/bio.c
+===================================================================
+--- linux-2.6.27.y.orig/fs/bio.c
++++ linux-2.6.27.y/fs/bio.c
 @@ -27,6 +27,7 @@
  #include <linux/workqueue.h>
  #include <linux/blktrace_api.h>
@@ -202,7 +208,7 @@ diff -Nurb linux-2.6.27-590/fs/bio.c linux-2.6.27-591/fs/bio.c
  
  static struct kmem_cache *bio_slab __read_mostly;
  
-@@ -44,6 +45,7 @@
+@@ -44,6 +45,7 @@ static struct biovec_slab bvec_slabs[BIO
  };
  #undef BV
  
@@ -210,7 +216,7 @@ diff -Nurb linux-2.6.27-590/fs/bio.c linux-2.6.27-591/fs/bio.c
  /*
   * fs_bio_set is the bio_set containing bio and iovec memory pools used by
   * IO code that does not need private memory pools.
-@@ -1171,6 +1173,14 @@
+@@ -1171,6 +1173,14 @@ void bio_check_pages_dirty(struct bio *b
        }
  }
  
@@ -225,7 +231,7 @@ diff -Nurb linux-2.6.27-590/fs/bio.c linux-2.6.27-591/fs/bio.c
  /**
   * bio_endio - end I/O on a bio
   * @bio:      bio
-@@ -1192,6 +1202,24 @@
+@@ -1192,6 +1202,24 @@ void bio_endio(struct bio *bio, int erro
        else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
                error = -EIO;
  
@@ -250,9 +256,10 @@ diff -Nurb linux-2.6.27-590/fs/bio.c linux-2.6.27-591/fs/bio.c
        if (bio->bi_end_io)
                bio->bi_end_io(bio, error);
  }
-diff -Nurb linux-2.6.27-590/fs/exec.c linux-2.6.27-591/fs/exec.c
---- linux-2.6.27-590/fs/exec.c 2010-02-01 19:42:07.000000000 -0500
-+++ linux-2.6.27-591/fs/exec.c 2010-02-01 19:42:31.000000000 -0500
+Index: linux-2.6.27.y/fs/exec.c
+===================================================================
+--- linux-2.6.27.y.orig/fs/exec.c
++++ linux-2.6.27.y/fs/exec.c
 @@ -27,6 +27,7 @@
  #include <linux/fdtable.h>
  #include <linux/mm.h>
@@ -261,7 +268,7 @@ diff -Nurb linux-2.6.27-590/fs/exec.c linux-2.6.27-591/fs/exec.c
  #include <linux/fcntl.h>
  #include <linux/smp_lock.h>
  #include <linux/swap.h>
-@@ -698,6 +699,13 @@
+@@ -698,6 +699,13 @@ struct file *open_exec(const char *name)
                goto out;
        }
  
@@ -275,9 +282,10 @@ diff -Nurb linux-2.6.27-590/fs/exec.c linux-2.6.27-591/fs/exec.c
        return file;
  
   out_path_put:
-diff -Nurb linux-2.6.27-590/include/linux/arrays.h linux-2.6.27-591/include/linux/arrays.h
---- linux-2.6.27-590/include/linux/arrays.h    1969-12-31 19:00:00.000000000 -0500
-+++ linux-2.6.27-591/include/linux/arrays.h    2010-02-01 19:42:31.000000000 -0500
+Index: linux-2.6.27.y/include/linux/arrays.h
+===================================================================
+--- /dev/null
++++ linux-2.6.27.y/include/linux/arrays.h
 @@ -0,0 +1,36 @@
 +#ifndef __ARRAYS_H__
 +#define __ARRAYS_H__
@@ -315,10 +323,11 @@ diff -Nurb linux-2.6.27-590/include/linux/arrays.h linux-2.6.27-591/include/linu
 +      struct task_struct *task;
 +};
 +#endif
-diff -Nurb linux-2.6.27-590/include/linux/sched.h linux-2.6.27-591/include/linux/sched.h
---- linux-2.6.27-590/include/linux/sched.h     2010-02-01 19:42:07.000000000 -0500
-+++ linux-2.6.27-591/include/linux/sched.h     2010-02-01 19:47:30.000000000 -0500
-@@ -1133,6 +1133,11 @@
+Index: linux-2.6.27.y/include/linux/sched.h
+===================================================================
+--- linux-2.6.27.y.orig/include/linux/sched.h
++++ linux-2.6.27.y/include/linux/sched.h
+@@ -1137,6 +1137,11 @@ struct task_struct {
        cputime_t utime, stime, utimescaled, stimescaled;
        cputime_t gtime;
        cputime_t prev_utime, prev_stime;
@@ -330,32 +339,10 @@ diff -Nurb linux-2.6.27-590/include/linux/sched.h linux-2.6.27-591/include/linux
        unsigned long nvcsw, nivcsw; /* context switch counts */
        struct timespec start_time;             /* monotonic time */
        struct timespec real_start_time;        /* boot based time */
-diff -Nurb linux-2.6.27-590/include/linux/sched.h.rej linux-2.6.27-591/include/linux/sched.h.rej
---- linux-2.6.27-590/include/linux/sched.h.rej 1969-12-31 19:00:00.000000000 -0500
-+++ linux-2.6.27-591/include/linux/sched.h.rej 2010-02-01 19:42:31.000000000 -0500
-@@ -0,0 +1,19 @@
-+***************
-+*** 850,855 ****
-+  #endif
-+      unsigned long sleep_avg;
-+      unsigned long long timestamp, last_ran;
-+      unsigned long long sched_time; /* sched_clock time spent running */
-+      enum sleep_type sleep_type;
-+  
-+--- 850,859 ----
-+  #endif
-+      unsigned long sleep_avg;
-+      unsigned long long timestamp, last_ran;
-++ #ifdef CONFIG_CHOPSTIX
-++     unsigned long last_interrupted, last_ran_j;
-++ #endif
-++ 
-+      unsigned long long sched_time; /* sched_clock time spent running */
-+      enum sleep_type sleep_type;
-+  
-diff -Nurb linux-2.6.27-590/kernel/sched.c linux-2.6.27-591/kernel/sched.c
---- linux-2.6.27-590/kernel/sched.c    2010-02-01 19:42:07.000000000 -0500
-+++ linux-2.6.27-591/kernel/sched.c    2010-02-01 19:47:30.000000000 -0500
+Index: linux-2.6.27.y/kernel/sched.c
+===================================================================
+--- linux-2.6.27.y.orig/kernel/sched.c
++++ linux-2.6.27.y/kernel/sched.c
 @@ -10,7 +10,7 @@
   *  1998-11-19        Implemented schedule_timeout() and related stuff
   *            by Andrea Arcangeli
@@ -382,7 +369,7 @@ diff -Nurb linux-2.6.27-590/kernel/sched.c linux-2.6.27-591/kernel/sched.c
  /*
   * Convert user-nice values [ -20 ... 0 ... 19 ]
   * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
-@@ -2368,6 +2372,10 @@
+@@ -2376,6 +2380,10 @@ static void __sched_fork(struct task_str
        INIT_HLIST_HEAD(&p->preempt_notifiers);
  #endif
  
@@ -393,7 +380,7 @@ diff -Nurb linux-2.6.27-590/kernel/sched.c linux-2.6.27-591/kernel/sched.c
        /*
         * We mark the process as running here, but have not actually
         * inserted it onto the runqueue yet. This guarantees that
-@@ -4428,6 +4436,29 @@
+@@ -4436,6 +4444,29 @@ pick_next_task(struct rq *rq, struct tas
        }
  }
  
@@ -423,7 +410,7 @@ diff -Nurb linux-2.6.27-590/kernel/sched.c linux-2.6.27-591/kernel/sched.c
  /*
   * schedule() is the main scheduler function.
   */
-@@ -4482,6 +4513,61 @@
+@@ -4495,6 +4526,61 @@ need_resched_nonpreemptible:
        next = pick_next_task(rq, prev);
  
        if (likely(prev != next)) {
@@ -485,7 +472,7 @@ diff -Nurb linux-2.6.27-590/kernel/sched.c linux-2.6.27-591/kernel/sched.c
                sched_info_switch(prev, next);
  
                rq->nr_switches++;
-@@ -5369,6 +5455,7 @@
+@@ -5382,6 +5468,7 @@ long sched_setaffinity(pid_t pid, const 
        get_task_struct(p);
        read_unlock(&tasklist_lock);
  
@@ -493,12692 +480,63 @@ diff -Nurb linux-2.6.27-590/kernel/sched.c linux-2.6.27-591/kernel/sched.c
        retval = -EPERM;
        if ((current->euid != p->euid) && (current->euid != p->uid) &&
                        !capable(CAP_SYS_NICE))
-diff -Nurb linux-2.6.27-590/kernel/sched.c.orig linux-2.6.27-591/kernel/sched.c.orig
---- linux-2.6.27-590/kernel/sched.c.orig       1969-12-31 19:00:00.000000000 -0500
-+++ linux-2.6.27-591/kernel/sched.c.orig       2010-02-01 19:43:07.000000000 -0500
-@@ -0,0 +1,9326 @@
-+/*
-+ *  kernel/sched.c
-+ *
-+ *  Kernel scheduler and related syscalls
-+ *
-+ *  Copyright (C) 1991-2002  Linus Torvalds
-+ *
-+ *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
-+ *            make semaphores SMP safe
-+ *  1998-11-19        Implemented schedule_timeout() and related stuff
-+ *            by Andrea Arcangeli
-+ *  2002-01-04        New ultra-scalable O(1) scheduler by Ingo Molnar:
-+ *            hybrid priority-list and round-robin deventn with
-+ *            an array-switch method of distributing timeslices
-+ *            and per-CPU runqueues.  Cleanups and useful suggestions
-+ *            by Davide Libenzi, preemptible kernel bits by Robert Love.
-+ *  2003-09-03        Interactivity tuning by Con Kolivas.
-+ *  2004-04-02        Scheduler domains code by Nick Piggin
-+ *  2007-04-15  Work begun on replacing all interactivity tuning with a
-+ *              fair scheduling design by Con Kolivas.
-+ *  2007-05-05  Load balancing (smp-nice) and other improvements
-+ *              by Peter Williams
-+ *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
-+ *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
-+ *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
-+ *              Thomas Gleixner, Mike Kravetz
-+ */
-+
-+#include <linux/mm.h>
-+#include <linux/module.h>
-+#include <linux/nmi.h>
-+#include <linux/init.h>
-+#include <linux/uaccess.h>
-+#include <linux/highmem.h>
-+#include <linux/smp_lock.h>
-+#include <asm/mmu_context.h>
-+#include <linux/interrupt.h>
-+#include <linux/capability.h>
-+#include <linux/completion.h>
-+#include <linux/kernel_stat.h>
-+#include <linux/debug_locks.h>
-+#include <linux/security.h>
-+#include <linux/notifier.h>
-+#include <linux/profile.h>
-+#include <linux/freezer.h>
-+#include <linux/vmalloc.h>
-+#include <linux/blkdev.h>
-+#include <linux/delay.h>
-+#include <linux/pid_namespace.h>
-+#include <linux/smp.h>
-+#include <linux/threads.h>
-+#include <linux/timer.h>
-+#include <linux/rcupdate.h>
-+#include <linux/cpu.h>
-+#include <linux/cpuset.h>
-+#include <linux/percpu.h>
-+#include <linux/kthread.h>
-+#include <linux/seq_file.h>
-+#include <linux/sysctl.h>
-+#include <linux/syscalls.h>
-+#include <linux/times.h>
-+#include <linux/tsacct_kern.h>
-+#include <linux/kprobes.h>
-+#include <linux/delayacct.h>
-+#include <linux/reciprocal_div.h>
-+#include <linux/unistd.h>
-+#include <linux/pagemap.h>
-+#include <linux/hrtimer.h>
-+#include <linux/tick.h>
-+#include <linux/bootmem.h>
-+#include <linux/debugfs.h>
-+#include <linux/ctype.h>
-+#include <linux/ftrace.h>
-+#include <linux/vs_sched.h>
-+#include <linux/vs_cvirt.h>
+Index: linux-2.6.27.y/mm/memory.c
+===================================================================
+--- linux-2.6.27.y.orig/mm/memory.c
++++ linux-2.6.27.y/mm/memory.c
+@@ -61,6 +61,7 @@
+ #include <linux/swapops.h>
+ #include <linux/elf.h>
 +#include <linux/arrays.h>
-+
-+#include <asm/tlb.h>
-+#include <asm/irq_regs.h>
-+
-+#include "sched_cpupri.h"
-+
-+#define INTERRUPTIBLE   -1
-+#define RUNNING         0
-+
-+/*
-+ * Convert user-nice values [ -20 ... 0 ... 19 ]
-+ * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
-+ * and back.
-+ */
-+#define NICE_TO_PRIO(nice)    (MAX_RT_PRIO + (nice) + 20)
-+#define PRIO_TO_NICE(prio)    ((prio) - MAX_RT_PRIO - 20)
-+#define TASK_NICE(p)          PRIO_TO_NICE((p)->static_prio)
-+
-+/*
-+ * 'User priority' is the nice value converted to something we
-+ * can work with better when scaling various scheduler parameters,
-+ * it's a [ 0 ... 39 ] range.
-+ */
-+#define USER_PRIO(p)          ((p)-MAX_RT_PRIO)
-+#define TASK_USER_PRIO(p)     USER_PRIO((p)->static_prio)
-+#define MAX_USER_PRIO         (USER_PRIO(MAX_PRIO))
-+
-+/*
-+ * Helpers for converting nanosecond timing to jiffy resolution
-+ */
-+#define NS_TO_JIFFIES(TIME)   ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
-+
-+#define NICE_0_LOAD           SCHED_LOAD_SCALE
-+#define NICE_0_SHIFT          SCHED_LOAD_SHIFT
-+
-+/*
-+ * These are the 'tuning knobs' of the scheduler:
-+ *
-+ * default timeslice is 100 msecs (used only for SCHED_RR tasks).
-+ * Timeslices get refilled after they expire.
-+ */
-+#define DEF_TIMESLICE         (100 * HZ / 1000)
-+
-+/*
-+ * single value that denotes runtime == period, ie unlimited time.
-+ */
-+#define RUNTIME_INF   ((u64)~0ULL)
-+
-+#ifdef CONFIG_SMP
-+/*
-+ * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
-+ * Since cpu_power is a 'constant', we can use a reciprocal divide.
-+ */
-+static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
-+{
-+      return reciprocal_divide(load, sg->reciprocal_cpu_power);
-+}
-+
-+/*
-+ * Each time a sched group cpu_power is changed,
-+ * we must compute its reciprocal value
-+ */
-+static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
-+{
-+      sg->__cpu_power += val;
-+      sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
-+}
-+#endif
-+
-+static inline int rt_policy(int policy)
-+{
-+      if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
-+              return 1;
-+      return 0;
-+}
-+
-+static inline int task_has_rt_policy(struct task_struct *p)
-+{
-+      return rt_policy(p->policy);
-+}
-+
-+/*
-+ * This is the priority-queue data structure of the RT scheduling class:
-+ */
-+struct rt_prio_array {
-+      DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
-+      struct list_head queue[MAX_RT_PRIO];
-+};
-+
-+struct rt_bandwidth {
-+      /* nests inside the rq lock: */
-+      spinlock_t              rt_runtime_lock;
-+      ktime_t                 rt_period;
-+      u64                     rt_runtime;
-+      struct hrtimer          rt_period_timer;
+ #include "internal.h"
+@@ -2753,6 +2754,15 @@ out:
+       return ret;
+ }
++extern void (*rec_event)(void *,unsigned int);
++struct event_spec {
++      unsigned long pc;
++      unsigned long dcookie; 
++      unsigned count;
++      unsigned char reason;
 +};
 +
-+static struct rt_bandwidth def_rt_bandwidth;
-+
-+static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
-+
-+static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
-+{
-+      struct rt_bandwidth *rt_b =
-+              container_of(timer, struct rt_bandwidth, rt_period_timer);
-+      ktime_t now;
-+      int overrun;
-+      int idle = 0;
-+
-+      for (;;) {
-+              now = hrtimer_cb_get_time(timer);
-+              overrun = hrtimer_forward(timer, now, rt_b->rt_period);
-+
-+              if (!overrun)
-+                      break;
-+
-+              idle = do_sched_rt_period_timer(rt_b, overrun);
-+      }
-+
-+      return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
-+}
-+
-+static
-+void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
-+{
-+      rt_b->rt_period = ns_to_ktime(period);
-+      rt_b->rt_runtime = runtime;
-+
-+      spin_lock_init(&rt_b->rt_runtime_lock);
-+
-+      hrtimer_init(&rt_b->rt_period_timer,
-+                      CLOCK_MONOTONIC, HRTIMER_MODE_REL);
-+      rt_b->rt_period_timer.function = sched_rt_period_timer;
-+      rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
-+}
-+
-+static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
-+{
-+      ktime_t now;
-+
-+      if (rt_b->rt_runtime == RUNTIME_INF)
-+              return;
 +
-+      if (hrtimer_active(&rt_b->rt_period_timer))
-+              return;
-+
-+      spin_lock(&rt_b->rt_runtime_lock);
-+      for (;;) {
-+              if (hrtimer_active(&rt_b->rt_period_timer))
-+                      break;
+ /*
+  * By the time we get here, we already hold the mm semaphore
+  */
+@@ -2782,6 +2792,24 @@ int handle_mm_fault(struct mm_struct *mm
+       if (!pte)
+               return VM_FAULT_OOM;
++#ifdef CONFIG_CHOPSTIX
++      if (rec_event) {
++              struct event event;
++              struct event_spec espec;
++        struct pt_regs *regs;
++        unsigned int pc;
++        regs = task_pt_regs(current);
++        pc = regs->ip & (unsigned int) ~4095;
 +
-+              now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
-+              hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
-+              hrtimer_start(&rt_b->rt_period_timer,
-+                            rt_b->rt_period_timer.expires,
-+                            HRTIMER_MODE_ABS);
++              espec.reason = 0; /* alloc */
++              event.event_data=&espec;
++              event.task = current;
++              espec.pc=pc;
++              event.event_type=5; 
++              (*rec_event)(&event, 1);
 +      }
-+      spin_unlock(&rt_b->rt_runtime_lock);
-+}
-+
-+#ifdef CONFIG_RT_GROUP_SCHED
-+static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
-+{
-+      hrtimer_cancel(&rt_b->rt_period_timer);
-+}
-+#endif
-+
-+/*
-+ * sched_domains_mutex serializes calls to arch_init_sched_domains,
-+ * detach_destroy_domains and partition_sched_domains.
-+ */
-+static DEFINE_MUTEX(sched_domains_mutex);
-+
-+#ifdef CONFIG_GROUP_SCHED
-+
-+#include <linux/cgroup.h>
-+
-+struct cfs_rq;
-+
-+static LIST_HEAD(task_groups);
-+
-+/* task group related information */
-+struct task_group {
-+#ifdef CONFIG_CGROUP_SCHED
-+      struct cgroup_subsys_state css;
-+#endif
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+      /* schedulable entities of this group on each cpu */
-+      struct sched_entity **se;
-+      /* runqueue "owned" by this group on each cpu */
-+      struct cfs_rq **cfs_rq;
-+      unsigned long shares;
-+#endif
-+
-+#ifdef CONFIG_RT_GROUP_SCHED
-+      struct sched_rt_entity **rt_se;
-+      struct rt_rq **rt_rq;
-+
-+      struct rt_bandwidth rt_bandwidth;
-+#endif
-+
-+      struct rcu_head rcu;
-+      struct list_head list;
-+
-+      struct task_group *parent;
-+      struct list_head siblings;
-+      struct list_head children;
-+};
-+
-+#ifdef CONFIG_USER_SCHED
-+
-+/*
-+ * Root task group.
-+ *    Every UID task group (including init_task_group aka UID-0) will
-+ *    be a child to this group.
-+ */
-+struct task_group root_task_group;
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+/* Default task group's sched entity on each cpu */
-+static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
-+/* Default task group's cfs_rq on each cpu */
-+static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
-+#endif /* CONFIG_FAIR_GROUP_SCHED */
-+
-+#ifdef CONFIG_RT_GROUP_SCHED
-+static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
-+static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
-+#endif /* CONFIG_RT_GROUP_SCHED */
-+#else /* !CONFIG_FAIR_GROUP_SCHED */
-+#define root_task_group init_task_group
-+#endif /* CONFIG_FAIR_GROUP_SCHED */
-+
-+/* task_group_lock serializes add/remove of task groups and also changes to
-+ * a task group's cpu shares.
-+ */
-+static DEFINE_SPINLOCK(task_group_lock);
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+#ifdef CONFIG_USER_SCHED
-+# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
-+#else /* !CONFIG_USER_SCHED */
-+# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
-+#endif /* CONFIG_USER_SCHED */
-+
-+/*
-+ * A weight of 0 or 1 can cause arithmetics problems.
-+ * A weight of a cfs_rq is the sum of weights of which entities
-+ * are queued on this cfs_rq, so a weight of a entity should not be
-+ * too large, so as the shares value of a task group.
-+ * (The default weight is 1024 - so there's no practical
-+ *  limitation from this.)
-+ */
-+#define MIN_SHARES    2
-+#define MAX_SHARES    (1UL << 18)
-+
-+static int init_task_group_load = INIT_TASK_GROUP_LOAD;
-+#endif
-+
-+/* Default task group.
-+ *    Every task in system belong to this group at bootup.
-+ */
-+struct task_group init_task_group;
-+
-+/* return group to which a task belongs */
-+static inline struct task_group *task_group(struct task_struct *p)
-+{
-+      struct task_group *tg;
-+
-+#ifdef CONFIG_USER_SCHED
-+      tg = p->user->tg;
-+#elif defined(CONFIG_CGROUP_SCHED)
-+      tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
-+                              struct task_group, css);
-+#else
-+      tg = &init_task_group;
-+#endif
-+      return tg;
-+}
-+
-+/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
-+static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
-+{
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+      p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
-+      p->se.parent = task_group(p)->se[cpu];
-+#endif
-+
-+#ifdef CONFIG_RT_GROUP_SCHED
-+      p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
-+      p->rt.parent = task_group(p)->rt_se[cpu];
-+#endif
-+}
-+
-+#else
-+
-+static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
-+static inline struct task_group *task_group(struct task_struct *p)
-+{
-+      return NULL;
-+}
-+
-+#endif        /* CONFIG_GROUP_SCHED */
-+
-+/* CFS-related fields in a runqueue */
-+struct cfs_rq {
-+      struct load_weight load;
-+      unsigned long nr_running;
-+
-+      u64 exec_clock;
-+      u64 min_vruntime;
-+      u64 pair_start;
-+
-+      struct rb_root tasks_timeline;
-+      struct rb_node *rb_leftmost;
-+
-+      struct list_head tasks;
-+      struct list_head *balance_iterator;
-+
-+      /*
-+       * 'curr' points to currently running entity on this cfs_rq.
-+       * It is set to NULL otherwise (i.e when none are currently running).
-+       */
-+      struct sched_entity *curr, *next;
-+
-+      unsigned long nr_spread_over;
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+      struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
-+
-+      /*
-+       * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
-+       * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
-+       * (like users, containers etc.)
-+       *
-+       * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
-+       * list is used during load balance.
-+       */
-+      struct list_head leaf_cfs_rq_list;
-+      struct task_group *tg;  /* group that "owns" this runqueue */
-+
-+#ifdef CONFIG_SMP
-+      /*
-+       * the part of load.weight contributed by tasks
-+       */
-+      unsigned long task_weight;
-+
-+      /*
-+       *   h_load = weight * f(tg)
-+       *
-+       * Where f(tg) is the recursive weight fraction assigned to
-+       * this group.
-+       */
-+      unsigned long h_load;
-+
-+      /*
-+       * this cpu's part of tg->shares
-+       */
-+      unsigned long shares;
-+
-+      /*
-+       * load.weight at the time we set shares
-+       */
-+      unsigned long rq_weight;
-+#endif
-+#endif
-+};
-+
-+/* Real-Time classes' related field in a runqueue: */
-+struct rt_rq {
-+      struct rt_prio_array active;
-+      unsigned long rt_nr_running;
-+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
-+      int highest_prio; /* highest queued rt task prio */
-+#endif
-+#ifdef CONFIG_SMP
-+      unsigned long rt_nr_migratory;
-+      int overloaded;
-+#endif
-+      int rt_throttled;
-+      u64 rt_time;
-+      u64 rt_runtime;
-+      /* Nests inside the rq lock: */
-+      spinlock_t rt_runtime_lock;
-+
-+#ifdef CONFIG_RT_GROUP_SCHED
-+      unsigned long rt_nr_boosted;
-+
-+      struct rq *rq;
-+      struct list_head leaf_rt_rq_list;
-+      struct task_group *tg;
-+      struct sched_rt_entity *rt_se;
-+#endif
-+};
-+
-+#ifdef CONFIG_SMP
-+
-+/*
-+ * We add the notion of a root-domain which will be used to define per-domain
-+ * variables. Each exclusive cpuset essentially defines an island domain by
-+ * fully partitioning the member cpus from any other cpuset. Whenever a new
-+ * exclusive cpuset is created, we also create and attach a new root-domain
-+ * object.
-+ *
-+ */
-+struct root_domain {
-+      atomic_t refcount;
-+      cpumask_t span;
-+      cpumask_t online;
-+
-+      /*
-+       * The "RT overload" flag: it gets set if a CPU has more than
-+       * one runnable RT task.
-+       */
-+      cpumask_t rto_mask;
-+      atomic_t rto_count;
-+#ifdef CONFIG_SMP
-+      struct cpupri cpupri;
-+#endif
-+};
-+
-+/*
-+ * By default the system creates a single root-domain with all cpus as
-+ * members (mimicking the global state we have today).
-+ */
-+static struct root_domain def_root_domain;
-+
-+#endif
-+      unsigned long norm_time;
-+      unsigned long idle_time;
-+#ifdef CONFIG_VSERVER_IDLETIME
-+      int idle_skip;
-+#endif
-+#ifdef CONFIG_VSERVER_HARDCPU
-+      struct list_head hold_queue;
-+      unsigned long nr_onhold;
-+      int idle_tokens;
-+#endif
-+
-+/*
-+ * This is the main, per-CPU runqueue data structure.
-+ *
-+ * Locking rule: those places that want to lock multiple runqueues
-+ * (such as the load balancing or the thread migration code), lock
-+ * acquire operations must be ordered by ascending &runqueue.
-+ */
-+struct rq {
-+      /* runqueue lock: */
-+      spinlock_t lock;
-+
-+      /*
-+       * nr_running and cpu_load should be in the same cacheline because
-+       * remote CPUs use both these fields when doing load calculation.
-+       */
-+      unsigned long nr_running;
-+      #define CPU_LOAD_IDX_MAX 5
-+      unsigned long cpu_load[CPU_LOAD_IDX_MAX];
-+      unsigned char idle_at_tick;
-+#ifdef CONFIG_NO_HZ
-+      unsigned long last_tick_seen;
-+      unsigned char in_nohz_recently;
-+#endif
-+      /* capture load from *all* tasks on this cpu: */
-+      struct load_weight load;
-+      unsigned long nr_load_updates;
-+      u64 nr_switches;
-+
-+      struct cfs_rq cfs;
-+      struct rt_rq rt;
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+      /* list of leaf cfs_rq on this cpu: */
-+      struct list_head leaf_cfs_rq_list;
-+#endif
-+#ifdef CONFIG_RT_GROUP_SCHED
-+      struct list_head leaf_rt_rq_list;
-+#endif
-+
-+      /*
-+       * This is part of a global counter where only the total sum
-+       * over all CPUs matters. A task can increase this counter on
-+       * one CPU and if it got migrated afterwards it may decrease
-+       * it on another CPU. Always updated under the runqueue lock:
-+       */
-+      unsigned long nr_uninterruptible;
-+
-+      struct task_struct *curr, *idle;
-+      unsigned long next_balance;
-+      struct mm_struct *prev_mm;
-+
-+      u64 clock;
-+
-+      atomic_t nr_iowait;
-+
-+#ifdef CONFIG_SMP
-+      struct root_domain *rd;
-+      struct sched_domain *sd;
-+
-+      /* For active balancing */
-+      int active_balance;
-+      int push_cpu;
-+      /* cpu of this runqueue: */
-+      int cpu;
-+      int online;
-+
-+      unsigned long avg_load_per_task;
-+
-+      struct task_struct *migration_thread;
-+      struct list_head migration_queue;
-+#endif
-+
-+#ifdef CONFIG_SCHED_HRTICK
-+#ifdef CONFIG_SMP
-+      int hrtick_csd_pending;
-+      struct call_single_data hrtick_csd;
-+#endif
-+      struct hrtimer hrtick_timer;
-+#endif
-+
-+#ifdef CONFIG_SCHEDSTATS
-+      /* latency stats */
-+      struct sched_info rq_sched_info;
-+
-+      /* sys_sched_yield() stats */
-+      unsigned int yld_exp_empty;
-+      unsigned int yld_act_empty;
-+      unsigned int yld_both_empty;
-+      unsigned int yld_count;
-+
-+      /* schedule() stats */
-+      unsigned int sched_switch;
-+      unsigned int sched_count;
-+      unsigned int sched_goidle;
-+
-+      /* try_to_wake_up() stats */
-+      unsigned int ttwu_count;
-+      unsigned int ttwu_local;
-+
-+      /* BKL stats */
-+      unsigned int bkl_count;
-+#endif
-+};
-+
-+static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
-+
-+static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
-+{
-+      rq->curr->sched_class->check_preempt_curr(rq, p);
-+}
-+
-+static inline int cpu_of(struct rq *rq)
-+{
-+#ifdef CONFIG_SMP
-+      return rq->cpu;
-+#else
-+      return 0;
-+#endif
-+}
-+
-+/*
-+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
-+ * See detach_destroy_domains: synchronize_sched for details.
-+ *
-+ * The domain tree of any CPU may only be accessed from within
-+ * preempt-disabled sections.
-+ */
-+#define for_each_domain(cpu, __sd) \
-+      for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
-+
-+#define cpu_rq(cpu)           (&per_cpu(runqueues, (cpu)))
-+#define this_rq()             (&__get_cpu_var(runqueues))
-+#define task_rq(p)            cpu_rq(task_cpu(p))
-+#define cpu_curr(cpu)         (cpu_rq(cpu)->curr)
-+
-+static inline void update_rq_clock(struct rq *rq)
-+{
-+      rq->clock = sched_clock_cpu(cpu_of(rq));
-+}
-+
-+/*
-+ * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
-+ */
-+#ifdef CONFIG_SCHED_DEBUG
-+# define const_debug __read_mostly
-+#else
-+# define const_debug static const
 +#endif
 +
-+/**
-+ * runqueue_is_locked
-+ *
-+ * Returns true if the current cpu runqueue is locked.
-+ * This interface allows printk to be called with the runqueue lock
-+ * held and know whether or not it is OK to wake up the klogd.
-+ */
-+int runqueue_is_locked(void)
-+{
-+      int cpu = get_cpu();
-+      struct rq *rq = cpu_rq(cpu);
-+      int ret;
-+
-+      ret = spin_is_locked(&rq->lock);
-+      put_cpu();
-+      return ret;
-+}
-+
-+/*
-+ * Debugging: various feature bits
-+ */
-+
-+#define SCHED_FEAT(name, enabled)     \
-+      __SCHED_FEAT_##name ,
-+
-+enum {
-+#include "sched_features.h"
-+};
-+
-+#undef SCHED_FEAT
-+
-+#define SCHED_FEAT(name, enabled)     \
-+      (1UL << __SCHED_FEAT_##name) * enabled |
-+
-+const_debug unsigned int sysctl_sched_features =
-+#include "sched_features.h"
-+      0;
-+
-+#undef SCHED_FEAT
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+#define SCHED_FEAT(name, enabled)     \
-+      #name ,
-+
-+static __read_mostly char *sched_feat_names[] = {
-+#include "sched_features.h"
-+      NULL
-+};
-+
-+#undef SCHED_FEAT
-+
-+static int sched_feat_open(struct inode *inode, struct file *filp)
-+{
-+      filp->private_data = inode->i_private;
-+      return 0;
-+}
-+
-+static ssize_t
-+sched_feat_read(struct file *filp, char __user *ubuf,
-+              size_t cnt, loff_t *ppos)
-+{
-+      char *buf;
-+      int r = 0;
-+      int len = 0;
-+      int i;
-+
-+      for (i = 0; sched_feat_names[i]; i++) {
-+              len += strlen(sched_feat_names[i]);
-+              len += 4;
-+      }
-+
-+      buf = kmalloc(len + 2, GFP_KERNEL);
-+      if (!buf)
-+              return -ENOMEM;
-+
-+      for (i = 0; sched_feat_names[i]; i++) {
-+              if (sysctl_sched_features & (1UL << i))
-+                      r += sprintf(buf + r, "%s ", sched_feat_names[i]);
-+              else
-+                      r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
-+      }
-+
-+      r += sprintf(buf + r, "\n");
-+      WARN_ON(r >= len + 2);
-+
-+      r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
-+
-+      kfree(buf);
-+
-+      return r;
-+}
-+
-+static ssize_t
-+sched_feat_write(struct file *filp, const char __user *ubuf,
-+              size_t cnt, loff_t *ppos)
-+{
-+      char buf[64];
-+      char *cmp = buf;
-+      int neg = 0;
-+      int i;
-+
-+      if (cnt > 63)
-+              cnt = 63;
-+
-+      if (copy_from_user(&buf, ubuf, cnt))
-+              return -EFAULT;
-+
-+      buf[cnt] = 0;
-+
-+      if (strncmp(buf, "NO_", 3) == 0) {
-+              neg = 1;
-+              cmp += 3;
-+      }
-+
-+      for (i = 0; sched_feat_names[i]; i++) {
-+              int len = strlen(sched_feat_names[i]);
-+
-+              if (strncmp(cmp, sched_feat_names[i], len) == 0) {
-+                      if (neg)
-+                              sysctl_sched_features &= ~(1UL << i);
-+                      else
-+                              sysctl_sched_features |= (1UL << i);
-+                      break;
-+              }
-+      }
-+
-+      if (!sched_feat_names[i])
-+              return -EINVAL;
-+
-+      filp->f_pos += cnt;
-+
-+      return cnt;
-+}
-+
-+static struct file_operations sched_feat_fops = {
-+      .open   = sched_feat_open,
-+      .read   = sched_feat_read,
-+      .write  = sched_feat_write,
-+};
-+
-+static __init int sched_init_debug(void)
-+{
-+      debugfs_create_file("sched_features", 0644, NULL, NULL,
-+                      &sched_feat_fops);
-+
-+      return 0;
-+}
-+late_initcall(sched_init_debug);
-+
-+#endif
-+
-+#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
-+
-+/*
-+ * Number of tasks to iterate in a single balance run.
-+ * Limited because this is done with IRQs disabled.
-+ */
-+const_debug unsigned int sysctl_sched_nr_migrate = 32;
-+
-+/*
-+ * ratelimit for updating the group shares.
-+ * default: 0.25ms
-+ */
-+unsigned int sysctl_sched_shares_ratelimit = 250000;
-+
-+/*
-+ * period over which we measure -rt task cpu usage in us.
-+ * default: 1s
-+ */
-+unsigned int sysctl_sched_rt_period = 1000000;
-+
-+static __read_mostly int scheduler_running;
-+
-+/*
-+ * part of the period that we allow rt tasks to run in us.
-+ * default: 0.95s
-+ */
-+int sysctl_sched_rt_runtime = 950000;
-+
-+static inline u64 global_rt_period(void)
-+{
-+      return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
-+}
-+
-+static inline u64 global_rt_runtime(void)
-+{
-+      if (sysctl_sched_rt_runtime < 0)
-+              return RUNTIME_INF;
-+
-+      return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
-+}
-+
-+#ifndef prepare_arch_switch
-+# define prepare_arch_switch(next)    do { } while (0)
-+#endif
-+#ifndef finish_arch_switch
-+# define finish_arch_switch(prev)     do { } while (0)
-+#endif
-+
-+static inline int task_current(struct rq *rq, struct task_struct *p)
-+{
-+      return rq->curr == p;
-+}
-+
-+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
-+static inline int task_running(struct rq *rq, struct task_struct *p)
-+{
-+      return task_current(rq, p);
-+}
-+
-+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
-+{
-+}
-+
-+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
-+{
-+#ifdef CONFIG_DEBUG_SPINLOCK
-+      /* this is a valid case when another task releases the spinlock */
-+      rq->lock.owner = current;
-+#endif
-+      /*
-+       * If we are tracking spinlock dependencies then we have to
-+       * fix up the runqueue lock - which gets 'carried over' from
-+       * prev into current:
-+       */
-+      spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
-+
-+      spin_unlock_irq(&rq->lock);
-+}
-+
-+#else /* __ARCH_WANT_UNLOCKED_CTXSW */
-+static inline int task_running(struct rq *rq, struct task_struct *p)
-+{
-+#ifdef CONFIG_SMP
-+      return p->oncpu;
-+#else
-+      return task_current(rq, p);
-+#endif
-+}
-+
-+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
-+{
-+#ifdef CONFIG_SMP
-+      /*
-+       * We can optimise this out completely for !SMP, because the
-+       * SMP rebalancing from interrupt is the only thing that cares
-+       * here.
-+       */
-+      next->oncpu = 1;
-+#endif
-+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-+      spin_unlock_irq(&rq->lock);
-+#else
-+      spin_unlock(&rq->lock);
-+#endif
-+}
-+
-+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
-+{
-+#ifdef CONFIG_SMP
-+      /*
-+       * After ->oncpu is cleared, the task can be moved to a different CPU.
-+       * We must ensure this doesn't happen until the switch is completely
-+       * finished.
-+       */
-+      smp_wmb();
-+      prev->oncpu = 0;
-+#endif
-+#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-+      local_irq_enable();
-+#endif
-+}
-+#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
-+
-+/*
-+ * __task_rq_lock - lock the runqueue a given task resides on.
-+ * Must be called interrupts disabled.
-+ */
-+static inline struct rq *__task_rq_lock(struct task_struct *p)
-+      __acquires(rq->lock)
-+{
-+      for (;;) {
-+              struct rq *rq = task_rq(p);
-+              spin_lock(&rq->lock);
-+              if (likely(rq == task_rq(p)))
-+                      return rq;
-+              spin_unlock(&rq->lock);
-+      }
-+}
-+
-+/*
-+ * task_rq_lock - lock the runqueue a given task resides on and disable
-+ * interrupts. Note the ordering: we can safely lookup the task_rq without
-+ * explicitly disabling preemption.
-+ */
-+static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
-+      __acquires(rq->lock)
-+{
-+      struct rq *rq;
-+
-+      for (;;) {
-+              local_irq_save(*flags);
-+              rq = task_rq(p);
-+              spin_lock(&rq->lock);
-+              if (likely(rq == task_rq(p)))
-+                      return rq;
-+              spin_unlock_irqrestore(&rq->lock, *flags);
-+      }
-+}
-+
-+static void __task_rq_unlock(struct rq *rq)
-+      __releases(rq->lock)
-+{
-+      spin_unlock(&rq->lock);
-+}
-+
-+static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
-+      __releases(rq->lock)
-+{
-+      spin_unlock_irqrestore(&rq->lock, *flags);
-+}
-+
-+/*
-+ * this_rq_lock - lock this runqueue and disable interrupts.
-+ */
-+static struct rq *this_rq_lock(void)
-+      __acquires(rq->lock)
-+{
-+      struct rq *rq;
-+
-+      local_irq_disable();
-+      rq = this_rq();
-+      spin_lock(&rq->lock);
-+
-+      return rq;
-+}
-+
-+#ifdef CONFIG_SCHED_HRTICK
-+/*
-+ * Use HR-timers to deliver accurate preemption points.
-+ *
-+ * Its all a bit involved since we cannot program an hrt while holding the
-+ * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
-+ * reschedule event.
-+ *
-+ * When we get rescheduled we reprogram the hrtick_timer outside of the
-+ * rq->lock.
-+ */
-+
-+/*
-+ * Use hrtick when:
-+ *  - enabled by features
-+ *  - hrtimer is actually high res
-+ */
-+static inline int hrtick_enabled(struct rq *rq)
-+{
-+      if (!sched_feat(HRTICK))
-+              return 0;
-+      if (!cpu_active(cpu_of(rq)))
-+              return 0;
-+      return hrtimer_is_hres_active(&rq->hrtick_timer);
-+}
-+
-+static void hrtick_clear(struct rq *rq)
-+{
-+      if (hrtimer_active(&rq->hrtick_timer))
-+              hrtimer_cancel(&rq->hrtick_timer);
-+}
-+
-+/*
-+ * High-resolution timer tick.
-+ * Runs from hardirq context with interrupts disabled.
-+ */
-+static enum hrtimer_restart hrtick(struct hrtimer *timer)
-+{
-+      struct rq *rq = container_of(timer, struct rq, hrtick_timer);
-+
-+      WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
-+
-+      spin_lock(&rq->lock);
-+      update_rq_clock(rq);
-+      rq->curr->sched_class->task_tick(rq, rq->curr, 1);
-+      spin_unlock(&rq->lock);
-+
-+      return HRTIMER_NORESTART;
-+}
-+
-+#ifdef CONFIG_SMP
-+/*
-+ * called from hardirq (IPI) context
-+ */
-+static void __hrtick_start(void *arg)
-+{
-+      struct rq *rq = arg;
-+
-+      spin_lock(&rq->lock);
-+      hrtimer_restart(&rq->hrtick_timer);
-+      rq->hrtick_csd_pending = 0;
-+      spin_unlock(&rq->lock);
-+}
-+
-+/*
-+ * Called to set the hrtick timer state.
-+ *
-+ * called with rq->lock held and irqs disabled
-+ */
-+static void hrtick_start(struct rq *rq, u64 delay)
-+{
-+      struct hrtimer *timer = &rq->hrtick_timer;
-+      ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
-+
-+      timer->expires = time;
-+
-+      if (rq == this_rq()) {
-+              hrtimer_restart(timer);
-+      } else if (!rq->hrtick_csd_pending) {
-+              __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
-+              rq->hrtick_csd_pending = 1;
-+      }
-+}
-+
-+static int
-+hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
-+{
-+      int cpu = (int)(long)hcpu;
-+
-+      switch (action) {
-+      case CPU_UP_CANCELED:
-+      case CPU_UP_CANCELED_FROZEN:
-+      case CPU_DOWN_PREPARE:
-+      case CPU_DOWN_PREPARE_FROZEN:
-+      case CPU_DEAD:
-+      case CPU_DEAD_FROZEN:
-+              hrtick_clear(cpu_rq(cpu));
-+              return NOTIFY_OK;
-+      }
-+
-+      return NOTIFY_DONE;
-+}
-+
-+static __init void init_hrtick(void)
-+{
-+      hotcpu_notifier(hotplug_hrtick, 0);
-+}
-+#else
-+/*
-+ * Called to set the hrtick timer state.
-+ *
-+ * called with rq->lock held and irqs disabled
-+ */
-+static void hrtick_start(struct rq *rq, u64 delay)
-+{
-+      hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
-+}
-+
-+static void init_hrtick(void)
-+{
-+}
-+#endif /* CONFIG_SMP */
-+
-+static void init_rq_hrtick(struct rq *rq)
-+{
-+#ifdef CONFIG_SMP
-+      rq->hrtick_csd_pending = 0;
-+
-+      rq->hrtick_csd.flags = 0;
-+      rq->hrtick_csd.func = __hrtick_start;
-+      rq->hrtick_csd.info = rq;
-+#endif
-+
-+      hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
-+      rq->hrtick_timer.function = hrtick;
-+      rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
-+}
-+#else
-+static inline void hrtick_clear(struct rq *rq)
-+{
-+}
-+
-+static inline void init_rq_hrtick(struct rq *rq)
-+{
-+}
-+
-+static inline void init_hrtick(void)
-+{
-+}
-+#endif
-+
-+/*
-+ * resched_task - mark a task 'to be rescheduled now'.
-+ *
-+ * On UP this means the setting of the need_resched flag, on SMP it
-+ * might also involve a cross-CPU call to trigger the scheduler on
-+ * the target CPU.
-+ */
-+#ifdef CONFIG_SMP
-+
-+#ifndef tsk_is_polling
-+#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
-+#endif
-+
-+static void resched_task(struct task_struct *p)
-+{
-+      int cpu;
-+
-+      assert_spin_locked(&task_rq(p)->lock);
-+
-+      if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
-+              return;
-+
-+      set_tsk_thread_flag(p, TIF_NEED_RESCHED);
-+
-+      cpu = task_cpu(p);
-+      if (cpu == smp_processor_id())
-+              return;
-+
-+      /* NEED_RESCHED must be visible before we test polling */
-+      smp_mb();
-+      if (!tsk_is_polling(p))
-+              smp_send_reschedule(cpu);
-+}
-+
-+static void resched_cpu(int cpu)
-+{
-+      struct rq *rq = cpu_rq(cpu);
-+      unsigned long flags;
-+
-+      if (!spin_trylock_irqsave(&rq->lock, flags))
-+              return;
-+      resched_task(cpu_curr(cpu));
-+      spin_unlock_irqrestore(&rq->lock, flags);
-+}
-+
-+#ifdef CONFIG_NO_HZ
-+/*
-+ * When add_timer_on() enqueues a timer into the timer wheel of an
-+ * idle CPU then this timer might expire before the next timer event
-+ * which is scheduled to wake up that CPU. In case of a completely
-+ * idle system the next event might even be infinite time into the
-+ * future. wake_up_idle_cpu() ensures that the CPU is woken up and
-+ * leaves the inner idle loop so the newly added timer is taken into
-+ * account when the CPU goes back to idle and evaluates the timer
-+ * wheel for the next timer event.
-+ */
-+void wake_up_idle_cpu(int cpu)
-+{
-+      struct rq *rq = cpu_rq(cpu);
-+
-+      if (cpu == smp_processor_id())
-+              return;
-+
-+      /*
-+       * This is safe, as this function is called with the timer
-+       * wheel base lock of (cpu) held. When the CPU is on the way
-+       * to idle and has not yet set rq->curr to idle then it will
-+       * be serialized on the timer wheel base lock and take the new
-+       * timer into account automatically.
-+       */
-+      if (rq->curr != rq->idle)
-+              return;
-+
-+      /*
-+       * We can set TIF_RESCHED on the idle task of the other CPU
-+       * lockless. The worst case is that the other CPU runs the
-+       * idle task through an additional NOOP schedule()
-+       */
-+      set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
-+
-+      /* NEED_RESCHED must be visible before we test polling */
-+      smp_mb();
-+      if (!tsk_is_polling(rq->idle))
-+              smp_send_reschedule(cpu);
-+}
-+#endif /* CONFIG_NO_HZ */
-+
-+#else /* !CONFIG_SMP */
-+static void resched_task(struct task_struct *p)
-+{
-+      assert_spin_locked(&task_rq(p)->lock);
-+      set_tsk_need_resched(p);
-+}
-+#endif /* CONFIG_SMP */
-+
-+#if BITS_PER_LONG == 32
-+# define WMULT_CONST  (~0UL)
-+#else
-+# define WMULT_CONST  (1UL << 32)
-+#endif
-+
-+#define WMULT_SHIFT   32
-+
-+/*
-+ * Shift right and round:
-+ */
-+#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
-+
-+/*
-+ * delta *= weight / lw
-+ */
-+static unsigned long
-+calc_delta_mine(unsigned long delta_exec, unsigned long weight,
-+              struct load_weight *lw)
-+{
-+      u64 tmp;
-+
-+      if (!lw->inv_weight) {
-+              if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
-+                      lw->inv_weight = 1;
-+              else
-+                      lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
-+                              / (lw->weight+1);
-+      }
-+
-+      tmp = (u64)delta_exec * weight;
-+      /*
-+       * Check whether we'd overflow the 64-bit multiplication:
-+       */
-+      if (unlikely(tmp > WMULT_CONST))
-+              tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
-+                      WMULT_SHIFT/2);
-+      else
-+              tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
-+
-+      return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
-+}
-+
-+static inline void update_load_add(struct load_weight *lw, unsigned long inc)
-+{
-+      lw->weight += inc;
-+      lw->inv_weight = 0;
-+}
-+
-+static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
-+{
-+      lw->weight -= dec;
-+      lw->inv_weight = 0;
-+}
-+
-+/*
-+ * To aid in avoiding the subversion of "niceness" due to uneven distribution
-+ * of tasks with abnormal "nice" values across CPUs the contribution that
-+ * each task makes to its run queue's load is weighted according to its
-+ * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
-+ * scaled version of the new time slice allocation that they receive on time
-+ * slice expiry etc.
-+ */
-+
-+#define WEIGHT_IDLEPRIO               2
-+#define WMULT_IDLEPRIO                (1 << 31)
-+
-+/*
-+ * Nice levels are multiplicative, with a gentle 10% change for every
-+ * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
-+ * nice 1, it will get ~10% less CPU time than another CPU-bound task
-+ * that remained on nice 0.
-+ *
-+ * The "10% effect" is relative and cumulative: from _any_ nice level,
-+ * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
-+ * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
-+ * If a task goes up by ~10% and another task goes down by ~10% then
-+ * the relative distance between them is ~25%.)
-+ */
-+static const int prio_to_weight[40] = {
-+ /* -20 */     88761,     71755,     56483,     46273,     36291,
-+ /* -15 */     29154,     23254,     18705,     14949,     11916,
-+ /* -10 */      9548,      7620,      6100,      4904,      3906,
-+ /*  -5 */      3121,      2501,      1991,      1586,      1277,
-+ /*   0 */      1024,       820,       655,       526,       423,
-+ /*   5 */       335,       272,       215,       172,       137,
-+ /*  10 */       110,        87,        70,        56,        45,
-+ /*  15 */        36,        29,        23,        18,        15,
-+};
-+
-+/*
-+ * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
-+ *
-+ * In cases where the weight does not change often, we can use the
-+ * precalculated inverse to speed up arithmetics by turning divisions
-+ * into multiplications:
-+ */
-+static const u32 prio_to_wmult[40] = {
-+ /* -20 */     48388,     59856,     76040,     92818,    118348,
-+ /* -15 */    147320,    184698,    229616,    287308,    360437,
-+ /* -10 */    449829,    563644,    704093,    875809,   1099582,
-+ /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
-+ /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
-+ /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
-+ /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
-+ /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
-+};
-+
-+static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
-+
-+/*
-+ * runqueue iterator, to support SMP load-balancing between different
-+ * scheduling classes, without having to expose their internal data
-+ * structures to the load-balancing proper:
-+ */
-+struct rq_iterator {
-+      void *arg;
-+      struct task_struct *(*start)(void *);
-+      struct task_struct *(*next)(void *);
-+};
-+
-+#ifdef CONFIG_SMP
-+static unsigned long
-+balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
-+            unsigned long max_load_move, struct sched_domain *sd,
-+            enum cpu_idle_type idle, int *all_pinned,
-+            int *this_best_prio, struct rq_iterator *iterator);
-+
-+static int
-+iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
-+                 struct sched_domain *sd, enum cpu_idle_type idle,
-+                 struct rq_iterator *iterator);
-+#endif
-+
-+#ifdef CONFIG_CGROUP_CPUACCT
-+static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
-+#else
-+static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
-+#endif
-+
-+static inline void inc_cpu_load(struct rq *rq, unsigned long load)
-+{
-+      update_load_add(&rq->load, load);
-+}
-+
-+static inline void dec_cpu_load(struct rq *rq, unsigned long load)
-+{
-+      update_load_sub(&rq->load, load);
-+}
-+
-+#ifdef CONFIG_SMP
-+static unsigned long source_load(int cpu, int type);
-+static unsigned long target_load(int cpu, int type);
-+static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
-+
-+static unsigned long cpu_avg_load_per_task(int cpu)
-+{
-+      struct rq *rq = cpu_rq(cpu);
-+
-+      if (rq->nr_running)
-+              rq->avg_load_per_task = rq->load.weight / rq->nr_running;
-+
-+      return rq->avg_load_per_task;
-+}
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+
-+typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
-+
-+/*
-+ * Iterate the full tree, calling @down when first entering a node and @up when
-+ * leaving it for the final time.
-+ */
-+static void
-+walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
-+{
-+      struct task_group *parent, *child;
-+
-+      rcu_read_lock();
-+      parent = &root_task_group;
-+down:
-+      (*down)(parent, cpu, sd);
-+      list_for_each_entry_rcu(child, &parent->children, siblings) {
-+              parent = child;
-+              goto down;
-+
-+up:
-+              continue;
-+      }
-+      (*up)(parent, cpu, sd);
-+
-+      child = parent;
-+      parent = parent->parent;
-+      if (parent)
-+              goto up;
-+      rcu_read_unlock();
-+}
-+
-+static void __set_se_shares(struct sched_entity *se, unsigned long shares);
-+
-+/*
-+ * Calculate and set the cpu's group shares.
-+ */
-+static void
-+__update_group_shares_cpu(struct task_group *tg, int cpu,
-+                        unsigned long sd_shares, unsigned long sd_rq_weight)
-+{
-+      int boost = 0;
-+      unsigned long shares;
-+      unsigned long rq_weight;
-+
-+      if (!tg->se[cpu])
-+              return;
-+
-+      rq_weight = tg->cfs_rq[cpu]->load.weight;
-+
-+      /*
-+       * If there are currently no tasks on the cpu pretend there is one of
-+       * average load so that when a new task gets to run here it will not
-+       * get delayed by group starvation.
-+       */
-+      if (!rq_weight) {
-+              boost = 1;
-+              rq_weight = NICE_0_LOAD;
-+      }
-+
-+      if (unlikely(rq_weight > sd_rq_weight))
-+              rq_weight = sd_rq_weight;
-+
-+      /*
-+       *           \Sum shares * rq_weight
-+       * shares =  -----------------------
-+       *               \Sum rq_weight
-+       *
-+       */
-+      shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
-+
-+      /*
-+       * record the actual number of shares, not the boosted amount.
-+       */
-+      tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
-+      tg->cfs_rq[cpu]->rq_weight = rq_weight;
-+
-+      if (shares < MIN_SHARES)
-+              shares = MIN_SHARES;
-+      else if (shares > MAX_SHARES)
-+              shares = MAX_SHARES;
-+
-+      __set_se_shares(tg->se[cpu], shares);
-+}
-+
-+/*
-+ * Re-compute the task group their per cpu shares over the given domain.
-+ * This needs to be done in a bottom-up fashion because the rq weight of a
-+ * parent group depends on the shares of its child groups.
-+ */
-+static void
-+tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
-+{
-+      unsigned long rq_weight = 0;
-+      unsigned long shares = 0;
-+      int i;
-+
-+      for_each_cpu_mask(i, sd->span) {
-+              rq_weight += tg->cfs_rq[i]->load.weight;
-+              shares += tg->cfs_rq[i]->shares;
-+      }
-+
-+      if ((!shares && rq_weight) || shares > tg->shares)
-+              shares = tg->shares;
-+
-+      if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
-+              shares = tg->shares;
-+
-+      if (!rq_weight)
-+              rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
-+
-+      for_each_cpu_mask(i, sd->span) {
-+              struct rq *rq = cpu_rq(i);
-+              unsigned long flags;
-+
-+              spin_lock_irqsave(&rq->lock, flags);
-+              __update_group_shares_cpu(tg, i, shares, rq_weight);
-+              spin_unlock_irqrestore(&rq->lock, flags);
-+      }
-+}
-+
-+/*
-+ * Compute the cpu's hierarchical load factor for each task group.
-+ * This needs to be done in a top-down fashion because the load of a child
-+ * group is a fraction of its parents load.
-+ */
-+static void
-+tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
-+{
-+      unsigned long load;
-+
-+      if (!tg->parent) {
-+              load = cpu_rq(cpu)->load.weight;
-+      } else {
-+              load = tg->parent->cfs_rq[cpu]->h_load;
-+              load *= tg->cfs_rq[cpu]->shares;
-+              load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
-+      }
-+
-+      tg->cfs_rq[cpu]->h_load = load;
-+}
-+
-+static void
-+tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
-+{
-+}
-+
-+static void update_shares(struct sched_domain *sd)
-+{
-+      u64 now = cpu_clock(raw_smp_processor_id());
-+      s64 elapsed = now - sd->last_update;
-+
-+      if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
-+              sd->last_update = now;
-+              walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
-+      }
-+}
-+
-+static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
-+{
-+      spin_unlock(&rq->lock);
-+      update_shares(sd);
-+      spin_lock(&rq->lock);
-+}
-+
-+static void update_h_load(int cpu)
-+{
-+      walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
-+}
-+
-+#else
-+
-+static inline void update_shares(struct sched_domain *sd)
-+{
-+}
-+
-+static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
-+{
-+}
-+
-+#endif
-+
-+#endif
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
-+{
-+#ifdef CONFIG_SMP
-+      cfs_rq->shares = shares;
-+#endif
-+}
-+#endif
-+
-+#include "sched_stats.h"
-+#include "sched_idletask.c"
-+#include "sched_fair.c"
-+#include "sched_rt.c"
-+#ifdef CONFIG_SCHED_DEBUG
-+# include "sched_debug.c"
-+#endif
-+
-+#define sched_class_highest (&rt_sched_class)
-+#define for_each_class(class) \
-+   for (class = sched_class_highest; class; class = class->next)
-+
-+static void inc_nr_running(struct rq *rq)
-+{
-+      rq->nr_running++;
-+}
-+
-+static void dec_nr_running(struct rq *rq)
-+{
-+      rq->nr_running--;
-+}
-+
-+static void set_load_weight(struct task_struct *p)
-+{
-+      if (task_has_rt_policy(p)) {
-+              p->se.load.weight = prio_to_weight[0] * 2;
-+              p->se.load.inv_weight = prio_to_wmult[0] >> 1;
-+              return;
-+      }
-+
-+      /*
-+       * SCHED_IDLE tasks get minimal weight:
-+       */
-+      if (p->policy == SCHED_IDLE) {
-+              p->se.load.weight = WEIGHT_IDLEPRIO;
-+              p->se.load.inv_weight = WMULT_IDLEPRIO;
-+              return;
-+      }
-+
-+      p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
-+      p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
-+}
-+
-+static void update_avg(u64 *avg, u64 sample)
-+{
-+      s64 diff = sample - *avg;
-+      *avg += diff >> 3;
-+}
-+
-+static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
-+{
-+      // BUG_ON(p->state & TASK_ONHOLD);
-+      sched_info_queued(p);
-+      p->sched_class->enqueue_task(rq, p, wakeup);
-+      p->se.on_rq = 1;
-+}
-+
-+static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
-+{
-+      if (sleep && p->se.last_wakeup) {
-+              update_avg(&p->se.avg_overlap,
-+                         p->se.sum_exec_runtime - p->se.last_wakeup);
-+              p->se.last_wakeup = 0;
-+      }
-+
-+      sched_info_dequeued(p);
-+      p->sched_class->dequeue_task(rq, p, sleep);
-+      p->se.on_rq = 0;
-+}
-+
-+/*
-+ * __normal_prio - return the priority that is based on the static prio
-+ */
-+static inline int __normal_prio(struct task_struct *p)
-+{
-+      return p->static_prio;
-+}
-+
-+/*
-+ * Calculate the expected normal priority: i.e. priority
-+ * without taking RT-inheritance into account. Might be
-+ * boosted by interactivity modifiers. Changes upon fork,
-+ * setprio syscalls, and whenever the interactivity
-+ * estimator recalculates.
-+ */
-+static inline int normal_prio(struct task_struct *p)
-+{
-+      int prio;
-+
-+      if (task_has_rt_policy(p))
-+              prio = MAX_RT_PRIO-1 - p->rt_priority;
-+      else
-+              prio = __normal_prio(p);
-+      return prio;
-+}
-+
-+/*
-+ * Calculate the current priority, i.e. the priority
-+ * taken into account by the scheduler. This value might
-+ * be boosted by RT tasks, or might be boosted by
-+ * interactivity modifiers. Will be RT if the task got
-+ * RT-boosted. If not then it returns p->normal_prio.
-+ */
-+static int effective_prio(struct task_struct *p)
-+{
-+      p->normal_prio = normal_prio(p);
-+      /*
-+       * If we are RT tasks or we were boosted to RT priority,
-+       * keep the priority unchanged. Otherwise, update priority
-+       * to the normal priority:
-+       */
-+      if (!rt_prio(p->prio))
-+              return p->normal_prio;
-+      return p->prio;
-+}
-+
-+/*
-+ * activate_task - move a task to the runqueue.
-+ */
-+static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
-+{
-+      if (task_contributes_to_load(p))
-+              rq->nr_uninterruptible--;
-+
-+      enqueue_task(rq, p, wakeup);
-+      inc_nr_running(rq);
-+}
-+
-+/*
-+ * deactivate_task - remove a task from the runqueue.
-+ */
-+static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
-+{
-+      if (task_contributes_to_load(p))
-+              rq->nr_uninterruptible++;
-+
-+      dequeue_task(rq, p, sleep);
-+      dec_nr_running(rq);
-+}
-+
-+/**
-+ * task_curr - is this task currently executing on a CPU?
-+ * @p: the task in question.
-+ */
-+inline int task_curr(const struct task_struct *p)
-+{
-+      return cpu_curr(task_cpu(p)) == p;
-+}
-+
-+static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
-+{
-+      set_task_rq(p, cpu);
-+#ifdef CONFIG_SMP
-+      /*
-+       * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
-+       * successfuly executed on another CPU. We must ensure that updates of
-+       * per-task data have been completed by this moment.
-+       */
-+      smp_wmb();
-+      task_thread_info(p)->cpu = cpu;
-+#endif
-+}
-+
-+static inline void check_class_changed(struct rq *rq, struct task_struct *p,
-+                                     const struct sched_class *prev_class,
-+                                     int oldprio, int running)
-+{
-+      if (prev_class != p->sched_class) {
-+              if (prev_class->switched_from)
-+                      prev_class->switched_from(rq, p, running);
-+              p->sched_class->switched_to(rq, p, running);
-+      } else
-+              p->sched_class->prio_changed(rq, p, oldprio, running);
-+}
-+
-+#ifdef CONFIG_SMP
-+
-+/* Used instead of source_load when we know the type == 0 */
-+static unsigned long weighted_cpuload(const int cpu)
-+{
-+      return cpu_rq(cpu)->load.weight;
-+}
-+
-+/*
-+ * Is this task likely cache-hot:
-+ */
-+static int
-+task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
-+{
-+      s64 delta;
-+
-+      /*
-+       * Buddy candidates are cache hot:
-+       */
-+      if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
-+              return 1;
-+
-+      if (p->sched_class != &fair_sched_class)
-+              return 0;
-+
-+      if (sysctl_sched_migration_cost == -1)
-+              return 1;
-+      if (sysctl_sched_migration_cost == 0)
-+              return 0;
-+
-+      delta = now - p->se.exec_start;
-+
-+      return delta < (s64)sysctl_sched_migration_cost;
-+}
-+
-+
-+void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
-+{
-+      int old_cpu = task_cpu(p);
-+      struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
-+      struct cfs_rq *old_cfsrq = task_cfs_rq(p),
-+                    *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
-+      u64 clock_offset;
-+
-+      clock_offset = old_rq->clock - new_rq->clock;
-+
-+#ifdef CONFIG_SCHEDSTATS
-+      if (p->se.wait_start)
-+              p->se.wait_start -= clock_offset;
-+      if (p->se.sleep_start)
-+              p->se.sleep_start -= clock_offset;
-+      if (p->se.block_start)
-+              p->se.block_start -= clock_offset;
-+      if (old_cpu != new_cpu) {
-+              schedstat_inc(p, se.nr_migrations);
-+              if (task_hot(p, old_rq->clock, NULL))
-+                      schedstat_inc(p, se.nr_forced2_migrations);
-+      }
-+#endif
-+      p->se.vruntime -= old_cfsrq->min_vruntime -
-+                                       new_cfsrq->min_vruntime;
-+
-+      __set_task_cpu(p, new_cpu);
-+}
-+
-+struct migration_req {
-+      struct list_head list;
-+
-+      struct task_struct *task;
-+      int dest_cpu;
-+
-+      struct completion done;
-+};
-+
-+#include "sched_mon.h"
-+
-+
-+/*
-+ * The task's runqueue lock must be held.
-+ * Returns true if you have to wait for migration thread.
-+ */
-+static int
-+migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
-+{
-+      struct rq *rq = task_rq(p);
-+
-+      vxm_migrate_task(p, rq, dest_cpu);
-+      /*
-+       * If the task is not on a runqueue (and not running), then
-+       * it is sufficient to simply update the task's cpu field.
-+       */
-+      if (!p->se.on_rq && !task_running(rq, p)) {
-+              set_task_cpu(p, dest_cpu);
-+              return 0;
-+      }
-+
-+      init_completion(&req->done);
-+      req->task = p;
-+      req->dest_cpu = dest_cpu;
-+      list_add(&req->list, &rq->migration_queue);
-+
-+      return 1;
-+}
-+
-+/*
-+ * wait_task_inactive - wait for a thread to unschedule.
-+ *
-+ * If @match_state is nonzero, it's the @p->state value just checked and
-+ * not expected to change.  If it changes, i.e. @p might have woken up,
-+ * then return zero.  When we succeed in waiting for @p to be off its CPU,
-+ * we return a positive number (its total switch count).  If a second call
-+ * a short while later returns the same number, the caller can be sure that
-+ * @p has remained unscheduled the whole time.
-+ *
-+ * The caller must ensure that the task *will* unschedule sometime soon,
-+ * else this function might spin for a *long* time. This function can't
-+ * be called with interrupts off, or it may introduce deadlock with
-+ * smp_call_function() if an IPI is sent by the same process we are
-+ * waiting to become inactive.
-+ */
-+unsigned long wait_task_inactive(struct task_struct *p, long match_state)
-+{
-+      unsigned long flags;
-+      int running, on_rq;
-+      unsigned long ncsw;
-+      struct rq *rq;
-+
-+      for (;;) {
-+              /*
-+               * We do the initial early heuristics without holding
-+               * any task-queue locks at all. We'll only try to get
-+               * the runqueue lock when things look like they will
-+               * work out!
-+               */
-+              rq = task_rq(p);
-+
-+              /*
-+               * If the task is actively running on another CPU
-+               * still, just relax and busy-wait without holding
-+               * any locks.
-+               *
-+               * NOTE! Since we don't hold any locks, it's not
-+               * even sure that "rq" stays as the right runqueue!
-+               * But we don't care, since "task_running()" will
-+               * return false if the runqueue has changed and p
-+               * is actually now running somewhere else!
-+               */
-+              while (task_running(rq, p)) {
-+                      if (match_state && unlikely(p->state != match_state))
-+                              return 0;
-+                      cpu_relax();
-+              }
-+
-+              /*
-+               * Ok, time to look more closely! We need the rq
-+               * lock now, to be *sure*. If we're wrong, we'll
-+               * just go back and repeat.
-+               */
-+              rq = task_rq_lock(p, &flags);
-+              running = task_running(rq, p);
-+              on_rq = p->se.on_rq;
-+              ncsw = 0;
-+              if (!match_state || p->state == match_state) {
-+                      ncsw = p->nivcsw + p->nvcsw;
-+                      if (unlikely(!ncsw))
-+                              ncsw = 1;
-+              }
-+              task_rq_unlock(rq, &flags);
-+
-+              /*
-+               * If it changed from the expected state, bail out now.
-+               */
-+              if (unlikely(!ncsw))
-+                      break;
-+
-+              /*
-+               * Was it really running after all now that we
-+               * checked with the proper locks actually held?
-+               *
-+               * Oops. Go back and try again..
-+               */
-+              if (unlikely(running)) {
-+                      cpu_relax();
-+                      continue;
-+              }
-+
-+              /*
-+               * It's not enough that it's not actively running,
-+               * it must be off the runqueue _entirely_, and not
-+               * preempted!
-+               *
-+               * So if it wa still runnable (but just not actively
-+               * running right now), it's preempted, and we should
-+               * yield - it could be a while.
-+               */
-+              if (unlikely(on_rq)) {
-+                      schedule_timeout_uninterruptible(1);
-+                      continue;
-+              }
-+
-+              /*
-+               * Ahh, all good. It wasn't running, and it wasn't
-+               * runnable, which means that it will never become
-+               * running in the future either. We're all done!
-+               */
-+              break;
-+      }
-+
-+      return ncsw;
-+}
-+
-+/***
-+ * kick_process - kick a running thread to enter/exit the kernel
-+ * @p: the to-be-kicked thread
-+ *
-+ * Cause a process which is running on another CPU to enter
-+ * kernel-mode, without any delay. (to get signals handled.)
-+ *
-+ * NOTE: this function doesnt have to take the runqueue lock,
-+ * because all it wants to ensure is that the remote task enters
-+ * the kernel. If the IPI races and the task has been migrated
-+ * to another CPU then no harm is done and the purpose has been
-+ * achieved as well.
-+ */
-+void kick_process(struct task_struct *p)
-+{
-+      int cpu;
-+
-+      preempt_disable();
-+      cpu = task_cpu(p);
-+      if ((cpu != smp_processor_id()) && task_curr(p))
-+              smp_send_reschedule(cpu);
-+      preempt_enable();
-+}
-+
-+/*
-+ * Return a low guess at the load of a migration-source cpu weighted
-+ * according to the scheduling class and "nice" value.
-+ *
-+ * We want to under-estimate the load of migration sources, to
-+ * balance conservatively.
-+ */
-+static unsigned long source_load(int cpu, int type)
-+{
-+      struct rq *rq = cpu_rq(cpu);
-+      unsigned long total = weighted_cpuload(cpu);
-+
-+      if (type == 0 || !sched_feat(LB_BIAS))
-+              return total;
-+
-+      return min(rq->cpu_load[type-1], total);
-+}
-+
-+/*
-+ * Return a high guess at the load of a migration-target cpu weighted
-+ * according to the scheduling class and "nice" value.
-+ */
-+static unsigned long target_load(int cpu, int type)
-+{
-+      struct rq *rq = cpu_rq(cpu);
-+      unsigned long total = weighted_cpuload(cpu);
-+
-+      if (type == 0 || !sched_feat(LB_BIAS))
-+              return total;
-+
-+      return max(rq->cpu_load[type-1], total);
-+}
-+
-+/*
-+ * find_idlest_group finds and returns the least busy CPU group within the
-+ * domain.
-+ */
-+static struct sched_group *
-+find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
-+{
-+      struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
-+      unsigned long min_load = ULONG_MAX, this_load = 0;
-+      int load_idx = sd->forkexec_idx;
-+      int imbalance = 100 + (sd->imbalance_pct-100)/2;
-+
-+      do {
-+              unsigned long load, avg_load;
-+              int local_group;
-+              int i;
-+
-+              /* Skip over this group if it has no CPUs allowed */
-+              if (!cpus_intersects(group->cpumask, p->cpus_allowed))
-+                      continue;
-+
-+              local_group = cpu_isset(this_cpu, group->cpumask);
-+
-+              /* Tally up the load of all CPUs in the group */
-+              avg_load = 0;
-+
-+              for_each_cpu_mask_nr(i, group->cpumask) {
-+                      /* Bias balancing toward cpus of our domain */
-+                      if (local_group)
-+                              load = source_load(i, load_idx);
-+                      else
-+                              load = target_load(i, load_idx);
-+
-+                      avg_load += load;
-+              }
-+
-+              /* Adjust by relative CPU power of the group */
-+              avg_load = sg_div_cpu_power(group,
-+                              avg_load * SCHED_LOAD_SCALE);
-+
-+              if (local_group) {
-+                      this_load = avg_load;
-+                      this = group;
-+              } else if (avg_load < min_load) {
-+                      min_load = avg_load;
-+                      idlest = group;
-+              }
-+      } while (group = group->next, group != sd->groups);
-+
-+      if (!idlest || 100*this_load < imbalance*min_load)
-+              return NULL;
-+      return idlest;
-+}
-+
-+/*
-+ * find_idlest_cpu - find the idlest cpu among the cpus in group.
-+ */
-+static int
-+find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
-+              cpumask_t *tmp)
-+{
-+      unsigned long load, min_load = ULONG_MAX;
-+      int idlest = -1;
-+      int i;
-+
-+      /* Traverse only the allowed CPUs */
-+      cpus_and(*tmp, group->cpumask, p->cpus_allowed);
-+
-+      for_each_cpu_mask_nr(i, *tmp) {
-+              load = weighted_cpuload(i);
-+
-+              if (load < min_load || (load == min_load && i == this_cpu)) {
-+                      min_load = load;
-+                      idlest = i;
-+              }
-+      }
-+
-+      return idlest;
-+}
-+
-+/*
-+ * sched_balance_self: balance the current task (running on cpu) in domains
-+ * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
-+ * SD_BALANCE_EXEC.
-+ *
-+ * Balance, ie. select the least loaded group.
-+ *
-+ * Returns the target CPU number, or the same CPU if no balancing is needed.
-+ *
-+ * preempt must be disabled.
-+ */
-+static int sched_balance_self(int cpu, int flag)
-+{
-+      struct task_struct *t = current;
-+      struct sched_domain *tmp, *sd = NULL;
-+
-+      for_each_domain(cpu, tmp) {
-+              /*
-+               * If power savings logic is enabled for a domain, stop there.
-+               */
-+              if (tmp->flags & SD_POWERSAVINGS_BALANCE)
-+                      break;
-+              if (tmp->flags & flag)
-+                      sd = tmp;
-+      }
-+
-+      if (sd)
-+              update_shares(sd);
-+
-+      while (sd) {
-+              cpumask_t span, tmpmask;
-+              struct sched_group *group;
-+              int new_cpu, weight;
-+
-+              if (!(sd->flags & flag)) {
-+                      sd = sd->child;
-+                      continue;
-+              }
-+
-+              span = sd->span;
-+              group = find_idlest_group(sd, t, cpu);
-+              if (!group) {
-+                      sd = sd->child;
-+                      continue;
-+              }
-+
-+              new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
-+              if (new_cpu == -1 || new_cpu == cpu) {
-+                      /* Now try balancing at a lower domain level of cpu */
-+                      sd = sd->child;
-+                      continue;
-+              }
-+
-+              /* Now try balancing at a lower domain level of new_cpu */
-+              cpu = new_cpu;
-+              sd = NULL;
-+              weight = cpus_weight(span);
-+              for_each_domain(cpu, tmp) {
-+                      if (weight <= cpus_weight(tmp->span))
-+                              break;
-+                      if (tmp->flags & flag)
-+                              sd = tmp;
-+              }
-+              /* while loop will break here if sd == NULL */
-+      }
-+
-+      return cpu;
-+}
-+
-+#endif /* CONFIG_SMP */
-+
-+/***
-+ * try_to_wake_up - wake up a thread
-+ * @p: the to-be-woken-up thread
-+ * @state: the mask of task states that can be woken
-+ * @sync: do a synchronous wakeup?
-+ *
-+ * Put it on the run-queue if it's not already there. The "current"
-+ * thread is always on the run-queue (except when the actual
-+ * re-schedule is in progress), and as such you're allowed to do
-+ * the simpler "current->state = TASK_RUNNING" to mark yourself
-+ * runnable without the overhead of this.
-+ *
-+ * returns failure only if the task is already active.
-+ */
-+static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
-+{
-+      int cpu, orig_cpu, this_cpu, success = 0;
-+      unsigned long flags;
-+      long old_state;
-+      struct rq *rq;
-+
-+      if (!sched_feat(SYNC_WAKEUPS))
-+              sync = 0;
-+
-+#ifdef CONFIG_SMP
-+      if (sched_feat(LB_WAKEUP_UPDATE)) {
-+              struct sched_domain *sd;
-+
-+              this_cpu = raw_smp_processor_id();
-+              cpu = task_cpu(p);
-+
-+              for_each_domain(this_cpu, sd) {
-+                      if (cpu_isset(cpu, sd->span)) {
-+                              update_shares(sd);
-+                              break;
-+                      }
-+              }
-+      }
-+#endif
-+
-+      smp_wmb();
-+      rq = task_rq_lock(p, &flags);
-+      old_state = p->state;
-+      if (!(old_state & state))
-+              goto out;
-+
-+      if (p->se.on_rq)
-+              goto out_running;
-+
-+      cpu = task_cpu(p);
-+      orig_cpu = cpu;
-+      this_cpu = smp_processor_id();
-+
-+#ifdef CONFIG_SMP
-+      if (unlikely(task_running(rq, p)))
-+              goto out_activate;
-+
-+      cpu = p->sched_class->select_task_rq(p, sync);
-+      if (cpu != orig_cpu) {
-+              set_task_cpu(p, cpu);
-+              task_rq_unlock(rq, &flags);
-+              /* might preempt at this point */
-+              rq = task_rq_lock(p, &flags);
-+              old_state = p->state;
-+
-+      /* we need to unhold suspended tasks
-+      if (old_state & TASK_ONHOLD) {
-+              vx_unhold_task(p, rq);
-+              old_state = p->state;
-+      } */
-+              if (!(old_state & state))
-+                      goto out;
-+              if (p->se.on_rq)
-+                      goto out_running;
-+
-+              this_cpu = smp_processor_id();
-+              cpu = task_cpu(p);
-+      }
-+
-+#ifdef CONFIG_SCHEDSTATS
-+      schedstat_inc(rq, ttwu_count);
-+      if (cpu == this_cpu)
-+              schedstat_inc(rq, ttwu_local);
-+      else {
-+              struct sched_domain *sd;
-+              for_each_domain(this_cpu, sd) {
-+                      if (cpu_isset(cpu, sd->span)) {
-+                              schedstat_inc(sd, ttwu_wake_remote);
-+                              break;
-+                      }
-+              }
-+      }
-+#endif /* CONFIG_SCHEDSTATS */
-+
-+out_activate:
-+#endif /* CONFIG_SMP */
-+      schedstat_inc(p, se.nr_wakeups);
-+      if (sync)
-+              schedstat_inc(p, se.nr_wakeups_sync);
-+      if (orig_cpu != cpu)
-+              schedstat_inc(p, se.nr_wakeups_migrate);
-+      if (cpu == this_cpu)
-+              schedstat_inc(p, se.nr_wakeups_local);
-+      else
-+              schedstat_inc(p, se.nr_wakeups_remote);
-+      update_rq_clock(rq);
-+      activate_task(rq, p, 1);
-+      success = 1;
-+
-+out_running:
-+      trace_mark(kernel_sched_wakeup,
-+              "pid %d state %ld ## rq %p task %p rq->curr %p",
-+              p->pid, p->state, rq, p, rq->curr);
-+      check_preempt_curr(rq, p);
-+
-+      p->state = TASK_RUNNING;
-+#ifdef CONFIG_SMP
-+      if (p->sched_class->task_wake_up)
-+              p->sched_class->task_wake_up(rq, p);
-+#endif
-+out:
-+      current->se.last_wakeup = current->se.sum_exec_runtime;
-+
-+      task_rq_unlock(rq, &flags);
-+
-+      return success;
-+}
-+
-+int wake_up_process(struct task_struct *p)
-+{
-+      return try_to_wake_up(p, TASK_ALL, 0);
-+}
-+EXPORT_SYMBOL(wake_up_process);
-+
-+int wake_up_state(struct task_struct *p, unsigned int state)
-+{
-+      return try_to_wake_up(p, state, 0);
-+}
-+
-+/*
-+ * Perform scheduler related setup for a newly forked process p.
-+ * p is forked by current.
-+ *
-+ * __sched_fork() is basic setup used by init_idle() too:
-+ */
-+static void __sched_fork(struct task_struct *p)
-+{
-+      p->se.exec_start                = 0;
-+      p->se.sum_exec_runtime          = 0;
-+      p->se.prev_sum_exec_runtime     = 0;
-+      p->se.last_wakeup               = 0;
-+      p->se.avg_overlap               = 0;
-+
-+#ifdef CONFIG_SCHEDSTATS
-+      p->se.wait_start                = 0;
-+      p->se.sum_sleep_runtime         = 0;
-+      p->se.sleep_start               = 0;
-+      p->se.block_start               = 0;
-+      p->se.sleep_max                 = 0;
-+      p->se.block_max                 = 0;
-+      p->se.exec_max                  = 0;
-+      p->se.slice_max                 = 0;
-+      p->se.wait_max                  = 0;
-+#endif
-+
-+      INIT_LIST_HEAD(&p->rt.run_list);
-+      p->se.on_rq = 0;
-+      INIT_LIST_HEAD(&p->se.group_node);
-+
-+#ifdef CONFIG_PREEMPT_NOTIFIERS
-+      INIT_HLIST_HEAD(&p->preempt_notifiers);
-+#endif
-+
-+      /*
-+       * We mark the process as running here, but have not actually
-+       * inserted it onto the runqueue yet. This guarantees that
-+       * nobody will actually run it, and a signal or other external
-+       * event cannot wake it up and insert it on the runqueue either.
-+       */
-+      p->state = TASK_RUNNING;
-+}
-+
-+/*
-+ * fork()/clone()-time setup:
-+ */
-+void sched_fork(struct task_struct *p, int clone_flags)
-+{
-+      int cpu = get_cpu();
-+
-+      __sched_fork(p);
-+
-+#ifdef CONFIG_SMP
-+      cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
-+#endif
-+      set_task_cpu(p, cpu);
-+
-+      /*
-+       * Make sure we do not leak PI boosting priority to the child:
-+       */
-+      p->prio = current->normal_prio;
-+      if (!rt_prio(p->prio))
-+              p->sched_class = &fair_sched_class;
-+
-+#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
-+      if (likely(sched_info_on()))
-+              memset(&p->sched_info, 0, sizeof(p->sched_info));
-+#endif
-+#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
-+      p->oncpu = 0;
-+#endif
-+#ifdef CONFIG_PREEMPT
-+      /* Want to start with kernel preemption disabled. */
-+      task_thread_info(p)->preempt_count = 1;
-+#endif
-+      put_cpu();
-+}
-+
-+/*
-+ * wake_up_new_task - wake up a newly created task for the first time.
-+ *
-+ * This function will do some initial scheduler statistics housekeeping
-+ * that must be done for every newly created context, then puts the task
-+ * on the runqueue and wakes it.
-+ */
-+void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
-+{
-+      unsigned long flags;
-+      struct rq *rq;
-+
-+      rq = task_rq_lock(p, &flags);
-+      BUG_ON(p->state != TASK_RUNNING);
-+      update_rq_clock(rq);
-+
-+      p->prio = effective_prio(p);
-+
-+      if (!p->sched_class->task_new || !current->se.on_rq) {
-+              activate_task(rq, p, 0);
-+      } else {
-+              /*
-+               * Let the scheduling class do new task startup
-+               * management (if any):
-+               */
-+              p->sched_class->task_new(rq, p);
-+              inc_nr_running(rq);
-+      }
-+      trace_mark(kernel_sched_wakeup_new,
-+              "pid %d state %ld ## rq %p task %p rq->curr %p",
-+              p->pid, p->state, rq, p, rq->curr);
-+      check_preempt_curr(rq, p);
-+#ifdef CONFIG_SMP
-+      if (p->sched_class->task_wake_up)
-+              p->sched_class->task_wake_up(rq, p);
-+#endif
-+      task_rq_unlock(rq, &flags);
-+}
-+
-+#ifdef CONFIG_PREEMPT_NOTIFIERS
-+
-+/**
-+ * preempt_notifier_register - tell me when current is being being preempted & rescheduled
-+ * @notifier: notifier struct to register
-+ */
-+void preempt_notifier_register(struct preempt_notifier *notifier)
-+{
-+      hlist_add_head(&notifier->link, &current->preempt_notifiers);
-+}
-+EXPORT_SYMBOL_GPL(preempt_notifier_register);
-+
-+/**
-+ * preempt_notifier_unregister - no longer interested in preemption notifications
-+ * @notifier: notifier struct to unregister
-+ *
-+ * This is safe to call from within a preemption notifier.
-+ */
-+void preempt_notifier_unregister(struct preempt_notifier *notifier)
-+{
-+      hlist_del(&notifier->link);
-+}
-+EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
-+
-+static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-+{
-+      struct preempt_notifier *notifier;
-+      struct hlist_node *node;
-+
-+      hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
-+              notifier->ops->sched_in(notifier, raw_smp_processor_id());
-+}
-+
-+static void
-+fire_sched_out_preempt_notifiers(struct task_struct *curr,
-+                               struct task_struct *next)
-+{
-+      struct preempt_notifier *notifier;
-+      struct hlist_node *node;
-+
-+      hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
-+              notifier->ops->sched_out(notifier, next);
-+}
-+
-+#else /* !CONFIG_PREEMPT_NOTIFIERS */
-+
-+static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-+{
-+}
-+
-+static void
-+fire_sched_out_preempt_notifiers(struct task_struct *curr,
-+                               struct task_struct *next)
-+{
-+}
-+
-+#endif /* CONFIG_PREEMPT_NOTIFIERS */
-+
-+/**
-+ * prepare_task_switch - prepare to switch tasks
-+ * @rq: the runqueue preparing to switch
-+ * @prev: the current task that is being switched out
-+ * @next: the task we are going to switch to.
-+ *
-+ * This is called with the rq lock held and interrupts off. It must
-+ * be paired with a subsequent finish_task_switch after the context
-+ * switch.
-+ *
-+ * prepare_task_switch sets up locking and calls architecture specific
-+ * hooks.
-+ */
-+static inline void
-+prepare_task_switch(struct rq *rq, struct task_struct *prev,
-+                  struct task_struct *next)
-+{
-+      fire_sched_out_preempt_notifiers(prev, next);
-+      prepare_lock_switch(rq, next);
-+      prepare_arch_switch(next);
-+}
-+
-+/**
-+ * finish_task_switch - clean up after a task-switch
-+ * @rq: runqueue associated with task-switch
-+ * @prev: the thread we just switched away from.
-+ *
-+ * finish_task_switch must be called after the context switch, paired
-+ * with a prepare_task_switch call before the context switch.
-+ * finish_task_switch will reconcile locking set up by prepare_task_switch,
-+ * and do any other architecture-specific cleanup actions.
-+ *
-+ * Note that we may have delayed dropping an mm in context_switch(). If
-+ * so, we finish that here outside of the runqueue lock. (Doing it
-+ * with the lock held can cause deadlocks; see schedule() for
-+ * details.)
-+ */
-+static void finish_task_switch(struct rq *rq, struct task_struct *prev)
-+      __releases(rq->lock)
-+{
-+      struct mm_struct *mm = rq->prev_mm;
-+      long prev_state;
-+
-+      rq->prev_mm = NULL;
-+
-+      /*
-+       * A task struct has one reference for the use as "current".
-+       * If a task dies, then it sets TASK_DEAD in tsk->state and calls
-+       * schedule one last time. The schedule call will never return, and
-+       * the scheduled task must drop that reference.
-+       * The test for TASK_DEAD must occur while the runqueue locks are
-+       * still held, otherwise prev could be scheduled on another cpu, die
-+       * there before we look at prev->state, and then the reference would
-+       * be dropped twice.
-+       *              Manfred Spraul <manfred@colorfullife.com>
-+       */
-+      prev_state = prev->state;
-+      finish_arch_switch(prev);
-+      finish_lock_switch(rq, prev);
-+#ifdef CONFIG_SMP
-+      if (current->sched_class->post_schedule)
-+              current->sched_class->post_schedule(rq);
-+#endif
-+
-+      fire_sched_in_preempt_notifiers(current);
-+      if (mm)
-+              mmdrop(mm);
-+      if (unlikely(prev_state == TASK_DEAD)) {
-+              /*
-+               * Remove function-return probe instances associated with this
-+               * task and put them back on the free list.
-+               */
-+              kprobe_flush_task(prev);
-+              put_task_struct(prev);
-+      }
-+}
-+
-+/**
-+ * schedule_tail - first thing a freshly forked thread must call.
-+ * @prev: the thread we just switched away from.
-+ */
-+asmlinkage void schedule_tail(struct task_struct *prev)
-+      __releases(rq->lock)
-+{
-+      struct rq *rq = this_rq();
-+
-+      finish_task_switch(rq, prev);
-+#ifdef __ARCH_WANT_UNLOCKED_CTXSW
-+      /* In this case, finish_task_switch does not reenable preemption */
-+      preempt_enable();
-+#endif
-+      if (current->set_child_tid)
-+              put_user(task_pid_vnr(current), current->set_child_tid);
-+}
-+
-+/*
-+ * context_switch - switch to the new MM and the new
-+ * thread's register state.
-+ */
-+static inline void
-+context_switch(struct rq *rq, struct task_struct *prev,
-+             struct task_struct *next)
-+{
-+      struct mm_struct *mm, *oldmm;
-+
-+      prepare_task_switch(rq, prev, next);
-+      trace_mark(kernel_sched_schedule,
-+              "prev_pid %d next_pid %d prev_state %ld "
-+              "## rq %p prev %p next %p",
-+              prev->pid, next->pid, prev->state,
-+              rq, prev, next);
-+      mm = next->mm;
-+      oldmm = prev->active_mm;
-+      /*
-+       * For paravirt, this is coupled with an exit in switch_to to
-+       * combine the page table reload and the switch backend into
-+       * one hypercall.
-+       */
-+      arch_enter_lazy_cpu_mode();
-+
-+      if (unlikely(!mm)) {
-+              next->active_mm = oldmm;
-+              atomic_inc(&oldmm->mm_count);
-+              enter_lazy_tlb(oldmm, next);
-+      } else
-+              switch_mm(oldmm, mm, next);
-+
-+      if (unlikely(!prev->mm)) {
-+              prev->active_mm = NULL;
-+              rq->prev_mm = oldmm;
-+      }
-+      /*
-+       * Since the runqueue lock will be released by the next
-+       * task (which is an invalid locking op but in the case
-+       * of the scheduler it's an obvious special-case), so we
-+       * do an early lockdep release here:
-+       */
-+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
-+      spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
-+#endif
-+
-+      /* Here we just switch the register state and the stack. */
-+      switch_to(prev, next, prev);
-+
-+      barrier();
-+      /*
-+       * this_rq must be evaluated again because prev may have moved
-+       * CPUs since it called schedule(), thus the 'rq' on its stack
-+       * frame will be invalid.
-+       */
-+      finish_task_switch(this_rq(), prev);
-+}
-+
-+/*
-+ * nr_running, nr_uninterruptible and nr_context_switches:
-+ *
-+ * externally visible scheduler statistics: current number of runnable
-+ * threads, current number of uninterruptible-sleeping threads, total
-+ * number of context switches performed since bootup.
-+ */
-+unsigned long nr_running(void)
-+{
-+      unsigned long i, sum = 0;
-+
-+      for_each_online_cpu(i)
-+              sum += cpu_rq(i)->nr_running;
-+
-+      return sum;
-+}
-+
-+unsigned long nr_uninterruptible(void)
-+{
-+      unsigned long i, sum = 0;
-+
-+      for_each_possible_cpu(i)
-+              sum += cpu_rq(i)->nr_uninterruptible;
-+
-+      /*
-+       * Since we read the counters lockless, it might be slightly
-+       * inaccurate. Do not allow it to go below zero though:
-+       */
-+      if (unlikely((long)sum < 0))
-+              sum = 0;
-+
-+      return sum;
-+}
-+
-+unsigned long long nr_context_switches(void)
-+{
-+      int i;
-+      unsigned long long sum = 0;
-+
-+      for_each_possible_cpu(i)
-+              sum += cpu_rq(i)->nr_switches;
-+
-+      return sum;
-+}
-+
-+unsigned long nr_iowait(void)
-+{
-+      unsigned long i, sum = 0;
-+
-+      for_each_possible_cpu(i)
-+              sum += atomic_read(&cpu_rq(i)->nr_iowait);
-+
-+      return sum;
-+}
-+
-+unsigned long nr_active(void)
-+{
-+      unsigned long i, running = 0, uninterruptible = 0;
-+
-+      for_each_online_cpu(i) {
-+              running += cpu_rq(i)->nr_running;
-+              uninterruptible += cpu_rq(i)->nr_uninterruptible;
-+      }
-+
-+      if (unlikely((long)uninterruptible < 0))
-+              uninterruptible = 0;
-+
-+      return running + uninterruptible;
-+}
-+
-+/*
-+ * Update rq->cpu_load[] statistics. This function is usually called every
-+ * scheduler tick (TICK_NSEC).
-+ */
-+static void update_cpu_load(struct rq *this_rq)
-+{
-+      unsigned long this_load = this_rq->load.weight;
-+      int i, scale;
-+
-+      this_rq->nr_load_updates++;
-+
-+      /* Update our load: */
-+      for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
-+              unsigned long old_load, new_load;
-+
-+              /* scale is effectively 1 << i now, and >> i divides by scale */
-+
-+              old_load = this_rq->cpu_load[i];
-+              new_load = this_load;
-+              /*
-+               * Round up the averaging division if load is increasing. This
-+               * prevents us from getting stuck on 9 if the load is 10, for
-+               * example.
-+               */
-+              if (new_load > old_load)
-+                      new_load += scale-1;
-+              this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
-+      }
-+}
-+
-+#ifdef CONFIG_SMP
-+
-+/*
-+ * double_rq_lock - safely lock two runqueues
-+ *
-+ * Note this does not disable interrupts like task_rq_lock,
-+ * you need to do so manually before calling.
-+ */
-+static void double_rq_lock(struct rq *rq1, struct rq *rq2)
-+      __acquires(rq1->lock)
-+      __acquires(rq2->lock)
-+{
-+      BUG_ON(!irqs_disabled());
-+      if (rq1 == rq2) {
-+              spin_lock(&rq1->lock);
-+              __acquire(rq2->lock);   /* Fake it out ;) */
-+      } else {
-+              if (rq1 < rq2) {
-+                      spin_lock(&rq1->lock);
-+                      spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
-+              } else {
-+                      spin_lock(&rq2->lock);
-+                      spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
-+              }
-+      }
-+      update_rq_clock(rq1);
-+      update_rq_clock(rq2);
-+}
-+
-+/*
-+ * double_rq_unlock - safely unlock two runqueues
-+ *
-+ * Note this does not restore interrupts like task_rq_unlock,
-+ * you need to do so manually after calling.
-+ */
-+static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
-+      __releases(rq1->lock)
-+      __releases(rq2->lock)
-+{
-+      spin_unlock(&rq1->lock);
-+      if (rq1 != rq2)
-+              spin_unlock(&rq2->lock);
-+      else
-+              __release(rq2->lock);
-+}
-+
-+/*
-+ * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
-+ */
-+static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
-+      __releases(this_rq->lock)
-+      __acquires(busiest->lock)
-+      __acquires(this_rq->lock)
-+{
-+      int ret = 0;
-+
-+      if (unlikely(!irqs_disabled())) {
-+              /* printk() doesn't work good under rq->lock */
-+              spin_unlock(&this_rq->lock);
-+              BUG_ON(1);
-+      }
-+      if (unlikely(!spin_trylock(&busiest->lock))) {
-+              if (busiest < this_rq) {
-+                      spin_unlock(&this_rq->lock);
-+                      spin_lock(&busiest->lock);
-+                      spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
-+                      ret = 1;
-+              } else
-+                      spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
-+      }
-+      return ret;
-+}
-+
-+static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
-+      __releases(busiest->lock)
-+{
-+      spin_unlock(&busiest->lock);
-+      lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
-+}
-+
-+/*
-+ * If dest_cpu is allowed for this process, migrate the task to it.
-+ * This is accomplished by forcing the cpu_allowed mask to only
-+ * allow dest_cpu, which will force the cpu onto dest_cpu. Then
-+ * the cpu_allowed mask is restored.
-+ */
-+static void sched_migrate_task(struct task_struct *p, int dest_cpu)
-+{
-+      struct migration_req req;
-+      unsigned long flags;
-+      struct rq *rq;
-+
-+      rq = task_rq_lock(p, &flags);
-+      if (!cpu_isset(dest_cpu, p->cpus_allowed)
-+          || unlikely(!cpu_active(dest_cpu)))
-+              goto out;
-+
-+      /* force the process onto the specified CPU */
-+      if (migrate_task(p, dest_cpu, &req)) {
-+              /* Need to wait for migration thread (might exit: take ref). */
-+              struct task_struct *mt = rq->migration_thread;
-+
-+              get_task_struct(mt);
-+              task_rq_unlock(rq, &flags);
-+              wake_up_process(mt);
-+              put_task_struct(mt);
-+              wait_for_completion(&req.done);
-+
-+              return;
-+      }
-+out:
-+      task_rq_unlock(rq, &flags);
-+}
-+
-+/*
-+ * sched_exec - execve() is a valuable balancing opportunity, because at
-+ * this point the task has the smallest effective memory and cache footprint.
-+ */
-+void sched_exec(void)
-+{
-+      int new_cpu, this_cpu = get_cpu();
-+      new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
-+      put_cpu();
-+      if (new_cpu != this_cpu)
-+              sched_migrate_task(current, new_cpu);
-+}
-+
-+/*
-+ * pull_task - move a task from a remote runqueue to the local runqueue.
-+ * Both runqueues must be locked.
-+ */
-+static void pull_task(struct rq *src_rq, struct task_struct *p,
-+                    struct rq *this_rq, int this_cpu)
-+{
-+      deactivate_task(src_rq, p, 0);
-+      set_task_cpu(p, this_cpu);
-+      activate_task(this_rq, p, 0);
-+      /*
-+       * Note that idle threads have a prio of MAX_PRIO, for this test
-+       * to be always true for them.
-+       */
-+      check_preempt_curr(this_rq, p);
-+}
-+
-+/*
-+ * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
-+ */
-+static
-+int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
-+                   struct sched_domain *sd, enum cpu_idle_type idle,
-+                   int *all_pinned)
-+{
-+      /*
-+       * We do not migrate tasks that are:
-+       * 1) running (obviously), or
-+       * 2) cannot be migrated to this CPU due to cpus_allowed, or
-+       * 3) are cache-hot on their current CPU.
-+       */
-+      if (!cpu_isset(this_cpu, p->cpus_allowed)) {
-+              schedstat_inc(p, se.nr_failed_migrations_affine);
-+              return 0;
-+      }
-+      *all_pinned = 0;
-+
-+      if (task_running(rq, p)) {
-+              schedstat_inc(p, se.nr_failed_migrations_running);
-+              return 0;
-+      }
-+
-+      /*
-+       * Aggressive migration if:
-+       * 1) task is cache cold, or
-+       * 2) too many balance attempts have failed.
-+       */
-+
-+      if (!task_hot(p, rq->clock, sd) ||
-+                      sd->nr_balance_failed > sd->cache_nice_tries) {
-+#ifdef CONFIG_SCHEDSTATS
-+              if (task_hot(p, rq->clock, sd)) {
-+                      schedstat_inc(sd, lb_hot_gained[idle]);
-+                      schedstat_inc(p, se.nr_forced_migrations);
-+              }
-+#endif
-+              return 1;
-+      }
-+
-+      if (task_hot(p, rq->clock, sd)) {
-+              schedstat_inc(p, se.nr_failed_migrations_hot);
-+              return 0;
-+      }
-+      return 1;
-+}
-+
-+static unsigned long
-+balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
-+            unsigned long max_load_move, struct sched_domain *sd,
-+            enum cpu_idle_type idle, int *all_pinned,
-+            int *this_best_prio, struct rq_iterator *iterator)
-+{
-+      int loops = 0, pulled = 0, pinned = 0;
-+      struct task_struct *p;
-+      long rem_load_move = max_load_move;
-+
-+      if (max_load_move == 0)
-+              goto out;
-+
-+      pinned = 1;
-+
-+      /*
-+       * Start the load-balancing iterator:
-+       */
-+      p = iterator->start(iterator->arg);
-+next:
-+      if (!p || loops++ > sysctl_sched_nr_migrate)
-+              goto out;
-+
-+      if ((p->se.load.weight >> 1) > rem_load_move ||
-+          !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
-+              p = iterator->next(iterator->arg);
-+              goto next;
-+      }
-+
-+      pull_task(busiest, p, this_rq, this_cpu);
-+      pulled++;
-+      rem_load_move -= p->se.load.weight;
-+
-+      /*
-+       * We only want to steal up to the prescribed amount of weighted load.
-+       */
-+      if (rem_load_move > 0) {
-+              if (p->prio < *this_best_prio)
-+                      *this_best_prio = p->prio;
-+              p = iterator->next(iterator->arg);
-+              goto next;
-+      }
-+out:
-+      /*
-+       * Right now, this is one of only two places pull_task() is called,
-+       * so we can safely collect pull_task() stats here rather than
-+       * inside pull_task().
-+       */
-+      schedstat_add(sd, lb_gained[idle], pulled);
-+
-+      if (all_pinned)
-+              *all_pinned = pinned;
-+
-+      return max_load_move - rem_load_move;
-+}
-+
-+/*
-+ * move_tasks tries to move up to max_load_move weighted load from busiest to
-+ * this_rq, as part of a balancing operation within domain "sd".
-+ * Returns 1 if successful and 0 otherwise.
-+ *
-+ * Called with both runqueues locked.
-+ */
-+static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
-+                    unsigned long max_load_move,
-+                    struct sched_domain *sd, enum cpu_idle_type idle,
-+                    int *all_pinned)
-+{
-+      const struct sched_class *class = sched_class_highest;
-+      unsigned long total_load_moved = 0;
-+      int this_best_prio = this_rq->curr->prio;
-+
-+      do {
-+              total_load_moved +=
-+                      class->load_balance(this_rq, this_cpu, busiest,
-+                              max_load_move - total_load_moved,
-+                              sd, idle, all_pinned, &this_best_prio);
-+              class = class->next;
-+
-+              if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
-+                      break;
-+
-+      } while (class && max_load_move > total_load_moved);
-+
-+      return total_load_moved > 0;
-+}
-+
-+static int
-+iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
-+                 struct sched_domain *sd, enum cpu_idle_type idle,
-+                 struct rq_iterator *iterator)
-+{
-+      struct task_struct *p = iterator->start(iterator->arg);
-+      int pinned = 0;
-+
-+      while (p) {
-+              if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
-+                      pull_task(busiest, p, this_rq, this_cpu);
-+                      /*
-+                       * Right now, this is only the second place pull_task()
-+                       * is called, so we can safely collect pull_task()
-+                       * stats here rather than inside pull_task().
-+                       */
-+                      schedstat_inc(sd, lb_gained[idle]);
-+
-+                      return 1;
-+              }
-+              p = iterator->next(iterator->arg);
-+      }
-+
-+      return 0;
-+}
-+
-+/*
-+ * move_one_task tries to move exactly one task from busiest to this_rq, as
-+ * part of active balancing operations within "domain".
-+ * Returns 1 if successful and 0 otherwise.
-+ *
-+ * Called with both runqueues locked.
-+ */
-+static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
-+                       struct sched_domain *sd, enum cpu_idle_type idle)
-+{
-+      const struct sched_class *class;
-+
-+      for (class = sched_class_highest; class; class = class->next)
-+              if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
-+                      return 1;
-+
-+      return 0;
-+}
-+
-+/*
-+ * find_busiest_group finds and returns the busiest CPU group within the
-+ * domain. It calculates and returns the amount of weighted load which
-+ * should be moved to restore balance via the imbalance parameter.
-+ */
-+static struct sched_group *
-+find_busiest_group(struct sched_domain *sd, int this_cpu,
-+                 unsigned long *imbalance, enum cpu_idle_type idle,
-+                 int *sd_idle, const cpumask_t *cpus, int *balance)
-+{
-+      struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
-+      unsigned long max_load, avg_load, total_load, this_load, total_pwr;
-+      unsigned long max_pull;
-+      unsigned long busiest_load_per_task, busiest_nr_running;
-+      unsigned long this_load_per_task, this_nr_running;
-+      int load_idx, group_imb = 0;
-+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-+      int power_savings_balance = 1;
-+      unsigned long leader_nr_running = 0, min_load_per_task = 0;
-+      unsigned long min_nr_running = ULONG_MAX;
-+      struct sched_group *group_min = NULL, *group_leader = NULL;
-+#endif
-+
-+      max_load = this_load = total_load = total_pwr = 0;
-+      busiest_load_per_task = busiest_nr_running = 0;
-+      this_load_per_task = this_nr_running = 0;
-+
-+      if (idle == CPU_NOT_IDLE)
-+              load_idx = sd->busy_idx;
-+      else if (idle == CPU_NEWLY_IDLE)
-+              load_idx = sd->newidle_idx;
-+      else
-+              load_idx = sd->idle_idx;
-+
-+      do {
-+              unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
-+              int local_group;
-+              int i;
-+              int __group_imb = 0;
-+              unsigned int balance_cpu = -1, first_idle_cpu = 0;
-+              unsigned long sum_nr_running, sum_weighted_load;
-+              unsigned long sum_avg_load_per_task;
-+              unsigned long avg_load_per_task;
-+
-+              local_group = cpu_isset(this_cpu, group->cpumask);
-+
-+              if (local_group)
-+                      balance_cpu = first_cpu(group->cpumask);
-+
-+              /* Tally up the load of all CPUs in the group */
-+              sum_weighted_load = sum_nr_running = avg_load = 0;
-+              sum_avg_load_per_task = avg_load_per_task = 0;
-+
-+              max_cpu_load = 0;
-+              min_cpu_load = ~0UL;
-+
-+              for_each_cpu_mask_nr(i, group->cpumask) {
-+                      struct rq *rq;
-+
-+                      if (!cpu_isset(i, *cpus))
-+                              continue;
-+
-+                      rq = cpu_rq(i);
-+
-+                      if (*sd_idle && rq->nr_running)
-+                              *sd_idle = 0;
-+
-+                      /* Bias balancing toward cpus of our domain */
-+                      if (local_group) {
-+                              if (idle_cpu(i) && !first_idle_cpu) {
-+                                      first_idle_cpu = 1;
-+                                      balance_cpu = i;
-+                              }
-+
-+                              load = target_load(i, load_idx);
-+                      } else {
-+                              load = source_load(i, load_idx);
-+                              if (load > max_cpu_load)
-+                                      max_cpu_load = load;
-+                              if (min_cpu_load > load)
-+                                      min_cpu_load = load;
-+                      }
-+
-+                      avg_load += load;
-+                      sum_nr_running += rq->nr_running;
-+                      sum_weighted_load += weighted_cpuload(i);
-+
-+                      sum_avg_load_per_task += cpu_avg_load_per_task(i);
-+              }
-+
-+              /*
-+               * First idle cpu or the first cpu(busiest) in this sched group
-+               * is eligible for doing load balancing at this and above
-+               * domains. In the newly idle case, we will allow all the cpu's
-+               * to do the newly idle load balance.
-+               */
-+              if (idle != CPU_NEWLY_IDLE && local_group &&
-+                  balance_cpu != this_cpu && balance) {
-+                      *balance = 0;
-+                      goto ret;
-+              }
-+
-+              total_load += avg_load;
-+              total_pwr += group->__cpu_power;
-+
-+              /* Adjust by relative CPU power of the group */
-+              avg_load = sg_div_cpu_power(group,
-+                              avg_load * SCHED_LOAD_SCALE);
-+
-+
-+              /*
-+               * Consider the group unbalanced when the imbalance is larger
-+               * than the average weight of two tasks.
-+               *
-+               * APZ: with cgroup the avg task weight can vary wildly and
-+               *      might not be a suitable number - should we keep a
-+               *      normalized nr_running number somewhere that negates
-+               *      the hierarchy?
-+               */
-+              avg_load_per_task = sg_div_cpu_power(group,
-+                              sum_avg_load_per_task * SCHED_LOAD_SCALE);
-+
-+              if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
-+                      __group_imb = 1;
-+
-+              group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
-+
-+              if (local_group) {
-+                      this_load = avg_load;
-+                      this = group;
-+                      this_nr_running = sum_nr_running;
-+                      this_load_per_task = sum_weighted_load;
-+              } else if (avg_load > max_load &&
-+                         (sum_nr_running > group_capacity || __group_imb)) {
-+                      max_load = avg_load;
-+                      busiest = group;
-+                      busiest_nr_running = sum_nr_running;
-+                      busiest_load_per_task = sum_weighted_load;
-+                      group_imb = __group_imb;
-+              }
-+
-+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-+              /*
-+               * Busy processors will not participate in power savings
-+               * balance.
-+               */
-+              if (idle == CPU_NOT_IDLE ||
-+                              !(sd->flags & SD_POWERSAVINGS_BALANCE))
-+                      goto group_next;
-+
-+              /*
-+               * If the local group is idle or completely loaded
-+               * no need to do power savings balance at this domain
-+               */
-+              if (local_group && (this_nr_running >= group_capacity ||
-+                                  !this_nr_running))
-+                      power_savings_balance = 0;
-+
-+              /*
-+               * If a group is already running at full capacity or idle,
-+               * don't include that group in power savings calculations
-+               */
-+              if (!power_savings_balance || sum_nr_running >= group_capacity
-+                  || !sum_nr_running)
-+                      goto group_next;
-+
-+              /*
-+               * Calculate the group which has the least non-idle load.
-+               * This is the group from where we need to pick up the load
-+               * for saving power
-+               */
-+              if ((sum_nr_running < min_nr_running) ||
-+                  (sum_nr_running == min_nr_running &&
-+                   first_cpu(group->cpumask) <
-+                   first_cpu(group_min->cpumask))) {
-+                      group_min = group;
-+                      min_nr_running = sum_nr_running;
-+                      min_load_per_task = sum_weighted_load /
-+                                              sum_nr_running;
-+              }
-+
-+              /*
-+               * Calculate the group which is almost near its
-+               * capacity but still has some space to pick up some load
-+               * from other group and save more power
-+               */
-+              if (sum_nr_running <= group_capacity - 1) {
-+                      if (sum_nr_running > leader_nr_running ||
-+                          (sum_nr_running == leader_nr_running &&
-+                           first_cpu(group->cpumask) >
-+                            first_cpu(group_leader->cpumask))) {
-+                              group_leader = group;
-+                              leader_nr_running = sum_nr_running;
-+                      }
-+              }
-+group_next:
-+#endif
-+              group = group->next;
-+      } while (group != sd->groups);
-+
-+      if (!busiest || this_load >= max_load || busiest_nr_running == 0)
-+              goto out_balanced;
-+
-+      avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
-+
-+      if (this_load >= avg_load ||
-+                      100*max_load <= sd->imbalance_pct*this_load)
-+              goto out_balanced;
-+
-+      busiest_load_per_task /= busiest_nr_running;
-+      if (group_imb)
-+              busiest_load_per_task = min(busiest_load_per_task, avg_load);
-+
-+      /*
-+       * We're trying to get all the cpus to the average_load, so we don't
-+       * want to push ourselves above the average load, nor do we wish to
-+       * reduce the max loaded cpu below the average load, as either of these
-+       * actions would just result in more rebalancing later, and ping-pong
-+       * tasks around. Thus we look for the minimum possible imbalance.
-+       * Negative imbalances (*we* are more loaded than anyone else) will
-+       * be counted as no imbalance for these purposes -- we can't fix that
-+       * by pulling tasks to us. Be careful of negative numbers as they'll
-+       * appear as very large values with unsigned longs.
-+       */
-+      if (max_load <= busiest_load_per_task)
-+              goto out_balanced;
-+
-+      /*
-+       * In the presence of smp nice balancing, certain scenarios can have
-+       * max load less than avg load(as we skip the groups at or below
-+       * its cpu_power, while calculating max_load..)
-+       */
-+      if (max_load < avg_load) {
-+              *imbalance = 0;
-+              goto small_imbalance;
-+      }
-+
-+      /* Don't want to pull so many tasks that a group would go idle */
-+      max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
-+
-+      /* How much load to actually move to equalise the imbalance */
-+      *imbalance = min(max_pull * busiest->__cpu_power,
-+                              (avg_load - this_load) * this->__cpu_power)
-+                      / SCHED_LOAD_SCALE;
-+
-+      /*
-+       * if *imbalance is less than the average load per runnable task
-+       * there is no gaurantee that any tasks will be moved so we'll have
-+       * a think about bumping its value to force at least one task to be
-+       * moved
-+       */
-+      if (*imbalance < busiest_load_per_task) {
-+              unsigned long tmp, pwr_now, pwr_move;
-+              unsigned int imbn;
-+
-+small_imbalance:
-+              pwr_move = pwr_now = 0;
-+              imbn = 2;
-+              if (this_nr_running) {
-+                      this_load_per_task /= this_nr_running;
-+                      if (busiest_load_per_task > this_load_per_task)
-+                              imbn = 1;
-+              } else
-+                      this_load_per_task = cpu_avg_load_per_task(this_cpu);
-+
-+              if (max_load - this_load + 2*busiest_load_per_task >=
-+                                      busiest_load_per_task * imbn) {
-+                      *imbalance = busiest_load_per_task;
-+                      return busiest;
-+              }
-+
-+              /*
-+               * OK, we don't have enough imbalance to justify moving tasks,
-+               * however we may be able to increase total CPU power used by
-+               * moving them.
-+               */
-+
-+              pwr_now += busiest->__cpu_power *
-+                              min(busiest_load_per_task, max_load);
-+              pwr_now += this->__cpu_power *
-+                              min(this_load_per_task, this_load);
-+              pwr_now /= SCHED_LOAD_SCALE;
-+
-+              /* Amount of load we'd subtract */
-+              tmp = sg_div_cpu_power(busiest,
-+                              busiest_load_per_task * SCHED_LOAD_SCALE);
-+              if (max_load > tmp)
-+                      pwr_move += busiest->__cpu_power *
-+                              min(busiest_load_per_task, max_load - tmp);
-+
-+              /* Amount of load we'd add */
-+              if (max_load * busiest->__cpu_power <
-+                              busiest_load_per_task * SCHED_LOAD_SCALE)
-+                      tmp = sg_div_cpu_power(this,
-+                                      max_load * busiest->__cpu_power);
-+              else
-+                      tmp = sg_div_cpu_power(this,
-+                              busiest_load_per_task * SCHED_LOAD_SCALE);
-+              pwr_move += this->__cpu_power *
-+                              min(this_load_per_task, this_load + tmp);
-+              pwr_move /= SCHED_LOAD_SCALE;
-+
-+              /* Move if we gain throughput */
-+              if (pwr_move > pwr_now)
-+                      *imbalance = busiest_load_per_task;
-+      }
-+
-+      return busiest;
-+
-+out_balanced:
-+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-+      if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
-+              goto ret;
-+
-+      if (this == group_leader && group_leader != group_min) {
-+              *imbalance = min_load_per_task;
-+              return group_min;
-+      }
-+#endif
-+ret:
-+      *imbalance = 0;
-+      return NULL;
-+}
-+
-+/*
-+ * find_busiest_queue - find the busiest runqueue among the cpus in group.
-+ */
-+static struct rq *
-+find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
-+                 unsigned long imbalance, const cpumask_t *cpus)
-+{
-+      struct rq *busiest = NULL, *rq;
-+      unsigned long max_load = 0;
-+      int i;
-+
-+      for_each_cpu_mask_nr(i, group->cpumask) {
-+              unsigned long wl;
-+
-+              if (!cpu_isset(i, *cpus))
-+                      continue;
-+
-+              rq = cpu_rq(i);
-+              wl = weighted_cpuload(i);
-+
-+              if (rq->nr_running == 1 && wl > imbalance)
-+                      continue;
-+
-+              if (wl > max_load) {
-+                      max_load = wl;
-+                      busiest = rq;
-+              }
-+      }
-+
-+      return busiest;
-+}
-+
-+/*
-+ * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
-+ * so long as it is large enough.
-+ */
-+#define MAX_PINNED_INTERVAL   512
-+
-+/*
-+ * Check this_cpu to ensure it is balanced within domain. Attempt to move
-+ * tasks if there is an imbalance.
-+ */
-+static int load_balance(int this_cpu, struct rq *this_rq,
-+                      struct sched_domain *sd, enum cpu_idle_type idle,
-+                      int *balance, cpumask_t *cpus)
-+{
-+      int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
-+      struct sched_group *group;
-+      unsigned long imbalance;
-+      struct rq *busiest;
-+      unsigned long flags;
-+
-+      cpus_setall(*cpus);
-+
-+      /*
-+       * When power savings policy is enabled for the parent domain, idle
-+       * sibling can pick up load irrespective of busy siblings. In this case,
-+       * let the state of idle sibling percolate up as CPU_IDLE, instead of
-+       * portraying it as CPU_NOT_IDLE.
-+       */
-+      if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
-+          !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-+              sd_idle = 1;
-+
-+      schedstat_inc(sd, lb_count[idle]);
-+
-+redo:
-+      update_shares(sd);
-+      group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
-+                                 cpus, balance);
-+
-+      if (*balance == 0)
-+              goto out_balanced;
-+
-+      if (!group) {
-+              schedstat_inc(sd, lb_nobusyg[idle]);
-+              goto out_balanced;
-+      }
-+
-+      busiest = find_busiest_queue(group, idle, imbalance, cpus);
-+      if (!busiest) {
-+              schedstat_inc(sd, lb_nobusyq[idle]);
-+              goto out_balanced;
-+      }
-+
-+      BUG_ON(busiest == this_rq);
-+
-+      schedstat_add(sd, lb_imbalance[idle], imbalance);
-+
-+      ld_moved = 0;
-+      if (busiest->nr_running > 1) {
-+              /*
-+               * Attempt to move tasks. If find_busiest_group has found
-+               * an imbalance but busiest->nr_running <= 1, the group is
-+               * still unbalanced. ld_moved simply stays zero, so it is
-+               * correctly treated as an imbalance.
-+               */
-+              local_irq_save(flags);
-+              double_rq_lock(this_rq, busiest);
-+              ld_moved = move_tasks(this_rq, this_cpu, busiest,
-+                                    imbalance, sd, idle, &all_pinned);
-+              double_rq_unlock(this_rq, busiest);
-+              local_irq_restore(flags);
-+
-+              /*
-+               * some other cpu did the load balance for us.
-+               */
-+              if (ld_moved && this_cpu != smp_processor_id())
-+                      resched_cpu(this_cpu);
-+
-+              /* All tasks on this runqueue were pinned by CPU affinity */
-+              if (unlikely(all_pinned)) {
-+                      cpu_clear(cpu_of(busiest), *cpus);
-+                      if (!cpus_empty(*cpus))
-+                              goto redo;
-+                      goto out_balanced;
-+              }
-+      }
-+
-+      if (!ld_moved) {
-+              schedstat_inc(sd, lb_failed[idle]);
-+              sd->nr_balance_failed++;
-+
-+              if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
-+
-+                      spin_lock_irqsave(&busiest->lock, flags);
-+
-+                      /* don't kick the migration_thread, if the curr
-+                       * task on busiest cpu can't be moved to this_cpu
-+                       */
-+                      if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
-+                              spin_unlock_irqrestore(&busiest->lock, flags);
-+                              all_pinned = 1;
-+                              goto out_one_pinned;
-+                      }
-+
-+                      if (!busiest->active_balance) {
-+                              busiest->active_balance = 1;
-+                              busiest->push_cpu = this_cpu;
-+                              active_balance = 1;
-+                      }
-+                      spin_unlock_irqrestore(&busiest->lock, flags);
-+                      if (active_balance)
-+                              wake_up_process(busiest->migration_thread);
-+
-+                      /*
-+                       * We've kicked active balancing, reset the failure
-+                       * counter.
-+                       */
-+                      sd->nr_balance_failed = sd->cache_nice_tries+1;
-+              }
-+      } else
-+              sd->nr_balance_failed = 0;
-+
-+      if (likely(!active_balance)) {
-+              /* We were unbalanced, so reset the balancing interval */
-+              sd->balance_interval = sd->min_interval;
-+      } else {
-+              /*
-+               * If we've begun active balancing, start to back off. This
-+               * case may not be covered by the all_pinned logic if there
-+               * is only 1 task on the busy runqueue (because we don't call
-+               * move_tasks).
-+               */
-+              if (sd->balance_interval < sd->max_interval)
-+                      sd->balance_interval *= 2;
-+      }
-+
-+      if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-+          !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-+              ld_moved = -1;
-+
-+      goto out;
-+
-+out_balanced:
-+      schedstat_inc(sd, lb_balanced[idle]);
-+
-+      sd->nr_balance_failed = 0;
-+
-+out_one_pinned:
-+      /* tune up the balancing interval */
-+      if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
-+                      (sd->balance_interval < sd->max_interval))
-+              sd->balance_interval *= 2;
-+
-+      if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-+          !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-+              ld_moved = -1;
-+      else
-+              ld_moved = 0;
-+out:
-+      if (ld_moved)
-+              update_shares(sd);
-+      return ld_moved;
-+}
-+
-+/*
-+ * Check this_cpu to ensure it is balanced within domain. Attempt to move
-+ * tasks if there is an imbalance.
-+ *
-+ * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
-+ * this_rq is locked.
-+ */
-+static int
-+load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
-+                      cpumask_t *cpus)
-+{
-+      struct sched_group *group;
-+      struct rq *busiest = NULL;
-+      unsigned long imbalance;
-+      int ld_moved = 0;
-+      int sd_idle = 0;
-+      int all_pinned = 0;
-+
-+      cpus_setall(*cpus);
-+
-+      /*
-+       * When power savings policy is enabled for the parent domain, idle
-+       * sibling can pick up load irrespective of busy siblings. In this case,
-+       * let the state of idle sibling percolate up as IDLE, instead of
-+       * portraying it as CPU_NOT_IDLE.
-+       */
-+      if (sd->flags & SD_SHARE_CPUPOWER &&
-+          !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-+              sd_idle = 1;
-+
-+      schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
-+redo:
-+      update_shares_locked(this_rq, sd);
-+      group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
-+                                 &sd_idle, cpus, NULL);
-+      if (!group) {
-+              schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
-+              goto out_balanced;
-+      }
-+
-+      busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
-+      if (!busiest) {
-+              schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
-+              goto out_balanced;
-+      }
-+
-+      BUG_ON(busiest == this_rq);
-+
-+      schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
-+
-+      ld_moved = 0;
-+      if (busiest->nr_running > 1) {
-+              /* Attempt to move tasks */
-+              double_lock_balance(this_rq, busiest);
-+              /* this_rq->clock is already updated */
-+              update_rq_clock(busiest);
-+              ld_moved = move_tasks(this_rq, this_cpu, busiest,
-+                                      imbalance, sd, CPU_NEWLY_IDLE,
-+                                      &all_pinned);
-+              double_unlock_balance(this_rq, busiest);
-+
-+              if (unlikely(all_pinned)) {
-+                      cpu_clear(cpu_of(busiest), *cpus);
-+                      if (!cpus_empty(*cpus))
-+                              goto redo;
-+              }
-+      }
-+
-+      if (!ld_moved) {
-+              schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
-+              if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-+                  !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-+                      return -1;
-+      } else
-+              sd->nr_balance_failed = 0;
-+
-+      update_shares_locked(this_rq, sd);
-+      return ld_moved;
-+
-+out_balanced:
-+      schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
-+      if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-+          !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-+              return -1;
-+      sd->nr_balance_failed = 0;
-+
-+      return 0;
-+}
-+
-+/*
-+ * idle_balance is called by schedule() if this_cpu is about to become
-+ * idle. Attempts to pull tasks from other CPUs.
-+ */
-+static void idle_balance(int this_cpu, struct rq *this_rq)
-+{
-+      struct sched_domain *sd;
-+      int pulled_task = -1;
-+      unsigned long next_balance = jiffies + HZ;
-+      cpumask_t tmpmask;
-+
-+      for_each_domain(this_cpu, sd) {
-+              unsigned long interval;
-+
-+              if (!(sd->flags & SD_LOAD_BALANCE))
-+                      continue;
-+
-+              if (sd->flags & SD_BALANCE_NEWIDLE)
-+                      /* If we've pulled tasks over stop searching: */
-+                      pulled_task = load_balance_newidle(this_cpu, this_rq,
-+                                                         sd, &tmpmask);
-+
-+              interval = msecs_to_jiffies(sd->balance_interval);
-+              if (time_after(next_balance, sd->last_balance + interval))
-+                      next_balance = sd->last_balance + interval;
-+              if (pulled_task)
-+                      break;
-+      }
-+      if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
-+              /*
-+               * We are going idle. next_balance may be set based on
-+               * a busy processor. So reset next_balance.
-+               */
-+              this_rq->next_balance = next_balance;
-+      }
-+}
-+
-+/*
-+ * active_load_balance is run by migration threads. It pushes running tasks
-+ * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
-+ * running on each physical CPU where possible, and avoids physical /
-+ * logical imbalances.
-+ *
-+ * Called with busiest_rq locked.
-+ */
-+static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
-+{
-+      int target_cpu = busiest_rq->push_cpu;
-+      struct sched_domain *sd;
-+      struct rq *target_rq;
-+
-+      /* Is there any task to move? */
-+      if (busiest_rq->nr_running <= 1)
-+              return;
-+
-+      target_rq = cpu_rq(target_cpu);
-+
-+      /*
-+       * This condition is "impossible", if it occurs
-+       * we need to fix it. Originally reported by
-+       * Bjorn Helgaas on a 128-cpu setup.
-+       */
-+      BUG_ON(busiest_rq == target_rq);
-+
-+      /* move a task from busiest_rq to target_rq */
-+      double_lock_balance(busiest_rq, target_rq);
-+      update_rq_clock(busiest_rq);
-+      update_rq_clock(target_rq);
-+
-+      /* Search for an sd spanning us and the target CPU. */
-+      for_each_domain(target_cpu, sd) {
-+              if ((sd->flags & SD_LOAD_BALANCE) &&
-+                  cpu_isset(busiest_cpu, sd->span))
-+                              break;
-+      }
-+
-+      if (likely(sd)) {
-+              schedstat_inc(sd, alb_count);
-+
-+              if (move_one_task(target_rq, target_cpu, busiest_rq,
-+                                sd, CPU_IDLE))
-+                      schedstat_inc(sd, alb_pushed);
-+              else
-+                      schedstat_inc(sd, alb_failed);
-+      }
-+      double_unlock_balance(busiest_rq, target_rq);
-+}
-+
-+#ifdef CONFIG_NO_HZ
-+static struct {
-+      atomic_t load_balancer;
-+      cpumask_t cpu_mask;
-+} nohz ____cacheline_aligned = {
-+      .load_balancer = ATOMIC_INIT(-1),
-+      .cpu_mask = CPU_MASK_NONE,
-+};
-+
-+/*
-+ * This routine will try to nominate the ilb (idle load balancing)
-+ * owner among the cpus whose ticks are stopped. ilb owner will do the idle
-+ * load balancing on behalf of all those cpus. If all the cpus in the system
-+ * go into this tickless mode, then there will be no ilb owner (as there is
-+ * no need for one) and all the cpus will sleep till the next wakeup event
-+ * arrives...
-+ *
-+ * For the ilb owner, tick is not stopped. And this tick will be used
-+ * for idle load balancing. ilb owner will still be part of
-+ * nohz.cpu_mask..
-+ *
-+ * While stopping the tick, this cpu will become the ilb owner if there
-+ * is no other owner. And will be the owner till that cpu becomes busy
-+ * or if all cpus in the system stop their ticks at which point
-+ * there is no need for ilb owner.
-+ *
-+ * When the ilb owner becomes busy, it nominates another owner, during the
-+ * next busy scheduler_tick()
-+ */
-+int select_nohz_load_balancer(int stop_tick)
-+{
-+      int cpu = smp_processor_id();
-+
-+      if (stop_tick) {
-+              cpu_set(cpu, nohz.cpu_mask);
-+              cpu_rq(cpu)->in_nohz_recently = 1;
-+
-+              /*
-+               * If we are going offline and still the leader, give up!
-+               */
-+              if (!cpu_active(cpu) &&
-+                  atomic_read(&nohz.load_balancer) == cpu) {
-+                      if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
-+                              BUG();
-+                      return 0;
-+              }
-+
-+              /* time for ilb owner also to sleep */
-+              if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
-+                      if (atomic_read(&nohz.load_balancer) == cpu)
-+                              atomic_set(&nohz.load_balancer, -1);
-+                      return 0;
-+              }
-+
-+              if (atomic_read(&nohz.load_balancer) == -1) {
-+                      /* make me the ilb owner */
-+                      if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
-+                              return 1;
-+              } else if (atomic_read(&nohz.load_balancer) == cpu)
-+                      return 1;
-+      } else {
-+              if (!cpu_isset(cpu, nohz.cpu_mask))
-+                      return 0;
-+
-+              cpu_clear(cpu, nohz.cpu_mask);
-+
-+              if (atomic_read(&nohz.load_balancer) == cpu)
-+                      if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
-+                              BUG();
-+      }
-+      return 0;
-+}
-+#endif
-+
-+static DEFINE_SPINLOCK(balancing);
-+
-+/*
-+ * It checks each scheduling domain to see if it is due to be balanced,
-+ * and initiates a balancing operation if so.
-+ *
-+ * Balancing parameters are set up in arch_init_sched_domains.
-+ */
-+static void rebalance_domains(int cpu, enum cpu_idle_type idle)
-+{
-+      int balance = 1;
-+      struct rq *rq = cpu_rq(cpu);
-+      unsigned long interval;
-+      struct sched_domain *sd;
-+      /* Earliest time when we have to do rebalance again */
-+      unsigned long next_balance = jiffies + 60*HZ;
-+      int update_next_balance = 0;
-+      int need_serialize;
-+      cpumask_t tmp;
-+
-+      for_each_domain(cpu, sd) {
-+              if (!(sd->flags & SD_LOAD_BALANCE))
-+                      continue;
-+
-+              interval = sd->balance_interval;
-+              if (idle != CPU_IDLE)
-+                      interval *= sd->busy_factor;
-+
-+              /* scale ms to jiffies */
-+              interval = msecs_to_jiffies(interval);
-+              if (unlikely(!interval))
-+                      interval = 1;
-+              if (interval > HZ*NR_CPUS/10)
-+                      interval = HZ*NR_CPUS/10;
-+
-+              need_serialize = sd->flags & SD_SERIALIZE;
-+
-+              if (need_serialize) {
-+                      if (!spin_trylock(&balancing))
-+                              goto out;
-+              }
-+
-+              if (time_after_eq(jiffies, sd->last_balance + interval)) {
-+                      if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
-+                              /*
-+                               * We've pulled tasks over so either we're no
-+                               * longer idle, or one of our SMT siblings is
-+                               * not idle.
-+                               */
-+                              idle = CPU_NOT_IDLE;
-+                      }
-+                      sd->last_balance = jiffies;
-+              }
-+              if (need_serialize)
-+                      spin_unlock(&balancing);
-+out:
-+              if (time_after(next_balance, sd->last_balance + interval)) {
-+                      next_balance = sd->last_balance + interval;
-+                      update_next_balance = 1;
-+              }
-+
-+              /*
-+               * Stop the load balance at this level. There is another
-+               * CPU in our sched group which is doing load balancing more
-+               * actively.
-+               */
-+              if (!balance)
-+                      break;
-+      }
-+
-+      /*
-+       * next_balance will be updated only when there is a need.
-+       * When the cpu is attached to null domain for ex, it will not be
-+       * updated.
-+       */
-+      if (likely(update_next_balance))
-+              rq->next_balance = next_balance;
-+}
-+
-+/*
-+ * run_rebalance_domains is triggered when needed from the scheduler tick.
-+ * In CONFIG_NO_HZ case, the idle load balance owner will do the
-+ * rebalancing for all the cpus for whom scheduler ticks are stopped.
-+ */
-+static void run_rebalance_domains(struct softirq_action *h)
-+{
-+      int this_cpu = smp_processor_id();
-+      struct rq *this_rq = cpu_rq(this_cpu);
-+      enum cpu_idle_type idle = this_rq->idle_at_tick ?
-+                                              CPU_IDLE : CPU_NOT_IDLE;
-+
-+      rebalance_domains(this_cpu, idle);
-+
-+#ifdef CONFIG_NO_HZ
-+      /*
-+       * If this cpu is the owner for idle load balancing, then do the
-+       * balancing on behalf of the other idle cpus whose ticks are
-+       * stopped.
-+       */
-+      if (this_rq->idle_at_tick &&
-+          atomic_read(&nohz.load_balancer) == this_cpu) {
-+              cpumask_t cpus = nohz.cpu_mask;
-+              struct rq *rq;
-+              int balance_cpu;
-+
-+              cpu_clear(this_cpu, cpus);
-+              for_each_cpu_mask_nr(balance_cpu, cpus) {
-+                      /*
-+                       * If this cpu gets work to do, stop the load balancing
-+                       * work being done for other cpus. Next load
-+                       * balancing owner will pick it up.
-+                       */
-+                      if (need_resched())
-+                              break;
-+
-+                      rebalance_domains(balance_cpu, CPU_IDLE);
-+
-+                      rq = cpu_rq(balance_cpu);
-+                      if (time_after(this_rq->next_balance, rq->next_balance))
-+                              this_rq->next_balance = rq->next_balance;
-+              }
-+      }
-+#endif
-+}
-+
-+/*
-+ * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
-+ *
-+ * In case of CONFIG_NO_HZ, this is the place where we nominate a new
-+ * idle load balancing owner or decide to stop the periodic load balancing,
-+ * if the whole system is idle.
-+ */
-+static inline void trigger_load_balance(struct rq *rq, int cpu)
-+{
-+#ifdef CONFIG_NO_HZ
-+      /*
-+       * If we were in the nohz mode recently and busy at the current
-+       * scheduler tick, then check if we need to nominate new idle
-+       * load balancer.
-+       */
-+      if (rq->in_nohz_recently && !rq->idle_at_tick) {
-+              rq->in_nohz_recently = 0;
-+
-+              if (atomic_read(&nohz.load_balancer) == cpu) {
-+                      cpu_clear(cpu, nohz.cpu_mask);
-+                      atomic_set(&nohz.load_balancer, -1);
-+              }
-+
-+              if (atomic_read(&nohz.load_balancer) == -1) {
-+                      /*
-+                       * simple selection for now: Nominate the
-+                       * first cpu in the nohz list to be the next
-+                       * ilb owner.
-+                       *
-+                       * TBD: Traverse the sched domains and nominate
-+                       * the nearest cpu in the nohz.cpu_mask.
-+                       */
-+                      int ilb = first_cpu(nohz.cpu_mask);
-+
-+                      if (ilb < nr_cpu_ids)
-+                              resched_cpu(ilb);
-+              }
-+      }
-+
-+      /*
-+       * If this cpu is idle and doing idle load balancing for all the
-+       * cpus with ticks stopped, is it time for that to stop?
-+       */
-+      if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
-+          cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
-+              resched_cpu(cpu);
-+              return;
-+      }
-+
-+      /*
-+       * If this cpu is idle and the idle load balancing is done by
-+       * someone else, then no need raise the SCHED_SOFTIRQ
-+       */
-+      if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
-+          cpu_isset(cpu, nohz.cpu_mask))
-+              return;
-+#endif
-+      if (time_after_eq(jiffies, rq->next_balance))
-+              raise_softirq(SCHED_SOFTIRQ);
-+}
-+
-+#else /* CONFIG_SMP */
-+
-+/*
-+ * on UP we do not need to balance between CPUs:
-+ */
-+static inline void idle_balance(int cpu, struct rq *rq)
-+{
-+}
-+
-+#endif
-+
-+DEFINE_PER_CPU(struct kernel_stat, kstat);
-+
-+EXPORT_PER_CPU_SYMBOL(kstat);
-+
-+/*
-+ * Return p->sum_exec_runtime plus any more ns on the sched_clock
-+ * that have not yet been banked in case the task is currently running.
-+ */
-+unsigned long long task_sched_runtime(struct task_struct *p)
-+{
-+      unsigned long flags;
-+      u64 ns, delta_exec;
-+      struct rq *rq;
-+
-+      rq = task_rq_lock(p, &flags);
-+      ns = p->se.sum_exec_runtime;
-+      if (task_current(rq, p)) {
-+              update_rq_clock(rq);
-+              delta_exec = rq->clock - p->se.exec_start;
-+              if ((s64)delta_exec > 0)
-+                      ns += delta_exec;
-+      }
-+      task_rq_unlock(rq, &flags);
-+
-+      return ns;
-+}
-+
-+/*
-+ * Account user cpu time to a process.
-+ * @p: the process that the cpu time gets accounted to
-+ * @cputime: the cpu time spent in user space since the last update
-+ */
-+void account_user_time(struct task_struct *p, cputime_t cputime)
-+{
-+      struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+      struct vx_info *vxi = p->vx_info;  /* p is _always_ current */
-+      cputime64_t tmp;
-+      int nice = (TASK_NICE(p) > 0);
-+
-+      p->utime = cputime_add(p->utime, cputime);
-+      vx_account_user(vxi, cputime, nice);
-+
-+      /* Add user time to cpustat. */
-+      tmp = cputime_to_cputime64(cputime);
-+      if (nice)
-+              cpustat->nice = cputime64_add(cpustat->nice, tmp);
-+      else
-+              cpustat->user = cputime64_add(cpustat->user, tmp);
-+      /* Account for user time used */
-+      acct_update_integrals(p);
-+}
-+
-+/*
-+ * Account guest cpu time to a process.
-+ * @p: the process that the cpu time gets accounted to
-+ * @cputime: the cpu time spent in virtual machine since the last update
-+ */
-+static void account_guest_time(struct task_struct *p, cputime_t cputime)
-+{
-+      cputime64_t tmp;
-+      struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+
-+      tmp = cputime_to_cputime64(cputime);
-+
-+      p->utime = cputime_add(p->utime, cputime);
-+      p->gtime = cputime_add(p->gtime, cputime);
-+
-+      cpustat->user = cputime64_add(cpustat->user, tmp);
-+      cpustat->guest = cputime64_add(cpustat->guest, tmp);
-+}
-+
-+/*
-+ * Account scaled user cpu time to a process.
-+ * @p: the process that the cpu time gets accounted to
-+ * @cputime: the cpu time spent in user space since the last update
-+ */
-+void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
-+{
-+      p->utimescaled = cputime_add(p->utimescaled, cputime);
-+}
-+
-+/*
-+ * Account system cpu time to a process.
-+ * @p: the process that the cpu time gets accounted to
-+ * @hardirq_offset: the offset to subtract from hardirq_count()
-+ * @cputime: the cpu time spent in kernel space since the last update
-+ */
-+void account_system_time(struct task_struct *p, int hardirq_offset,
-+                       cputime_t cputime)
-+{
-+      struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+      struct vx_info *vxi = p->vx_info;  /* p is _always_ current */
-+      struct rq *rq = this_rq();
-+      cputime64_t tmp;
-+
-+      if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
-+              account_guest_time(p, cputime);
-+              return;
-+      }
-+
-+      p->stime = cputime_add(p->stime, cputime);
-+      vx_account_system(vxi, cputime, (p == rq->idle));
-+
-+      /* Add system time to cpustat. */
-+      tmp = cputime_to_cputime64(cputime);
-+      if (hardirq_count() - hardirq_offset)
-+              cpustat->irq = cputime64_add(cpustat->irq, tmp);
-+      else if (softirq_count())
-+              cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
-+      else if (p != rq->idle)
-+              cpustat->system = cputime64_add(cpustat->system, tmp);
-+      else if (atomic_read(&rq->nr_iowait) > 0)
-+              cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
-+      else
-+              cpustat->idle = cputime64_add(cpustat->idle, tmp);
-+      /* Account for system time used */
-+      acct_update_integrals(p);
-+}
-+
-+/*
-+ * Account scaled system cpu time to a process.
-+ * @p: the process that the cpu time gets accounted to
-+ * @hardirq_offset: the offset to subtract from hardirq_count()
-+ * @cputime: the cpu time spent in kernel space since the last update
-+ */
-+void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
-+{
-+      p->stimescaled = cputime_add(p->stimescaled, cputime);
-+}
-+
-+/*
-+ * Account for involuntary wait time.
-+ * @p: the process from which the cpu time has been stolen
-+ * @steal: the cpu time spent in involuntary wait
-+ */
-+void account_steal_time(struct task_struct *p, cputime_t steal)
-+{
-+      struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+      cputime64_t tmp = cputime_to_cputime64(steal);
-+      struct rq *rq = this_rq();
-+
-+      if (p == rq->idle) {
-+              p->stime = cputime_add(p->stime, steal);
-+              if (atomic_read(&rq->nr_iowait) > 0)
-+                      cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
-+              else
-+                      cpustat->idle = cputime64_add(cpustat->idle, tmp);
-+      } else
-+              cpustat->steal = cputime64_add(cpustat->steal, tmp);
-+}
-+
-+/*
-+ * Use precise platform statistics if available:
-+ */
-+#ifdef CONFIG_VIRT_CPU_ACCOUNTING
-+cputime_t task_utime(struct task_struct *p)
-+{
-+      return p->utime;
-+}
-+
-+cputime_t task_stime(struct task_struct *p)
-+{
-+      return p->stime;
-+}
-+#else
-+cputime_t task_utime(struct task_struct *p)
-+{
-+      clock_t utime = cputime_to_clock_t(p->utime),
-+              total = utime + cputime_to_clock_t(p->stime);
-+      u64 temp;
-+
-+      /*
-+       * Use CFS's precise accounting:
-+       */
-+      temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
-+
-+      if (total) {
-+              temp *= utime;
-+              do_div(temp, total);
-+      }
-+      utime = (clock_t)temp;
-+
-+      p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
-+      return p->prev_utime;
-+}
-+
-+cputime_t task_stime(struct task_struct *p)
-+{
-+      clock_t stime;
-+
-+      /*
-+       * Use CFS's precise accounting. (we subtract utime from
-+       * the total, to make sure the total observed by userspace
-+       * grows monotonically - apps rely on that):
-+       */
-+      stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
-+                      cputime_to_clock_t(task_utime(p));
-+
-+      if (stime >= 0)
-+              p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
-+
-+      return p->prev_stime;
-+}
-+#endif
-+
-+inline cputime_t task_gtime(struct task_struct *p)
-+{
-+      return p->gtime;
-+}
-+
-+/*
-+ * This function gets called by the timer code, with HZ frequency.
-+ * We call it with interrupts disabled.
-+ *
-+ * It also gets called by the fork code, when changing the parent's
-+ * timeslices.
-+ */
-+void scheduler_tick(void)
-+{
-+      int cpu = smp_processor_id();
-+      struct rq *rq = cpu_rq(cpu);
-+      struct task_struct *curr = rq->curr;
-+
-+      sched_clock_tick();
-+
-+      spin_lock(&rq->lock);
-+      update_rq_clock(rq);
-+      update_cpu_load(rq);
-+      curr->sched_class->task_tick(rq, curr, 0);
-+      spin_unlock(&rq->lock);
-+
-+#ifdef CONFIG_SMP
-+      rq->idle_at_tick = idle_cpu(cpu);
-+      trigger_load_balance(rq, cpu);
-+#endif
-+}
-+
-+#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
-+                              defined(CONFIG_PREEMPT_TRACER))
-+
-+static inline unsigned long get_parent_ip(unsigned long addr)
-+{
-+      if (in_lock_functions(addr)) {
-+              addr = CALLER_ADDR2;
-+              if (in_lock_functions(addr))
-+                      addr = CALLER_ADDR3;
-+      }
-+      return addr;
-+}
-+
-+void __kprobes add_preempt_count(int val)
-+{
-+#ifdef CONFIG_DEBUG_PREEMPT
-+      /*
-+       * Underflow?
-+       */
-+      if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
-+              return;
-+#endif
-+      preempt_count() += val;
-+#ifdef CONFIG_DEBUG_PREEMPT
-+      /*
-+       * Spinlock count overflowing soon?
-+       */
-+      DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
-+                              PREEMPT_MASK - 10);
-+#endif
-+      if (preempt_count() == val)
-+              trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
-+}
-+EXPORT_SYMBOL(add_preempt_count);
-+
-+void __kprobes sub_preempt_count(int val)
-+{
-+#ifdef CONFIG_DEBUG_PREEMPT
-+      /*
-+       * Underflow?
-+       */
-+      if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
-+              return;
-+      /*
-+       * Is the spinlock portion underflowing?
-+       */
-+      if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
-+                      !(preempt_count() & PREEMPT_MASK)))
-+              return;
-+#endif
-+
-+      if (preempt_count() == val)
-+              trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
-+      preempt_count() -= val;
-+}
-+EXPORT_SYMBOL(sub_preempt_count);
-+
-+#endif
-+
-+/*
-+ * Print scheduling while atomic bug:
-+ */
-+static noinline void __schedule_bug(struct task_struct *prev)
-+{
-+      struct pt_regs *regs = get_irq_regs();
-+
-+      printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
-+              prev->comm, prev->pid, preempt_count());
-+
-+      debug_show_held_locks(prev);
-+      print_modules();
-+      if (irqs_disabled())
-+              print_irqtrace_events(prev);
-+
-+      if (regs)
-+              show_regs(regs);
-+      else
-+              dump_stack();
-+}
-+
-+/*
-+ * Various schedule()-time debugging checks and statistics:
-+ */
-+static inline void schedule_debug(struct task_struct *prev)
-+{
-+      /*
-+       * Test if we are atomic. Since do_exit() needs to call into
-+       * schedule() atomically, we ignore that path for now.
-+       * Otherwise, whine if we are scheduling when we should not be.
-+       */
-+      if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
-+              __schedule_bug(prev);
-+
-+      profile_hit(SCHED_PROFILING, __builtin_return_address(0));
-+
-+      schedstat_inc(this_rq(), sched_count);
-+#ifdef CONFIG_SCHEDSTATS
-+      if (unlikely(prev->lock_depth >= 0)) {
-+              schedstat_inc(this_rq(), bkl_count);
-+              schedstat_inc(prev, sched_info.bkl_count);
-+      }
-+#endif
-+}
-+
-+/*
-+ * Pick up the highest-prio task:
-+ */
-+static inline struct task_struct *
-+pick_next_task(struct rq *rq, struct task_struct *prev)
-+{
-+      const struct sched_class *class;
-+      struct task_struct *p;
-+
-+      /*
-+       * Optimization: we know that if all tasks are in
-+       * the fair class we can call that function directly:
-+       */
-+      if (likely(rq->nr_running == rq->cfs.nr_running)) {
-+              p = fair_sched_class.pick_next_task(rq);
-+              if (likely(p))
-+                      return p;
-+      }
-+
-+      class = sched_class_highest;
-+      for ( ; ; ) {
-+              p = class->pick_next_task(rq);
-+              if (p)
-+                      return p;
-+              /*
-+               * Will never be NULL as the idle class always
-+               * returns a non-NULL p:
-+               */
-+              class = class->next;
-+      }
-+}
-+
-+void (*rec_event)(void *,unsigned int) = NULL;
-+EXPORT_SYMBOL(rec_event);
-+#ifdef CONFIG_CHOPSTIX
-+
-+struct event_spec {
-+    unsigned long pc;
-+    unsigned long dcookie;
-+    unsigned int count;
-+    unsigned int reason;
-+};
-+
-+/* To support safe calling from asm */
-+asmlinkage void rec_event_asm (struct event *event_signature_in, unsigned int count) {
-+    struct pt_regs *regs;
-+    struct event_spec *es = event_signature_in->event_data;
-+    regs = task_pt_regs(current);
-+    event_signature_in->task=current;
-+    es->pc=regs->ip;
-+    event_signature_in->count=1;
-+    (*rec_event)(event_signature_in, count);
-+}
-+#endif
-+
-+/*
-+ * schedule() is the main scheduler function.
-+ */
-+asmlinkage void __sched schedule(void)
-+{
-+      struct task_struct *prev, *next;
-+      unsigned long *switch_count;
-+      struct rq *rq;
-+      int cpu;
-+
-+need_resched:
-+      preempt_disable();
-+      cpu = smp_processor_id();
-+      rq = cpu_rq(cpu);
-+      rcu_qsctr_inc(cpu);
-+      prev = rq->curr;
-+      switch_count = &prev->nivcsw;
-+
-+      release_kernel_lock(prev);
-+need_resched_nonpreemptible:
-+
-+      schedule_debug(prev);
-+
-+      if (sched_feat(HRTICK))
-+              hrtick_clear(rq);
-+
-+      /*
-+       * Do the rq-clock update outside the rq lock:
-+       */
-+      local_irq_disable();
-+      update_rq_clock(rq);
-+      spin_lock(&rq->lock);
-+      clear_tsk_need_resched(prev);
-+
-+      if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
-+              if (unlikely(signal_pending_state(prev->state, prev)))
-+                      prev->state = TASK_RUNNING;
-+              else
-+                      deactivate_task(rq, prev, 1);
-+              switch_count = &prev->nvcsw;
-+      }
-+
-+#ifdef CONFIG_SMP
-+      if (prev->sched_class->pre_schedule)
-+              prev->sched_class->pre_schedule(rq, prev);
-+#endif
-+
-+      if (unlikely(!rq->nr_running))
-+              idle_balance(cpu, rq);
-+
-+      prev->sched_class->put_prev_task(rq, prev);
-+      next = pick_next_task(rq, prev);
-+
-+      if (likely(prev != next)) {
-+              sched_info_switch(prev, next);
-+
-+              rq->nr_switches++;
-+              rq->curr = next;
-+              ++*switch_count;
-+
-+              context_switch(rq, prev, next); /* unlocks the rq */
-+              /*
-+               * the context switch might have flipped the stack from under
-+               * us, hence refresh the local variables.
-+               */
-+              cpu = smp_processor_id();
-+              rq = cpu_rq(cpu);
-+      } else
-+              spin_unlock_irq(&rq->lock);
-+
-+      if (unlikely(reacquire_kernel_lock(current) < 0))
-+              goto need_resched_nonpreemptible;
-+
-+      preempt_enable_no_resched();
-+      if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
-+              goto need_resched;
-+}
-+EXPORT_SYMBOL(schedule);
-+
-+#ifdef CONFIG_PREEMPT
-+/*
-+ * this is the entry point to schedule() from in-kernel preemption
-+ * off of preempt_enable. Kernel preemptions off return from interrupt
-+ * occur there and call schedule directly.
-+ */
-+asmlinkage void __sched preempt_schedule(void)
-+{
-+      struct thread_info *ti = current_thread_info();
-+
-+      /*
-+       * If there is a non-zero preempt_count or interrupts are disabled,
-+       * we do not want to preempt the current task. Just return..
-+       */
-+      if (likely(ti->preempt_count || irqs_disabled()))
-+              return;
-+
-+      do {
-+              add_preempt_count(PREEMPT_ACTIVE);
-+              schedule();
-+              sub_preempt_count(PREEMPT_ACTIVE);
-+
-+              /*
-+               * Check again in case we missed a preemption opportunity
-+               * between schedule and now.
-+               */
-+              barrier();
-+      } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
-+}
-+EXPORT_SYMBOL(preempt_schedule);
-+
-+/*
-+ * this is the entry point to schedule() from kernel preemption
-+ * off of irq context.
-+ * Note, that this is called and return with irqs disabled. This will
-+ * protect us against recursive calling from irq.
-+ */
-+asmlinkage void __sched preempt_schedule_irq(void)
-+{
-+      struct thread_info *ti = current_thread_info();
-+
-+      /* Catch callers which need to be fixed */
-+      BUG_ON(ti->preempt_count || !irqs_disabled());
-+
-+      do {
-+              add_preempt_count(PREEMPT_ACTIVE);
-+              local_irq_enable();
-+              schedule();
-+              local_irq_disable();
-+              sub_preempt_count(PREEMPT_ACTIVE);
-+
-+              /*
-+               * Check again in case we missed a preemption opportunity
-+               * between schedule and now.
-+               */
-+              barrier();
-+      } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
-+}
-+
-+#endif /* CONFIG_PREEMPT */
-+
-+int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
-+                        void *key)
-+{
-+      return try_to_wake_up(curr->private, mode, sync);
-+}
-+EXPORT_SYMBOL(default_wake_function);
-+
-+/*
-+ * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
-+ * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
-+ * number) then we wake all the non-exclusive tasks and one exclusive task.
-+ *
-+ * There are circumstances in which we can try to wake a task which has already
-+ * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
-+ * zero in this (rare) case, and we handle it by continuing to scan the queue.
-+ */
-+static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
-+                           int nr_exclusive, int sync, void *key)
-+{
-+      wait_queue_t *curr, *next;
-+
-+      list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
-+              unsigned flags = curr->flags;
-+
-+              if (curr->func(curr, mode, sync, key) &&
-+                              (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
-+                      break;
-+      }
-+}
-+
-+/**
-+ * __wake_up - wake up threads blocked on a waitqueue.
-+ * @q: the waitqueue
-+ * @mode: which threads
-+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
-+ * @key: is directly passed to the wakeup function
-+ */
-+void __wake_up(wait_queue_head_t *q, unsigned int mode,
-+                      int nr_exclusive, void *key)
-+{
-+      unsigned long flags;
-+
-+      spin_lock_irqsave(&q->lock, flags);
-+      __wake_up_common(q, mode, nr_exclusive, 0, key);
-+      spin_unlock_irqrestore(&q->lock, flags);
-+}
-+EXPORT_SYMBOL(__wake_up);
-+
-+/*
-+ * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
-+ */
-+void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
-+{
-+      __wake_up_common(q, mode, 1, 0, NULL);
-+}
-+
-+/**
-+ * __wake_up_sync - wake up threads blocked on a waitqueue.
-+ * @q: the waitqueue
-+ * @mode: which threads
-+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
-+ *
-+ * The sync wakeup differs that the waker knows that it will schedule
-+ * away soon, so while the target thread will be woken up, it will not
-+ * be migrated to another CPU - ie. the two threads are 'synchronized'
-+ * with each other. This can prevent needless bouncing between CPUs.
-+ *
-+ * On UP it can prevent extra preemption.
-+ */
-+void
-+__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
-+{
-+      unsigned long flags;
-+      int sync = 1;
-+
-+      if (unlikely(!q))
-+              return;
-+
-+      if (unlikely(!nr_exclusive))
-+              sync = 0;
-+
-+      spin_lock_irqsave(&q->lock, flags);
-+      __wake_up_common(q, mode, nr_exclusive, sync, NULL);
-+      spin_unlock_irqrestore(&q->lock, flags);
-+}
-+EXPORT_SYMBOL_GPL(__wake_up_sync);    /* For internal use only */
-+
-+void complete(struct completion *x)
-+{
-+      unsigned long flags;
-+
-+      spin_lock_irqsave(&x->wait.lock, flags);
-+      x->done++;
-+      __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
-+      spin_unlock_irqrestore(&x->wait.lock, flags);
-+}
-+EXPORT_SYMBOL(complete);
-+
-+void complete_all(struct completion *x)
-+{
-+      unsigned long flags;
-+
-+      spin_lock_irqsave(&x->wait.lock, flags);
-+      x->done += UINT_MAX/2;
-+      __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
-+      spin_unlock_irqrestore(&x->wait.lock, flags);
-+}
-+EXPORT_SYMBOL(complete_all);
-+
-+static inline long __sched
-+do_wait_for_common(struct completion *x, long timeout, int state)
-+{
-+      if (!x->done) {
-+              DECLARE_WAITQUEUE(wait, current);
-+
-+              wait.flags |= WQ_FLAG_EXCLUSIVE;
-+              __add_wait_queue_tail(&x->wait, &wait);
-+              do {
-+                      if ((state == TASK_INTERRUPTIBLE &&
-+                           signal_pending(current)) ||
-+                          (state == TASK_KILLABLE &&
-+                           fatal_signal_pending(current))) {
-+                              timeout = -ERESTARTSYS;
-+                              break;
-+                      }
-+                      __set_current_state(state);
-+                      spin_unlock_irq(&x->wait.lock);
-+                      timeout = schedule_timeout(timeout);
-+                      spin_lock_irq(&x->wait.lock);
-+              } while (!x->done && timeout);
-+              __remove_wait_queue(&x->wait, &wait);
-+              if (!x->done)
-+                      return timeout;
-+      }
-+      x->done--;
-+      return timeout ?: 1;
-+}
-+
-+static long __sched
-+wait_for_common(struct completion *x, long timeout, int state)
-+{
-+      might_sleep();
-+
-+      spin_lock_irq(&x->wait.lock);
-+      timeout = do_wait_for_common(x, timeout, state);
-+      spin_unlock_irq(&x->wait.lock);
-+      return timeout;
-+}
-+
-+void __sched wait_for_completion(struct completion *x)
-+{
-+      wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
-+}
-+EXPORT_SYMBOL(wait_for_completion);
-+
-+unsigned long __sched
-+wait_for_completion_timeout(struct completion *x, unsigned long timeout)
-+{
-+      return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
-+}
-+EXPORT_SYMBOL(wait_for_completion_timeout);
-+
-+int __sched wait_for_completion_interruptible(struct completion *x)
-+{
-+      long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
-+      if (t == -ERESTARTSYS)
-+              return t;
-+      return 0;
-+}
-+EXPORT_SYMBOL(wait_for_completion_interruptible);
-+
-+unsigned long __sched
-+wait_for_completion_interruptible_timeout(struct completion *x,
-+                                        unsigned long timeout)
-+{
-+      return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
-+}
-+EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
-+
-+int __sched wait_for_completion_killable(struct completion *x)
-+{
-+      long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
-+      if (t == -ERESTARTSYS)
-+              return t;
-+      return 0;
-+}
-+EXPORT_SYMBOL(wait_for_completion_killable);
-+
-+/**
-+ *    try_wait_for_completion - try to decrement a completion without blocking
-+ *    @x:     completion structure
-+ *
-+ *    Returns: 0 if a decrement cannot be done without blocking
-+ *             1 if a decrement succeeded.
-+ *
-+ *    If a completion is being used as a counting completion,
-+ *    attempt to decrement the counter without blocking. This
-+ *    enables us to avoid waiting if the resource the completion
-+ *    is protecting is not available.
-+ */
-+bool try_wait_for_completion(struct completion *x)
-+{
-+      int ret = 1;
-+
-+      spin_lock_irq(&x->wait.lock);
-+      if (!x->done)
-+              ret = 0;
-+      else
-+              x->done--;
-+      spin_unlock_irq(&x->wait.lock);
-+      return ret;
-+}
-+EXPORT_SYMBOL(try_wait_for_completion);
-+
-+/**
-+ *    completion_done - Test to see if a completion has any waiters
-+ *    @x:     completion structure
-+ *
-+ *    Returns: 0 if there are waiters (wait_for_completion() in progress)
-+ *             1 if there are no waiters.
-+ *
-+ */
-+bool completion_done(struct completion *x)
-+{
-+      int ret = 1;
-+
-+      spin_lock_irq(&x->wait.lock);
-+      if (!x->done)
-+              ret = 0;
-+      spin_unlock_irq(&x->wait.lock);
-+      return ret;
-+}
-+EXPORT_SYMBOL(completion_done);
-+
-+static long __sched
-+sleep_on_common(wait_queue_head_t *q, int state, long timeout)
-+{
-+      unsigned long flags;
-+      wait_queue_t wait;
-+
-+      init_waitqueue_entry(&wait, current);
-+
-+      __set_current_state(state);
-+
-+      spin_lock_irqsave(&q->lock, flags);
-+      __add_wait_queue(q, &wait);
-+      spin_unlock(&q->lock);
-+      timeout = schedule_timeout(timeout);
-+      spin_lock_irq(&q->lock);
-+      __remove_wait_queue(q, &wait);
-+      spin_unlock_irqrestore(&q->lock, flags);
-+
-+      return timeout;
-+}
-+
-+void __sched interruptible_sleep_on(wait_queue_head_t *q)
-+{
-+      sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
-+}
-+EXPORT_SYMBOL(interruptible_sleep_on);
-+
-+long __sched
-+interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
-+{
-+      return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
-+}
-+EXPORT_SYMBOL(interruptible_sleep_on_timeout);
-+
-+void __sched sleep_on(wait_queue_head_t *q)
-+{
-+      sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
-+}
-+EXPORT_SYMBOL(sleep_on);
-+
-+long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
-+{
-+      return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
-+}
-+EXPORT_SYMBOL(sleep_on_timeout);
-+
-+#ifdef CONFIG_RT_MUTEXES
-+
-+/*
-+ * rt_mutex_setprio - set the current priority of a task
-+ * @p: task
-+ * @prio: prio value (kernel-internal form)
-+ *
-+ * This function changes the 'effective' priority of a task. It does
-+ * not touch ->normal_prio like __setscheduler().
-+ *
-+ * Used by the rt_mutex code to implement priority inheritance logic.
-+ */
-+void rt_mutex_setprio(struct task_struct *p, int prio)
-+{
-+      unsigned long flags;
-+      int oldprio, on_rq, running;
-+      struct rq *rq;
-+      const struct sched_class *prev_class = p->sched_class;
-+
-+      BUG_ON(prio < 0 || prio > MAX_PRIO);
-+
-+      rq = task_rq_lock(p, &flags);
-+      update_rq_clock(rq);
-+
-+      oldprio = p->prio;
-+      on_rq = p->se.on_rq;
-+      running = task_current(rq, p);
-+      if (on_rq)
-+              dequeue_task(rq, p, 0);
-+      if (running)
-+              p->sched_class->put_prev_task(rq, p);
-+
-+      if (rt_prio(prio))
-+              p->sched_class = &rt_sched_class;
-+      else
-+              p->sched_class = &fair_sched_class;
-+
-+      p->prio = prio;
-+
-+      if (running)
-+              p->sched_class->set_curr_task(rq);
-+      if (on_rq) {
-+              enqueue_task(rq, p, 0);
-+
-+              check_class_changed(rq, p, prev_class, oldprio, running);
-+      }
-+      task_rq_unlock(rq, &flags);
-+}
-+
-+#endif
-+
-+void set_user_nice(struct task_struct *p, long nice)
-+{
-+      int old_prio, delta, on_rq;
-+      unsigned long flags;
-+      struct rq *rq;
-+
-+      if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
-+              return;
-+      /*
-+       * We have to be careful, if called from sys_setpriority(),
-+       * the task might be in the middle of scheduling on another CPU.
-+       */
-+      rq = task_rq_lock(p, &flags);
-+      update_rq_clock(rq);
-+      /*
-+       * The RT priorities are set via sched_setscheduler(), but we still
-+       * allow the 'normal' nice value to be set - but as expected
-+       * it wont have any effect on scheduling until the task is
-+       * SCHED_FIFO/SCHED_RR:
-+       */
-+      if (task_has_rt_policy(p)) {
-+              p->static_prio = NICE_TO_PRIO(nice);
-+              goto out_unlock;
-+      }
-+      on_rq = p->se.on_rq;
-+      if (on_rq)
-+              dequeue_task(rq, p, 0);
-+
-+      p->static_prio = NICE_TO_PRIO(nice);
-+      set_load_weight(p);
-+      old_prio = p->prio;
-+      p->prio = effective_prio(p);
-+      delta = p->prio - old_prio;
-+
-+      if (on_rq) {
-+              enqueue_task(rq, p, 0);
-+              /*
-+               * If the task increased its priority or is running and
-+               * lowered its priority, then reschedule its CPU:
-+               */
-+              if (delta < 0 || (delta > 0 && task_running(rq, p)))
-+                      resched_task(rq->curr);
-+      }
-+out_unlock:
-+      task_rq_unlock(rq, &flags);
-+}
-+EXPORT_SYMBOL(set_user_nice);
-+
-+/*
-+ * can_nice - check if a task can reduce its nice value
-+ * @p: task
-+ * @nice: nice value
-+ */
-+int can_nice(const struct task_struct *p, const int nice)
-+{
-+      /* convert nice value [19,-20] to rlimit style value [1,40] */
-+      int nice_rlim = 20 - nice;
-+
-+      return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
-+              capable(CAP_SYS_NICE));
-+}
-+
-+#ifdef __ARCH_WANT_SYS_NICE
-+
-+/*
-+ * sys_nice - change the priority of the current process.
-+ * @increment: priority increment
-+ *
-+ * sys_setpriority is a more generic, but much slower function that
-+ * does similar things.
-+ */
-+SYSCALL_DEFINE1(nice, int, increment)
-+{
-+      long nice, retval;
-+
-+      /*
-+       * Setpriority might change our priority at the same moment.
-+       * We don't have to worry. Conceptually one call occurs first
-+       * and we have a single winner.
-+       */
-+      if (increment < -40)
-+              increment = -40;
-+      if (increment > 40)
-+              increment = 40;
-+
-+      nice = PRIO_TO_NICE(current->static_prio) + increment;
-+      if (nice < -20)
-+              nice = -20;
-+      if (nice > 19)
-+              nice = 19;
-+
-+      if (increment < 0 && !can_nice(current, nice))
-+              return vx_flags(VXF_IGNEG_NICE, 0) ? 0 : -EPERM;
-+
-+      retval = security_task_setnice(current, nice);
-+      if (retval)
-+              return retval;
-+
-+      set_user_nice(current, nice);
-+      return 0;
-+}
-+
-+#endif
-+
-+/**
-+ * task_prio - return the priority value of a given task.
-+ * @p: the task in question.
-+ *
-+ * This is the priority value as seen by users in /proc.
-+ * RT tasks are offset by -200. Normal tasks are centered
-+ * around 0, value goes from -16 to +15.
-+ */
-+int task_prio(const struct task_struct *p)
-+{
-+      return p->prio - MAX_RT_PRIO;
-+}
-+
-+/**
-+ * task_nice - return the nice value of a given task.
-+ * @p: the task in question.
-+ */
-+int task_nice(const struct task_struct *p)
-+{
-+      return TASK_NICE(p);
-+}
-+EXPORT_SYMBOL(task_nice);
-+
-+/**
-+ * idle_cpu - is a given cpu idle currently?
-+ * @cpu: the processor in question.
-+ */
-+int idle_cpu(int cpu)
-+{
-+      return cpu_curr(cpu) == cpu_rq(cpu)->idle;
-+}
-+
-+/**
-+ * idle_task - return the idle task for a given cpu.
-+ * @cpu: the processor in question.
-+ */
-+struct task_struct *idle_task(int cpu)
-+{
-+      return cpu_rq(cpu)->idle;
-+}
-+
-+/**
-+ * find_process_by_pid - find a process with a matching PID value.
-+ * @pid: the pid in question.
-+ */
-+static struct task_struct *find_process_by_pid(pid_t pid)
-+{
-+      return pid ? find_task_by_vpid(pid) : current;
-+}
-+
-+/* Actually do priority change: must hold rq lock. */
-+static void
-+__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
-+{
-+      BUG_ON(p->se.on_rq);
-+
-+      p->policy = policy;
-+      switch (p->policy) {
-+      case SCHED_NORMAL:
-+      case SCHED_BATCH:
-+      case SCHED_IDLE:
-+              p->sched_class = &fair_sched_class;
-+              break;
-+      case SCHED_FIFO:
-+      case SCHED_RR:
-+              p->sched_class = &rt_sched_class;
-+              break;
-+      }
-+
-+      p->rt_priority = prio;
-+      p->normal_prio = normal_prio(p);
-+      /* we are holding p->pi_lock already */
-+      p->prio = rt_mutex_getprio(p);
-+      set_load_weight(p);
-+}
-+
-+static int __sched_setscheduler(struct task_struct *p, int policy,
-+                              struct sched_param *param, bool user)
-+{
-+      int retval, oldprio, oldpolicy = -1, on_rq, running;
-+      unsigned long flags;
-+      const struct sched_class *prev_class = p->sched_class;
-+      struct rq *rq;
-+
-+      /* may grab non-irq protected spin_locks */
-+      BUG_ON(in_interrupt());
-+recheck:
-+      /* double check policy once rq lock held */
-+      if (policy < 0)
-+              policy = oldpolicy = p->policy;
-+      else if (policy != SCHED_FIFO && policy != SCHED_RR &&
-+                      policy != SCHED_NORMAL && policy != SCHED_BATCH &&
-+                      policy != SCHED_IDLE)
-+              return -EINVAL;
-+      /*
-+       * Valid priorities for SCHED_FIFO and SCHED_RR are
-+       * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
-+       * SCHED_BATCH and SCHED_IDLE is 0.
-+       */
-+      if (param->sched_priority < 0 ||
-+          (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
-+          (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
-+              return -EINVAL;
-+      if (rt_policy(policy) != (param->sched_priority != 0))
-+              return -EINVAL;
-+
-+      /*
-+       * Allow unprivileged RT tasks to decrease priority:
-+       */
-+      if (user && !capable(CAP_SYS_NICE)) {
-+              if (rt_policy(policy)) {
-+                      unsigned long rlim_rtprio;
-+
-+                      if (!lock_task_sighand(p, &flags))
-+                              return -ESRCH;
-+                      rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
-+                      unlock_task_sighand(p, &flags);
-+
-+                      /* can't set/change the rt policy */
-+                      if (policy != p->policy && !rlim_rtprio)
-+                              return -EPERM;
-+
-+                      /* can't increase priority */
-+                      if (param->sched_priority > p->rt_priority &&
-+                          param->sched_priority > rlim_rtprio)
-+                              return -EPERM;
-+              }
-+              /*
-+               * Like positive nice levels, dont allow tasks to
-+               * move out of SCHED_IDLE either:
-+               */
-+              if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
-+                      return -EPERM;
-+
-+              /* can't change other user's priorities */
-+              if ((current->euid != p->euid) &&
-+                  (current->euid != p->uid))
-+                      return -EPERM;
-+      }
-+
-+      if (user) {
-+#ifdef CONFIG_RT_GROUP_SCHED
-+              /*
-+               * Do not allow realtime tasks into groups that have no runtime
-+               * assigned.
-+               */
-+              if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
-+                      return -EPERM;
-+#endif
-+
-+              retval = security_task_setscheduler(p, policy, param);
-+              if (retval)
-+                      return retval;
-+      }
-+
-+      /*
-+       * make sure no PI-waiters arrive (or leave) while we are
-+       * changing the priority of the task:
-+       */
-+      spin_lock_irqsave(&p->pi_lock, flags);
-+      /*
-+       * To be able to change p->policy safely, the apropriate
-+       * runqueue lock must be held.
-+       */
-+      rq = __task_rq_lock(p);
-+      /* recheck policy now with rq lock held */
-+      if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
-+              policy = oldpolicy = -1;
-+              __task_rq_unlock(rq);
-+              spin_unlock_irqrestore(&p->pi_lock, flags);
-+              goto recheck;
-+      }
-+      update_rq_clock(rq);
-+      on_rq = p->se.on_rq;
-+      running = task_current(rq, p);
-+      if (on_rq)
-+              deactivate_task(rq, p, 0);
-+      if (running)
-+              p->sched_class->put_prev_task(rq, p);
-+
-+      oldprio = p->prio;
-+      __setscheduler(rq, p, policy, param->sched_priority);
-+
-+      if (running)
-+              p->sched_class->set_curr_task(rq);
-+      if (on_rq) {
-+              activate_task(rq, p, 0);
-+
-+              check_class_changed(rq, p, prev_class, oldprio, running);
-+      }
-+      __task_rq_unlock(rq);
-+      spin_unlock_irqrestore(&p->pi_lock, flags);
-+
-+      rt_mutex_adjust_pi(p);
-+
-+      return 0;
-+}
-+
-+/**
-+ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
-+ * @p: the task in question.
-+ * @policy: new policy.
-+ * @param: structure containing the new RT priority.
-+ *
-+ * NOTE that the task may be already dead.
-+ */
-+int sched_setscheduler(struct task_struct *p, int policy,
-+                     struct sched_param *param)
-+{
-+      return __sched_setscheduler(p, policy, param, true);
-+}
-+EXPORT_SYMBOL_GPL(sched_setscheduler);
-+
-+/**
-+ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
-+ * @p: the task in question.
-+ * @policy: new policy.
-+ * @param: structure containing the new RT priority.
-+ *
-+ * Just like sched_setscheduler, only don't bother checking if the
-+ * current context has permission.  For example, this is needed in
-+ * stop_machine(): we create temporary high priority worker threads,
-+ * but our caller might not have that capability.
-+ */
-+int sched_setscheduler_nocheck(struct task_struct *p, int policy,
-+                             struct sched_param *param)
-+{
-+      return __sched_setscheduler(p, policy, param, false);
-+}
-+
-+static int
-+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
-+{
-+      struct sched_param lparam;
-+      struct task_struct *p;
-+      int retval;
-+
-+      if (!param || pid < 0)
-+              return -EINVAL;
-+      if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
-+              return -EFAULT;
-+
-+      rcu_read_lock();
-+      retval = -ESRCH;
-+      p = find_process_by_pid(pid);
-+      if (p != NULL)
-+              retval = sched_setscheduler(p, policy, &lparam);
-+      rcu_read_unlock();
-+
-+      return retval;
-+}
-+
-+/**
-+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
-+ * @pid: the pid in question.
-+ * @policy: new policy.
-+ * @param: structure containing the new RT priority.
-+ */
-+SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
-+              struct sched_param __user *, param)
-+{
-+      /* negative values for policy are not valid */
-+      if (policy < 0)
-+              return -EINVAL;
-+
-+      return do_sched_setscheduler(pid, policy, param);
-+}
-+
-+/**
-+ * sys_sched_setparam - set/change the RT priority of a thread
-+ * @pid: the pid in question.
-+ * @param: structure containing the new RT priority.
-+ */
-+SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
-+{
-+      return do_sched_setscheduler(pid, -1, param);
-+}
-+
-+/**
-+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
-+ * @pid: the pid in question.
-+ */
-+SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
-+{
-+      struct task_struct *p;
-+      int retval;
-+
-+      if (pid < 0)
-+              return -EINVAL;
-+
-+      retval = -ESRCH;
-+      read_lock(&tasklist_lock);
-+      p = find_process_by_pid(pid);
-+      if (p) {
-+              retval = security_task_getscheduler(p);
-+              if (!retval)
-+                      retval = p->policy;
-+      }
-+      read_unlock(&tasklist_lock);
-+      return retval;
-+}
-+
-+/**
-+ * sys_sched_getscheduler - get the RT priority of a thread
-+ * @pid: the pid in question.
-+ * @param: structure containing the RT priority.
-+ */
-+SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
-+{
-+      struct sched_param lp;
-+      struct task_struct *p;
-+      int retval;
-+
-+      if (!param || pid < 0)
-+              return -EINVAL;
-+
-+      read_lock(&tasklist_lock);
-+      p = find_process_by_pid(pid);
-+      retval = -ESRCH;
-+      if (!p)
-+              goto out_unlock;
-+
-+      retval = security_task_getscheduler(p);
-+      if (retval)
-+              goto out_unlock;
-+
-+      lp.sched_priority = p->rt_priority;
-+      read_unlock(&tasklist_lock);
-+
-+      /*
-+       * This one might sleep, we cannot do it with a spinlock held ...
-+       */
-+      retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
-+
-+      return retval;
-+
-+out_unlock:
-+      read_unlock(&tasklist_lock);
-+      return retval;
-+}
-+
-+long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
-+{
-+      cpumask_t cpus_allowed;
-+      cpumask_t new_mask = *in_mask;
-+      struct task_struct *p;
-+      int retval;
-+
-+      get_online_cpus();
-+      read_lock(&tasklist_lock);
-+
-+      p = find_process_by_pid(pid);
-+      if (!p) {
-+              read_unlock(&tasklist_lock);
-+              put_online_cpus();
-+              return -ESRCH;
-+      }
-+
-+      /*
-+       * It is not safe to call set_cpus_allowed with the
-+       * tasklist_lock held. We will bump the task_struct's
-+       * usage count and then drop tasklist_lock.
-+       */
-+      get_task_struct(p);
-+      read_unlock(&tasklist_lock);
-+
-+
-+      retval = -EPERM;
-+      if ((current->euid != p->euid) && (current->euid != p->uid) &&
-+                      !capable(CAP_SYS_NICE))
-+              goto out_unlock;
-+
-+      retval = security_task_setscheduler(p, 0, NULL);
-+      if (retval)
-+              goto out_unlock;
-+
-+      cpuset_cpus_allowed(p, &cpus_allowed);
-+      cpus_and(new_mask, new_mask, cpus_allowed);
-+ again:
-+      retval = set_cpus_allowed_ptr(p, &new_mask);
-+
-+      if (!retval) {
-+              cpuset_cpus_allowed(p, &cpus_allowed);
-+              if (!cpus_subset(new_mask, cpus_allowed)) {
-+                      /*
-+                       * We must have raced with a concurrent cpuset
-+                       * update. Just reset the cpus_allowed to the
-+                       * cpuset's cpus_allowed
-+                       */
-+                      new_mask = cpus_allowed;
-+                      goto again;
-+              }
-+      }
-+out_unlock:
-+      put_task_struct(p);
-+      put_online_cpus();
-+      return retval;
-+}
-+
-+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
-+                           cpumask_t *new_mask)
-+{
-+      if (len < sizeof(cpumask_t)) {
-+              memset(new_mask, 0, sizeof(cpumask_t));
-+      } else if (len > sizeof(cpumask_t)) {
-+              len = sizeof(cpumask_t);
-+      }
-+      return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
-+}
-+
-+/**
-+ * sys_sched_setaffinity - set the cpu affinity of a process
-+ * @pid: pid of the process
-+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
-+ * @user_mask_ptr: user-space pointer to the new cpu mask
-+ */
-+SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
-+              unsigned long __user *, user_mask_ptr)
-+{
-+      cpumask_t new_mask;
-+      int retval;
-+
-+      retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
-+      if (retval)
-+              return retval;
-+
-+      return sched_setaffinity(pid, &new_mask);
-+}
-+
-+long sched_getaffinity(pid_t pid, cpumask_t *mask)
-+{
-+      struct task_struct *p;
-+      int retval;
-+
-+      get_online_cpus();
-+      read_lock(&tasklist_lock);
-+
-+      retval = -ESRCH;
-+      p = find_process_by_pid(pid);
-+      if (!p)
-+              goto out_unlock;
-+
-+      retval = security_task_getscheduler(p);
-+      if (retval)
-+              goto out_unlock;
-+
-+      cpus_and(*mask, p->cpus_allowed, cpu_online_map);
-+
-+out_unlock:
-+      read_unlock(&tasklist_lock);
-+      put_online_cpus();
-+
-+      return retval;
-+}
-+
-+/**
-+ * sys_sched_getaffinity - get the cpu affinity of a process
-+ * @pid: pid of the process
-+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
-+ * @user_mask_ptr: user-space pointer to hold the current cpu mask
-+ */
-+SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
-+              unsigned long __user *, user_mask_ptr)
-+{
-+      int ret;
-+      cpumask_t mask;
-+
-+      if (len < sizeof(cpumask_t))
-+              return -EINVAL;
-+
-+      ret = sched_getaffinity(pid, &mask);
-+      if (ret < 0)
-+              return ret;
-+
-+      if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
-+              return -EFAULT;
-+
-+      return sizeof(cpumask_t);
-+}
-+
-+/**
-+ * sys_sched_yield - yield the current processor to other threads.
-+ *
-+ * This function yields the current CPU to other tasks. If there are no
-+ * other threads running on this CPU then this function will return.
-+ */
-+SYSCALL_DEFINE0(sched_yield)
-+{
-+      struct rq *rq = this_rq_lock();
-+
-+      schedstat_inc(rq, yld_count);
-+      current->sched_class->yield_task(rq);
-+
-+      /*
-+       * Since we are going to call schedule() anyway, there's
-+       * no need to preempt or enable interrupts:
-+       */
-+      __release(rq->lock);
-+      spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
-+      _raw_spin_unlock(&rq->lock);
-+      preempt_enable_no_resched();
-+
-+      schedule();
-+
-+      return 0;
-+}
-+
-+static void __cond_resched(void)
-+{
-+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
-+      __might_sleep(__FILE__, __LINE__);
-+#endif
-+      /*
-+       * The BKS might be reacquired before we have dropped
-+       * PREEMPT_ACTIVE, which could trigger a second
-+       * cond_resched() call.
-+       */
-+      do {
-+              add_preempt_count(PREEMPT_ACTIVE);
-+              schedule();
-+              sub_preempt_count(PREEMPT_ACTIVE);
-+      } while (need_resched());
-+}
-+
-+int __sched _cond_resched(void)
-+{
-+      if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
-+                                      system_state == SYSTEM_RUNNING) {
-+              __cond_resched();
-+              return 1;
-+      }
-+      return 0;
-+}
-+EXPORT_SYMBOL(_cond_resched);
-+
-+/*
-+ * cond_resched_lock() - if a reschedule is pending, drop the given lock,
-+ * call schedule, and on return reacquire the lock.
-+ *
-+ * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
-+ * operations here to prevent schedule() from being called twice (once via
-+ * spin_unlock(), once by hand).
-+ */
-+int cond_resched_lock(spinlock_t *lock)
-+{
-+      int resched = need_resched() && system_state == SYSTEM_RUNNING;
-+      int ret = 0;
-+
-+      if (spin_needbreak(lock) || resched) {
-+              spin_unlock(lock);
-+              if (resched && need_resched())
-+                      __cond_resched();
-+              else
-+                      cpu_relax();
-+              ret = 1;
-+              spin_lock(lock);
-+      }
-+      return ret;
-+}
-+EXPORT_SYMBOL(cond_resched_lock);
-+
-+int __sched cond_resched_softirq(void)
-+{
-+      BUG_ON(!in_softirq());
-+
-+      if (need_resched() && system_state == SYSTEM_RUNNING) {
-+              local_bh_enable();
-+              __cond_resched();
-+              local_bh_disable();
-+              return 1;
-+      }
-+      return 0;
-+}
-+EXPORT_SYMBOL(cond_resched_softirq);
-+
-+/**
-+ * yield - yield the current processor to other threads.
-+ *
-+ * This is a shortcut for kernel-space yielding - it marks the
-+ * thread runnable and calls sys_sched_yield().
-+ */
-+void __sched yield(void)
-+{
-+      set_current_state(TASK_RUNNING);
-+      sys_sched_yield();
-+}
-+EXPORT_SYMBOL(yield);
-+
-+/*
-+ * This task is about to go to sleep on IO. Increment rq->nr_iowait so
-+ * that process accounting knows that this is a task in IO wait state.
-+ *
-+ * But don't do that if it is a deliberate, throttling IO wait (this task
-+ * has set its backing_dev_info: the queue against which it should throttle)
-+ */
-+void __sched io_schedule(void)
-+{
-+      struct rq *rq = &__raw_get_cpu_var(runqueues);
-+
-+      delayacct_blkio_start();
-+      atomic_inc(&rq->nr_iowait);
-+      schedule();
-+      atomic_dec(&rq->nr_iowait);
-+      delayacct_blkio_end();
-+}
-+EXPORT_SYMBOL(io_schedule);
-+
-+long __sched io_schedule_timeout(long timeout)
-+{
-+      struct rq *rq = &__raw_get_cpu_var(runqueues);
-+      long ret;
-+
-+      delayacct_blkio_start();
-+      atomic_inc(&rq->nr_iowait);
-+      ret = schedule_timeout(timeout);
-+      atomic_dec(&rq->nr_iowait);
-+      delayacct_blkio_end();
-+      return ret;
-+}
-+
-+/**
-+ * sys_sched_get_priority_max - return maximum RT priority.
-+ * @policy: scheduling class.
-+ *
-+ * this syscall returns the maximum rt_priority that can be used
-+ * by a given scheduling class.
-+ */
-+SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
-+{
-+      int ret = -EINVAL;
-+
-+      switch (policy) {
-+      case SCHED_FIFO:
-+      case SCHED_RR:
-+              ret = MAX_USER_RT_PRIO-1;
-+              break;
-+      case SCHED_NORMAL:
-+      case SCHED_BATCH:
-+      case SCHED_IDLE:
-+              ret = 0;
-+              break;
-+      }
-+      return ret;
-+}
-+
-+/**
-+ * sys_sched_get_priority_min - return minimum RT priority.
-+ * @policy: scheduling class.
-+ *
-+ * this syscall returns the minimum rt_priority that can be used
-+ * by a given scheduling class.
-+ */
-+SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
-+{
-+      int ret = -EINVAL;
-+
-+      switch (policy) {
-+      case SCHED_FIFO:
-+      case SCHED_RR:
-+              ret = 1;
-+              break;
-+      case SCHED_NORMAL:
-+      case SCHED_BATCH:
-+      case SCHED_IDLE:
-+              ret = 0;
-+      }
-+      return ret;
-+}
-+
-+/**
-+ * sys_sched_rr_get_interval - return the default timeslice of a process.
-+ * @pid: pid of the process.
-+ * @interval: userspace pointer to the timeslice value.
-+ *
-+ * this syscall writes the default timeslice value of a given process
-+ * into the user-space timespec buffer. A value of '0' means infinity.
-+ */
-+SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
-+              struct timespec __user *, interval)
-+{
-+      struct task_struct *p;
-+      unsigned int time_slice;
-+      int retval;
-+      struct timespec t;
-+
-+      if (pid < 0)
-+              return -EINVAL;
-+
-+      retval = -ESRCH;
-+      read_lock(&tasklist_lock);
-+      p = find_process_by_pid(pid);
-+      if (!p)
-+              goto out_unlock;
-+
-+      retval = security_task_getscheduler(p);
-+      if (retval)
-+              goto out_unlock;
-+
-+      /*
-+       * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
-+       * tasks that are on an otherwise idle runqueue:
-+       */
-+      time_slice = 0;
-+      if (p->policy == SCHED_RR) {
-+              time_slice = DEF_TIMESLICE;
-+      } else if (p->policy != SCHED_FIFO) {
-+              struct sched_entity *se = &p->se;
-+              unsigned long flags;
-+              struct rq *rq;
-+
-+              rq = task_rq_lock(p, &flags);
-+              if (rq->cfs.load.weight)
-+                      time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
-+              task_rq_unlock(rq, &flags);
-+      }
-+      read_unlock(&tasklist_lock);
-+      jiffies_to_timespec(time_slice, &t);
-+      retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
-+      return retval;
-+
-+out_unlock:
-+      read_unlock(&tasklist_lock);
-+      return retval;
-+}
-+
-+static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
-+
-+void sched_show_task(struct task_struct *p)
-+{
-+      unsigned long free = 0;
-+      unsigned state;
-+
-+      state = p->state ? __ffs(p->state) + 1 : 0;
-+      printk(KERN_INFO "%-13.13s %c", p->comm,
-+              state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
-+#if BITS_PER_LONG == 32
-+      if (state == TASK_RUNNING)
-+              printk(KERN_CONT " running  ");
-+      else
-+              printk(KERN_CONT " %08lx ", thread_saved_pc(p));
-+#else
-+      if (state == TASK_RUNNING)
-+              printk(KERN_CONT "  running task    ");
-+      else
-+              printk(KERN_CONT " %016lx ", thread_saved_pc(p));
-+#endif
-+#ifdef CONFIG_DEBUG_STACK_USAGE
-+      {
-+              unsigned long *n = end_of_stack(p);
-+              while (!*n)
-+                      n++;
-+              free = (unsigned long)n - (unsigned long)end_of_stack(p);
-+      }
-+#endif
-+      printk(KERN_CONT "%5lu %5d %6d\n", free,
-+              task_pid_nr(p), task_pid_nr(p->real_parent));
-+
-+      show_stack(p, NULL);
-+}
-+
-+void show_state_filter(unsigned long state_filter)
-+{
-+      struct task_struct *g, *p;
-+
-+#if BITS_PER_LONG == 32
-+      printk(KERN_INFO
-+              "  task                PC stack   pid father\n");
-+#else
-+      printk(KERN_INFO
-+              "  task                        PC stack   pid father\n");
-+#endif
-+      read_lock(&tasklist_lock);
-+      do_each_thread(g, p) {
-+              /*
-+               * reset the NMI-timeout, listing all files on a slow
-+               * console might take alot of time:
-+               */
-+              touch_nmi_watchdog();
-+              if (!state_filter || (p->state & state_filter))
-+                      sched_show_task(p);
-+      } while_each_thread(g, p);
-+
-+      touch_all_softlockup_watchdogs();
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+      sysrq_sched_debug_show();
-+#endif
-+      read_unlock(&tasklist_lock);
-+      /*
-+       * Only show locks if all tasks are dumped:
-+       */
-+      if (state_filter == -1)
-+              debug_show_all_locks();
-+}
-+
-+void __cpuinit init_idle_bootup_task(struct task_struct *idle)
-+{
-+      idle->sched_class = &idle_sched_class;
-+}
-+
-+/**
-+ * init_idle - set up an idle thread for a given CPU
-+ * @idle: task in question
-+ * @cpu: cpu the idle task belongs to
-+ *
-+ * NOTE: this function does not set the idle thread's NEED_RESCHED
-+ * flag, to make booting more robust.
-+ */
-+void __cpuinit init_idle(struct task_struct *idle, int cpu)
-+{
-+      struct rq *rq = cpu_rq(cpu);
-+      unsigned long flags;
-+
-+      __sched_fork(idle);
-+      idle->se.exec_start = sched_clock();
-+
-+      idle->prio = idle->normal_prio = MAX_PRIO;
-+      idle->cpus_allowed = cpumask_of_cpu(cpu);
-+      __set_task_cpu(idle, cpu);
-+
-+      spin_lock_irqsave(&rq->lock, flags);
-+      rq->curr = rq->idle = idle;
-+#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
-+      idle->oncpu = 1;
-+#endif
-+      spin_unlock_irqrestore(&rq->lock, flags);
-+
-+      /* Set the preempt count _outside_ the spinlocks! */
-+#if defined(CONFIG_PREEMPT)
-+      task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
-+#else
-+      task_thread_info(idle)->preempt_count = 0;
-+#endif
-+      /*
-+       * The idle tasks have their own, simple scheduling class:
-+       */
-+      idle->sched_class = &idle_sched_class;
-+}
-+
-+/*
-+ * In a system that switches off the HZ timer nohz_cpu_mask
-+ * indicates which cpus entered this state. This is used
-+ * in the rcu update to wait only for active cpus. For system
-+ * which do not switch off the HZ timer nohz_cpu_mask should
-+ * always be CPU_MASK_NONE.
-+ */
-+cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
-+
-+/*
-+ * Increase the granularity value when there are more CPUs,
-+ * because with more CPUs the 'effective latency' as visible
-+ * to users decreases. But the relationship is not linear,
-+ * so pick a second-best guess by going with the log2 of the
-+ * number of CPUs.
-+ *
-+ * This idea comes from the SD scheduler of Con Kolivas:
-+ */
-+static inline void sched_init_granularity(void)
-+{
-+      unsigned int factor = 1 + ilog2(num_online_cpus());
-+      const unsigned long limit = 200000000;
-+
-+      sysctl_sched_min_granularity *= factor;
-+      if (sysctl_sched_min_granularity > limit)
-+              sysctl_sched_min_granularity = limit;
-+
-+      sysctl_sched_latency *= factor;
-+      if (sysctl_sched_latency > limit)
-+              sysctl_sched_latency = limit;
-+
-+      sysctl_sched_wakeup_granularity *= factor;
-+
-+      sysctl_sched_shares_ratelimit *= factor;
-+}
-+
-+#ifdef CONFIG_SMP
-+/*
-+ * This is how migration works:
-+ *
-+ * 1) we queue a struct migration_req structure in the source CPU's
-+ *    runqueue and wake up that CPU's migration thread.
-+ * 2) we down() the locked semaphore => thread blocks.
-+ * 3) migration thread wakes up (implicitly it forces the migrated
-+ *    thread off the CPU)
-+ * 4) it gets the migration request and checks whether the migrated
-+ *    task is still in the wrong runqueue.
-+ * 5) if it's in the wrong runqueue then the migration thread removes
-+ *    it and puts it into the right queue.
-+ * 6) migration thread up()s the semaphore.
-+ * 7) we wake up and the migration is done.
-+ */
-+
-+/*
-+ * Change a given task's CPU affinity. Migrate the thread to a
-+ * proper CPU and schedule it away if the CPU it's executing on
-+ * is removed from the allowed bitmask.
-+ *
-+ * NOTE: the caller must have a valid reference to the task, the
-+ * task must not exit() & deallocate itself prematurely. The
-+ * call is not atomic; no spinlocks may be held.
-+ */
-+int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
-+{
-+      struct migration_req req;
-+      unsigned long flags;
-+      struct rq *rq;
-+      int ret = 0;
-+
-+      rq = task_rq_lock(p, &flags);
-+      if (!cpus_intersects(*new_mask, cpu_online_map)) {
-+              ret = -EINVAL;
-+              goto out;
-+      }
-+
-+      if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
-+                   !cpus_equal(p->cpus_allowed, *new_mask))) {
-+              ret = -EINVAL;
-+              goto out;
-+      }
-+
-+      if (p->sched_class->set_cpus_allowed)
-+              p->sched_class->set_cpus_allowed(p, new_mask);
-+      else {
-+              p->cpus_allowed = *new_mask;
-+              p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
-+      }
-+
-+      /* Can the task run on the task's current CPU? If so, we're done */
-+      if (cpu_isset(task_cpu(p), *new_mask))
-+              goto out;
-+
-+      if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
-+              /* Need help from migration thread: drop lock and wait. */
-+              task_rq_unlock(rq, &flags);
-+              wake_up_process(rq->migration_thread);
-+              wait_for_completion(&req.done);
-+              tlb_migrate_finish(p->mm);
-+              return 0;
-+      }
-+out:
-+      task_rq_unlock(rq, &flags);
-+
-+      return ret;
-+}
-+EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
-+
-+/*
-+ * Move (not current) task off this cpu, onto dest cpu. We're doing
-+ * this because either it can't run here any more (set_cpus_allowed()
-+ * away from this CPU, or CPU going down), or because we're
-+ * attempting to rebalance this task on exec (sched_exec).
-+ *
-+ * So we race with normal scheduler movements, but that's OK, as long
-+ * as the task is no longer on this CPU.
-+ *
-+ * Returns non-zero if task was successfully migrated.
-+ */
-+static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
-+{
-+      struct rq *rq_dest, *rq_src;
-+      int ret = 0, on_rq;
-+
-+      if (unlikely(!cpu_active(dest_cpu)))
-+              return ret;
-+
-+      rq_src = cpu_rq(src_cpu);
-+      rq_dest = cpu_rq(dest_cpu);
-+
-+      double_rq_lock(rq_src, rq_dest);
-+      /* Already moved. */
-+      if (task_cpu(p) != src_cpu)
-+              goto done;
-+      /* Affinity changed (again). */
-+      if (!cpu_isset(dest_cpu, p->cpus_allowed))
-+              goto fail;
-+
-+      on_rq = p->se.on_rq;
-+      if (on_rq)
-+              deactivate_task(rq_src, p, 0);
-+
-+      set_task_cpu(p, dest_cpu);
-+      if (on_rq) {
-+              activate_task(rq_dest, p, 0);
-+              check_preempt_curr(rq_dest, p);
-+      }
-+done:
-+      ret = 1;
-+fail:
-+      double_rq_unlock(rq_src, rq_dest);
-+      return ret;
-+}
-+
-+/*
-+ * migration_thread - this is a highprio system thread that performs
-+ * thread migration by bumping thread off CPU then 'pushing' onto
-+ * another runqueue.
-+ */
-+static int migration_thread(void *data)
-+{
-+      int cpu = (long)data;
-+      struct rq *rq;
-+
-+      rq = cpu_rq(cpu);
-+      BUG_ON(rq->migration_thread != current);
-+
-+      set_current_state(TASK_INTERRUPTIBLE);
-+      while (!kthread_should_stop()) {
-+              struct migration_req *req;
-+              struct list_head *head;
-+
-+              spin_lock_irq(&rq->lock);
-+
-+              if (cpu_is_offline(cpu)) {
-+                      spin_unlock_irq(&rq->lock);
-+                      goto wait_to_die;
-+              }
-+
-+              if (rq->active_balance) {
-+                      active_load_balance(rq, cpu);
-+                      rq->active_balance = 0;
-+              }
-+
-+              head = &rq->migration_queue;
-+
-+              if (list_empty(head)) {
-+                      spin_unlock_irq(&rq->lock);
-+                      schedule();
-+                      set_current_state(TASK_INTERRUPTIBLE);
-+                      continue;
-+              }
-+              req = list_entry(head->next, struct migration_req, list);
-+              list_del_init(head->next);
-+
-+              spin_unlock(&rq->lock);
-+              __migrate_task(req->task, cpu, req->dest_cpu);
-+              local_irq_enable();
-+
-+              complete(&req->done);
-+      }
-+      __set_current_state(TASK_RUNNING);
-+      return 0;
-+
-+wait_to_die:
-+      /* Wait for kthread_stop */
-+      set_current_state(TASK_INTERRUPTIBLE);
-+      while (!kthread_should_stop()) {
-+              schedule();
-+              set_current_state(TASK_INTERRUPTIBLE);
-+      }
-+      __set_current_state(TASK_RUNNING);
-+      return 0;
-+}
-+
-+#ifdef CONFIG_HOTPLUG_CPU
-+
-+static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
-+{
-+      int ret;
-+
-+      local_irq_disable();
-+      ret = __migrate_task(p, src_cpu, dest_cpu);
-+      local_irq_enable();
-+      return ret;
-+}
-+
-+/*
-+ * Figure out where task on dead CPU should go, use force if necessary.
-+ * NOTE: interrupts should be disabled by the caller
-+ */
-+static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
-+{
-+      unsigned long flags;
-+      cpumask_t mask;
-+      struct rq *rq;
-+      int dest_cpu;
-+
-+      do {
-+              /* On same node? */
-+              mask = node_to_cpumask(cpu_to_node(dead_cpu));
-+              cpus_and(mask, mask, p->cpus_allowed);
-+              dest_cpu = any_online_cpu(mask);
-+
-+              /* On any allowed CPU? */
-+              if (dest_cpu >= nr_cpu_ids)
-+                      dest_cpu = any_online_cpu(p->cpus_allowed);
-+
-+              /* No more Mr. Nice Guy. */
-+              if (dest_cpu >= nr_cpu_ids) {
-+                      cpumask_t cpus_allowed;
-+
-+                      cpuset_cpus_allowed_locked(p, &cpus_allowed);
-+                      /*
-+                       * Try to stay on the same cpuset, where the
-+                       * current cpuset may be a subset of all cpus.
-+                       * The cpuset_cpus_allowed_locked() variant of
-+                       * cpuset_cpus_allowed() will not block. It must be
-+                       * called within calls to cpuset_lock/cpuset_unlock.
-+                       */
-+                      rq = task_rq_lock(p, &flags);
-+                      p->cpus_allowed = cpus_allowed;
-+                      dest_cpu = any_online_cpu(p->cpus_allowed);
-+                      task_rq_unlock(rq, &flags);
-+
-+                      /*
-+                       * Don't tell them about moving exiting tasks or
-+                       * kernel threads (both mm NULL), since they never
-+                       * leave kernel.
-+                       */
-+                      if (p->mm && printk_ratelimit()) {
-+                              printk(KERN_INFO "process %d (%s) no "
-+                                     "longer affine to cpu%d\n",
-+                                      task_pid_nr(p), p->comm, dead_cpu);
-+                      }
-+              }
-+      } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
-+}
-+
-+/*
-+ * While a dead CPU has no uninterruptible tasks queued at this point,
-+ * it might still have a nonzero ->nr_uninterruptible counter, because
-+ * for performance reasons the counter is not stricly tracking tasks to
-+ * their home CPUs. So we just add the counter to another CPU's counter,
-+ * to keep the global sum constant after CPU-down:
-+ */
-+static void migrate_nr_uninterruptible(struct rq *rq_src)
-+{
-+      struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
-+      unsigned long flags;
-+
-+      local_irq_save(flags);
-+      double_rq_lock(rq_src, rq_dest);
-+      rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
-+      rq_src->nr_uninterruptible = 0;
-+      double_rq_unlock(rq_src, rq_dest);
-+      local_irq_restore(flags);
-+}
-+
-+/* Run through task list and migrate tasks from the dead cpu. */
-+static void migrate_live_tasks(int src_cpu)
-+{
-+      struct task_struct *p, *t;
-+
-+      read_lock(&tasklist_lock);
-+
-+      do_each_thread(t, p) {
-+              if (p == current)
-+                      continue;
-+
-+              if (task_cpu(p) == src_cpu)
-+                      move_task_off_dead_cpu(src_cpu, p);
-+      } while_each_thread(t, p);
-+
-+      read_unlock(&tasklist_lock);
-+}
-+
-+/*
-+ * Schedules idle task to be the next runnable task on current CPU.
-+ * It does so by boosting its priority to highest possible.
-+ * Used by CPU offline code.
-+ */
-+void sched_idle_next(void)
-+{
-+      int this_cpu = smp_processor_id();
-+      struct rq *rq = cpu_rq(this_cpu);
-+      struct task_struct *p = rq->idle;
-+      unsigned long flags;
-+
-+      /* cpu has to be offline */
-+      BUG_ON(cpu_online(this_cpu));
-+
-+      /*
-+       * Strictly not necessary since rest of the CPUs are stopped by now
-+       * and interrupts disabled on the current cpu.
-+       */
-+      spin_lock_irqsave(&rq->lock, flags);
-+
-+      __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
-+
-+      update_rq_clock(rq);
-+      activate_task(rq, p, 0);
-+
-+      spin_unlock_irqrestore(&rq->lock, flags);
-+}
-+
-+/*
-+ * Ensures that the idle task is using init_mm right before its cpu goes
-+ * offline.
-+ */
-+void idle_task_exit(void)
-+{
-+      struct mm_struct *mm = current->active_mm;
-+
-+      BUG_ON(cpu_online(smp_processor_id()));
-+
-+      if (mm != &init_mm)
-+              switch_mm(mm, &init_mm, current);
-+      mmdrop(mm);
-+}
-+
-+/* called under rq->lock with disabled interrupts */
-+static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
-+{
-+      struct rq *rq = cpu_rq(dead_cpu);
-+
-+      /* Must be exiting, otherwise would be on tasklist. */
-+      BUG_ON(!p->exit_state);
-+
-+      /* Cannot have done final schedule yet: would have vanished. */
-+      BUG_ON(p->state == TASK_DEAD);
-+
-+      get_task_struct(p);
-+
-+      /*
-+       * Drop lock around migration; if someone else moves it,
-+       * that's OK. No task can be added to this CPU, so iteration is
-+       * fine.
-+       */
-+      spin_unlock_irq(&rq->lock);
-+      move_task_off_dead_cpu(dead_cpu, p);
-+      spin_lock_irq(&rq->lock);
-+
-+      put_task_struct(p);
-+}
-+
-+/* release_task() removes task from tasklist, so we won't find dead tasks. */
-+static void migrate_dead_tasks(unsigned int dead_cpu)
-+{
-+      struct rq *rq = cpu_rq(dead_cpu);
-+      struct task_struct *next;
-+
-+      for ( ; ; ) {
-+              if (!rq->nr_running)
-+                      break;
-+              update_rq_clock(rq);
-+              next = pick_next_task(rq, rq->curr);
-+              if (!next)
-+                      break;
-+              next->sched_class->put_prev_task(rq, next);
-+              migrate_dead(dead_cpu, next);
-+
-+      }
-+}
-+#endif /* CONFIG_HOTPLUG_CPU */
-+
-+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
-+
-+static struct ctl_table sd_ctl_dir[] = {
-+      {
-+              .procname       = "sched_domain",
-+              .mode           = 0555,
-+      },
-+      {0, },
-+};
-+
-+static struct ctl_table sd_ctl_root[] = {
-+      {
-+              .ctl_name       = CTL_KERN,
-+              .procname       = "kernel",
-+              .mode           = 0555,
-+              .child          = sd_ctl_dir,
-+      },
-+      {0, },
-+};
-+
-+static struct ctl_table *sd_alloc_ctl_entry(int n)
-+{
-+      struct ctl_table *entry =
-+              kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
-+
-+      return entry;
-+}
-+
-+static void sd_free_ctl_entry(struct ctl_table **tablep)
-+{
-+      struct ctl_table *entry;
-+
-+      /*
-+       * In the intermediate directories, both the child directory and
-+       * procname are dynamically allocated and could fail but the mode
-+       * will always be set. In the lowest directory the names are
-+       * static strings and all have proc handlers.
-+       */
-+      for (entry = *tablep; entry->mode; entry++) {
-+              if (entry->child)
-+                      sd_free_ctl_entry(&entry->child);
-+              if (entry->proc_handler == NULL)
-+                      kfree(entry->procname);
-+      }
-+
-+      kfree(*tablep);
-+      *tablep = NULL;
-+}
-+
-+static void
-+set_table_entry(struct ctl_table *entry,
-+              const char *procname, void *data, int maxlen,
-+              mode_t mode, proc_handler *proc_handler)
-+{
-+      entry->procname = procname;
-+      entry->data = data;
-+      entry->maxlen = maxlen;
-+      entry->mode = mode;
-+      entry->proc_handler = proc_handler;
-+}
-+
-+static struct ctl_table *
-+sd_alloc_ctl_domain_table(struct sched_domain *sd)
-+{
-+      struct ctl_table *table = sd_alloc_ctl_entry(12);
-+
-+      if (table == NULL)
-+              return NULL;
-+
-+      set_table_entry(&table[0], "min_interval", &sd->min_interval,
-+              sizeof(long), 0644, proc_doulongvec_minmax);
-+      set_table_entry(&table[1], "max_interval", &sd->max_interval,
-+              sizeof(long), 0644, proc_doulongvec_minmax);
-+      set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
-+              sizeof(int), 0644, proc_dointvec_minmax);
-+      set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
-+              sizeof(int), 0644, proc_dointvec_minmax);
-+      set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
-+              sizeof(int), 0644, proc_dointvec_minmax);
-+      set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
-+              sizeof(int), 0644, proc_dointvec_minmax);
-+      set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
-+              sizeof(int), 0644, proc_dointvec_minmax);
-+      set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
-+              sizeof(int), 0644, proc_dointvec_minmax);
-+      set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
-+              sizeof(int), 0644, proc_dointvec_minmax);
-+      set_table_entry(&table[9], "cache_nice_tries",
-+              &sd->cache_nice_tries,
-+              sizeof(int), 0644, proc_dointvec_minmax);
-+      set_table_entry(&table[10], "flags", &sd->flags,
-+              sizeof(int), 0644, proc_dointvec_minmax);
-+      /* &table[11] is terminator */
-+
-+      return table;
-+}
-+
-+static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
-+{
-+      struct ctl_table *entry, *table;
-+      struct sched_domain *sd;
-+      int domain_num = 0, i;
-+      char buf[32];
-+
-+      for_each_domain(cpu, sd)
-+              domain_num++;
-+      entry = table = sd_alloc_ctl_entry(domain_num + 1);
-+      if (table == NULL)
-+              return NULL;
-+
-+      i = 0;
-+      for_each_domain(cpu, sd) {
-+              snprintf(buf, 32, "domain%d", i);
-+              entry->procname = kstrdup(buf, GFP_KERNEL);
-+              entry->mode = 0555;
-+              entry->child = sd_alloc_ctl_domain_table(sd);
-+              entry++;
-+              i++;
-+      }
-+      return table;
-+}
-+
-+static struct ctl_table_header *sd_sysctl_header;
-+static void register_sched_domain_sysctl(void)
-+{
-+      int i, cpu_num = num_online_cpus();
-+      struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
-+      char buf[32];
-+
-+      WARN_ON(sd_ctl_dir[0].child);
-+      sd_ctl_dir[0].child = entry;
-+
-+      if (entry == NULL)
-+              return;
-+
-+      for_each_online_cpu(i) {
-+              snprintf(buf, 32, "cpu%d", i);
-+              entry->procname = kstrdup(buf, GFP_KERNEL);
-+              entry->mode = 0555;
-+              entry->child = sd_alloc_ctl_cpu_table(i);
-+              entry++;
-+      }
-+
-+      WARN_ON(sd_sysctl_header);
-+      sd_sysctl_header = register_sysctl_table(sd_ctl_root);
-+}
-+
-+/* may be called multiple times per register */
-+static void unregister_sched_domain_sysctl(void)
-+{
-+      if (sd_sysctl_header)
-+              unregister_sysctl_table(sd_sysctl_header);
-+      sd_sysctl_header = NULL;
-+      if (sd_ctl_dir[0].child)
-+              sd_free_ctl_entry(&sd_ctl_dir[0].child);
-+}
-+#else
-+static void register_sched_domain_sysctl(void)
-+{
-+}
-+static void unregister_sched_domain_sysctl(void)
-+{
-+}
-+#endif
-+
-+static void set_rq_online(struct rq *rq)
-+{
-+      if (!rq->online) {
-+              const struct sched_class *class;
-+
-+              cpu_set(rq->cpu, rq->rd->online);
-+              rq->online = 1;
-+
-+              for_each_class(class) {
-+                      if (class->rq_online)
-+                              class->rq_online(rq);
-+              }
-+      }
-+}
-+
-+static void set_rq_offline(struct rq *rq)
-+{
-+      if (rq->online) {
-+              const struct sched_class *class;
-+
-+              for_each_class(class) {
-+                      if (class->rq_offline)
-+                              class->rq_offline(rq);
-+              }
-+
-+              cpu_clear(rq->cpu, rq->rd->online);
-+              rq->online = 0;
-+      }
-+}
-+
-+/*
-+ * migration_call - callback that gets triggered when a CPU is added.
-+ * Here we can start up the necessary migration thread for the new CPU.
-+ */
-+static int __cpuinit
-+migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
-+{
-+      struct task_struct *p;
-+      int cpu = (long)hcpu;
-+      unsigned long flags;
-+      struct rq *rq;
-+
-+      switch (action) {
-+
-+      case CPU_UP_PREPARE:
-+      case CPU_UP_PREPARE_FROZEN:
-+              p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
-+              if (IS_ERR(p))
-+                      return NOTIFY_BAD;
-+              kthread_bind(p, cpu);
-+              /* Must be high prio: stop_machine expects to yield to it. */
-+              rq = task_rq_lock(p, &flags);
-+              __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
-+              task_rq_unlock(rq, &flags);
-+              cpu_rq(cpu)->migration_thread = p;
-+              break;
-+
-+      case CPU_ONLINE:
-+      case CPU_ONLINE_FROZEN:
-+              /* Strictly unnecessary, as first user will wake it. */
-+              wake_up_process(cpu_rq(cpu)->migration_thread);
-+
-+              /* Update our root-domain */
-+              rq = cpu_rq(cpu);
-+              spin_lock_irqsave(&rq->lock, flags);
-+              if (rq->rd) {
-+                      BUG_ON(!cpu_isset(cpu, rq->rd->span));
-+
-+                      set_rq_online(rq);
-+              }
-+              spin_unlock_irqrestore(&rq->lock, flags);
-+              break;
-+
-+#ifdef CONFIG_HOTPLUG_CPU
-+      case CPU_UP_CANCELED:
-+      case CPU_UP_CANCELED_FROZEN:
-+              if (!cpu_rq(cpu)->migration_thread)
-+                      break;
-+              /* Unbind it from offline cpu so it can run. Fall thru. */
-+              kthread_bind(cpu_rq(cpu)->migration_thread,
-+                           any_online_cpu(cpu_online_map));
-+              kthread_stop(cpu_rq(cpu)->migration_thread);
-+              cpu_rq(cpu)->migration_thread = NULL;
-+              break;
-+
-+      case CPU_DEAD:
-+      case CPU_DEAD_FROZEN:
-+              cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
-+              migrate_live_tasks(cpu);
-+              rq = cpu_rq(cpu);
-+              kthread_stop(rq->migration_thread);
-+              rq->migration_thread = NULL;
-+              /* Idle task back to normal (off runqueue, low prio) */
-+              spin_lock_irq(&rq->lock);
-+              update_rq_clock(rq);
-+              deactivate_task(rq, rq->idle, 0);
-+              rq->idle->static_prio = MAX_PRIO;
-+              __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
-+              rq->idle->sched_class = &idle_sched_class;
-+              migrate_dead_tasks(cpu);
-+              spin_unlock_irq(&rq->lock);
-+              cpuset_unlock();
-+              migrate_nr_uninterruptible(rq);
-+              BUG_ON(rq->nr_running != 0);
-+
-+              /*
-+               * No need to migrate the tasks: it was best-effort if
-+               * they didn't take sched_hotcpu_mutex. Just wake up
-+               * the requestors.
-+               */
-+              spin_lock_irq(&rq->lock);
-+              while (!list_empty(&rq->migration_queue)) {
-+                      struct migration_req *req;
-+
-+                      req = list_entry(rq->migration_queue.next,
-+                                       struct migration_req, list);
-+                      list_del_init(&req->list);
-+                      spin_unlock_irq(&rq->lock);
-+                      complete(&req->done);
-+                      spin_lock_irq(&rq->lock);
-+              }
-+              spin_unlock_irq(&rq->lock);
-+              break;
-+
-+      case CPU_DYING:
-+      case CPU_DYING_FROZEN:
-+              /* Update our root-domain */
-+              rq = cpu_rq(cpu);
-+              spin_lock_irqsave(&rq->lock, flags);
-+              if (rq->rd) {
-+                      BUG_ON(!cpu_isset(cpu, rq->rd->span));
-+                      set_rq_offline(rq);
-+              }
-+              spin_unlock_irqrestore(&rq->lock, flags);
-+              break;
-+#endif
-+      }
-+      return NOTIFY_OK;
-+}
-+
-+/* Register at highest priority so that task migration (migrate_all_tasks)
-+ * happens before everything else.
-+ */
-+static struct notifier_block __cpuinitdata migration_notifier = {
-+      .notifier_call = migration_call,
-+      .priority = 10
-+};
-+
-+static int __init migration_init(void)
-+{
-+      void *cpu = (void *)(long)smp_processor_id();
-+      int err;
-+
-+      /* Start one for the boot CPU: */
-+      err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
-+      BUG_ON(err == NOTIFY_BAD);
-+      migration_call(&migration_notifier, CPU_ONLINE, cpu);
-+      register_cpu_notifier(&migration_notifier);
-+
-+      return err;
-+}
-+early_initcall(migration_init);
-+#endif
-+
-+#ifdef CONFIG_SMP
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+
-+static inline const char *sd_level_to_string(enum sched_domain_level lvl)
-+{
-+      switch (lvl) {
-+      case SD_LV_NONE:
-+                      return "NONE";
-+      case SD_LV_SIBLING:
-+                      return "SIBLING";
-+      case SD_LV_MC:
-+                      return "MC";
-+      case SD_LV_CPU:
-+                      return "CPU";
-+      case SD_LV_NODE:
-+                      return "NODE";
-+      case SD_LV_ALLNODES:
-+                      return "ALLNODES";
-+      case SD_LV_MAX:
-+                      return "MAX";
-+
-+      }
-+      return "MAX";
-+}
-+
-+static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
-+                                cpumask_t *groupmask)
-+{
-+      struct sched_group *group = sd->groups;
-+      char str[256];
-+
-+      cpulist_scnprintf(str, sizeof(str), sd->span);
-+      cpus_clear(*groupmask);
-+
-+      printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
-+
-+      if (!(sd->flags & SD_LOAD_BALANCE)) {
-+              printk("does not load-balance\n");
-+              if (sd->parent)
-+                      printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
-+                                      " has parent");
-+              return -1;
-+      }
-+
-+      printk(KERN_CONT "span %s level %s\n",
-+              str, sd_level_to_string(sd->level));
-+
-+      if (!cpu_isset(cpu, sd->span)) {
-+              printk(KERN_ERR "ERROR: domain->span does not contain "
-+                              "CPU%d\n", cpu);
-+      }
-+      if (!cpu_isset(cpu, group->cpumask)) {
-+              printk(KERN_ERR "ERROR: domain->groups does not contain"
-+                              " CPU%d\n", cpu);
-+      }
-+
-+      printk(KERN_DEBUG "%*s groups:", level + 1, "");
-+      do {
-+              if (!group) {
-+                      printk("\n");
-+                      printk(KERN_ERR "ERROR: group is NULL\n");
-+                      break;
-+              }
-+
-+              if (!group->__cpu_power) {
-+                      printk(KERN_CONT "\n");
-+                      printk(KERN_ERR "ERROR: domain->cpu_power not "
-+                                      "set\n");
-+                      break;
-+              }
-+
-+              if (!cpus_weight(group->cpumask)) {
-+                      printk(KERN_CONT "\n");
-+                      printk(KERN_ERR "ERROR: empty group\n");
-+                      break;
-+              }
-+
-+              if (cpus_intersects(*groupmask, group->cpumask)) {
-+                      printk(KERN_CONT "\n");
-+                      printk(KERN_ERR "ERROR: repeated CPUs\n");
-+                      break;
-+              }
-+
-+              cpus_or(*groupmask, *groupmask, group->cpumask);
-+
-+              cpulist_scnprintf(str, sizeof(str), group->cpumask);
-+              printk(KERN_CONT " %s", str);
-+
-+              group = group->next;
-+      } while (group != sd->groups);
-+      printk(KERN_CONT "\n");
-+
-+      if (!cpus_equal(sd->span, *groupmask))
-+              printk(KERN_ERR "ERROR: groups don't span domain->span\n");
-+
-+      if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
-+              printk(KERN_ERR "ERROR: parent span is not a superset "
-+                      "of domain->span\n");
-+      return 0;
-+}
-+
-+static void sched_domain_debug(struct sched_domain *sd, int cpu)
-+{
-+      cpumask_t *groupmask;
-+      int level = 0;
-+
-+      if (!sd) {
-+              printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
-+              return;
-+      }
-+
-+      printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
-+
-+      groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
-+      if (!groupmask) {
-+              printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
-+              return;
-+      }
-+
-+      for (;;) {
-+              if (sched_domain_debug_one(sd, cpu, level, groupmask))
-+                      break;
-+              level++;
-+              sd = sd->parent;
-+              if (!sd)
-+                      break;
-+      }
-+      kfree(groupmask);
-+}
-+#else /* !CONFIG_SCHED_DEBUG */
-+# define sched_domain_debug(sd, cpu) do { } while (0)
-+#endif /* CONFIG_SCHED_DEBUG */
-+
-+static int sd_degenerate(struct sched_domain *sd)
-+{
-+      if (cpus_weight(sd->span) == 1)
-+              return 1;
-+
-+      /* Following flags need at least 2 groups */
-+      if (sd->flags & (SD_LOAD_BALANCE |
-+                       SD_BALANCE_NEWIDLE |
-+                       SD_BALANCE_FORK |
-+                       SD_BALANCE_EXEC |
-+                       SD_SHARE_CPUPOWER |
-+                       SD_SHARE_PKG_RESOURCES)) {
-+              if (sd->groups != sd->groups->next)
-+                      return 0;
-+      }
-+
-+      /* Following flags don't use groups */
-+      if (sd->flags & (SD_WAKE_IDLE |
-+                       SD_WAKE_AFFINE |
-+                       SD_WAKE_BALANCE))
-+              return 0;
-+
-+      return 1;
-+}
-+
-+static int
-+sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
-+{
-+      unsigned long cflags = sd->flags, pflags = parent->flags;
-+
-+      if (sd_degenerate(parent))
-+              return 1;
-+
-+      if (!cpus_equal(sd->span, parent->span))
-+              return 0;
-+
-+      /* Does parent contain flags not in child? */
-+      /* WAKE_BALANCE is a subset of WAKE_AFFINE */
-+      if (cflags & SD_WAKE_AFFINE)
-+              pflags &= ~SD_WAKE_BALANCE;
-+      /* Flags needing groups don't count if only 1 group in parent */
-+      if (parent->groups == parent->groups->next) {
-+              pflags &= ~(SD_LOAD_BALANCE |
-+                              SD_BALANCE_NEWIDLE |
-+                              SD_BALANCE_FORK |
-+                              SD_BALANCE_EXEC |
-+                              SD_SHARE_CPUPOWER |
-+                              SD_SHARE_PKG_RESOURCES);
-+      }
-+      if (~cflags & pflags)
-+              return 0;
-+
-+      return 1;
-+}
-+
-+static void rq_attach_root(struct rq *rq, struct root_domain *rd)
-+{
-+      unsigned long flags;
-+
-+      spin_lock_irqsave(&rq->lock, flags);
-+
-+      if (rq->rd) {
-+              struct root_domain *old_rd = rq->rd;
-+
-+              if (cpu_isset(rq->cpu, old_rd->online))
-+                      set_rq_offline(rq);
-+
-+              cpu_clear(rq->cpu, old_rd->span);
-+
-+              if (atomic_dec_and_test(&old_rd->refcount))
-+                      kfree(old_rd);
-+      }
-+
-+      atomic_inc(&rd->refcount);
-+      rq->rd = rd;
-+
-+      cpu_set(rq->cpu, rd->span);
-+      if (cpu_isset(rq->cpu, cpu_online_map))
-+              set_rq_online(rq);
-+
-+      spin_unlock_irqrestore(&rq->lock, flags);
-+}
-+
-+static void init_rootdomain(struct root_domain *rd)
-+{
-+      memset(rd, 0, sizeof(*rd));
-+
-+      cpus_clear(rd->span);
-+      cpus_clear(rd->online);
-+
-+      cpupri_init(&rd->cpupri);
-+}
-+
-+static void init_defrootdomain(void)
-+{
-+      init_rootdomain(&def_root_domain);
-+      atomic_set(&def_root_domain.refcount, 1);
-+}
-+
-+static struct root_domain *alloc_rootdomain(void)
-+{
-+      struct root_domain *rd;
-+
-+      rd = kmalloc(sizeof(*rd), GFP_KERNEL);
-+      if (!rd)
-+              return NULL;
-+
-+      init_rootdomain(rd);
-+
-+      return rd;
-+}
-+
-+/*
-+ * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
-+ * hold the hotplug lock.
-+ */
-+static void
-+cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
-+{
-+      struct rq *rq = cpu_rq(cpu);
-+      struct sched_domain *tmp;
-+
-+      /* Remove the sched domains which do not contribute to scheduling. */
-+      for (tmp = sd; tmp; ) {
-+              struct sched_domain *parent = tmp->parent;
-+              if (!parent)
-+                      break;
-+
-+              if (sd_parent_degenerate(tmp, parent)) {
-+                      tmp->parent = parent->parent;
-+                      if (parent->parent)
-+                              parent->parent->child = tmp;
-+              } else
-+                      tmp = tmp->parent;
-+      }
-+
-+      if (sd && sd_degenerate(sd)) {
-+              sd = sd->parent;
-+              if (sd)
-+                      sd->child = NULL;
-+      }
-+
-+      sched_domain_debug(sd, cpu);
-+
-+      rq_attach_root(rq, rd);
-+      rcu_assign_pointer(rq->sd, sd);
-+}
-+
-+/* cpus with isolated domains */
-+static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
-+
-+/* Setup the mask of cpus configured for isolated domains */
-+static int __init isolated_cpu_setup(char *str)
-+{
-+      static int __initdata ints[NR_CPUS];
-+      int i;
-+
-+      str = get_options(str, ARRAY_SIZE(ints), ints);
-+      cpus_clear(cpu_isolated_map);
-+      for (i = 1; i <= ints[0]; i++)
-+              if (ints[i] < NR_CPUS)
-+                      cpu_set(ints[i], cpu_isolated_map);
-+      return 1;
-+}
-+
-+__setup("isolcpus=", isolated_cpu_setup);
-+
-+/*
-+ * init_sched_build_groups takes the cpumask we wish to span, and a pointer
-+ * to a function which identifies what group(along with sched group) a CPU
-+ * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
-+ * (due to the fact that we keep track of groups covered with a cpumask_t).
-+ *
-+ * init_sched_build_groups will build a circular linked list of the groups
-+ * covered by the given span, and will set each group's ->cpumask correctly,
-+ * and ->cpu_power to 0.
-+ */
-+static void
-+init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
-+                      int (*group_fn)(int cpu, const cpumask_t *cpu_map,
-+                                      struct sched_group **sg,
-+                                      cpumask_t *tmpmask),
-+                      cpumask_t *covered, cpumask_t *tmpmask)
-+{
-+      struct sched_group *first = NULL, *last = NULL;
-+      int i;
-+
-+      cpus_clear(*covered);
-+
-+      for_each_cpu_mask_nr(i, *span) {
-+              struct sched_group *sg;
-+              int group = group_fn(i, cpu_map, &sg, tmpmask);
-+              int j;
-+
-+              if (cpu_isset(i, *covered))
-+                      continue;
-+
-+              cpus_clear(sg->cpumask);
-+              sg->__cpu_power = 0;
-+
-+              for_each_cpu_mask_nr(j, *span) {
-+                      if (group_fn(j, cpu_map, NULL, tmpmask) != group)
-+                              continue;
-+
-+                      cpu_set(j, *covered);
-+                      cpu_set(j, sg->cpumask);
-+              }
-+              if (!first)
-+                      first = sg;
-+              if (last)
-+                      last->next = sg;
-+              last = sg;
-+      }
-+      last->next = first;
-+}
-+
-+#define SD_NODES_PER_DOMAIN 16
-+
-+#ifdef CONFIG_NUMA
-+
-+/**
-+ * find_next_best_node - find the next node to include in a sched_domain
-+ * @node: node whose sched_domain we're building
-+ * @used_nodes: nodes already in the sched_domain
-+ *
-+ * Find the next node to include in a given scheduling domain. Simply
-+ * finds the closest node not already in the @used_nodes map.
-+ *
-+ * Should use nodemask_t.
-+ */
-+static int find_next_best_node(int node, nodemask_t *used_nodes)
-+{
-+      int i, n, val, min_val, best_node = 0;
-+
-+      min_val = INT_MAX;
-+
-+      for (i = 0; i < nr_node_ids; i++) {
-+              /* Start at @node */
-+              n = (node + i) % nr_node_ids;
-+
-+              if (!nr_cpus_node(n))
-+                      continue;
-+
-+              /* Skip already used nodes */
-+              if (node_isset(n, *used_nodes))
-+                      continue;
-+
-+              /* Simple min distance search */
-+              val = node_distance(node, n);
-+
-+              if (val < min_val) {
-+                      min_val = val;
-+                      best_node = n;
-+              }
-+      }
-+
-+      node_set(best_node, *used_nodes);
-+      return best_node;
-+}
-+
-+/**
-+ * sched_domain_node_span - get a cpumask for a node's sched_domain
-+ * @node: node whose cpumask we're constructing
-+ * @span: resulting cpumask
-+ *
-+ * Given a node, construct a good cpumask for its sched_domain to span. It
-+ * should be one that prevents unnecessary balancing, but also spreads tasks
-+ * out optimally.
-+ */
-+static void sched_domain_node_span(int node, cpumask_t *span)
-+{
-+      nodemask_t used_nodes;
-+      node_to_cpumask_ptr(nodemask, node);
-+      int i;
-+
-+      cpus_clear(*span);
-+      nodes_clear(used_nodes);
-+
-+      cpus_or(*span, *span, *nodemask);
-+      node_set(node, used_nodes);
-+
-+      for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
-+              int next_node = find_next_best_node(node, &used_nodes);
-+
-+              node_to_cpumask_ptr_next(nodemask, next_node);
-+              cpus_or(*span, *span, *nodemask);
-+      }
-+}
-+#endif /* CONFIG_NUMA */
-+
-+int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
-+
-+/*
-+ * SMT sched-domains:
-+ */
-+#ifdef CONFIG_SCHED_SMT
-+static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
-+static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
-+
-+static int
-+cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
-+               cpumask_t *unused)
-+{
-+      if (sg)
-+              *sg = &per_cpu(sched_group_cpus, cpu);
-+      return cpu;
-+}
-+#endif /* CONFIG_SCHED_SMT */
-+
-+/*
-+ * multi-core sched-domains:
-+ */
-+#ifdef CONFIG_SCHED_MC
-+static DEFINE_PER_CPU(struct sched_domain, core_domains);
-+static DEFINE_PER_CPU(struct sched_group, sched_group_core);
-+#endif /* CONFIG_SCHED_MC */
-+
-+#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
-+static int
-+cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
-+                cpumask_t *mask)
-+{
-+      int group;
-+
-+      *mask = per_cpu(cpu_sibling_map, cpu);
-+      cpus_and(*mask, *mask, *cpu_map);
-+      group = first_cpu(*mask);
-+      if (sg)
-+              *sg = &per_cpu(sched_group_core, group);
-+      return group;
-+}
-+#elif defined(CONFIG_SCHED_MC)
-+static int
-+cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
-+                cpumask_t *unused)
-+{
-+      if (sg)
-+              *sg = &per_cpu(sched_group_core, cpu);
-+      return cpu;
-+}
-+#endif
-+
-+static DEFINE_PER_CPU(struct sched_domain, phys_domains);
-+static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
-+
-+static int
-+cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
-+                cpumask_t *mask)
-+{
-+      int group;
-+#ifdef CONFIG_SCHED_MC
-+      *mask = cpu_coregroup_map(cpu);
-+      cpus_and(*mask, *mask, *cpu_map);
-+      group = first_cpu(*mask);
-+#elif defined(CONFIG_SCHED_SMT)
-+      *mask = per_cpu(cpu_sibling_map, cpu);
-+      cpus_and(*mask, *mask, *cpu_map);
-+      group = first_cpu(*mask);
-+#else
-+      group = cpu;
-+#endif
-+      if (sg)
-+              *sg = &per_cpu(sched_group_phys, group);
-+      return group;
-+}
-+
-+#ifdef CONFIG_NUMA
-+/*
-+ * The init_sched_build_groups can't handle what we want to do with node
-+ * groups, so roll our own. Now each node has its own list of groups which
-+ * gets dynamically allocated.
-+ */
-+static DEFINE_PER_CPU(struct sched_domain, node_domains);
-+static struct sched_group ***sched_group_nodes_bycpu;
-+
-+static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
-+static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
-+
-+static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
-+                               struct sched_group **sg, cpumask_t *nodemask)
-+{
-+      int group;
-+
-+      *nodemask = node_to_cpumask(cpu_to_node(cpu));
-+      cpus_and(*nodemask, *nodemask, *cpu_map);
-+      group = first_cpu(*nodemask);
-+
-+      if (sg)
-+              *sg = &per_cpu(sched_group_allnodes, group);
-+      return group;
-+}
-+
-+static void init_numa_sched_groups_power(struct sched_group *group_head)
-+{
-+      struct sched_group *sg = group_head;
-+      int j;
-+
-+      if (!sg)
-+              return;
-+      do {
-+              for_each_cpu_mask_nr(j, sg->cpumask) {
-+                      struct sched_domain *sd;
-+
-+                      sd = &per_cpu(phys_domains, j);
-+                      if (j != first_cpu(sd->groups->cpumask)) {
-+                              /*
-+                               * Only add "power" once for each
-+                               * physical package.
-+                               */
-+                              continue;
-+                      }
-+
-+                      sg_inc_cpu_power(sg, sd->groups->__cpu_power);
-+              }
-+              sg = sg->next;
-+      } while (sg != group_head);
-+}
-+#endif /* CONFIG_NUMA */
-+
-+#ifdef CONFIG_NUMA
-+/* Free memory allocated for various sched_group structures */
-+static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
-+{
-+      int cpu, i;
-+
-+      for_each_cpu_mask_nr(cpu, *cpu_map) {
-+              struct sched_group **sched_group_nodes
-+                      = sched_group_nodes_bycpu[cpu];
-+
-+              if (!sched_group_nodes)
-+                      continue;
-+
-+              for (i = 0; i < nr_node_ids; i++) {
-+                      struct sched_group *oldsg, *sg = sched_group_nodes[i];
-+
-+                      *nodemask = node_to_cpumask(i);
-+                      cpus_and(*nodemask, *nodemask, *cpu_map);
-+                      if (cpus_empty(*nodemask))
-+                              continue;
-+
-+                      if (sg == NULL)
-+                              continue;
-+                      sg = sg->next;
-+next_sg:
-+                      oldsg = sg;
-+                      sg = sg->next;
-+                      kfree(oldsg);
-+                      if (oldsg != sched_group_nodes[i])
-+                              goto next_sg;
-+              }
-+              kfree(sched_group_nodes);
-+              sched_group_nodes_bycpu[cpu] = NULL;
-+      }
-+}
-+#else /* !CONFIG_NUMA */
-+static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
-+{
-+}
-+#endif /* CONFIG_NUMA */
-+
-+/*
-+ * Initialize sched groups cpu_power.
-+ *
-+ * cpu_power indicates the capacity of sched group, which is used while
-+ * distributing the load between different sched groups in a sched domain.
-+ * Typically cpu_power for all the groups in a sched domain will be same unless
-+ * there are asymmetries in the topology. If there are asymmetries, group
-+ * having more cpu_power will pickup more load compared to the group having
-+ * less cpu_power.
-+ *
-+ * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
-+ * the maximum number of tasks a group can handle in the presence of other idle
-+ * or lightly loaded groups in the same sched domain.
-+ */
-+static void init_sched_groups_power(int cpu, struct sched_domain *sd)
-+{
-+      struct sched_domain *child;
-+      struct sched_group *group;
-+
-+      WARN_ON(!sd || !sd->groups);
-+
-+      if (cpu != first_cpu(sd->groups->cpumask))
-+              return;
-+
-+      child = sd->child;
-+
-+      sd->groups->__cpu_power = 0;
-+
-+      /*
-+       * For perf policy, if the groups in child domain share resources
-+       * (for example cores sharing some portions of the cache hierarchy
-+       * or SMT), then set this domain groups cpu_power such that each group
-+       * can handle only one task, when there are other idle groups in the
-+       * same sched domain.
-+       */
-+      if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
-+                     (child->flags &
-+                      (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
-+              sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
-+              return;
-+      }
-+
-+      /*
-+       * add cpu_power of each child group to this groups cpu_power
-+       */
-+      group = child->groups;
-+      do {
-+              sg_inc_cpu_power(sd->groups, group->__cpu_power);
-+              group = group->next;
-+      } while (group != child->groups);
-+}
-+
-+/*
-+ * Initializers for schedule domains
-+ * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
-+ */
-+
-+#define       SD_INIT(sd, type)       sd_init_##type(sd)
-+#define SD_INIT_FUNC(type)    \
-+static noinline void sd_init_##type(struct sched_domain *sd)  \
-+{                                                             \
-+      memset(sd, 0, sizeof(*sd));                             \
-+      *sd = SD_##type##_INIT;                                 \
-+      sd->level = SD_LV_##type;                               \
-+}
-+
-+SD_INIT_FUNC(CPU)
-+#ifdef CONFIG_NUMA
-+ SD_INIT_FUNC(ALLNODES)
-+ SD_INIT_FUNC(NODE)
-+#endif
-+#ifdef CONFIG_SCHED_SMT
-+ SD_INIT_FUNC(SIBLING)
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+ SD_INIT_FUNC(MC)
-+#endif
-+
-+/*
-+ * To minimize stack usage kmalloc room for cpumasks and share the
-+ * space as the usage in build_sched_domains() dictates.  Used only
-+ * if the amount of space is significant.
-+ */
-+struct allmasks {
-+      cpumask_t tmpmask;                      /* make this one first */
-+      union {
-+              cpumask_t nodemask;
-+              cpumask_t this_sibling_map;
-+              cpumask_t this_core_map;
-+      };
-+      cpumask_t send_covered;
-+
-+#ifdef CONFIG_NUMA
-+      cpumask_t domainspan;
-+      cpumask_t covered;
-+      cpumask_t notcovered;
-+#endif
-+};
-+
-+#if   NR_CPUS > 128
-+#define       SCHED_CPUMASK_ALLOC             1
-+#define       SCHED_CPUMASK_FREE(v)           kfree(v)
-+#define       SCHED_CPUMASK_DECLARE(v)        struct allmasks *v
-+#else
-+#define       SCHED_CPUMASK_ALLOC             0
-+#define       SCHED_CPUMASK_FREE(v)
-+#define       SCHED_CPUMASK_DECLARE(v)        struct allmasks _v, *v = &_v
-+#endif
-+
-+#define       SCHED_CPUMASK_VAR(v, a)         cpumask_t *v = (cpumask_t *) \
-+                      ((unsigned long)(a) + offsetof(struct allmasks, v))
-+
-+static int default_relax_domain_level = -1;
-+
-+static int __init setup_relax_domain_level(char *str)
-+{
-+      unsigned long val;
-+
-+      val = simple_strtoul(str, NULL, 0);
-+      if (val < SD_LV_MAX)
-+              default_relax_domain_level = val;
-+
-+      return 1;
-+}
-+__setup("relax_domain_level=", setup_relax_domain_level);
-+
-+static void set_domain_attribute(struct sched_domain *sd,
-+                               struct sched_domain_attr *attr)
-+{
-+      int request;
-+
-+      if (!attr || attr->relax_domain_level < 0) {
-+              if (default_relax_domain_level < 0)
-+                      return;
-+              else
-+                      request = default_relax_domain_level;
-+      } else
-+              request = attr->relax_domain_level;
-+      if (request < sd->level) {
-+              /* turn off idle balance on this domain */
-+              sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
-+      } else {
-+              /* turn on idle balance on this domain */
-+              sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
-+      }
-+}
-+
-+/*
-+ * Build sched domains for a given set of cpus and attach the sched domains
-+ * to the individual cpus
-+ */
-+static int __build_sched_domains(const cpumask_t *cpu_map,
-+                               struct sched_domain_attr *attr)
-+{
-+      int i;
-+      struct root_domain *rd;
-+      SCHED_CPUMASK_DECLARE(allmasks);
-+      cpumask_t *tmpmask;
-+#ifdef CONFIG_NUMA
-+      struct sched_group **sched_group_nodes = NULL;
-+      int sd_allnodes = 0;
-+
-+      /*
-+       * Allocate the per-node list of sched groups
-+       */
-+      sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
-+                                  GFP_KERNEL);
-+      if (!sched_group_nodes) {
-+              printk(KERN_WARNING "Can not alloc sched group node list\n");
-+              return -ENOMEM;
-+      }
-+#endif
-+
-+      rd = alloc_rootdomain();
-+      if (!rd) {
-+              printk(KERN_WARNING "Cannot alloc root domain\n");
-+#ifdef CONFIG_NUMA
-+              kfree(sched_group_nodes);
-+#endif
-+              return -ENOMEM;
-+      }
-+
-+#if SCHED_CPUMASK_ALLOC
-+      /* get space for all scratch cpumask variables */
-+      allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
-+      if (!allmasks) {
-+              printk(KERN_WARNING "Cannot alloc cpumask array\n");
-+              kfree(rd);
-+#ifdef CONFIG_NUMA
-+              kfree(sched_group_nodes);
-+#endif
-+              return -ENOMEM;
-+      }
-+#endif
-+      tmpmask = (cpumask_t *)allmasks;
-+
-+
-+#ifdef CONFIG_NUMA
-+      sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
-+#endif
-+
-+      /*
-+       * Set up domains for cpus specified by the cpu_map.
-+       */
-+      for_each_cpu_mask_nr(i, *cpu_map) {
-+              struct sched_domain *sd = NULL, *p;
-+              SCHED_CPUMASK_VAR(nodemask, allmasks);
-+
-+              *nodemask = node_to_cpumask(cpu_to_node(i));
-+              cpus_and(*nodemask, *nodemask, *cpu_map);
-+
-+#ifdef CONFIG_NUMA
-+              if (cpus_weight(*cpu_map) >
-+                              SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
-+                      sd = &per_cpu(allnodes_domains, i);
-+                      SD_INIT(sd, ALLNODES);
-+                      set_domain_attribute(sd, attr);
-+                      sd->span = *cpu_map;
-+                      cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
-+                      p = sd;
-+                      sd_allnodes = 1;
-+              } else
-+                      p = NULL;
-+
-+              sd = &per_cpu(node_domains, i);
-+              SD_INIT(sd, NODE);
-+              set_domain_attribute(sd, attr);
-+              sched_domain_node_span(cpu_to_node(i), &sd->span);
-+              sd->parent = p;
-+              if (p)
-+                      p->child = sd;
-+              cpus_and(sd->span, sd->span, *cpu_map);
-+#endif
-+
-+              p = sd;
-+              sd = &per_cpu(phys_domains, i);
-+              SD_INIT(sd, CPU);
-+              set_domain_attribute(sd, attr);
-+              sd->span = *nodemask;
-+              sd->parent = p;
-+              if (p)
-+                      p->child = sd;
-+              cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
-+
-+#ifdef CONFIG_SCHED_MC
-+              p = sd;
-+              sd = &per_cpu(core_domains, i);
-+              SD_INIT(sd, MC);
-+              set_domain_attribute(sd, attr);
-+              sd->span = cpu_coregroup_map(i);
-+              cpus_and(sd->span, sd->span, *cpu_map);
-+              sd->parent = p;
-+              p->child = sd;
-+              cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
-+#endif
-+
-+#ifdef CONFIG_SCHED_SMT
-+              p = sd;
-+              sd = &per_cpu(cpu_domains, i);
-+              SD_INIT(sd, SIBLING);
-+              set_domain_attribute(sd, attr);
-+              sd->span = per_cpu(cpu_sibling_map, i);
-+              cpus_and(sd->span, sd->span, *cpu_map);
-+              sd->parent = p;
-+              p->child = sd;
-+              cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
-+#endif
-+      }
-+
-+#ifdef CONFIG_SCHED_SMT
-+      /* Set up CPU (sibling) groups */
-+      for_each_cpu_mask_nr(i, *cpu_map) {
-+              SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
-+              SCHED_CPUMASK_VAR(send_covered, allmasks);
-+
-+              *this_sibling_map = per_cpu(cpu_sibling_map, i);
-+              cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
-+              if (i != first_cpu(*this_sibling_map))
-+                      continue;
-+
-+              init_sched_build_groups(this_sibling_map, cpu_map,
-+                                      &cpu_to_cpu_group,
-+                                      send_covered, tmpmask);
-+      }
-+#endif
-+
-+#ifdef CONFIG_SCHED_MC
-+      /* Set up multi-core groups */
-+      for_each_cpu_mask_nr(i, *cpu_map) {
-+              SCHED_CPUMASK_VAR(this_core_map, allmasks);
-+              SCHED_CPUMASK_VAR(send_covered, allmasks);
-+
-+              *this_core_map = cpu_coregroup_map(i);
-+              cpus_and(*this_core_map, *this_core_map, *cpu_map);
-+              if (i != first_cpu(*this_core_map))
-+                      continue;
-+
-+              init_sched_build_groups(this_core_map, cpu_map,
-+                                      &cpu_to_core_group,
-+                                      send_covered, tmpmask);
-+      }
-+#endif
-+
-+      /* Set up physical groups */
-+      for (i = 0; i < nr_node_ids; i++) {
-+              SCHED_CPUMASK_VAR(nodemask, allmasks);
-+              SCHED_CPUMASK_VAR(send_covered, allmasks);
-+
-+              *nodemask = node_to_cpumask(i);
-+              cpus_and(*nodemask, *nodemask, *cpu_map);
-+              if (cpus_empty(*nodemask))
-+                      continue;
-+
-+              init_sched_build_groups(nodemask, cpu_map,
-+                                      &cpu_to_phys_group,
-+                                      send_covered, tmpmask);
-+      }
-+
-+#ifdef CONFIG_NUMA
-+      /* Set up node groups */
-+      if (sd_allnodes) {
-+              SCHED_CPUMASK_VAR(send_covered, allmasks);
-+
-+              init_sched_build_groups(cpu_map, cpu_map,
-+                                      &cpu_to_allnodes_group,
-+                                      send_covered, tmpmask);
-+      }
-+
-+      for (i = 0; i < nr_node_ids; i++) {
-+              /* Set up node groups */
-+              struct sched_group *sg, *prev;
-+              SCHED_CPUMASK_VAR(nodemask, allmasks);
-+              SCHED_CPUMASK_VAR(domainspan, allmasks);
-+              SCHED_CPUMASK_VAR(covered, allmasks);
-+              int j;
-+
-+              *nodemask = node_to_cpumask(i);
-+              cpus_clear(*covered);
-+
-+              cpus_and(*nodemask, *nodemask, *cpu_map);
-+              if (cpus_empty(*nodemask)) {
-+                      sched_group_nodes[i] = NULL;
-+                      continue;
-+              }
-+
-+              sched_domain_node_span(i, domainspan);
-+              cpus_and(*domainspan, *domainspan, *cpu_map);
-+
-+              sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
-+              if (!sg) {
-+                      printk(KERN_WARNING "Can not alloc domain group for "
-+                              "node %d\n", i);
-+                      goto error;
-+              }
-+              sched_group_nodes[i] = sg;
-+              for_each_cpu_mask_nr(j, *nodemask) {
-+                      struct sched_domain *sd;
-+
-+                      sd = &per_cpu(node_domains, j);
-+                      sd->groups = sg;
-+              }
-+              sg->__cpu_power = 0;
-+              sg->cpumask = *nodemask;
-+              sg->next = sg;
-+              cpus_or(*covered, *covered, *nodemask);
-+              prev = sg;
-+
-+              for (j = 0; j < nr_node_ids; j++) {
-+                      SCHED_CPUMASK_VAR(notcovered, allmasks);
-+                      int n = (i + j) % nr_node_ids;
-+                      node_to_cpumask_ptr(pnodemask, n);
-+
-+                      cpus_complement(*notcovered, *covered);
-+                      cpus_and(*tmpmask, *notcovered, *cpu_map);
-+                      cpus_and(*tmpmask, *tmpmask, *domainspan);
-+                      if (cpus_empty(*tmpmask))
-+                              break;
-+
-+                      cpus_and(*tmpmask, *tmpmask, *pnodemask);
-+                      if (cpus_empty(*tmpmask))
-+                              continue;
-+
-+                      sg = kmalloc_node(sizeof(struct sched_group),
-+                                        GFP_KERNEL, i);
-+                      if (!sg) {
-+                              printk(KERN_WARNING
-+                              "Can not alloc domain group for node %d\n", j);
-+                              goto error;
-+                      }
-+                      sg->__cpu_power = 0;
-+                      sg->cpumask = *tmpmask;
-+                      sg->next = prev->next;
-+                      cpus_or(*covered, *covered, *tmpmask);
-+                      prev->next = sg;
-+                      prev = sg;
-+              }
-+      }
-+#endif
-+
-+      /* Calculate CPU power for physical packages and nodes */
-+#ifdef CONFIG_SCHED_SMT
-+      for_each_cpu_mask_nr(i, *cpu_map) {
-+              struct sched_domain *sd = &per_cpu(cpu_domains, i);
-+
-+              init_sched_groups_power(i, sd);
-+      }
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+      for_each_cpu_mask_nr(i, *cpu_map) {
-+              struct sched_domain *sd = &per_cpu(core_domains, i);
-+
-+              init_sched_groups_power(i, sd);
-+      }
-+#endif
-+
-+      for_each_cpu_mask_nr(i, *cpu_map) {
-+              struct sched_domain *sd = &per_cpu(phys_domains, i);
-+
-+              init_sched_groups_power(i, sd);
-+      }
-+
-+#ifdef CONFIG_NUMA
-+      for (i = 0; i < nr_node_ids; i++)
-+              init_numa_sched_groups_power(sched_group_nodes[i]);
-+
-+      if (sd_allnodes) {
-+              struct sched_group *sg;
-+
-+              cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
-+                                                              tmpmask);
-+              init_numa_sched_groups_power(sg);
-+      }
-+#endif
-+
-+      /* Attach the domains */
-+      for_each_cpu_mask_nr(i, *cpu_map) {
-+              struct sched_domain *sd;
-+#ifdef CONFIG_SCHED_SMT
-+              sd = &per_cpu(cpu_domains, i);
-+#elif defined(CONFIG_SCHED_MC)
-+              sd = &per_cpu(core_domains, i);
-+#else
-+              sd = &per_cpu(phys_domains, i);
-+#endif
-+              cpu_attach_domain(sd, rd, i);
-+      }
-+
-+      SCHED_CPUMASK_FREE((void *)allmasks);
-+      return 0;
-+
-+#ifdef CONFIG_NUMA
-+error:
-+      free_sched_groups(cpu_map, tmpmask);
-+      SCHED_CPUMASK_FREE((void *)allmasks);
-+      return -ENOMEM;
-+#endif
-+}
-+
-+static int build_sched_domains(const cpumask_t *cpu_map)
-+{
-+      return __build_sched_domains(cpu_map, NULL);
-+}
-+
-+static cpumask_t *doms_cur;   /* current sched domains */
-+static int ndoms_cur;         /* number of sched domains in 'doms_cur' */
-+static struct sched_domain_attr *dattr_cur;
-+                              /* attribues of custom domains in 'doms_cur' */
-+
-+/*
-+ * Special case: If a kmalloc of a doms_cur partition (array of
-+ * cpumask_t) fails, then fallback to a single sched domain,
-+ * as determined by the single cpumask_t fallback_doms.
-+ */
-+static cpumask_t fallback_doms;
-+
-+void __attribute__((weak)) arch_update_cpu_topology(void)
-+{
-+}
-+
-+/*
-+ * Set up scheduler domains and groups. Callers must hold the hotplug lock.
-+ * For now this just excludes isolated cpus, but could be used to
-+ * exclude other special cases in the future.
-+ */
-+static int arch_init_sched_domains(const cpumask_t *cpu_map)
-+{
-+      int err;
-+
-+      arch_update_cpu_topology();
-+      ndoms_cur = 1;
-+      doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
-+      if (!doms_cur)
-+              doms_cur = &fallback_doms;
-+      cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
-+      dattr_cur = NULL;
-+      err = build_sched_domains(doms_cur);
-+      register_sched_domain_sysctl();
-+
-+      return err;
-+}
-+
-+static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
-+                                     cpumask_t *tmpmask)
-+{
-+      free_sched_groups(cpu_map, tmpmask);
-+}
-+
-+/*
-+ * Detach sched domains from a group of cpus specified in cpu_map
-+ * These cpus will now be attached to the NULL domain
-+ */
-+static void detach_destroy_domains(const cpumask_t *cpu_map)
-+{
-+      cpumask_t tmpmask;
-+      int i;
-+
-+      unregister_sched_domain_sysctl();
-+
-+      for_each_cpu_mask_nr(i, *cpu_map)
-+              cpu_attach_domain(NULL, &def_root_domain, i);
-+      synchronize_sched();
-+      arch_destroy_sched_domains(cpu_map, &tmpmask);
-+}
-+
-+/* handle null as "default" */
-+static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
-+                      struct sched_domain_attr *new, int idx_new)
-+{
-+      struct sched_domain_attr tmp;
-+
-+      /* fast path */
-+      if (!new && !cur)
-+              return 1;
-+
-+      tmp = SD_ATTR_INIT;
-+      return !memcmp(cur ? (cur + idx_cur) : &tmp,
-+                      new ? (new + idx_new) : &tmp,
-+                      sizeof(struct sched_domain_attr));
-+}
-+
-+/*
-+ * Partition sched domains as specified by the 'ndoms_new'
-+ * cpumasks in the array doms_new[] of cpumasks. This compares
-+ * doms_new[] to the current sched domain partitioning, doms_cur[].
-+ * It destroys each deleted domain and builds each new domain.
-+ *
-+ * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
-+ * The masks don't intersect (don't overlap.) We should setup one
-+ * sched domain for each mask. CPUs not in any of the cpumasks will
-+ * not be load balanced. If the same cpumask appears both in the
-+ * current 'doms_cur' domains and in the new 'doms_new', we can leave
-+ * it as it is.
-+ *
-+ * The passed in 'doms_new' should be kmalloc'd. This routine takes
-+ * ownership of it and will kfree it when done with it. If the caller
-+ * failed the kmalloc call, then it can pass in doms_new == NULL &&
-+ * ndoms_new == 1, and partition_sched_domains() will fallback to
-+ * the single partition 'fallback_doms', it also forces the domains
-+ * to be rebuilt.
-+ *
-+ * If doms_new == NULL it will be replaced with cpu_online_map.
-+ * ndoms_new == 0 is a special case for destroying existing domains,
-+ * and it will not create the default domain.
-+ *
-+ * Call with hotplug lock held
-+ */
-+void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
-+                           struct sched_domain_attr *dattr_new)
-+{
-+      int i, j, n;
-+
-+      mutex_lock(&sched_domains_mutex);
-+
-+      /* always unregister in case we don't destroy any domains */
-+      unregister_sched_domain_sysctl();
-+
-+      n = doms_new ? ndoms_new : 0;
-+
-+      /* Destroy deleted domains */
-+      for (i = 0; i < ndoms_cur; i++) {
-+              for (j = 0; j < n; j++) {
-+                      if (cpus_equal(doms_cur[i], doms_new[j])
-+                          && dattrs_equal(dattr_cur, i, dattr_new, j))
-+                              goto match1;
-+              }
-+              /* no match - a current sched domain not in new doms_new[] */
-+              detach_destroy_domains(doms_cur + i);
-+match1:
-+              ;
-+      }
-+
-+      if (doms_new == NULL) {
-+              ndoms_cur = 0;
-+              doms_new = &fallback_doms;
-+              cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
-+              dattr_new = NULL;
-+      }
-+
-+      /* Build new domains */
-+      for (i = 0; i < ndoms_new; i++) {
-+              for (j = 0; j < ndoms_cur; j++) {
-+                      if (cpus_equal(doms_new[i], doms_cur[j])
-+                          && dattrs_equal(dattr_new, i, dattr_cur, j))
-+                              goto match2;
-+              }
-+              /* no match - add a new doms_new */
-+              __build_sched_domains(doms_new + i,
-+                                      dattr_new ? dattr_new + i : NULL);
-+match2:
-+              ;
-+      }
-+
-+      /* Remember the new sched domains */
-+      if (doms_cur != &fallback_doms)
-+              kfree(doms_cur);
-+      kfree(dattr_cur);       /* kfree(NULL) is safe */
-+      doms_cur = doms_new;
-+      dattr_cur = dattr_new;
-+      ndoms_cur = ndoms_new;
-+
-+      register_sched_domain_sysctl();
-+
-+      mutex_unlock(&sched_domains_mutex);
-+}
-+
-+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-+int arch_reinit_sched_domains(void)
-+{
-+      get_online_cpus();
-+
-+      /* Destroy domains first to force the rebuild */
-+      partition_sched_domains(0, NULL, NULL);
-+
-+      rebuild_sched_domains();
-+      put_online_cpus();
-+
-+      return 0;
-+}
-+
-+static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
-+{
-+      int ret;
-+
-+      if (buf[0] != '0' && buf[0] != '1')
-+              return -EINVAL;
-+
-+      if (smt)
-+              sched_smt_power_savings = (buf[0] == '1');
-+      else
-+              sched_mc_power_savings = (buf[0] == '1');
-+
-+      ret = arch_reinit_sched_domains();
-+
-+      return ret ? ret : count;
-+}
-+
-+#ifdef CONFIG_SCHED_MC
-+static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
-+                                         char *page)
-+{
-+      return sprintf(page, "%u\n", sched_mc_power_savings);
-+}
-+static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
-+                                          const char *buf, size_t count)
-+{
-+      return sched_power_savings_store(buf, count, 0);
-+}
-+static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
-+                       sched_mc_power_savings_show,
-+                       sched_mc_power_savings_store);
-+#endif
-+
-+#ifdef CONFIG_SCHED_SMT
-+static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
-+                                          char *page)
-+{
-+      return sprintf(page, "%u\n", sched_smt_power_savings);
-+}
-+static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
-+                                           const char *buf, size_t count)
-+{
-+      return sched_power_savings_store(buf, count, 1);
-+}
-+static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
-+                 sched_smt_power_savings_show,
-+                 sched_smt_power_savings_store);
-+#endif
-+
-+int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
-+{
-+      int err = 0;
-+
-+#ifdef CONFIG_SCHED_SMT
-+      if (smt_capable())
-+              err = sysfs_create_file(&cls->kset.kobj,
-+                                      &attr_sched_smt_power_savings.attr);
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+      if (!err && mc_capable())
-+              err = sysfs_create_file(&cls->kset.kobj,
-+                                      &attr_sched_mc_power_savings.attr);
-+#endif
-+      return err;
-+}
-+#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
-+
-+#ifndef CONFIG_CPUSETS
-+/*
-+ * Add online and remove offline CPUs from the scheduler domains.
-+ * When cpusets are enabled they take over this function.
-+ */
-+static int update_sched_domains(struct notifier_block *nfb,
-+                              unsigned long action, void *hcpu)
-+{
-+      switch (action) {
-+      case CPU_ONLINE:
-+      case CPU_ONLINE_FROZEN:
-+      case CPU_DEAD:
-+      case CPU_DEAD_FROZEN:
-+              partition_sched_domains(1, NULL, NULL);
-+              return NOTIFY_OK;
-+
-+      default:
-+              return NOTIFY_DONE;
-+      }
-+}
-+#endif
-+
-+static int update_runtime(struct notifier_block *nfb,
-+                              unsigned long action, void *hcpu)
-+{
-+      int cpu = (int)(long)hcpu;
-+
-+      switch (action) {
-+      case CPU_DOWN_PREPARE:
-+      case CPU_DOWN_PREPARE_FROZEN:
-+              disable_runtime(cpu_rq(cpu));
-+              return NOTIFY_OK;
-+
-+      case CPU_DOWN_FAILED:
-+      case CPU_DOWN_FAILED_FROZEN:
-+      case CPU_ONLINE:
-+      case CPU_ONLINE_FROZEN:
-+              enable_runtime(cpu_rq(cpu));
-+              return NOTIFY_OK;
-+
-+      default:
-+              return NOTIFY_DONE;
-+      }
-+}
-+
-+void __init sched_init_smp(void)
-+{
-+      cpumask_t non_isolated_cpus;
-+
-+#if defined(CONFIG_NUMA)
-+      sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
-+                                                              GFP_KERNEL);
-+      BUG_ON(sched_group_nodes_bycpu == NULL);
-+#endif
-+      get_online_cpus();
-+      mutex_lock(&sched_domains_mutex);
-+      arch_init_sched_domains(&cpu_online_map);
-+      cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
-+      if (cpus_empty(non_isolated_cpus))
-+              cpu_set(smp_processor_id(), non_isolated_cpus);
-+      mutex_unlock(&sched_domains_mutex);
-+      put_online_cpus();
-+
-+#ifndef CONFIG_CPUSETS
-+      /* XXX: Theoretical race here - CPU may be hotplugged now */
-+      hotcpu_notifier(update_sched_domains, 0);
-+#endif
-+
-+      /* RT runtime code needs to handle some hotplug events */
-+      hotcpu_notifier(update_runtime, 0);
-+
-+      init_hrtick();
-+
-+      /* Move init over to a non-isolated CPU */
-+      if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
-+              BUG();
-+      sched_init_granularity();
-+}
-+#else
-+void __init sched_init_smp(void)
-+{
-+      sched_init_granularity();
-+}
-+#endif /* CONFIG_SMP */
-+
-+int in_sched_functions(unsigned long addr)
-+{
-+      return in_lock_functions(addr) ||
-+              (addr >= (unsigned long)__sched_text_start
-+              && addr < (unsigned long)__sched_text_end);
-+}
-+
-+static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
-+{
-+      cfs_rq->tasks_timeline = RB_ROOT;
-+      INIT_LIST_HEAD(&cfs_rq->tasks);
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+      cfs_rq->rq = rq;
-+#endif
-+      cfs_rq->min_vruntime = (u64)(-(1LL << 20));
-+}
-+
-+static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
-+{
-+      struct rt_prio_array *array;
-+      int i;
-+
-+      array = &rt_rq->active;
-+      for (i = 0; i < MAX_RT_PRIO; i++) {
-+              INIT_LIST_HEAD(array->queue + i);
-+              __clear_bit(i, array->bitmap);
-+      }
-+      /* delimiter for bitsearch: */
-+      __set_bit(MAX_RT_PRIO, array->bitmap);
-+
-+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
-+      rt_rq->highest_prio = MAX_RT_PRIO;
-+#endif
-+#ifdef CONFIG_SMP
-+      rt_rq->rt_nr_migratory = 0;
-+      rt_rq->overloaded = 0;
-+#endif
-+
-+      rt_rq->rt_time = 0;
-+      rt_rq->rt_throttled = 0;
-+      rt_rq->rt_runtime = 0;
-+      spin_lock_init(&rt_rq->rt_runtime_lock);
-+
-+#ifdef CONFIG_RT_GROUP_SCHED
-+      rt_rq->rt_nr_boosted = 0;
-+      rt_rq->rq = rq;
-+#endif
-+}
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
-+                              struct sched_entity *se, int cpu, int add,
-+                              struct sched_entity *parent)
-+{
-+      struct rq *rq = cpu_rq(cpu);
-+      tg->cfs_rq[cpu] = cfs_rq;
-+      init_cfs_rq(cfs_rq, rq);
-+      cfs_rq->tg = tg;
-+      if (add)
-+              list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
-+
-+      tg->se[cpu] = se;
-+      /* se could be NULL for init_task_group */
-+      if (!se)
-+              return;
-+
-+      if (!parent)
-+              se->cfs_rq = &rq->cfs;
-+      else
-+              se->cfs_rq = parent->my_q;
-+
-+      se->my_q = cfs_rq;
-+      se->load.weight = tg->shares;
-+      se->load.inv_weight = 0;
-+      se->parent = parent;
-+}
-+#endif
-+
-+#ifdef CONFIG_RT_GROUP_SCHED
-+static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
-+              struct sched_rt_entity *rt_se, int cpu, int add,
-+              struct sched_rt_entity *parent)
-+{
-+      struct rq *rq = cpu_rq(cpu);
-+
-+      tg->rt_rq[cpu] = rt_rq;
-+      init_rt_rq(rt_rq, rq);
-+      rt_rq->tg = tg;
-+      rt_rq->rt_se = rt_se;
-+      rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
-+      if (add)
-+              list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
-+
-+      tg->rt_se[cpu] = rt_se;
-+      if (!rt_se)
-+              return;
-+
-+      if (!parent)
-+              rt_se->rt_rq = &rq->rt;
-+      else
-+              rt_se->rt_rq = parent->my_q;
-+
-+      rt_se->my_q = rt_rq;
-+      rt_se->parent = parent;
-+      INIT_LIST_HEAD(&rt_se->run_list);
-+}
-+#endif
-+
-+void __init sched_init(void)
-+{
-+      int i, j;
-+      unsigned long alloc_size = 0, ptr;
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+      alloc_size += 2 * nr_cpu_ids * sizeof(void **);
-+#endif
-+#ifdef CONFIG_RT_GROUP_SCHED
-+      alloc_size += 2 * nr_cpu_ids * sizeof(void **);
-+#endif
-+#ifdef CONFIG_USER_SCHED
-+      alloc_size *= 2;
-+#endif
-+      /*
-+       * As sched_init() is called before page_alloc is setup,
-+       * we use alloc_bootmem().
-+       */
-+      if (alloc_size) {
-+              ptr = (unsigned long)alloc_bootmem(alloc_size);
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+              init_task_group.se = (struct sched_entity **)ptr;
-+              ptr += nr_cpu_ids * sizeof(void **);
-+
-+              init_task_group.cfs_rq = (struct cfs_rq **)ptr;
-+              ptr += nr_cpu_ids * sizeof(void **);
-+
-+#ifdef CONFIG_USER_SCHED
-+              root_task_group.se = (struct sched_entity **)ptr;
-+              ptr += nr_cpu_ids * sizeof(void **);
-+
-+              root_task_group.cfs_rq = (struct cfs_rq **)ptr;
-+              ptr += nr_cpu_ids * sizeof(void **);
-+#endif /* CONFIG_USER_SCHED */
-+#endif /* CONFIG_FAIR_GROUP_SCHED */
-+#ifdef CONFIG_RT_GROUP_SCHED
-+              init_task_group.rt_se = (struct sched_rt_entity **)ptr;
-+              ptr += nr_cpu_ids * sizeof(void **);
-+
-+              init_task_group.rt_rq = (struct rt_rq **)ptr;
-+              ptr += nr_cpu_ids * sizeof(void **);
-+
-+#ifdef CONFIG_USER_SCHED
-+              root_task_group.rt_se = (struct sched_rt_entity **)ptr;
-+              ptr += nr_cpu_ids * sizeof(void **);
-+
-+              root_task_group.rt_rq = (struct rt_rq **)ptr;
-+              ptr += nr_cpu_ids * sizeof(void **);
-+#endif /* CONFIG_USER_SCHED */
-+#endif /* CONFIG_RT_GROUP_SCHED */
-+      }
-+
-+#ifdef CONFIG_SMP
-+      init_defrootdomain();
-+#endif
-+
-+      init_rt_bandwidth(&def_rt_bandwidth,
-+                      global_rt_period(), global_rt_runtime());
-+
-+#ifdef CONFIG_RT_GROUP_SCHED
-+      init_rt_bandwidth(&init_task_group.rt_bandwidth,
-+                      global_rt_period(), global_rt_runtime());
-+#ifdef CONFIG_USER_SCHED
-+      init_rt_bandwidth(&root_task_group.rt_bandwidth,
-+                      global_rt_period(), RUNTIME_INF);
-+#endif /* CONFIG_USER_SCHED */
-+#endif /* CONFIG_RT_GROUP_SCHED */
-+
-+#ifdef CONFIG_GROUP_SCHED
-+      list_add(&init_task_group.list, &task_groups);
-+      INIT_LIST_HEAD(&init_task_group.children);
-+
-+#ifdef CONFIG_USER_SCHED
-+      INIT_LIST_HEAD(&root_task_group.children);
-+      init_task_group.parent = &root_task_group;
-+      list_add(&init_task_group.siblings, &root_task_group.children);
-+#endif /* CONFIG_USER_SCHED */
-+#endif /* CONFIG_GROUP_SCHED */
-+
-+      for_each_possible_cpu(i) {
-+              struct rq *rq;
-+
-+              rq = cpu_rq(i);
-+              spin_lock_init(&rq->lock);
-+              rq->nr_running = 0;
-+              init_cfs_rq(&rq->cfs, rq);
-+              init_rt_rq(&rq->rt, rq);
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+              init_task_group.shares = init_task_group_load;
-+              INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
-+#ifdef CONFIG_CGROUP_SCHED
-+              /*
-+               * How much cpu bandwidth does init_task_group get?
-+               *
-+               * In case of task-groups formed thr' the cgroup filesystem, it
-+               * gets 100% of the cpu resources in the system. This overall
-+               * system cpu resource is divided among the tasks of
-+               * init_task_group and its child task-groups in a fair manner,
-+               * based on each entity's (task or task-group's) weight
-+               * (se->load.weight).
-+               *
-+               * In other words, if init_task_group has 10 tasks of weight
-+               * 1024) and two child groups A0 and A1 (of weight 1024 each),
-+               * then A0's share of the cpu resource is:
-+               *
-+               *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
-+               *
-+               * We achieve this by letting init_task_group's tasks sit
-+               * directly in rq->cfs (i.e init_task_group->se[] = NULL).
-+               */
-+              init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
-+#elif defined CONFIG_USER_SCHED
-+              root_task_group.shares = NICE_0_LOAD;
-+              init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
-+              /*
-+               * In case of task-groups formed thr' the user id of tasks,
-+               * init_task_group represents tasks belonging to root user.
-+               * Hence it forms a sibling of all subsequent groups formed.
-+               * In this case, init_task_group gets only a fraction of overall
-+               * system cpu resource, based on the weight assigned to root
-+               * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
-+               * by letting tasks of init_task_group sit in a separate cfs_rq
-+               * (init_cfs_rq) and having one entity represent this group of
-+               * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
-+               */
-+              init_tg_cfs_entry(&init_task_group,
-+                              &per_cpu(init_cfs_rq, i),
-+                              &per_cpu(init_sched_entity, i), i, 1,
-+                              root_task_group.se[i]);
-+
-+#endif
-+#endif /* CONFIG_FAIR_GROUP_SCHED */
-+
-+              rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
-+#ifdef CONFIG_RT_GROUP_SCHED
-+              INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
-+#ifdef CONFIG_CGROUP_SCHED
-+              init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
-+#elif defined CONFIG_USER_SCHED
-+              init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
-+              init_tg_rt_entry(&init_task_group,
-+                              &per_cpu(init_rt_rq, i),
-+                              &per_cpu(init_sched_rt_entity, i), i, 1,
-+                              root_task_group.rt_se[i]);
-+#endif
-+#endif
-+
-+              for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
-+                      rq->cpu_load[j] = 0;
-+#ifdef CONFIG_SMP
-+              rq->sd = NULL;
-+              rq->rd = NULL;
-+              rq->active_balance = 0;
-+              rq->next_balance = jiffies;
-+              rq->push_cpu = 0;
-+              rq->cpu = i;
-+              rq->online = 0;
-+              rq->migration_thread = NULL;
-+              INIT_LIST_HEAD(&rq->migration_queue);
-+              rq_attach_root(rq, &def_root_domain);
-+#endif
-+              init_rq_hrtick(rq);
-+              atomic_set(&rq->nr_iowait, 0);
-+      }
-+
-+      set_load_weight(&init_task);
-+
-+#ifdef CONFIG_PREEMPT_NOTIFIERS
-+      INIT_HLIST_HEAD(&init_task.preempt_notifiers);
-+#endif
-+
-+#ifdef CONFIG_SMP
-+      open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
-+#endif
-+
-+#ifdef CONFIG_RT_MUTEXES
-+      plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
-+#endif
-+
-+      /*
-+       * The boot idle thread does lazy MMU switching as well:
-+       */
-+      atomic_inc(&init_mm.mm_count);
-+      enter_lazy_tlb(&init_mm, current);
-+
-+      /*
-+       * Make us the idle thread. Technically, schedule() should not be
-+       * called from this thread, however somewhere below it might be,
-+       * but because we are the idle thread, we just pick up running again
-+       * when this runqueue becomes "idle".
-+       */
-+      init_idle(current, smp_processor_id());
-+      /*
-+       * During early bootup we pretend to be a normal task:
-+       */
-+      current->sched_class = &fair_sched_class;
-+
-+      scheduler_running = 1;
-+}
-+
-+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
-+void __might_sleep(char *file, int line)
-+{
-+#ifdef in_atomic
-+      static unsigned long prev_jiffy;        /* ratelimiting */
-+
-+      if ((in_atomic() || irqs_disabled()) &&
-+          system_state == SYSTEM_RUNNING && !oops_in_progress) {
-+              if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
-+                      return;
-+              prev_jiffy = jiffies;
-+              printk(KERN_ERR "BUG: sleeping function called from invalid"
-+                              " context at %s:%d\n", file, line);
-+              printk("in_atomic():%d, irqs_disabled():%d\n",
-+                      in_atomic(), irqs_disabled());
-+              debug_show_held_locks(current);
-+              if (irqs_disabled())
-+                      print_irqtrace_events(current);
-+              dump_stack();
-+      }
-+#endif
-+}
-+EXPORT_SYMBOL(__might_sleep);
-+#endif
-+
-+#ifdef CONFIG_MAGIC_SYSRQ
-+static void normalize_task(struct rq *rq, struct task_struct *p)
-+{
-+      int on_rq;
-+
-+      update_rq_clock(rq);
-+      on_rq = p->se.on_rq;
-+      if (on_rq)
-+              deactivate_task(rq, p, 0);
-+      __setscheduler(rq, p, SCHED_NORMAL, 0);
-+      if (on_rq) {
-+              activate_task(rq, p, 0);
-+              resched_task(rq->curr);
-+      }
-+}
-+
-+void normalize_rt_tasks(void)
-+{
-+      struct task_struct *g, *p;
-+      unsigned long flags;
-+      struct rq *rq;
-+
-+      read_lock_irqsave(&tasklist_lock, flags);
-+      do_each_thread(g, p) {
-+              /*
-+               * Only normalize user tasks:
-+               */
-+              if (!p->mm)
-+                      continue;
-+
-+              p->se.exec_start                = 0;
-+#ifdef CONFIG_SCHEDSTATS
-+              p->se.wait_start                = 0;
-+              p->se.sleep_start               = 0;
-+              p->se.block_start               = 0;
-+#endif
-+
-+              if (!rt_task(p)) {
-+                      /*
-+                       * Renice negative nice level userspace
-+                       * tasks back to 0:
-+                       */
-+                      if (TASK_NICE(p) < 0 && p->mm)
-+                              set_user_nice(p, 0);
-+                      continue;
-+              }
-+
-+              spin_lock(&p->pi_lock);
-+              rq = __task_rq_lock(p);
-+
-+              normalize_task(rq, p);
-+
-+              __task_rq_unlock(rq);
-+              spin_unlock(&p->pi_lock);
-+      } while_each_thread(g, p);
-+
-+      read_unlock_irqrestore(&tasklist_lock, flags);
-+}
-+
-+#endif /* CONFIG_MAGIC_SYSRQ */
-+
-+#ifdef CONFIG_IA64
-+/*
-+ * These functions are only useful for the IA64 MCA handling.
-+ *
-+ * They can only be called when the whole system has been
-+ * stopped - every CPU needs to be quiescent, and no scheduling
-+ * activity can take place. Using them for anything else would
-+ * be a serious bug, and as a result, they aren't even visible
-+ * under any other configuration.
-+ */
-+
-+/**
-+ * curr_task - return the current task for a given cpu.
-+ * @cpu: the processor in question.
-+ *
-+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
-+ */
-+struct task_struct *curr_task(int cpu)
-+{
-+      return cpu_curr(cpu);
-+}
-+
-+/**
-+ * set_curr_task - set the current task for a given cpu.
-+ * @cpu: the processor in question.
-+ * @p: the task pointer to set.
-+ *
-+ * Description: This function must only be used when non-maskable interrupts
-+ * are serviced on a separate stack. It allows the architecture to switch the
-+ * notion of the current task on a cpu in a non-blocking manner. This function
-+ * must be called with all CPU's synchronized, and interrupts disabled, the
-+ * and caller must save the original value of the current task (see
-+ * curr_task() above) and restore that value before reenabling interrupts and
-+ * re-starting the system.
-+ *
-+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
-+ */
-+void set_curr_task(int cpu, struct task_struct *p)
-+{
-+      cpu_curr(cpu) = p;
-+}
-+
-+#endif
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+static void free_fair_sched_group(struct task_group *tg)
-+{
-+      int i;
-+
-+      for_each_possible_cpu(i) {
-+              if (tg->cfs_rq)
-+                      kfree(tg->cfs_rq[i]);
-+              if (tg->se)
-+                      kfree(tg->se[i]);
-+      }
-+
-+      kfree(tg->cfs_rq);
-+      kfree(tg->se);
-+}
-+
-+static
-+int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
-+{
-+      struct cfs_rq *cfs_rq;
-+      struct sched_entity *se, *parent_se;
-+      struct rq *rq;
-+      int i;
-+
-+      tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
-+      if (!tg->cfs_rq)
-+              goto err;
-+      tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
-+      if (!tg->se)
-+              goto err;
-+
-+      tg->shares = NICE_0_LOAD;
-+
-+      for_each_possible_cpu(i) {
-+              rq = cpu_rq(i);
-+
-+              cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
-+                              GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
-+              if (!cfs_rq)
-+                      goto err;
-+
-+              se = kmalloc_node(sizeof(struct sched_entity),
-+                              GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
-+              if (!se)
-+                      goto err;
-+
-+              parent_se = parent ? parent->se[i] : NULL;
-+              init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
-+      }
-+
-+      return 1;
-+
-+ err:
-+      return 0;
-+}
-+
-+static inline void register_fair_sched_group(struct task_group *tg, int cpu)
-+{
-+      list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
-+                      &cpu_rq(cpu)->leaf_cfs_rq_list);
-+}
-+
-+static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
-+{
-+      list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
-+}
-+#else /* !CONFG_FAIR_GROUP_SCHED */
-+static inline void free_fair_sched_group(struct task_group *tg)
-+{
-+}
-+
-+static inline
-+int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
-+{
-+      return 1;
-+}
-+
-+static inline void register_fair_sched_group(struct task_group *tg, int cpu)
-+{
-+}
-+
-+static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
-+{
-+}
-+#endif /* CONFIG_FAIR_GROUP_SCHED */
-+
-+#ifdef CONFIG_RT_GROUP_SCHED
-+static void free_rt_sched_group(struct task_group *tg)
-+{
-+      int i;
-+
-+      destroy_rt_bandwidth(&tg->rt_bandwidth);
-+
-+      for_each_possible_cpu(i) {
-+              if (tg->rt_rq)
-+                      kfree(tg->rt_rq[i]);
-+              if (tg->rt_se)
-+                      kfree(tg->rt_se[i]);
-+      }
-+
-+      kfree(tg->rt_rq);
-+      kfree(tg->rt_se);
-+}
-+
-+static
-+int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
-+{
-+      struct rt_rq *rt_rq;
-+      struct sched_rt_entity *rt_se, *parent_se;
-+      struct rq *rq;
-+      int i;
-+
-+      tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
-+      if (!tg->rt_rq)
-+              goto err;
-+      tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
-+      if (!tg->rt_se)
-+              goto err;
-+
-+      init_rt_bandwidth(&tg->rt_bandwidth,
-+                      ktime_to_ns(def_rt_bandwidth.rt_period), 0);
-+
-+      for_each_possible_cpu(i) {
-+              rq = cpu_rq(i);
-+
-+              rt_rq = kmalloc_node(sizeof(struct rt_rq),
-+                              GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
-+              if (!rt_rq)
-+                      goto err;
-+
-+              rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
-+                              GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
-+              if (!rt_se)
-+                      goto err;
-+
-+              parent_se = parent ? parent->rt_se[i] : NULL;
-+              init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
-+      }
-+
-+      return 1;
-+
-+ err:
-+      return 0;
-+}
-+
-+static inline void register_rt_sched_group(struct task_group *tg, int cpu)
-+{
-+      list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
-+                      &cpu_rq(cpu)->leaf_rt_rq_list);
-+}
-+
-+static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
-+{
-+      list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
-+}
-+#else /* !CONFIG_RT_GROUP_SCHED */
-+static inline void free_rt_sched_group(struct task_group *tg)
-+{
-+}
-+
-+static inline
-+int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
-+{
-+      return 1;
-+}
-+
-+static inline void register_rt_sched_group(struct task_group *tg, int cpu)
-+{
-+}
-+
-+static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
-+{
-+}
-+#endif /* CONFIG_RT_GROUP_SCHED */
-+
-+#ifdef CONFIG_GROUP_SCHED
-+static void free_sched_group(struct task_group *tg)
-+{
-+      free_fair_sched_group(tg);
-+      free_rt_sched_group(tg);
-+      kfree(tg);
-+}
-+
-+/* allocate runqueue etc for a new task group */
-+struct task_group *sched_create_group(struct task_group *parent)
-+{
-+      struct task_group *tg;
-+      unsigned long flags;
-+      int i;
-+
-+      tg = kzalloc(sizeof(*tg), GFP_KERNEL);
-+      if (!tg)
-+              return ERR_PTR(-ENOMEM);
-+
-+      if (!alloc_fair_sched_group(tg, parent))
-+              goto err;
-+
-+      if (!alloc_rt_sched_group(tg, parent))
-+              goto err;
-+
-+      spin_lock_irqsave(&task_group_lock, flags);
-+      for_each_possible_cpu(i) {
-+              register_fair_sched_group(tg, i);
-+              register_rt_sched_group(tg, i);
-+      }
-+      list_add_rcu(&tg->list, &task_groups);
-+
-+      WARN_ON(!parent); /* root should already exist */
-+
-+      tg->parent = parent;
-+      INIT_LIST_HEAD(&tg->children);
-+      list_add_rcu(&tg->siblings, &parent->children);
-+      spin_unlock_irqrestore(&task_group_lock, flags);
-+
-+      return tg;
-+
-+err:
-+      free_sched_group(tg);
-+      return ERR_PTR(-ENOMEM);
-+}
-+
-+/* rcu callback to free various structures associated with a task group */
-+static void free_sched_group_rcu(struct rcu_head *rhp)
-+{
-+      /* now it should be safe to free those cfs_rqs */
-+      free_sched_group(container_of(rhp, struct task_group, rcu));
-+}
-+
-+/* Destroy runqueue etc associated with a task group */
-+void sched_destroy_group(struct task_group *tg)
-+{
-+      unsigned long flags;
-+      int i;
-+
-+      spin_lock_irqsave(&task_group_lock, flags);
-+      for_each_possible_cpu(i) {
-+              unregister_fair_sched_group(tg, i);
-+              unregister_rt_sched_group(tg, i);
-+      }
-+      list_del_rcu(&tg->list);
-+      list_del_rcu(&tg->siblings);
-+      spin_unlock_irqrestore(&task_group_lock, flags);
-+
-+      /* wait for possible concurrent references to cfs_rqs complete */
-+      call_rcu(&tg->rcu, free_sched_group_rcu);
-+}
-+
-+/* change task's runqueue when it moves between groups.
-+ *    The caller of this function should have put the task in its new group
-+ *    by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
-+ *    reflect its new group.
-+ */
-+void sched_move_task(struct task_struct *tsk)
-+{
-+      int on_rq, running;
-+      unsigned long flags;
-+      struct rq *rq;
-+
-+      rq = task_rq_lock(tsk, &flags);
-+
-+      update_rq_clock(rq);
-+
-+      running = task_current(rq, tsk);
-+      on_rq = tsk->se.on_rq;
-+
-+      if (on_rq)
-+              dequeue_task(rq, tsk, 0);
-+      if (unlikely(running))
-+              tsk->sched_class->put_prev_task(rq, tsk);
-+
-+      set_task_rq(tsk, task_cpu(tsk));
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+      if (tsk->sched_class->moved_group)
-+              tsk->sched_class->moved_group(tsk);
-+#endif
-+
-+      if (unlikely(running))
-+              tsk->sched_class->set_curr_task(rq);
-+      if (on_rq)
-+              enqueue_task(rq, tsk, 0);
-+
-+      task_rq_unlock(rq, &flags);
-+}
-+#endif /* CONFIG_GROUP_SCHED */
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+static void __set_se_shares(struct sched_entity *se, unsigned long shares)
-+{
-+      struct cfs_rq *cfs_rq = se->cfs_rq;
-+      int on_rq;
-+
-+      on_rq = se->on_rq;
-+      if (on_rq)
-+              dequeue_entity(cfs_rq, se, 0);
-+
-+      se->load.weight = shares;
-+      se->load.inv_weight = 0;
-+
-+      if (on_rq)
-+              enqueue_entity(cfs_rq, se, 0);
-+}
-+
-+static void set_se_shares(struct sched_entity *se, unsigned long shares)
-+{
-+      struct cfs_rq *cfs_rq = se->cfs_rq;
-+      struct rq *rq = cfs_rq->rq;
-+      unsigned long flags;
-+
-+      spin_lock_irqsave(&rq->lock, flags);
-+      __set_se_shares(se, shares);
-+      spin_unlock_irqrestore(&rq->lock, flags);
-+}
-+
-+static DEFINE_MUTEX(shares_mutex);
-+
-+int sched_group_set_shares(struct task_group *tg, unsigned long shares)
-+{
-+      int i;
-+      unsigned long flags;
-+
-+      /*
-+       * We can't change the weight of the root cgroup.
-+       */
-+      if (!tg->se[0])
-+              return -EINVAL;
-+
-+      if (shares < MIN_SHARES)
-+              shares = MIN_SHARES;
-+      else if (shares > MAX_SHARES)
-+              shares = MAX_SHARES;
-+
-+      mutex_lock(&shares_mutex);
-+      if (tg->shares == shares)
-+              goto done;
-+
-+      spin_lock_irqsave(&task_group_lock, flags);
-+      for_each_possible_cpu(i)
-+              unregister_fair_sched_group(tg, i);
-+      list_del_rcu(&tg->siblings);
-+      spin_unlock_irqrestore(&task_group_lock, flags);
-+
-+      /* wait for any ongoing reference to this group to finish */
-+      synchronize_sched();
-+
-+      /*
-+       * Now we are free to modify the group's share on each cpu
-+       * w/o tripping rebalance_share or load_balance_fair.
-+       */
-+      tg->shares = shares;
-+      for_each_possible_cpu(i) {
-+              /*
-+               * force a rebalance
-+               */
-+              cfs_rq_set_shares(tg->cfs_rq[i], 0);
-+              set_se_shares(tg->se[i], shares);
-+      }
-+
-+      /*
-+       * Enable load balance activity on this group, by inserting it back on
-+       * each cpu's rq->leaf_cfs_rq_list.
-+       */
-+      spin_lock_irqsave(&task_group_lock, flags);
-+      for_each_possible_cpu(i)
-+              register_fair_sched_group(tg, i);
-+      list_add_rcu(&tg->siblings, &tg->parent->children);
-+      spin_unlock_irqrestore(&task_group_lock, flags);
-+done:
-+      mutex_unlock(&shares_mutex);
-+      return 0;
-+}
-+
-+unsigned long sched_group_shares(struct task_group *tg)
-+{
-+      return tg->shares;
-+}
-+#endif
-+
-+#ifdef CONFIG_RT_GROUP_SCHED
-+/*
-+ * Ensure that the real time constraints are schedulable.
-+ */
-+static DEFINE_MUTEX(rt_constraints_mutex);
-+
-+static unsigned long to_ratio(u64 period, u64 runtime)
-+{
-+      if (runtime == RUNTIME_INF)
-+              return 1ULL << 16;
-+
-+      return div64_u64(runtime << 16, period);
-+}
-+
-+#ifdef CONFIG_CGROUP_SCHED
-+static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
-+{
-+      struct task_group *tgi, *parent = tg->parent;
-+      unsigned long total = 0;
-+
-+      if (!parent) {
-+              if (global_rt_period() < period)
-+                      return 0;
-+
-+              return to_ratio(period, runtime) <
-+                      to_ratio(global_rt_period(), global_rt_runtime());
-+      }
-+
-+      if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
-+              return 0;
-+
-+      rcu_read_lock();
-+      list_for_each_entry_rcu(tgi, &parent->children, siblings) {
-+              if (tgi == tg)
-+                      continue;
-+
-+              total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
-+                              tgi->rt_bandwidth.rt_runtime);
-+      }
-+      rcu_read_unlock();
-+
-+      return total + to_ratio(period, runtime) <=
-+              to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
-+                              parent->rt_bandwidth.rt_runtime);
-+}
-+#elif defined CONFIG_USER_SCHED
-+static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
-+{
-+      struct task_group *tgi;
-+      unsigned long total = 0;
-+      unsigned long global_ratio =
-+              to_ratio(global_rt_period(), global_rt_runtime());
-+
-+      rcu_read_lock();
-+      list_for_each_entry_rcu(tgi, &task_groups, list) {
-+              if (tgi == tg)
-+                      continue;
-+
-+              total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
-+                              tgi->rt_bandwidth.rt_runtime);
-+      }
-+      rcu_read_unlock();
-+
-+      return total + to_ratio(period, runtime) < global_ratio;
-+}
-+#endif
-+
-+/* Must be called with tasklist_lock held */
-+static inline int tg_has_rt_tasks(struct task_group *tg)
-+{
-+      struct task_struct *g, *p;
-+      do_each_thread(g, p) {
-+              if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
-+                      return 1;
-+      } while_each_thread(g, p);
-+      return 0;
-+}
-+
-+static int tg_set_bandwidth(struct task_group *tg,
-+              u64 rt_period, u64 rt_runtime)
-+{
-+      int i, err = 0;
-+
-+      mutex_lock(&rt_constraints_mutex);
-+      read_lock(&tasklist_lock);
-+      if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
-+              err = -EBUSY;
-+              goto unlock;
-+      }
-+      if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
-+              err = -EINVAL;
-+              goto unlock;
-+      }
-+
-+      spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
-+      tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
-+      tg->rt_bandwidth.rt_runtime = rt_runtime;
-+
-+      for_each_possible_cpu(i) {
-+              struct rt_rq *rt_rq = tg->rt_rq[i];
-+
-+              spin_lock(&rt_rq->rt_runtime_lock);
-+              rt_rq->rt_runtime = rt_runtime;
-+              spin_unlock(&rt_rq->rt_runtime_lock);
-+      }
-+      spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
-+ unlock:
-+      read_unlock(&tasklist_lock);
-+      mutex_unlock(&rt_constraints_mutex);
-+
-+      return err;
-+}
-+
-+int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
-+{
-+      u64 rt_runtime, rt_period;
-+
-+      rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
-+      rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
-+      if (rt_runtime_us < 0)
-+              rt_runtime = RUNTIME_INF;
-+
-+      return tg_set_bandwidth(tg, rt_period, rt_runtime);
-+}
-+
-+long sched_group_rt_runtime(struct task_group *tg)
-+{
-+      u64 rt_runtime_us;
-+
-+      if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
-+              return -1;
-+
-+      rt_runtime_us = tg->rt_bandwidth.rt_runtime;
-+      do_div(rt_runtime_us, NSEC_PER_USEC);
-+      return rt_runtime_us;
-+}
-+
-+int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
-+{
-+      u64 rt_runtime, rt_period;
-+
-+      rt_period = (u64)rt_period_us * NSEC_PER_USEC;
-+      rt_runtime = tg->rt_bandwidth.rt_runtime;
-+
-+      if (rt_period == 0)
-+              return -EINVAL;
-+
-+      return tg_set_bandwidth(tg, rt_period, rt_runtime);
-+}
-+
-+long sched_group_rt_period(struct task_group *tg)
-+{
-+      u64 rt_period_us;
-+
-+      rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
-+      do_div(rt_period_us, NSEC_PER_USEC);
-+      return rt_period_us;
-+}
-+
-+static int sched_rt_global_constraints(void)
-+{
-+      struct task_group *tg = &root_task_group;
-+      u64 rt_runtime, rt_period;
-+      int ret = 0;
-+
-+      if (sysctl_sched_rt_period <= 0)
-+              return -EINVAL;
-+
-+      rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
-+      rt_runtime = tg->rt_bandwidth.rt_runtime;
-+
-+      mutex_lock(&rt_constraints_mutex);
-+      if (!__rt_schedulable(tg, rt_period, rt_runtime))
-+              ret = -EINVAL;
-+      mutex_unlock(&rt_constraints_mutex);
-+
-+      return ret;
-+}
-+#else /* !CONFIG_RT_GROUP_SCHED */
-+static int sched_rt_global_constraints(void)
-+{
-+      unsigned long flags;
-+      int i;
-+
-+      if (sysctl_sched_rt_period <= 0)
-+              return -EINVAL;
-+
-+      spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
-+      for_each_possible_cpu(i) {
-+              struct rt_rq *rt_rq = &cpu_rq(i)->rt;
-+
-+              spin_lock(&rt_rq->rt_runtime_lock);
-+              rt_rq->rt_runtime = global_rt_runtime();
-+              spin_unlock(&rt_rq->rt_runtime_lock);
-+      }
-+      spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
-+
-+      return 0;
-+}
-+#endif /* CONFIG_RT_GROUP_SCHED */
-+
-+int sched_rt_handler(struct ctl_table *table, int write,
-+              struct file *filp, void __user *buffer, size_t *lenp,
-+              loff_t *ppos)
-+{
-+      int ret;
-+      int old_period, old_runtime;
-+      static DEFINE_MUTEX(mutex);
-+
-+      mutex_lock(&mutex);
-+      old_period = sysctl_sched_rt_period;
-+      old_runtime = sysctl_sched_rt_runtime;
-+
-+      ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
-+
-+      if (!ret && write) {
-+              ret = sched_rt_global_constraints();
-+              if (ret) {
-+                      sysctl_sched_rt_period = old_period;
-+                      sysctl_sched_rt_runtime = old_runtime;
-+              } else {
-+                      def_rt_bandwidth.rt_runtime = global_rt_runtime();
-+                      def_rt_bandwidth.rt_period =
-+                              ns_to_ktime(global_rt_period());
-+              }
-+      }
-+      mutex_unlock(&mutex);
-+
-+      return ret;
-+}
-+
-+#ifdef CONFIG_CGROUP_SCHED
-+
-+/* return corresponding task_group object of a cgroup */
-+static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
-+{
-+      return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
-+                          struct task_group, css);
-+}
-+
-+static struct cgroup_subsys_state *
-+cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
-+{
-+      struct task_group *tg, *parent;
-+
-+      if (!cgrp->parent) {
-+              /* This is early initialization for the top cgroup */
-+              init_task_group.css.cgroup = cgrp;
-+              return &init_task_group.css;
-+      }
-+
-+      parent = cgroup_tg(cgrp->parent);
-+      tg = sched_create_group(parent);
-+      if (IS_ERR(tg))
-+              return ERR_PTR(-ENOMEM);
-+
-+      /* Bind the cgroup to task_group object we just created */
-+      tg->css.cgroup = cgrp;
-+
-+      return &tg->css;
-+}
-+
-+static void
-+cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
-+{
-+      struct task_group *tg = cgroup_tg(cgrp);
-+
-+      sched_destroy_group(tg);
-+}
-+
-+static int
-+cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
-+                    struct task_struct *tsk)
-+{
-+#ifdef CONFIG_RT_GROUP_SCHED
-+      /* Don't accept realtime tasks when there is no way for them to run */
-+      if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
-+              return -EINVAL;
-+#else
-+      /* We don't support RT-tasks being in separate groups */
-+      if (tsk->sched_class != &fair_sched_class)
-+              return -EINVAL;
-+#endif
-+
-+      return 0;
-+}
-+
-+static void
-+cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
-+                      struct cgroup *old_cont, struct task_struct *tsk)
-+{
-+      sched_move_task(tsk);
-+}
-+
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
-+                              u64 shareval)
-+{
-+      return sched_group_set_shares(cgroup_tg(cgrp), shareval);
-+}
-+
-+static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
-+{
-+      struct task_group *tg = cgroup_tg(cgrp);
-+
-+      return (u64) tg->shares;
-+}
-+#endif /* CONFIG_FAIR_GROUP_SCHED */
-+
-+#ifdef CONFIG_RT_GROUP_SCHED
-+static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
-+                              s64 val)
-+{
-+      return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
-+}
-+
-+static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
-+{
-+      return sched_group_rt_runtime(cgroup_tg(cgrp));
-+}
-+
-+static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
-+              u64 rt_period_us)
-+{
-+      return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
-+}
-+
-+static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
-+{
-+      return sched_group_rt_period(cgroup_tg(cgrp));
-+}
-+#endif /* CONFIG_RT_GROUP_SCHED */
-+
-+static struct cftype cpu_files[] = {
-+#ifdef CONFIG_FAIR_GROUP_SCHED
-+      {
-+              .name = "shares",
-+              .read_u64 = cpu_shares_read_u64,
-+              .write_u64 = cpu_shares_write_u64,
-+      },
-+#endif
-+#ifdef CONFIG_RT_GROUP_SCHED
-+      {
-+              .name = "rt_runtime_us",
-+              .read_s64 = cpu_rt_runtime_read,
-+              .write_s64 = cpu_rt_runtime_write,
-+      },
-+      {
-+              .name = "rt_period_us",
-+              .read_u64 = cpu_rt_period_read_uint,
-+              .write_u64 = cpu_rt_period_write_uint,
-+      },
-+#endif
-+};
-+
-+static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
-+{
-+      return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
-+}
-+
-+struct cgroup_subsys cpu_cgroup_subsys = {
-+      .name           = "cpu",
-+      .create         = cpu_cgroup_create,
-+      .destroy        = cpu_cgroup_destroy,
-+      .can_attach     = cpu_cgroup_can_attach,
-+      .attach         = cpu_cgroup_attach,
-+      .populate       = cpu_cgroup_populate,
-+      .subsys_id      = cpu_cgroup_subsys_id,
-+      .early_init     = 1,
-+};
-+
-+#endif        /* CONFIG_CGROUP_SCHED */
-+
-+#ifdef CONFIG_CGROUP_CPUACCT
-+
-+/*
-+ * CPU accounting code for task groups.
-+ *
-+ * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
-+ * (balbir@in.ibm.com).
-+ */
-+
-+/* track cpu usage of a group of tasks */
-+struct cpuacct {
-+      struct cgroup_subsys_state css;
-+      /* cpuusage holds pointer to a u64-type object on every cpu */
-+      u64 *cpuusage;
-+};
-+
-+struct cgroup_subsys cpuacct_subsys;
-+
-+/* return cpu accounting group corresponding to this container */
-+static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
-+{
-+      return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
-+                          struct cpuacct, css);
-+}
-+
-+/* return cpu accounting group to which this task belongs */
-+static inline struct cpuacct *task_ca(struct task_struct *tsk)
-+{
-+      return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
-+                          struct cpuacct, css);
-+}
-+
-+/* create a new cpu accounting group */
-+static struct cgroup_subsys_state *cpuacct_create(
-+      struct cgroup_subsys *ss, struct cgroup *cgrp)
-+{
-+      struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
-+
-+      if (!ca)
-+              return ERR_PTR(-ENOMEM);
-+
-+      ca->cpuusage = alloc_percpu(u64);
-+      if (!ca->cpuusage) {
-+              kfree(ca);
-+              return ERR_PTR(-ENOMEM);
-+      }
-+
-+      return &ca->css;
-+}
-+
-+/* destroy an existing cpu accounting group */
-+static void
-+cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
-+{
-+      struct cpuacct *ca = cgroup_ca(cgrp);
-+
-+      free_percpu(ca->cpuusage);
-+      kfree(ca);
-+}
-+
-+/* return total cpu usage (in nanoseconds) of a group */
-+static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
-+{
-+      struct cpuacct *ca = cgroup_ca(cgrp);
-+      u64 totalcpuusage = 0;
-+      int i;
-+
-+      for_each_possible_cpu(i) {
-+              u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
-+
-+              /*
-+               * Take rq->lock to make 64-bit addition safe on 32-bit
-+               * platforms.
-+               */
-+              spin_lock_irq(&cpu_rq(i)->lock);
-+              totalcpuusage += *cpuusage;
-+              spin_unlock_irq(&cpu_rq(i)->lock);
-+      }
-+
-+      return totalcpuusage;
-+}
-+
-+static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
-+                                                              u64 reset)
-+{
-+      struct cpuacct *ca = cgroup_ca(cgrp);
-+      int err = 0;
-+      int i;
-+
-+      if (reset) {
-+              err = -EINVAL;
-+              goto out;
-+      }
-+
-+      for_each_possible_cpu(i) {
-+              u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
-+
-+              spin_lock_irq(&cpu_rq(i)->lock);
-+              *cpuusage = 0;
-+              spin_unlock_irq(&cpu_rq(i)->lock);
-+      }
-+out:
-+      return err;
-+}
-+
-+static struct cftype files[] = {
-+      {
-+              .name = "usage",
-+              .read_u64 = cpuusage_read,
-+              .write_u64 = cpuusage_write,
-+      },
-+};
-+
-+static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
-+{
-+      return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
-+}
-+
-+/*
-+ * charge this task's execution time to its accounting group.
-+ *
-+ * called with rq->lock held.
-+ */
-+static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
-+{
-+      struct cpuacct *ca;
-+
-+      if (!cpuacct_subsys.active)
-+              return;
-+
-+      ca = task_ca(tsk);
-+      if (ca) {
-+              u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
-+
-+              *cpuusage += cputime;
-+      }
-+}
-+
-+struct cgroup_subsys cpuacct_subsys = {
-+      .name = "cpuacct",
-+      .create = cpuacct_create,
-+      .destroy = cpuacct_destroy,
-+      .populate = cpuacct_populate,
-+      .subsys_id = cpuacct_subsys_id,
-+};
-+#endif        /* CONFIG_CGROUP_CPUACCT */
-diff -Nurb linux-2.6.27-590/kernel/sched.c.rej linux-2.6.27-591/kernel/sched.c.rej
---- linux-2.6.27-590/kernel/sched.c.rej        1969-12-31 19:00:00.000000000 -0500
-+++ linux-2.6.27-591/kernel/sched.c.rej        2010-02-01 19:43:07.000000000 -0500
-@@ -0,0 +1,258 @@
-+***************
-+*** 23,28 ****
-+  #include <linux/nmi.h>
-+  #include <linux/init.h>
-+  #include <asm/uaccess.h>
-+  #include <linux/highmem.h>
-+  #include <linux/smp_lock.h>
-+  #include <asm/mmu_context.h>
-+--- 23,29 ----
-+  #include <linux/nmi.h>
-+  #include <linux/init.h>
-+  #include <asm/uaccess.h>
-++ #include <linux/arrays.h>
-+  #include <linux/highmem.h>
-+  #include <linux/smp_lock.h>
-+  #include <asm/mmu_context.h>
-+***************
-+*** 451,456 ****
-+  
-+  repeat_lock_task:
-+      rq = task_rq(p);
-+      spin_lock(&rq->lock);
-+      if (unlikely(rq != task_rq(p))) {
-+              spin_unlock(&rq->lock);
-+--- 455,461 ----
-+  
-+  repeat_lock_task:
-+      rq = task_rq(p);
-++ 
-+      spin_lock(&rq->lock);
-+      if (unlikely(rq != task_rq(p))) {
-+              spin_unlock(&rq->lock);
-+***************
-+*** 1761,1766 ****
-+       * event cannot wake it up and insert it on the runqueue either.
-+       */
-+      p->state = TASK_RUNNING;
-+  
-+      /*
-+       * Make sure we do not leak PI boosting priority to the child:
-+--- 1766,1786 ----
-+       * event cannot wake it up and insert it on the runqueue either.
-+       */
-+      p->state = TASK_RUNNING;
-++ #ifdef CONFIG_CHOPSTIX
-++     /* The jiffy of last interruption */
-++     if (p->state & TASK_UNINTERRUPTIBLE) {
-++                             p->last_interrupted=jiffies;
-++     }
-++     else
-++     if (p->state & TASK_INTERRUPTIBLE) {
-++                             p->last_interrupted=INTERRUPTIBLE;
-++     }
-++     else
-++         p->last_interrupted=RUNNING;
-++ 
-++     /* The jiffy of last execution */ 
-++     p->last_ran_j=jiffies;
-++ #endif
-+  
-+      /*
-+       * Make sure we do not leak PI boosting priority to the child:
-+***************
-+*** 3628,3633 ****
-+  
-+  #endif
-+  
-+  static inline int interactive_sleep(enum sleep_type sleep_type)
-+  {
-+      return (sleep_type == SLEEP_INTERACTIVE ||
-+--- 3648,3654 ----
-+  
-+  #endif
-+  
-++ 
-+  static inline int interactive_sleep(enum sleep_type sleep_type)
-+  {
-+      return (sleep_type == SLEEP_INTERACTIVE ||
-+***************
-+*** 3637,3652 ****
-+  /*
-+   * schedule() is the main scheduler function.
-+   */
-+  asmlinkage void __sched schedule(void)
-+  {
-+      struct task_struct *prev, *next;
-+      struct prio_array *array;
-+      struct list_head *queue;
-+      unsigned long long now;
-+-     unsigned long run_time;
-+      int cpu, idx, new_prio;
-+      long *switch_count;
-+      struct rq *rq;
-+  
-+      /*
-+       * Test if we are atomic.  Since do_exit() needs to call into
-+--- 3658,3685 ----
-+  /*
-+   * schedule() is the main scheduler function.
-+   */
-++ 
-++ #ifdef CONFIG_CHOPSTIX
-++ extern void (*rec_event)(void *,unsigned int);
-++ struct event_spec {
-++     unsigned long pc;
-++     unsigned long dcookie;
-++     unsigned int count;
-++     unsigned int reason;
-++ };
-++ #endif
-++ 
-+  asmlinkage void __sched schedule(void)
-+  {
-+      struct task_struct *prev, *next;
-+      struct prio_array *array;
-+      struct list_head *queue;
-+      unsigned long long now;
-++     unsigned long run_time, diff;
-+      int cpu, idx, new_prio;
-+      long *switch_count;
-+      struct rq *rq;
-++     int sampling_reason;
-+  
-+      /*
-+       * Test if we are atomic.  Since do_exit() needs to call into
-+***************
-+*** 3700,3705 ****
-+      switch_count = &prev->nivcsw;
-+      if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
-+              switch_count = &prev->nvcsw;
-+              if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
-+                              unlikely(signal_pending(prev))))
-+                      prev->state = TASK_RUNNING;
-+--- 3733,3739 ----
-+      switch_count = &prev->nivcsw;
-+      if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
-+              switch_count = &prev->nvcsw;
-++ 
-+              if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
-+                              unlikely(signal_pending(prev))))
-+                      prev->state = TASK_RUNNING;
-+***************
-+*** 3709,3714 ****
-+                              vx_uninterruptible_inc(prev);
-+                      }
-+                      deactivate_task(prev, rq);
-+              }
-+      }
-+  
-+--- 3743,3759 ----
-+                              vx_uninterruptible_inc(prev);
-+                      }
-+                      deactivate_task(prev, rq);
-++ #ifdef CONFIG_CHOPSTIX
-++             /* An uninterruptible process just yielded. Record the current jiffie */
-++                     if (prev->state & TASK_UNINTERRUPTIBLE) {
-++                             prev->last_interrupted=jiffies;
-++                     }
-++             /* An interruptible process just yielded, or it got preempted. 
-++              * Mark it as interruptible */
-++                     else if (prev->state & TASK_INTERRUPTIBLE) {
-++                             prev->last_interrupted=INTERRUPTIBLE;
-++                     }
-++ #endif
-+              }
-+      }
-+  
-+***************
-+*** 3785,3790 ****
-+              prev->sleep_avg = 0;
-+      prev->timestamp = prev->last_ran = now;
-+  
-+      sched_info_switch(prev, next);
-+      if (likely(prev != next)) {
-+              next->timestamp = next->last_ran = now;
-+--- 3830,3869 ----
-+              prev->sleep_avg = 0;
-+      prev->timestamp = prev->last_ran = now;
-+  
-++ #ifdef CONFIG_CHOPSTIX
-++     /* Run only if the Chopstix module so decrees it */
-++     if (rec_event) {
-++             prev->last_ran_j = jiffies;
-++             if (next->last_interrupted!=INTERRUPTIBLE) {
-++                     if (next->last_interrupted!=RUNNING) {
-++                             diff = (jiffies-next->last_interrupted);
-++                             sampling_reason = 0;/* BLOCKING */
-++                     }
-++                     else {
-++                             diff = jiffies-next->last_ran_j; 
-++                             sampling_reason = 1;/* PREEMPTION */
-++                     }
-++ 
-++                     if (diff >= HZ/10) {
-++                             struct event event;
-++                             struct event_spec espec;
-++                 struct pt_regs *regs;
-++                 regs = task_pt_regs(current);
-++ 
-++                             espec.reason = sampling_reason;
-++                             event.event_data=&espec;
-++                             event.task=next;
-++                             espec.pc=regs->eip;
-++                             event.event_type=2; 
-++                             /* index in the event array currently set up */
-++                             /* make sure the counters are loaded in the order we want them to show up*/ 
-++                             (*rec_event)(&event, diff);
-++                     }
-++             }
-++         /* next has been elected to run */
-++             next->last_interrupted=0;
-++     }
-++ #endif
-+      sched_info_switch(prev, next);
-+      if (likely(prev != next)) {
-+              next->timestamp = next->last_ran = now;
-+***************
-+*** 5737,5742 ****
-+      jiffies_to_timespec(p->policy == SCHED_FIFO ?
-+                              0 : task_timeslice(p), &t);
-+      read_unlock(&tasklist_lock);
-+      retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
-+  out_nounlock:
-+      return retval;
-+--- 5817,5823 ----
-+      jiffies_to_timespec(p->policy == SCHED_FIFO ?
-+                              0 : task_timeslice(p), &t);
-+      read_unlock(&tasklist_lock);
-++ 
-+      retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
-+  out_nounlock:
-+      return retval;
-+***************
-+*** 7980,7982 ****
-+  }
-+  
-+  #endif
-+--- 8061,8080 ----
-+  }
-+  
-+  #endif
-++ 
-++ #ifdef CONFIG_CHOPSTIX
-++ void (*rec_event)(void *,unsigned int) = NULL;
-++ 
-++ /* To support safe calling from asm */
-++ asmlinkage void rec_event_asm (struct event *event_signature_in, unsigned int count) {
-++     struct pt_regs *regs;
-++     struct event_spec *es = event_signature_in->event_data;
-++     regs = task_pt_regs(current);
-++     event_signature_in->task=current;
-++     es->pc=regs->eip;
-++     event_signature_in->count=1;
-++     (*rec_event)(event_signature_in, count);
-++ }
-++ EXPORT_SYMBOL(rec_event);
-++ EXPORT_SYMBOL(in_sched_functions);
-++ #endif
-diff -Nurb linux-2.6.27-590/mm/memory.c linux-2.6.27-591/mm/memory.c
---- linux-2.6.27-590/mm/memory.c       2010-02-01 19:42:07.000000000 -0500
-+++ linux-2.6.27-591/mm/memory.c       2010-02-01 19:43:07.000000000 -0500
-@@ -61,6 +61,7 @@
- #include <linux/swapops.h>
- #include <linux/elf.h>
-+#include <linux/arrays.h>
- #include "internal.h"
-@@ -2690,6 +2691,15 @@
-       return ret;
- }
-+extern void (*rec_event)(void *,unsigned int);
-+struct event_spec {
-+      unsigned long pc;
-+      unsigned long dcookie; 
-+      unsigned count;
-+      unsigned char reason;
-+};
-+
-+
- /*
-  * By the time we get here, we already hold the mm semaphore
-  */
-@@ -2719,6 +2729,24 @@
-       if (!pte)
-               return VM_FAULT_OOM;
-+#ifdef CONFIG_CHOPSTIX
-+      if (rec_event) {
-+              struct event event;
-+              struct event_spec espec;
-+        struct pt_regs *regs;
-+        unsigned int pc;
-+        regs = task_pt_regs(current);
-+        pc = regs->ip & (unsigned int) ~4095;
-+
-+              espec.reason = 0; /* alloc */
-+              event.event_data=&espec;
-+              event.task = current;
-+              espec.pc=pc;
-+              event.event_type=5; 
-+              (*rec_event)(&event, 1);
-+      }
-+#endif
-+
-       return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
- }
-diff -Nurb linux-2.6.27-590/mm/memory.c.orig linux-2.6.27-591/mm/memory.c.orig
---- linux-2.6.27-590/mm/memory.c.orig  1969-12-31 19:00:00.000000000 -0500
-+++ linux-2.6.27-591/mm/memory.c.orig  2010-02-01 19:42:07.000000000 -0500
-@@ -0,0 +1,3035 @@
-+/*
-+ *  linux/mm/memory.c
-+ *
-+ *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
-+ */
-+
-+/*
-+ * demand-loading started 01.12.91 - seems it is high on the list of
-+ * things wanted, and it should be easy to implement. - Linus
-+ */
-+
-+/*
-+ * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
-+ * pages started 02.12.91, seems to work. - Linus.
-+ *
-+ * Tested sharing by executing about 30 /bin/sh: under the old kernel it
-+ * would have taken more than the 6M I have free, but it worked well as
-+ * far as I could see.
-+ *
-+ * Also corrected some "invalidate()"s - I wasn't doing enough of them.
-+ */
-+
-+/*
-+ * Real VM (paging to/from disk) started 18.12.91. Much more work and
-+ * thought has to go into this. Oh, well..
-+ * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
-+ *            Found it. Everything seems to work now.
-+ * 20.12.91  -  Ok, making the swap-device changeable like the root.
-+ */
-+
-+/*
-+ * 05.04.94  -  Multi-page memory management added for v1.1.
-+ *            Idea by Alex Bligh (alex@cconcepts.co.uk)
-+ *
-+ * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
-+ *            (Gerhard.Wichert@pdb.siemens.de)
-+ *
-+ * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
-+ */
-+
-+#include <linux/kernel_stat.h>
-+#include <linux/mm.h>
-+#include <linux/hugetlb.h>
-+#include <linux/mman.h>
-+#include <linux/swap.h>
-+#include <linux/highmem.h>
-+#include <linux/pagemap.h>
-+#include <linux/rmap.h>
-+#include <linux/module.h>
-+#include <linux/delayacct.h>
-+#include <linux/init.h>
-+#include <linux/writeback.h>
-+#include <linux/memcontrol.h>
-+#include <linux/mmu_notifier.h>
-+
-+#include <asm/pgalloc.h>
-+#include <asm/uaccess.h>
-+#include <asm/tlb.h>
-+#include <asm/tlbflush.h>
-+#include <asm/pgtable.h>
-+
-+#include <linux/swapops.h>
-+#include <linux/elf.h>
-+
-+#include "internal.h"
-+
-+#ifndef CONFIG_NEED_MULTIPLE_NODES
-+/* use the per-pgdat data instead for discontigmem - mbligh */
-+unsigned long max_mapnr;
-+struct page *mem_map;
-+
-+EXPORT_SYMBOL(max_mapnr);
-+EXPORT_SYMBOL(mem_map);
-+#endif
-+
-+unsigned long num_physpages;
-+/*
-+ * A number of key systems in x86 including ioremap() rely on the assumption
-+ * that high_memory defines the upper bound on direct map memory, then end
-+ * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
-+ * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
-+ * and ZONE_HIGHMEM.
-+ */
-+void * high_memory;
-+
-+EXPORT_SYMBOL(num_physpages);
-+EXPORT_SYMBOL(high_memory);
-+
-+/*
-+ * Randomize the address space (stacks, mmaps, brk, etc.).
-+ *
-+ * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
-+ *   as ancient (libc5 based) binaries can segfault. )
-+ */
-+int randomize_va_space __read_mostly =
-+#ifdef CONFIG_COMPAT_BRK
-+                                      1;
-+#else
-+                                      2;
-+#endif
-+
-+static int __init disable_randmaps(char *s)
-+{
-+      randomize_va_space = 0;
-+      return 1;
-+}
-+__setup("norandmaps", disable_randmaps);
-+
-+
-+/*
-+ * If a p?d_bad entry is found while walking page tables, report
-+ * the error, before resetting entry to p?d_none.  Usually (but
-+ * very seldom) called out from the p?d_none_or_clear_bad macros.
-+ */
-+
-+void pgd_clear_bad(pgd_t *pgd)
-+{
-+      pgd_ERROR(*pgd);
-+      pgd_clear(pgd);
-+}
-+
-+void pud_clear_bad(pud_t *pud)
-+{
-+      pud_ERROR(*pud);
-+      pud_clear(pud);
-+}
-+
-+void pmd_clear_bad(pmd_t *pmd)
-+{
-+      pmd_ERROR(*pmd);
-+      pmd_clear(pmd);
-+}
-+
-+/*
-+ * Note: this doesn't free the actual pages themselves. That
-+ * has been handled earlier when unmapping all the memory regions.
-+ */
-+static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
-+{
-+      pgtable_t token = pmd_pgtable(*pmd);
-+      pmd_clear(pmd);
-+      pte_free_tlb(tlb, token);
-+      tlb->mm->nr_ptes--;
-+}
-+
-+static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
-+                              unsigned long addr, unsigned long end,
-+                              unsigned long floor, unsigned long ceiling)
-+{
-+      pmd_t *pmd;
-+      unsigned long next;
-+      unsigned long start;
-+
-+      start = addr;
-+      pmd = pmd_offset(pud, addr);
-+      do {
-+              next = pmd_addr_end(addr, end);
-+              if (pmd_none_or_clear_bad(pmd))
-+                      continue;
-+              free_pte_range(tlb, pmd);
-+      } while (pmd++, addr = next, addr != end);
-+
-+      start &= PUD_MASK;
-+      if (start < floor)
-+              return;
-+      if (ceiling) {
-+              ceiling &= PUD_MASK;
-+              if (!ceiling)
-+                      return;
-+      }
-+      if (end - 1 > ceiling - 1)
-+              return;
-+
-+      pmd = pmd_offset(pud, start);
-+      pud_clear(pud);
-+      pmd_free_tlb(tlb, pmd);
-+}
-+
-+static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
-+                              unsigned long addr, unsigned long end,
-+                              unsigned long floor, unsigned long ceiling)
-+{
-+      pud_t *pud;
-+      unsigned long next;
-+      unsigned long start;
-+
-+      start = addr;
-+      pud = pud_offset(pgd, addr);
-+      do {
-+              next = pud_addr_end(addr, end);
-+              if (pud_none_or_clear_bad(pud))
-+                      continue;
-+              free_pmd_range(tlb, pud, addr, next, floor, ceiling);
-+      } while (pud++, addr = next, addr != end);
-+
-+      start &= PGDIR_MASK;
-+      if (start < floor)
-+              return;
-+      if (ceiling) {
-+              ceiling &= PGDIR_MASK;
-+              if (!ceiling)
-+                      return;
-+      }
-+      if (end - 1 > ceiling - 1)
-+              return;
-+
-+      pud = pud_offset(pgd, start);
-+      pgd_clear(pgd);
-+      pud_free_tlb(tlb, pud);
-+}
-+
-+/*
-+ * This function frees user-level page tables of a process.
-+ *
-+ * Must be called with pagetable lock held.
-+ */
-+void free_pgd_range(struct mmu_gather *tlb,
-+                      unsigned long addr, unsigned long end,
-+                      unsigned long floor, unsigned long ceiling)
-+{
-+      pgd_t *pgd;
-+      unsigned long next;
-+      unsigned long start;
-+
-+      /*
-+       * The next few lines have given us lots of grief...
-+       *
-+       * Why are we testing PMD* at this top level?  Because often
-+       * there will be no work to do at all, and we'd prefer not to
-+       * go all the way down to the bottom just to discover that.
-+       *
-+       * Why all these "- 1"s?  Because 0 represents both the bottom
-+       * of the address space and the top of it (using -1 for the
-+       * top wouldn't help much: the masks would do the wrong thing).
-+       * The rule is that addr 0 and floor 0 refer to the bottom of
-+       * the address space, but end 0 and ceiling 0 refer to the top
-+       * Comparisons need to use "end - 1" and "ceiling - 1" (though
-+       * that end 0 case should be mythical).
-+       *
-+       * Wherever addr is brought up or ceiling brought down, we must
-+       * be careful to reject "the opposite 0" before it confuses the
-+       * subsequent tests.  But what about where end is brought down
-+       * by PMD_SIZE below? no, end can't go down to 0 there.
-+       *
-+       * Whereas we round start (addr) and ceiling down, by different
-+       * masks at different levels, in order to test whether a table
-+       * now has no other vmas using it, so can be freed, we don't
-+       * bother to round floor or end up - the tests don't need that.
-+       */
-+
-+      addr &= PMD_MASK;
-+      if (addr < floor) {
-+              addr += PMD_SIZE;
-+              if (!addr)
-+                      return;
-+      }
-+      if (ceiling) {
-+              ceiling &= PMD_MASK;
-+              if (!ceiling)
-+                      return;
-+      }
-+      if (end - 1 > ceiling - 1)
-+              end -= PMD_SIZE;
-+      if (addr > end - 1)
-+              return;
-+
-+      start = addr;
-+      pgd = pgd_offset(tlb->mm, addr);
-+      do {
-+              next = pgd_addr_end(addr, end);
-+              if (pgd_none_or_clear_bad(pgd))
-+                      continue;
-+              free_pud_range(tlb, pgd, addr, next, floor, ceiling);
-+      } while (pgd++, addr = next, addr != end);
-+}
-+
-+void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
-+              unsigned long floor, unsigned long ceiling)
-+{
-+      while (vma) {
-+              struct vm_area_struct *next = vma->vm_next;
-+              unsigned long addr = vma->vm_start;
-+
-+              /*
-+               * Hide vma from rmap and vmtruncate before freeing pgtables
-+               */
-+              anon_vma_unlink(vma);
-+              unlink_file_vma(vma);
-+
-+              if (is_vm_hugetlb_page(vma)) {
-+                      hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
-+                              floor, next? next->vm_start: ceiling);
-+              } else {
-+                      /*
-+                       * Optimization: gather nearby vmas into one call down
-+                       */
-+                      while (next && next->vm_start <= vma->vm_end + PMD_SIZE
-+                             && !is_vm_hugetlb_page(next)) {
-+                              vma = next;
-+                              next = vma->vm_next;
-+                              anon_vma_unlink(vma);
-+                              unlink_file_vma(vma);
-+                      }
-+                      free_pgd_range(tlb, addr, vma->vm_end,
-+                              floor, next? next->vm_start: ceiling);
-+              }
-+              vma = next;
-+      }
-+}
-+
-+int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
-+{
-+      pgtable_t new = pte_alloc_one(mm, address);
-+      if (!new)
-+              return -ENOMEM;
-+
-+      /*
-+       * Ensure all pte setup (eg. pte page lock and page clearing) are
-+       * visible before the pte is made visible to other CPUs by being
-+       * put into page tables.
-+       *
-+       * The other side of the story is the pointer chasing in the page
-+       * table walking code (when walking the page table without locking;
-+       * ie. most of the time). Fortunately, these data accesses consist
-+       * of a chain of data-dependent loads, meaning most CPUs (alpha
-+       * being the notable exception) will already guarantee loads are
-+       * seen in-order. See the alpha page table accessors for the
-+       * smp_read_barrier_depends() barriers in page table walking code.
-+       */
-+      smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
-+
-+      spin_lock(&mm->page_table_lock);
-+      if (!pmd_present(*pmd)) {       /* Has another populated it ? */
-+              mm->nr_ptes++;
-+              pmd_populate(mm, pmd, new);
-+              new = NULL;
-+      }
-+      spin_unlock(&mm->page_table_lock);
-+      if (new)
-+              pte_free(mm, new);
-+      return 0;
-+}
-+
-+int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
-+{
-+      pte_t *new = pte_alloc_one_kernel(&init_mm, address);
-+      if (!new)
-+              return -ENOMEM;
-+
-+      smp_wmb(); /* See comment in __pte_alloc */
-+
-+      spin_lock(&init_mm.page_table_lock);
-+      if (!pmd_present(*pmd)) {       /* Has another populated it ? */
-+              pmd_populate_kernel(&init_mm, pmd, new);
-+              new = NULL;
-+      }
-+      spin_unlock(&init_mm.page_table_lock);
-+      if (new)
-+              pte_free_kernel(&init_mm, new);
-+      return 0;
-+}
-+
-+static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
-+{
-+      if (file_rss)
-+              add_mm_counter(mm, file_rss, file_rss);
-+      if (anon_rss)
-+              add_mm_counter(mm, anon_rss, anon_rss);
-+}
-+
-+/*
-+ * This function is called to print an error when a bad pte
-+ * is found. For example, we might have a PFN-mapped pte in
-+ * a region that doesn't allow it.
-+ *
-+ * The calling function must still handle the error.
-+ */
-+static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
-+                        unsigned long vaddr)
-+{
-+      printk(KERN_ERR "Bad pte = %08llx, process = %s, "
-+                      "vm_flags = %lx, vaddr = %lx\n",
-+              (long long)pte_val(pte),
-+              (vma->vm_mm == current->mm ? current->comm : "???"),
-+              vma->vm_flags, vaddr);
-+      dump_stack();
-+}
-+
-+static inline int is_cow_mapping(unsigned int flags)
-+{
-+      return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
-+}
-+
-+/*
-+ * vm_normal_page -- This function gets the "struct page" associated with a pte.
-+ *
-+ * "Special" mappings do not wish to be associated with a "struct page" (either
-+ * it doesn't exist, or it exists but they don't want to touch it). In this
-+ * case, NULL is returned here. "Normal" mappings do have a struct page.
-+ *
-+ * There are 2 broad cases. Firstly, an architecture may define a pte_special()
-+ * pte bit, in which case this function is trivial. Secondly, an architecture
-+ * may not have a spare pte bit, which requires a more complicated scheme,
-+ * described below.
-+ *
-+ * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
-+ * special mapping (even if there are underlying and valid "struct pages").
-+ * COWed pages of a VM_PFNMAP are always normal.
-+ *
-+ * The way we recognize COWed pages within VM_PFNMAP mappings is through the
-+ * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
-+ * set, and the vm_pgoff will point to the first PFN mapped: thus every special
-+ * mapping will always honor the rule
-+ *
-+ *    pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
-+ *
-+ * And for normal mappings this is false.
-+ *
-+ * This restricts such mappings to be a linear translation from virtual address
-+ * to pfn. To get around this restriction, we allow arbitrary mappings so long
-+ * as the vma is not a COW mapping; in that case, we know that all ptes are
-+ * special (because none can have been COWed).
-+ *
-+ *
-+ * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
-+ *
-+ * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
-+ * page" backing, however the difference is that _all_ pages with a struct
-+ * page (that is, those where pfn_valid is true) are refcounted and considered
-+ * normal pages by the VM. The disadvantage is that pages are refcounted
-+ * (which can be slower and simply not an option for some PFNMAP users). The
-+ * advantage is that we don't have to follow the strict linearity rule of
-+ * PFNMAP mappings in order to support COWable mappings.
-+ *
-+ */
-+#ifdef __HAVE_ARCH_PTE_SPECIAL
-+# define HAVE_PTE_SPECIAL 1
-+#else
-+# define HAVE_PTE_SPECIAL 0
-+#endif
-+struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
-+                              pte_t pte)
-+{
-+      unsigned long pfn;
-+
-+      if (HAVE_PTE_SPECIAL) {
-+              if (likely(!pte_special(pte))) {
-+                      VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
-+                      return pte_page(pte);
-+              }
-+              VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
-+              return NULL;
-+      }
-+
-+      /* !HAVE_PTE_SPECIAL case follows: */
-+
-+      pfn = pte_pfn(pte);
-+
-+      if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
-+              if (vma->vm_flags & VM_MIXEDMAP) {
-+                      if (!pfn_valid(pfn))
-+                              return NULL;
-+                      goto out;
-+              } else {
-+                      unsigned long off;
-+                      off = (addr - vma->vm_start) >> PAGE_SHIFT;
-+                      if (pfn == vma->vm_pgoff + off)
-+                              return NULL;
-+                      if (!is_cow_mapping(vma->vm_flags))
-+                              return NULL;
-+              }
-+      }
-+
-+      VM_BUG_ON(!pfn_valid(pfn));
-+
-+      /*
-+       * NOTE! We still have PageReserved() pages in the page tables.
-+       *
-+       * eg. VDSO mappings can cause them to exist.
-+       */
-+out:
-+      return pfn_to_page(pfn);
-+}
-+
-+/*
-+ * copy one vm_area from one task to the other. Assumes the page tables
-+ * already present in the new task to be cleared in the whole range
-+ * covered by this vma.
-+ */
-+
-+static inline void
-+copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
-+              pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
-+              unsigned long addr, int *rss)
-+{
-+      unsigned long vm_flags = vma->vm_flags;
-+      pte_t pte = *src_pte;
-+      struct page *page;
-+
-+      /* pte contains position in swap or file, so copy. */
-+      if (unlikely(!pte_present(pte))) {
-+              if (!pte_file(pte)) {
-+                      swp_entry_t entry = pte_to_swp_entry(pte);
-+
-+                      swap_duplicate(entry);
-+                      /* make sure dst_mm is on swapoff's mmlist. */
-+                      if (unlikely(list_empty(&dst_mm->mmlist))) {
-+                              spin_lock(&mmlist_lock);
-+                              if (list_empty(&dst_mm->mmlist))
-+                                      list_add(&dst_mm->mmlist,
-+                                               &src_mm->mmlist);
-+                              spin_unlock(&mmlist_lock);
-+                      }
-+                      if (is_write_migration_entry(entry) &&
-+                                      is_cow_mapping(vm_flags)) {
-+                              /*
-+                               * COW mappings require pages in both parent
-+                               * and child to be set to read.
-+                               */
-+                              make_migration_entry_read(&entry);
-+                              pte = swp_entry_to_pte(entry);
-+                              set_pte_at(src_mm, addr, src_pte, pte);
-+                      }
-+              }
-+              goto out_set_pte;
-+      }
-+
-+      /*
-+       * If it's a COW mapping, write protect it both
-+       * in the parent and the child
-+       */
-+      if (is_cow_mapping(vm_flags)) {
-+              ptep_set_wrprotect(src_mm, addr, src_pte);
-+              pte = pte_wrprotect(pte);
-+      }
-+
-+      /*
-+       * If it's a shared mapping, mark it clean in
-+       * the child
-+       */
-+      if (vm_flags & VM_SHARED)
-+              pte = pte_mkclean(pte);
-+      pte = pte_mkold(pte);
-+
-+      page = vm_normal_page(vma, addr, pte);
-+      if (page) {
-+              get_page(page);
-+              page_dup_rmap(page, vma, addr);
-+              rss[!!PageAnon(page)]++;
-+      }
-+
-+out_set_pte:
-+      set_pte_at(dst_mm, addr, dst_pte, pte);
-+}
-+
-+static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
-+              pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
-+              unsigned long addr, unsigned long end)
-+{
-+      pte_t *src_pte, *dst_pte;
-+      spinlock_t *src_ptl, *dst_ptl;
-+      int progress = 0;
-+      int rss[2];
-+
-+      if (!vx_rss_avail(dst_mm, ((end - addr)/PAGE_SIZE + 1)))
-+              return -ENOMEM;
-+
-+again:
-+      rss[1] = rss[0] = 0;
-+      dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
-+      if (!dst_pte)
-+              return -ENOMEM;
-+      src_pte = pte_offset_map_nested(src_pmd, addr);
-+      src_ptl = pte_lockptr(src_mm, src_pmd);
-+      spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
-+      arch_enter_lazy_mmu_mode();
-+
-+      do {
-+              /*
-+               * We are holding two locks at this point - either of them
-+               * could generate latencies in another task on another CPU.
-+               */
-+              if (progress >= 32) {
-+                      progress = 0;
-+                      if (need_resched() ||
-+                          spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
-+                              break;
-+              }
-+              if (pte_none(*src_pte)) {
-+                      progress++;
-+                      continue;
-+              }
-+              copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
-+              progress += 8;
-+      } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
-+
-+      arch_leave_lazy_mmu_mode();
-+      spin_unlock(src_ptl);
-+      pte_unmap_nested(src_pte - 1);
-+      add_mm_rss(dst_mm, rss[0], rss[1]);
-+      pte_unmap_unlock(dst_pte - 1, dst_ptl);
-+      cond_resched();
-+      if (addr != end)
-+              goto again;
-+      return 0;
-+}
-+
-+static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
-+              pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
-+              unsigned long addr, unsigned long end)
-+{
-+      pmd_t *src_pmd, *dst_pmd;
-+      unsigned long next;
-+
-+      dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
-+      if (!dst_pmd)
-+              return -ENOMEM;
-+      src_pmd = pmd_offset(src_pud, addr);
-+      do {
-+              next = pmd_addr_end(addr, end);
-+              if (pmd_none_or_clear_bad(src_pmd))
-+                      continue;
-+              if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
-+                                              vma, addr, next))
-+                      return -ENOMEM;
-+      } while (dst_pmd++, src_pmd++, addr = next, addr != end);
-+      return 0;
-+}
-+
-+static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
-+              pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
-+              unsigned long addr, unsigned long end)
-+{
-+      pud_t *src_pud, *dst_pud;
-+      unsigned long next;
-+
-+      dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
-+      if (!dst_pud)
-+              return -ENOMEM;
-+      src_pud = pud_offset(src_pgd, addr);
-+      do {
-+              next = pud_addr_end(addr, end);
-+              if (pud_none_or_clear_bad(src_pud))
-+                      continue;
-+              if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
-+                                              vma, addr, next))
-+                      return -ENOMEM;
-+      } while (dst_pud++, src_pud++, addr = next, addr != end);
-+      return 0;
-+}
-+
-+int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
-+              struct vm_area_struct *vma)
-+{
-+      pgd_t *src_pgd, *dst_pgd;
-+      unsigned long next;
-+      unsigned long addr = vma->vm_start;
-+      unsigned long end = vma->vm_end;
-+      int ret;
-+
-+      /*
-+       * Don't copy ptes where a page fault will fill them correctly.
-+       * Fork becomes much lighter when there are big shared or private
-+       * readonly mappings. The tradeoff is that copy_page_range is more
-+       * efficient than faulting.
-+       */
-+      if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
-+              if (!vma->anon_vma)
-+                      return 0;
-+      }
-+
-+      if (is_vm_hugetlb_page(vma))
-+              return copy_hugetlb_page_range(dst_mm, src_mm, vma);
-+
-+      /*
-+       * We need to invalidate the secondary MMU mappings only when
-+       * there could be a permission downgrade on the ptes of the
-+       * parent mm. And a permission downgrade will only happen if
-+       * is_cow_mapping() returns true.
-+       */
-+      if (is_cow_mapping(vma->vm_flags))
-+              mmu_notifier_invalidate_range_start(src_mm, addr, end);
-+
-+      ret = 0;
-+      dst_pgd = pgd_offset(dst_mm, addr);
-+      src_pgd = pgd_offset(src_mm, addr);
-+      do {
-+              next = pgd_addr_end(addr, end);
-+              if (pgd_none_or_clear_bad(src_pgd))
-+                      continue;
-+              if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
-+                                          vma, addr, next))) {
-+                      ret = -ENOMEM;
-+                      break;
-+              }
-+      } while (dst_pgd++, src_pgd++, addr = next, addr != end);
-+
-+      if (is_cow_mapping(vma->vm_flags))
-+              mmu_notifier_invalidate_range_end(src_mm,
-+                                                vma->vm_start, end);
-+      return ret;
-+}
-+
-+static unsigned long zap_pte_range(struct mmu_gather *tlb,
-+                              struct vm_area_struct *vma, pmd_t *pmd,
-+                              unsigned long addr, unsigned long end,
-+                              long *zap_work, struct zap_details *details)
-+{
-+      struct mm_struct *mm = tlb->mm;
-+      pte_t *pte;
-+      spinlock_t *ptl;
-+      int file_rss = 0;
-+      int anon_rss = 0;
-+
-+      pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
-+      arch_enter_lazy_mmu_mode();
-+      do {
-+              pte_t ptent = *pte;
-+              if (pte_none(ptent)) {
-+                      (*zap_work)--;
-+                      continue;
-+              }
-+
-+              (*zap_work) -= PAGE_SIZE;
-+
-+              if (pte_present(ptent)) {
-+                      struct page *page;
-+
-+                      page = vm_normal_page(vma, addr, ptent);
-+                      if (unlikely(details) && page) {
-+                              /*
-+                               * unmap_shared_mapping_pages() wants to
-+                               * invalidate cache without truncating:
-+                               * unmap shared but keep private pages.
-+                               */
-+                              if (details->check_mapping &&
-+                                  details->check_mapping != page->mapping)
-+                                      continue;
-+                              /*
-+                               * Each page->index must be checked when
-+                               * invalidating or truncating nonlinear.
-+                               */
-+                              if (details->nonlinear_vma &&
-+                                  (page->index < details->first_index ||
-+                                   page->index > details->last_index))
-+                                      continue;
-+                      }
-+                      ptent = ptep_get_and_clear_full(mm, addr, pte,
-+                                                      tlb->fullmm);
-+                      tlb_remove_tlb_entry(tlb, pte, addr);
-+                      if (unlikely(!page))
-+                              continue;
-+                      if (unlikely(details) && details->nonlinear_vma
-+                          && linear_page_index(details->nonlinear_vma,
-+                                              addr) != page->index)
-+                              set_pte_at(mm, addr, pte,
-+                                         pgoff_to_pte(page->index));
-+                      if (PageAnon(page))
-+                              anon_rss--;
-+                      else {
-+                              if (pte_dirty(ptent))
-+                                      set_page_dirty(page);
-+                              if (pte_young(ptent))
-+                                      SetPageReferenced(page);
-+                              file_rss--;
-+                      }
-+                      page_remove_rmap(page, vma);
-+                      tlb_remove_page(tlb, page);
-+                      continue;
-+              }
-+              /*
-+               * If details->check_mapping, we leave swap entries;
-+               * if details->nonlinear_vma, we leave file entries.
-+               */
-+              if (unlikely(details))
-+                      continue;
-+              if (!pte_file(ptent))
-+                      free_swap_and_cache(pte_to_swp_entry(ptent));
-+              pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
-+      } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
-+
-+      add_mm_rss(mm, file_rss, anon_rss);
-+      arch_leave_lazy_mmu_mode();
-+      pte_unmap_unlock(pte - 1, ptl);
-+
-+      return addr;
-+}
-+
-+static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
-+                              struct vm_area_struct *vma, pud_t *pud,
-+                              unsigned long addr, unsigned long end,
-+                              long *zap_work, struct zap_details *details)
-+{
-+      pmd_t *pmd;
-+      unsigned long next;
-+
-+      pmd = pmd_offset(pud, addr);
-+      do {
-+              next = pmd_addr_end(addr, end);
-+              if (pmd_none_or_clear_bad(pmd)) {
-+                      (*zap_work)--;
-+                      continue;
-+              }
-+              next = zap_pte_range(tlb, vma, pmd, addr, next,
-+                                              zap_work, details);
-+      } while (pmd++, addr = next, (addr != end && *zap_work > 0));
-+
-+      return addr;
-+}
-+
-+static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
-+                              struct vm_area_struct *vma, pgd_t *pgd,
-+                              unsigned long addr, unsigned long end,
-+                              long *zap_work, struct zap_details *details)
-+{
-+      pud_t *pud;
-+      unsigned long next;
-+
-+      pud = pud_offset(pgd, addr);
-+      do {
-+              next = pud_addr_end(addr, end);
-+              if (pud_none_or_clear_bad(pud)) {
-+                      (*zap_work)--;
-+                      continue;
-+              }
-+              next = zap_pmd_range(tlb, vma, pud, addr, next,
-+                                              zap_work, details);
-+      } while (pud++, addr = next, (addr != end && *zap_work > 0));
-+
-+      return addr;
-+}
-+
-+static unsigned long unmap_page_range(struct mmu_gather *tlb,
-+                              struct vm_area_struct *vma,
-+                              unsigned long addr, unsigned long end,
-+                              long *zap_work, struct zap_details *details)
-+{
-+      pgd_t *pgd;
-+      unsigned long next;
-+
-+      if (details && !details->check_mapping && !details->nonlinear_vma)
-+              details = NULL;
-+
-+      BUG_ON(addr >= end);
-+      tlb_start_vma(tlb, vma);
-+      pgd = pgd_offset(vma->vm_mm, addr);
-+      do {
-+              next = pgd_addr_end(addr, end);
-+              if (pgd_none_or_clear_bad(pgd)) {
-+                      (*zap_work)--;
-+                      continue;
-+              }
-+              next = zap_pud_range(tlb, vma, pgd, addr, next,
-+                                              zap_work, details);
-+      } while (pgd++, addr = next, (addr != end && *zap_work > 0));
-+      tlb_end_vma(tlb, vma);
-+
-+      return addr;
-+}
-+
-+#ifdef CONFIG_PREEMPT
-+# define ZAP_BLOCK_SIZE       (8 * PAGE_SIZE)
-+#else
-+/* No preempt: go for improved straight-line efficiency */
-+# define ZAP_BLOCK_SIZE       (1024 * PAGE_SIZE)
-+#endif
-+
-+/**
-+ * unmap_vmas - unmap a range of memory covered by a list of vma's
-+ * @tlbp: address of the caller's struct mmu_gather
-+ * @vma: the starting vma
-+ * @start_addr: virtual address at which to start unmapping
-+ * @end_addr: virtual address at which to end unmapping
-+ * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
-+ * @details: details of nonlinear truncation or shared cache invalidation
-+ *
-+ * Returns the end address of the unmapping (restart addr if interrupted).
-+ *
-+ * Unmap all pages in the vma list.
-+ *
-+ * We aim to not hold locks for too long (for scheduling latency reasons).
-+ * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
-+ * return the ending mmu_gather to the caller.
-+ *
-+ * Only addresses between `start' and `end' will be unmapped.
-+ *
-+ * The VMA list must be sorted in ascending virtual address order.
-+ *
-+ * unmap_vmas() assumes that the caller will flush the whole unmapped address
-+ * range after unmap_vmas() returns.  So the only responsibility here is to
-+ * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
-+ * drops the lock and schedules.
-+ */
-+unsigned long unmap_vmas(struct mmu_gather **tlbp,
-+              struct vm_area_struct *vma, unsigned long start_addr,
-+              unsigned long end_addr, unsigned long *nr_accounted,
-+              struct zap_details *details)
-+{
-+      long zap_work = ZAP_BLOCK_SIZE;
-+      unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
-+      int tlb_start_valid = 0;
-+      unsigned long start = start_addr;
-+      spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
-+      int fullmm = (*tlbp)->fullmm;
-+      struct mm_struct *mm = vma->vm_mm;
-+
-+      mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
-+      for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
-+              unsigned long end;
-+
-+              start = max(vma->vm_start, start_addr);
-+              if (start >= vma->vm_end)
-+                      continue;
-+              end = min(vma->vm_end, end_addr);
-+              if (end <= vma->vm_start)
-+                      continue;
-+
-+              if (vma->vm_flags & VM_ACCOUNT)
-+                      *nr_accounted += (end - start) >> PAGE_SHIFT;
-+
-+              while (start != end) {
-+                      if (!tlb_start_valid) {
-+                              tlb_start = start;
-+                              tlb_start_valid = 1;
-+                      }
-+
-+                      if (unlikely(is_vm_hugetlb_page(vma))) {
-+                              /*
-+                               * It is undesirable to test vma->vm_file as it
-+                               * should be non-null for valid hugetlb area.
-+                               * However, vm_file will be NULL in the error
-+                               * cleanup path of do_mmap_pgoff. When
-+                               * hugetlbfs ->mmap method fails,
-+                               * do_mmap_pgoff() nullifies vma->vm_file
-+                               * before calling this function to clean up.
-+                               * Since no pte has actually been setup, it is
-+                               * safe to do nothing in this case.
-+                               */
-+                              if (vma->vm_file) {
-+                                      unmap_hugepage_range(vma, start, end, NULL);
-+                                      zap_work -= (end - start) /
-+                                      pages_per_huge_page(hstate_vma(vma));
-+                              }
-+
-+                              start = end;
-+                      } else
-+                              start = unmap_page_range(*tlbp, vma,
-+                                              start, end, &zap_work, details);
-+
-+                      if (zap_work > 0) {
-+                              BUG_ON(start != end);
-+                              break;
-+                      }
-+
-+                      tlb_finish_mmu(*tlbp, tlb_start, start);
-+
-+                      if (need_resched() ||
-+                              (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
-+                              if (i_mmap_lock) {
-+                                      *tlbp = NULL;
-+                                      goto out;
-+                              }
-+                              cond_resched();
-+                      }
-+
-+                      *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
-+                      tlb_start_valid = 0;
-+                      zap_work = ZAP_BLOCK_SIZE;
-+              }
-+      }
-+out:
-+      mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
-+      return start;   /* which is now the end (or restart) address */
-+}
-+
-+/**
-+ * zap_page_range - remove user pages in a given range
-+ * @vma: vm_area_struct holding the applicable pages
-+ * @address: starting address of pages to zap
-+ * @size: number of bytes to zap
-+ * @details: details of nonlinear truncation or shared cache invalidation
-+ */
-+unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
-+              unsigned long size, struct zap_details *details)
-+{
-+      struct mm_struct *mm = vma->vm_mm;
-+      struct mmu_gather *tlb;
-+      unsigned long end = address + size;
-+      unsigned long nr_accounted = 0;
-+
-+      lru_add_drain();
-+      tlb = tlb_gather_mmu(mm, 0);
-+      update_hiwater_rss(mm);
-+      end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
-+      if (tlb)
-+              tlb_finish_mmu(tlb, address, end);
-+      return end;
-+}
-+
-+/**
-+ * zap_vma_ptes - remove ptes mapping the vma
-+ * @vma: vm_area_struct holding ptes to be zapped
-+ * @address: starting address of pages to zap
-+ * @size: number of bytes to zap
-+ *
-+ * This function only unmaps ptes assigned to VM_PFNMAP vmas.
-+ *
-+ * The entire address range must be fully contained within the vma.
-+ *
-+ * Returns 0 if successful.
-+ */
-+int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
-+              unsigned long size)
-+{
-+      if (address < vma->vm_start || address + size > vma->vm_end ||
-+                      !(vma->vm_flags & VM_PFNMAP))
-+              return -1;
-+      zap_page_range(vma, address, size, NULL);
-+      return 0;
-+}
-+EXPORT_SYMBOL_GPL(zap_vma_ptes);
-+
-+/*
-+ * Do a quick page-table lookup for a single page.
-+ */
-+struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
-+                      unsigned int flags)
-+{
-+      pgd_t *pgd;
-+      pud_t *pud;
-+      pmd_t *pmd;
-+      pte_t *ptep, pte;
-+      spinlock_t *ptl;
-+      struct page *page;
-+      struct mm_struct *mm = vma->vm_mm;
-+
-+      page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
-+      if (!IS_ERR(page)) {
-+              BUG_ON(flags & FOLL_GET);
-+              goto out;
-+      }
-+
-+      page = NULL;
-+      pgd = pgd_offset(mm, address);
-+      if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
-+              goto no_page_table;
-+
-+      pud = pud_offset(pgd, address);
-+      if (pud_none(*pud))
-+              goto no_page_table;
-+      if (pud_huge(*pud)) {
-+              BUG_ON(flags & FOLL_GET);
-+              page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
-+              goto out;
-+      }
-+      if (unlikely(pud_bad(*pud)))
-+              goto no_page_table;
-+
-+      pmd = pmd_offset(pud, address);
-+      if (pmd_none(*pmd))
-+              goto no_page_table;
-+      if (pmd_huge(*pmd)) {
-+              BUG_ON(flags & FOLL_GET);
-+              page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
-+              goto out;
-+      }
-+      if (unlikely(pmd_bad(*pmd)))
-+              goto no_page_table;
-+
-+      ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
-+
-+      pte = *ptep;
-+      if (!pte_present(pte))
-+              goto no_page;
-+      if ((flags & FOLL_WRITE) && !pte_write(pte))
-+              goto unlock;
-+      page = vm_normal_page(vma, address, pte);
-+      if (unlikely(!page))
-+              goto bad_page;
-+
-+      if (flags & FOLL_GET)
-+              get_page(page);
-+      if (flags & FOLL_TOUCH) {
-+              if ((flags & FOLL_WRITE) &&
-+                  !pte_dirty(pte) && !PageDirty(page))
-+                      set_page_dirty(page);
-+              mark_page_accessed(page);
-+      }
-+unlock:
-+      pte_unmap_unlock(ptep, ptl);
-+out:
-+      return page;
-+
-+bad_page:
-+      pte_unmap_unlock(ptep, ptl);
-+      return ERR_PTR(-EFAULT);
-+
-+no_page:
-+      pte_unmap_unlock(ptep, ptl);
-+      if (!pte_none(pte))
-+              return page;
-+      /* Fall through to ZERO_PAGE handling */
-+no_page_table:
-+      /*
-+       * When core dumping an enormous anonymous area that nobody
-+       * has touched so far, we don't want to allocate page tables.
-+       */
-+      if (flags & FOLL_ANON) {
-+              page = ZERO_PAGE(0);
-+              if (flags & FOLL_GET)
-+                      get_page(page);
-+              BUG_ON(flags & FOLL_WRITE);
-+      }
-+      return page;
-+}
-+
-+/* Can we do the FOLL_ANON optimization? */
-+static inline int use_zero_page(struct vm_area_struct *vma)
-+{
-+      /*
-+       * We don't want to optimize FOLL_ANON for make_pages_present()
-+       * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
-+       * we want to get the page from the page tables to make sure
-+       * that we serialize and update with any other user of that
-+       * mapping.
-+       */
-+      if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
-+              return 0;
-+      /*
-+       * And if we have a fault routine, it's not an anonymous region.
-+       */
-+      return !vma->vm_ops || !vma->vm_ops->fault;
-+}
-+
-+int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
-+              unsigned long start, int len, int write, int force,
-+              struct page **pages, struct vm_area_struct **vmas)
-+{
-+      int i;
-+      unsigned int vm_flags;
-+
-+      if (len <= 0)
-+              return 0;
-+      /* 
-+       * Require read or write permissions.
-+       * If 'force' is set, we only require the "MAY" flags.
-+       */
-+      vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
-+      vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
-+      i = 0;
-+
-+      do {
-+              struct vm_area_struct *vma;
-+              unsigned int foll_flags;
-+
-+              vma = find_extend_vma(mm, start);
-+              if (!vma && in_gate_area(tsk, start)) {
-+                      unsigned long pg = start & PAGE_MASK;
-+                      struct vm_area_struct *gate_vma = get_gate_vma(tsk);
-+                      pgd_t *pgd;
-+                      pud_t *pud;
-+                      pmd_t *pmd;
-+                      pte_t *pte;
-+                      if (write) /* user gate pages are read-only */
-+                              return i ? : -EFAULT;
-+                      if (pg > TASK_SIZE)
-+                              pgd = pgd_offset_k(pg);
-+                      else
-+                              pgd = pgd_offset_gate(mm, pg);
-+                      BUG_ON(pgd_none(*pgd));
-+                      pud = pud_offset(pgd, pg);
-+                      BUG_ON(pud_none(*pud));
-+                      pmd = pmd_offset(pud, pg);
-+                      if (pmd_none(*pmd))
-+                              return i ? : -EFAULT;
-+                      pte = pte_offset_map(pmd, pg);
-+                      if (pte_none(*pte)) {
-+                              pte_unmap(pte);
-+                              return i ? : -EFAULT;
-+                      }
-+                      if (pages) {
-+                              struct page *page = vm_normal_page(gate_vma, start, *pte);
-+                              pages[i] = page;
-+                              if (page)
-+                                      get_page(page);
-+                      }
-+                      pte_unmap(pte);
-+                      if (vmas)
-+                              vmas[i] = gate_vma;
-+                      i++;
-+                      start += PAGE_SIZE;
-+                      len--;
-+                      continue;
-+              }
-+
-+              if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
-+                              || !(vm_flags & vma->vm_flags))
-+                      return i ? : -EFAULT;
-+
-+              if (is_vm_hugetlb_page(vma)) {
-+                      i = follow_hugetlb_page(mm, vma, pages, vmas,
-+                                              &start, &len, i, write);
-+                      continue;
-+              }
-+
-+              foll_flags = FOLL_TOUCH;
-+              if (pages)
-+                      foll_flags |= FOLL_GET;
-+              if (!write && use_zero_page(vma))
-+                      foll_flags |= FOLL_ANON;
-+
-+              do {
-+                      struct page *page;
-+
-+                      /*
-+                       * If tsk is ooming, cut off its access to large memory
-+                       * allocations. It has a pending SIGKILL, but it can't
-+                       * be processed until returning to user space.
-+                       */
-+                      if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
-+                              return i ? i : -ENOMEM;
-+
-+                      if (write)
-+                              foll_flags |= FOLL_WRITE;
-+
-+                      cond_resched();
-+                      while (!(page = follow_page(vma, start, foll_flags))) {
-+                              int ret;
-+                              ret = handle_mm_fault(mm, vma, start,
-+                                              foll_flags & FOLL_WRITE);
-+                              if (ret & VM_FAULT_ERROR) {
-+                                      if (ret & VM_FAULT_OOM)
-+                                              return i ? i : -ENOMEM;
-+                                      else if (ret & VM_FAULT_SIGBUS)
-+                                              return i ? i : -EFAULT;
-+                                      BUG();
-+                              }
-+                              if (ret & VM_FAULT_MAJOR)
-+                                      tsk->maj_flt++;
-+                              else
-+                                      tsk->min_flt++;
-+
-+                              /*
-+                               * The VM_FAULT_WRITE bit tells us that
-+                               * do_wp_page has broken COW when necessary,
-+                               * even if maybe_mkwrite decided not to set
-+                               * pte_write. We can thus safely do subsequent
-+                               * page lookups as if they were reads.
-+                               */
-+                              if (ret & VM_FAULT_WRITE)
-+                                      foll_flags &= ~FOLL_WRITE;
-+
-+                              cond_resched();
-+                      }
-+                      if (IS_ERR(page))
-+                              return i ? i : PTR_ERR(page);
-+                      if (pages) {
-+                              pages[i] = page;
-+
-+                              flush_anon_page(vma, page, start);
-+                              flush_dcache_page(page);
-+                      }
-+                      if (vmas)
-+                              vmas[i] = vma;
-+                      i++;
-+                      start += PAGE_SIZE;
-+                      len--;
-+              } while (len && start < vma->vm_end);
-+      } while (len);
-+      return i;
-+}
-+EXPORT_SYMBOL(get_user_pages);
-+
-+pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
-+                      spinlock_t **ptl)
-+{
-+      pgd_t * pgd = pgd_offset(mm, addr);
-+      pud_t * pud = pud_alloc(mm, pgd, addr);
-+      if (pud) {
-+              pmd_t * pmd = pmd_alloc(mm, pud, addr);
-+              if (pmd)
-+                      return pte_alloc_map_lock(mm, pmd, addr, ptl);
-+      }
-+      return NULL;
-+}
-+
-+/*
-+ * This is the old fallback for page remapping.
-+ *
-+ * For historical reasons, it only allows reserved pages. Only
-+ * old drivers should use this, and they needed to mark their
-+ * pages reserved for the old functions anyway.
-+ */
-+static int insert_page(struct vm_area_struct *vma, unsigned long addr,
-+                      struct page *page, pgprot_t prot)
-+{
-+      struct mm_struct *mm = vma->vm_mm;
-+      int retval;
-+      pte_t *pte;
-+      spinlock_t *ptl;
-+
-+      retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
-+      if (retval)
-+              goto out;
-+
-+      retval = -EINVAL;
-+      if (PageAnon(page))
-+              goto out_uncharge;
-+      retval = -ENOMEM;
-+      flush_dcache_page(page);
-+      pte = get_locked_pte(mm, addr, &ptl);
-+      if (!pte)
-+              goto out_uncharge;
-+      retval = -EBUSY;
-+      if (!pte_none(*pte))
-+              goto out_unlock;
-+
-+      /* Ok, finally just insert the thing.. */
-+      get_page(page);
-+      inc_mm_counter(mm, file_rss);
-+      page_add_file_rmap(page);
-+      set_pte_at(mm, addr, pte, mk_pte(page, prot));
-+
-+      retval = 0;
-+      pte_unmap_unlock(pte, ptl);
-+      return retval;
-+out_unlock:
-+      pte_unmap_unlock(pte, ptl);
-+out_uncharge:
-+      mem_cgroup_uncharge_page(page);
-+out:
-+      return retval;
-+}
-+
-+/**
-+ * vm_insert_page - insert single page into user vma
-+ * @vma: user vma to map to
-+ * @addr: target user address of this page
-+ * @page: source kernel page
-+ *
-+ * This allows drivers to insert individual pages they've allocated
-+ * into a user vma.
-+ *
-+ * The page has to be a nice clean _individual_ kernel allocation.
-+ * If you allocate a compound page, you need to have marked it as
-+ * such (__GFP_COMP), or manually just split the page up yourself
-+ * (see split_page()).
-+ *
-+ * NOTE! Traditionally this was done with "remap_pfn_range()" which
-+ * took an arbitrary page protection parameter. This doesn't allow
-+ * that. Your vma protection will have to be set up correctly, which
-+ * means that if you want a shared writable mapping, you'd better
-+ * ask for a shared writable mapping!
-+ *
-+ * The page does not need to be reserved.
-+ */
-+int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
-+                      struct page *page)
-+{
-+      if (addr < vma->vm_start || addr >= vma->vm_end)
-+              return -EFAULT;
-+      if (!page_count(page))
-+              return -EINVAL;
-+      vma->vm_flags |= VM_INSERTPAGE;
-+      return insert_page(vma, addr, page, vma->vm_page_prot);
-+}
-+EXPORT_SYMBOL(vm_insert_page);
-+
-+static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
-+                      unsigned long pfn, pgprot_t prot)
-+{
-+      struct mm_struct *mm = vma->vm_mm;
-+      int retval;
-+      pte_t *pte, entry;
-+      spinlock_t *ptl;
-+
-+      retval = -ENOMEM;
-+      pte = get_locked_pte(mm, addr, &ptl);
-+      if (!pte)
-+              goto out;
-+      retval = -EBUSY;
-+      if (!pte_none(*pte))
-+              goto out_unlock;
-+
-+      /* Ok, finally just insert the thing.. */
-+      entry = pte_mkspecial(pfn_pte(pfn, prot));
-+      set_pte_at(mm, addr, pte, entry);
-+      update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
-+
-+      retval = 0;
-+out_unlock:
-+      pte_unmap_unlock(pte, ptl);
-+out:
-+      return retval;
-+}
-+
-+/**
-+ * vm_insert_pfn - insert single pfn into user vma
-+ * @vma: user vma to map to
-+ * @addr: target user address of this page
-+ * @pfn: source kernel pfn
-+ *
-+ * Similar to vm_inert_page, this allows drivers to insert individual pages
-+ * they've allocated into a user vma. Same comments apply.
-+ *
-+ * This function should only be called from a vm_ops->fault handler, and
-+ * in that case the handler should return NULL.
-+ *
-+ * vma cannot be a COW mapping.
-+ *
-+ * As this is called only for pages that do not currently exist, we
-+ * do not need to flush old virtual caches or the TLB.
-+ */
-+int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
-+                      unsigned long pfn)
-+{
-+      /*
-+       * Technically, architectures with pte_special can avoid all these
-+       * restrictions (same for remap_pfn_range).  However we would like
-+       * consistency in testing and feature parity among all, so we should
-+       * try to keep these invariants in place for everybody.
-+       */
-+      BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
-+      BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
-+                                              (VM_PFNMAP|VM_MIXEDMAP));
-+      BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
-+      BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
-+
-+      if (addr < vma->vm_start || addr >= vma->vm_end)
-+              return -EFAULT;
-+      return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
-+}
-+EXPORT_SYMBOL(vm_insert_pfn);
-+
-+int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
-+                      unsigned long pfn)
-+{
-+      BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
-+
-+      if (addr < vma->vm_start || addr >= vma->vm_end)
-+              return -EFAULT;
-+
-+      /*
-+       * If we don't have pte special, then we have to use the pfn_valid()
-+       * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
-+       * refcount the page if pfn_valid is true (hence insert_page rather
-+       * than insert_pfn).
-+       */
-+      if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
-+              struct page *page;
-+
-+              page = pfn_to_page(pfn);
-+              return insert_page(vma, addr, page, vma->vm_page_prot);
-+      }
-+      return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
-+}
-+EXPORT_SYMBOL(vm_insert_mixed);
-+
-+/*
-+ * maps a range of physical memory into the requested pages. the old
-+ * mappings are removed. any references to nonexistent pages results
-+ * in null mappings (currently treated as "copy-on-access")
-+ */
-+static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
-+                      unsigned long addr, unsigned long end,
-+                      unsigned long pfn, pgprot_t prot)
-+{
-+      pte_t *pte;
-+      spinlock_t *ptl;
-+
-+      pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
-+      if (!pte)
-+              return -ENOMEM;
-+      arch_enter_lazy_mmu_mode();
-+      do {
-+              BUG_ON(!pte_none(*pte));
-+              set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
-+              pfn++;
-+      } while (pte++, addr += PAGE_SIZE, addr != end);
-+      arch_leave_lazy_mmu_mode();
-+      pte_unmap_unlock(pte - 1, ptl);
-+      return 0;
-+}
-+
-+static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
-+                      unsigned long addr, unsigned long end,
-+                      unsigned long pfn, pgprot_t prot)
-+{
-+      pmd_t *pmd;
-+      unsigned long next;
-+
-+      pfn -= addr >> PAGE_SHIFT;
-+      pmd = pmd_alloc(mm, pud, addr);
-+      if (!pmd)
-+              return -ENOMEM;
-+      do {
-+              next = pmd_addr_end(addr, end);
-+              if (remap_pte_range(mm, pmd, addr, next,
-+                              pfn + (addr >> PAGE_SHIFT), prot))
-+                      return -ENOMEM;
-+      } while (pmd++, addr = next, addr != end);
-+      return 0;
-+}
-+
-+static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
-+                      unsigned long addr, unsigned long end,
-+                      unsigned long pfn, pgprot_t prot)
-+{
-+      pud_t *pud;
-+      unsigned long next;
-+
-+      pfn -= addr >> PAGE_SHIFT;
-+      pud = pud_alloc(mm, pgd, addr);
-+      if (!pud)
-+              return -ENOMEM;
-+      do {
-+              next = pud_addr_end(addr, end);
-+              if (remap_pmd_range(mm, pud, addr, next,
-+                              pfn + (addr >> PAGE_SHIFT), prot))
-+                      return -ENOMEM;
-+      } while (pud++, addr = next, addr != end);
-+      return 0;
-+}
-+
-+/**
-+ * remap_pfn_range - remap kernel memory to userspace
-+ * @vma: user vma to map to
-+ * @addr: target user address to start at
-+ * @pfn: physical address of kernel memory
-+ * @size: size of map area
-+ * @prot: page protection flags for this mapping
-+ *
-+ *  Note: this is only safe if the mm semaphore is held when called.
-+ */
-+int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
-+                  unsigned long pfn, unsigned long size, pgprot_t prot)
-+{
-+      pgd_t *pgd;
-+      unsigned long next;
-+      unsigned long end = addr + PAGE_ALIGN(size);
-+      struct mm_struct *mm = vma->vm_mm;
-+      int err;
-+
-+      /*
-+       * Physically remapped pages are special. Tell the
-+       * rest of the world about it:
-+       *   VM_IO tells people not to look at these pages
-+       *      (accesses can have side effects).
-+       *   VM_RESERVED is specified all over the place, because
-+       *      in 2.4 it kept swapout's vma scan off this vma; but
-+       *      in 2.6 the LRU scan won't even find its pages, so this
-+       *      flag means no more than count its pages in reserved_vm,
-+       *      and omit it from core dump, even when VM_IO turned off.
-+       *   VM_PFNMAP tells the core MM that the base pages are just
-+       *      raw PFN mappings, and do not have a "struct page" associated
-+       *      with them.
-+       *
-+       * There's a horrible special case to handle copy-on-write
-+       * behaviour that some programs depend on. We mark the "original"
-+       * un-COW'ed pages by matching them up with "vma->vm_pgoff".
-+       */
-+      if (is_cow_mapping(vma->vm_flags)) {
-+              if (addr != vma->vm_start || end != vma->vm_end)
-+                      return -EINVAL;
-+              vma->vm_pgoff = pfn;
-+      }
-+
-+      vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
-+
-+      BUG_ON(addr >= end);
-+      pfn -= addr >> PAGE_SHIFT;
-+      pgd = pgd_offset(mm, addr);
-+      flush_cache_range(vma, addr, end);
-+      do {
-+              next = pgd_addr_end(addr, end);
-+              err = remap_pud_range(mm, pgd, addr, next,
-+                              pfn + (addr >> PAGE_SHIFT), prot);
-+              if (err)
-+                      break;
-+      } while (pgd++, addr = next, addr != end);
-+      return err;
-+}
-+EXPORT_SYMBOL(remap_pfn_range);
-+
-+static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
-+                                   unsigned long addr, unsigned long end,
-+                                   pte_fn_t fn, void *data)
-+{
-+      pte_t *pte;
-+      int err;
-+      pgtable_t token;
-+      spinlock_t *uninitialized_var(ptl);
-+
-+      pte = (mm == &init_mm) ?
-+              pte_alloc_kernel(pmd, addr) :
-+              pte_alloc_map_lock(mm, pmd, addr, &ptl);
-+      if (!pte)
-+              return -ENOMEM;
-+
-+      BUG_ON(pmd_huge(*pmd));
-+
-+      token = pmd_pgtable(*pmd);
-+
-+      do {
-+              err = fn(pte, token, addr, data);
-+              if (err)
-+                      break;
-+      } while (pte++, addr += PAGE_SIZE, addr != end);
-+
-+      if (mm != &init_mm)
-+              pte_unmap_unlock(pte-1, ptl);
-+      return err;
-+}
-+
-+static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
-+                                   unsigned long addr, unsigned long end,
-+                                   pte_fn_t fn, void *data)
-+{
-+      pmd_t *pmd;
-+      unsigned long next;
-+      int err;
-+
-+      BUG_ON(pud_huge(*pud));
-+
-+      pmd = pmd_alloc(mm, pud, addr);
-+      if (!pmd)
-+              return -ENOMEM;
-+      do {
-+              next = pmd_addr_end(addr, end);
-+              err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
-+              if (err)
-+                      break;
-+      } while (pmd++, addr = next, addr != end);
-+      return err;
-+}
-+
-+static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
-+                                   unsigned long addr, unsigned long end,
-+                                   pte_fn_t fn, void *data)
-+{
-+      pud_t *pud;
-+      unsigned long next;
-+      int err;
-+
-+      pud = pud_alloc(mm, pgd, addr);
-+      if (!pud)
-+              return -ENOMEM;
-+      do {
-+              next = pud_addr_end(addr, end);
-+              err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
-+              if (err)
-+                      break;
-+      } while (pud++, addr = next, addr != end);
-+      return err;
-+}
-+
-+/*
-+ * Scan a region of virtual memory, filling in page tables as necessary
-+ * and calling a provided function on each leaf page table.
-+ */
-+int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
-+                      unsigned long size, pte_fn_t fn, void *data)
-+{
-+      pgd_t *pgd;
-+      unsigned long next;
-+      unsigned long start = addr, end = addr + size;
-+      int err;
-+
-+      BUG_ON(addr >= end);
-+      mmu_notifier_invalidate_range_start(mm, start, end);
-+      pgd = pgd_offset(mm, addr);
-+      do {
-+              next = pgd_addr_end(addr, end);
-+              err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
-+              if (err)
-+                      break;
-+      } while (pgd++, addr = next, addr != end);
-+      mmu_notifier_invalidate_range_end(mm, start, end);
-+      return err;
-+}
-+EXPORT_SYMBOL_GPL(apply_to_page_range);
-+
-+/*
-+ * handle_pte_fault chooses page fault handler according to an entry
-+ * which was read non-atomically.  Before making any commitment, on
-+ * those architectures or configurations (e.g. i386 with PAE) which
-+ * might give a mix of unmatched parts, do_swap_page and do_file_page
-+ * must check under lock before unmapping the pte and proceeding
-+ * (but do_wp_page is only called after already making such a check;
-+ * and do_anonymous_page and do_no_page can safely check later on).
-+ */
-+static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
-+                              pte_t *page_table, pte_t orig_pte)
-+{
-+      int same = 1;
-+#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
-+      if (sizeof(pte_t) > sizeof(unsigned long)) {
-+              spinlock_t *ptl = pte_lockptr(mm, pmd);
-+              spin_lock(ptl);
-+              same = pte_same(*page_table, orig_pte);
-+              spin_unlock(ptl);
-+      }
-+#endif
-+      pte_unmap(page_table);
-+      return same;
-+}
-+
-+/*
-+ * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
-+ * servicing faults for write access.  In the normal case, do always want
-+ * pte_mkwrite.  But get_user_pages can cause write faults for mappings
-+ * that do not have writing enabled, when used by access_process_vm.
-+ */
-+static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
-+{
-+      if (likely(vma->vm_flags & VM_WRITE))
-+              pte = pte_mkwrite(pte);
-+      return pte;
-+}
-+
-+static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
-+{
-+      /*
-+       * If the source page was a PFN mapping, we don't have
-+       * a "struct page" for it. We do a best-effort copy by
-+       * just copying from the original user address. If that
-+       * fails, we just zero-fill it. Live with it.
-+       */
-+      if (unlikely(!src)) {
-+              void *kaddr = kmap_atomic(dst, KM_USER0);
-+              void __user *uaddr = (void __user *)(va & PAGE_MASK);
-+
-+              /*
-+               * This really shouldn't fail, because the page is there
-+               * in the page tables. But it might just be unreadable,
-+               * in which case we just give up and fill the result with
-+               * zeroes.
-+               */
-+              if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
-+                      memset(kaddr, 0, PAGE_SIZE);
-+              kunmap_atomic(kaddr, KM_USER0);
-+              flush_dcache_page(dst);
-+      } else
-+              copy_user_highpage(dst, src, va, vma);
-+}
-+
-+/*
-+ * This routine handles present pages, when users try to write
-+ * to a shared page. It is done by copying the page to a new address
-+ * and decrementing the shared-page counter for the old page.
-+ *
-+ * Note that this routine assumes that the protection checks have been
-+ * done by the caller (the low-level page fault routine in most cases).
-+ * Thus we can safely just mark it writable once we've done any necessary
-+ * COW.
-+ *
-+ * We also mark the page dirty at this point even though the page will
-+ * change only once the write actually happens. This avoids a few races,
-+ * and potentially makes it more efficient.
-+ *
-+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
-+ * but allow concurrent faults), with pte both mapped and locked.
-+ * We return with mmap_sem still held, but pte unmapped and unlocked.
-+ */
-+static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
-+              unsigned long address, pte_t *page_table, pmd_t *pmd,
-+              spinlock_t *ptl, pte_t orig_pte)
-+{
-+      struct page *old_page, *new_page;
-+      pte_t entry;
-+      int reuse = 0, ret = 0;
-+      int page_mkwrite = 0;
-+      struct page *dirty_page = NULL;
-+
-+      old_page = vm_normal_page(vma, address, orig_pte);
-+      if (!old_page) {
-+              /*
-+               * VM_MIXEDMAP !pfn_valid() case
-+               *
-+               * We should not cow pages in a shared writeable mapping.
-+               * Just mark the pages writable as we can't do any dirty
-+               * accounting on raw pfn maps.
-+               */
-+              if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
-+                                   (VM_WRITE|VM_SHARED))
-+                      goto reuse;
-+              goto gotten;
-+      }
-+
-+      /*
-+       * Take out anonymous pages first, anonymous shared vmas are
-+       * not dirty accountable.
-+       */
-+      if (PageAnon(old_page)) {
-+              if (trylock_page(old_page)) {
-+                      reuse = can_share_swap_page(old_page);
-+                      unlock_page(old_page);
-+              }
-+      } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
-+                                      (VM_WRITE|VM_SHARED))) {
-+              /*
-+               * Only catch write-faults on shared writable pages,
-+               * read-only shared pages can get COWed by
-+               * get_user_pages(.write=1, .force=1).
-+               */
-+              if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
-+                      /*
-+                       * Notify the address space that the page is about to
-+                       * become writable so that it can prohibit this or wait
-+                       * for the page to get into an appropriate state.
-+                       *
-+                       * We do this without the lock held, so that it can
-+                       * sleep if it needs to.
-+                       */
-+                      page_cache_get(old_page);
-+                      pte_unmap_unlock(page_table, ptl);
-+
-+                      if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
-+                              goto unwritable_page;
-+
-+                      /*
-+                       * Since we dropped the lock we need to revalidate
-+                       * the PTE as someone else may have changed it.  If
-+                       * they did, we just return, as we can count on the
-+                       * MMU to tell us if they didn't also make it writable.
-+                       */
-+                      page_table = pte_offset_map_lock(mm, pmd, address,
-+                                                       &ptl);
-+                      page_cache_release(old_page);
-+                      if (!pte_same(*page_table, orig_pte))
-+                              goto unlock;
-+
-+                      page_mkwrite = 1;
-+              }
-+              dirty_page = old_page;
-+              get_page(dirty_page);
-+              reuse = 1;
-+      }
-+
-+      if (reuse) {
-+reuse:
-+              flush_cache_page(vma, address, pte_pfn(orig_pte));
-+              entry = pte_mkyoung(orig_pte);
-+              entry = maybe_mkwrite(pte_mkdirty(entry), vma);
-+              if (ptep_set_access_flags(vma, address, page_table, entry,1))
-+                      update_mmu_cache(vma, address, entry);
-+              ret |= VM_FAULT_WRITE;
-+              goto unlock;
-+      }
-+
-+      /*
-+       * Ok, we need to copy. Oh, well..
-+       */
-+      page_cache_get(old_page);
-+gotten:
-+      pte_unmap_unlock(page_table, ptl);
-+
-+      if (unlikely(anon_vma_prepare(vma)))
-+              goto oom;
-+      VM_BUG_ON(old_page == ZERO_PAGE(0));
-+      new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
-+      if (!new_page)
-+              goto oom;
-+      cow_user_page(new_page, old_page, address, vma);
-+      __SetPageUptodate(new_page);
-+
-+      if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
-+              goto oom_free_new;
-+
-+      /*
-+       * Re-check the pte - we dropped the lock
-+       */
-+      page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
-+      if (likely(pte_same(*page_table, orig_pte))) {
-+              if (old_page) {
-+                      if (!PageAnon(old_page)) {
-+                              dec_mm_counter(mm, file_rss);
-+                              inc_mm_counter(mm, anon_rss);
-+                      }
-+              } else
-+                      inc_mm_counter(mm, anon_rss);
-+              flush_cache_page(vma, address, pte_pfn(orig_pte));
-+              entry = mk_pte(new_page, vma->vm_page_prot);
-+              entry = maybe_mkwrite(pte_mkdirty(entry), vma);
-+              /*
-+               * Clear the pte entry and flush it first, before updating the
-+               * pte with the new entry. This will avoid a race condition
-+               * seen in the presence of one thread doing SMC and another
-+               * thread doing COW.
-+               */
-+              ptep_clear_flush_notify(vma, address, page_table);
-+              set_pte_at(mm, address, page_table, entry);
-+              update_mmu_cache(vma, address, entry);
-+              lru_cache_add_active(new_page);
-+              page_add_new_anon_rmap(new_page, vma, address);
-+
-+              if (old_page) {
-+                      /*
-+                       * Only after switching the pte to the new page may
-+                       * we remove the mapcount here. Otherwise another
-+                       * process may come and find the rmap count decremented
-+                       * before the pte is switched to the new page, and
-+                       * "reuse" the old page writing into it while our pte
-+                       * here still points into it and can be read by other
-+                       * threads.
-+                       *
-+                       * The critical issue is to order this
-+                       * page_remove_rmap with the ptp_clear_flush above.
-+                       * Those stores are ordered by (if nothing else,)
-+                       * the barrier present in the atomic_add_negative
-+                       * in page_remove_rmap.
-+                       *
-+                       * Then the TLB flush in ptep_clear_flush ensures that
-+                       * no process can access the old page before the
-+                       * decremented mapcount is visible. And the old page
-+                       * cannot be reused until after the decremented
-+                       * mapcount is visible. So transitively, TLBs to
-+                       * old page will be flushed before it can be reused.
-+                       */
-+                      page_remove_rmap(old_page, vma);
-+              }
-+
-+              /* Free the old page.. */
-+              new_page = old_page;
-+              ret |= VM_FAULT_WRITE;
-+      } else
-+              mem_cgroup_uncharge_page(new_page);
-+
-+      if (new_page)
-+              page_cache_release(new_page);
-+      if (old_page)
-+              page_cache_release(old_page);
-+unlock:
-+      pte_unmap_unlock(page_table, ptl);
-+      if (dirty_page) {
-+              if (vma->vm_file)
-+                      file_update_time(vma->vm_file);
-+
-+              /*
-+               * Yes, Virginia, this is actually required to prevent a race
-+               * with clear_page_dirty_for_io() from clearing the page dirty
-+               * bit after it clear all dirty ptes, but before a racing
-+               * do_wp_page installs a dirty pte.
-+               *
-+               * do_no_page is protected similarly.
-+               */
-+              wait_on_page_locked(dirty_page);
-+              set_page_dirty_balance(dirty_page, page_mkwrite);
-+              put_page(dirty_page);
-+      }
-+      return ret;
-+oom_free_new:
-+      page_cache_release(new_page);
-+oom:
-+      if (old_page)
-+              page_cache_release(old_page);
-+      return VM_FAULT_OOM;
-+
-+unwritable_page:
-+      page_cache_release(old_page);
-+      return VM_FAULT_SIGBUS;
-+}
-+
-+/*
-+ * Helper functions for unmap_mapping_range().
-+ *
-+ * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
-+ *
-+ * We have to restart searching the prio_tree whenever we drop the lock,
-+ * since the iterator is only valid while the lock is held, and anyway
-+ * a later vma might be split and reinserted earlier while lock dropped.
-+ *
-+ * The list of nonlinear vmas could be handled more efficiently, using
-+ * a placeholder, but handle it in the same way until a need is shown.
-+ * It is important to search the prio_tree before nonlinear list: a vma
-+ * may become nonlinear and be shifted from prio_tree to nonlinear list
-+ * while the lock is dropped; but never shifted from list to prio_tree.
-+ *
-+ * In order to make forward progress despite restarting the search,
-+ * vm_truncate_count is used to mark a vma as now dealt with, so we can
-+ * quickly skip it next time around.  Since the prio_tree search only
-+ * shows us those vmas affected by unmapping the range in question, we
-+ * can't efficiently keep all vmas in step with mapping->truncate_count:
-+ * so instead reset them all whenever it wraps back to 0 (then go to 1).
-+ * mapping->truncate_count and vma->vm_truncate_count are protected by
-+ * i_mmap_lock.
-+ *
-+ * In order to make forward progress despite repeatedly restarting some
-+ * large vma, note the restart_addr from unmap_vmas when it breaks out:
-+ * and restart from that address when we reach that vma again.  It might
-+ * have been split or merged, shrunk or extended, but never shifted: so
-+ * restart_addr remains valid so long as it remains in the vma's range.
-+ * unmap_mapping_range forces truncate_count to leap over page-aligned
-+ * values so we can save vma's restart_addr in its truncate_count field.
-+ */
-+#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
-+
-+static void reset_vma_truncate_counts(struct address_space *mapping)
-+{
-+      struct vm_area_struct *vma;
-+      struct prio_tree_iter iter;
-+
-+      vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
-+              vma->vm_truncate_count = 0;
-+      list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
-+              vma->vm_truncate_count = 0;
-+}
-+
-+static int unmap_mapping_range_vma(struct vm_area_struct *vma,
-+              unsigned long start_addr, unsigned long end_addr,
-+              struct zap_details *details)
-+{
-+      unsigned long restart_addr;
-+      int need_break;
-+
-+      /*
-+       * files that support invalidating or truncating portions of the
-+       * file from under mmaped areas must have their ->fault function
-+       * return a locked page (and set VM_FAULT_LOCKED in the return).
-+       * This provides synchronisation against concurrent unmapping here.
-+       */
-+
-+again:
-+      restart_addr = vma->vm_truncate_count;
-+      if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
-+              start_addr = restart_addr;
-+              if (start_addr >= end_addr) {
-+                      /* Top of vma has been split off since last time */
-+                      vma->vm_truncate_count = details->truncate_count;
-+                      return 0;
-+              }
-+      }
-+
-+      restart_addr = zap_page_range(vma, start_addr,
-+                                      end_addr - start_addr, details);
-+      need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
-+
-+      if (restart_addr >= end_addr) {
-+              /* We have now completed this vma: mark it so */
-+              vma->vm_truncate_count = details->truncate_count;
-+              if (!need_break)
-+                      return 0;
-+      } else {
-+              /* Note restart_addr in vma's truncate_count field */
-+              vma->vm_truncate_count = restart_addr;
-+              if (!need_break)
-+                      goto again;
-+      }
-+
-+      spin_unlock(details->i_mmap_lock);
-+      cond_resched();
-+      spin_lock(details->i_mmap_lock);
-+      return -EINTR;
-+}
-+
-+static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
-+                                          struct zap_details *details)
-+{
-+      struct vm_area_struct *vma;
-+      struct prio_tree_iter iter;
-+      pgoff_t vba, vea, zba, zea;
-+
-+restart:
-+      vma_prio_tree_foreach(vma, &iter, root,
-+                      details->first_index, details->last_index) {
-+              /* Skip quickly over those we have already dealt with */
-+              if (vma->vm_truncate_count == details->truncate_count)
-+                      continue;
-+
-+              vba = vma->vm_pgoff;
-+              vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
-+              /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
-+              zba = details->first_index;
-+              if (zba < vba)
-+                      zba = vba;
-+              zea = details->last_index;
-+              if (zea > vea)
-+                      zea = vea;
-+
-+              if (unmap_mapping_range_vma(vma,
-+                      ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
-+                      ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
-+                              details) < 0)
-+                      goto restart;
-+      }
-+}
-+
-+static inline void unmap_mapping_range_list(struct list_head *head,
-+                                          struct zap_details *details)
-+{
-+      struct vm_area_struct *vma;
-+
-+      /*
-+       * In nonlinear VMAs there is no correspondence between virtual address
-+       * offset and file offset.  So we must perform an exhaustive search
-+       * across *all* the pages in each nonlinear VMA, not just the pages
-+       * whose virtual address lies outside the file truncation point.
-+       */
-+restart:
-+      list_for_each_entry(vma, head, shared.vm_set.list) {
-+              /* Skip quickly over those we have already dealt with */
-+              if (vma->vm_truncate_count == details->truncate_count)
-+                      continue;
-+              details->nonlinear_vma = vma;
-+              if (unmap_mapping_range_vma(vma, vma->vm_start,
-+                                      vma->vm_end, details) < 0)
-+                      goto restart;
-+      }
-+}
-+
-+/**
-+ * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
-+ * @mapping: the address space containing mmaps to be unmapped.
-+ * @holebegin: byte in first page to unmap, relative to the start of
-+ * the underlying file.  This will be rounded down to a PAGE_SIZE
-+ * boundary.  Note that this is different from vmtruncate(), which
-+ * must keep the partial page.  In contrast, we must get rid of
-+ * partial pages.
-+ * @holelen: size of prospective hole in bytes.  This will be rounded
-+ * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
-+ * end of the file.
-+ * @even_cows: 1 when truncating a file, unmap even private COWed pages;
-+ * but 0 when invalidating pagecache, don't throw away private data.
-+ */
-+void unmap_mapping_range(struct address_space *mapping,
-+              loff_t const holebegin, loff_t const holelen, int even_cows)
-+{
-+      struct zap_details details;
-+      pgoff_t hba = holebegin >> PAGE_SHIFT;
-+      pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
-+
-+      /* Check for overflow. */
-+      if (sizeof(holelen) > sizeof(hlen)) {
-+              long long holeend =
-+                      (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
-+              if (holeend & ~(long long)ULONG_MAX)
-+                      hlen = ULONG_MAX - hba + 1;
-+      }
-+
-+      details.check_mapping = even_cows? NULL: mapping;
-+      details.nonlinear_vma = NULL;
-+      details.first_index = hba;
-+      details.last_index = hba + hlen - 1;
-+      if (details.last_index < details.first_index)
-+              details.last_index = ULONG_MAX;
-+      details.i_mmap_lock = &mapping->i_mmap_lock;
-+
-+      spin_lock(&mapping->i_mmap_lock);
-+
-+      /* Protect against endless unmapping loops */
-+      mapping->truncate_count++;
-+      if (unlikely(is_restart_addr(mapping->truncate_count))) {
-+              if (mapping->truncate_count == 0)
-+                      reset_vma_truncate_counts(mapping);
-+              mapping->truncate_count++;
-+      }
-+      details.truncate_count = mapping->truncate_count;
-+
-+      if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
-+              unmap_mapping_range_tree(&mapping->i_mmap, &details);
-+      if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
-+              unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
-+      spin_unlock(&mapping->i_mmap_lock);
-+}
-+EXPORT_SYMBOL(unmap_mapping_range);
-+
-+/**
-+ * vmtruncate - unmap mappings "freed" by truncate() syscall
-+ * @inode: inode of the file used
-+ * @offset: file offset to start truncating
-+ *
-+ * NOTE! We have to be ready to update the memory sharing
-+ * between the file and the memory map for a potential last
-+ * incomplete page.  Ugly, but necessary.
-+ */
-+int vmtruncate(struct inode * inode, loff_t offset)
-+{
-+      if (inode->i_size < offset) {
-+              unsigned long limit;
-+
-+              limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
-+              if (limit != RLIM_INFINITY && offset > limit)
-+                      goto out_sig;
-+              if (offset > inode->i_sb->s_maxbytes)
-+                      goto out_big;
-+              i_size_write(inode, offset);
-+      } else {
-+              struct address_space *mapping = inode->i_mapping;
-+
-+              /*
-+               * truncation of in-use swapfiles is disallowed - it would
-+               * cause subsequent swapout to scribble on the now-freed
-+               * blocks.
-+               */
-+              if (IS_SWAPFILE(inode))
-+                      return -ETXTBSY;
-+              i_size_write(inode, offset);
-+
-+              /*
-+               * unmap_mapping_range is called twice, first simply for
-+               * efficiency so that truncate_inode_pages does fewer
-+               * single-page unmaps.  However after this first call, and
-+               * before truncate_inode_pages finishes, it is possible for
-+               * private pages to be COWed, which remain after
-+               * truncate_inode_pages finishes, hence the second
-+               * unmap_mapping_range call must be made for correctness.
-+               */
-+              unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
-+              truncate_inode_pages(mapping, offset);
-+              unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
-+      }
-+
-+      if (inode->i_op && inode->i_op->truncate)
-+              inode->i_op->truncate(inode);
-+      return 0;
-+
-+out_sig:
-+      send_sig(SIGXFSZ, current, 0);
-+out_big:
-+      return -EFBIG;
-+}
-+EXPORT_SYMBOL(vmtruncate);
-+
-+int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
-+{
-+      struct address_space *mapping = inode->i_mapping;
-+
-+      /*
-+       * If the underlying filesystem is not going to provide
-+       * a way to truncate a range of blocks (punch a hole) -
-+       * we should return failure right now.
-+       */
-+      if (!inode->i_op || !inode->i_op->truncate_range)
-+              return -ENOSYS;
-+
-+      mutex_lock(&inode->i_mutex);
-+      down_write(&inode->i_alloc_sem);
-+      unmap_mapping_range(mapping, offset, (end - offset), 1);
-+      truncate_inode_pages_range(mapping, offset, end);
-+      unmap_mapping_range(mapping, offset, (end - offset), 1);
-+      inode->i_op->truncate_range(inode, offset, end);
-+      up_write(&inode->i_alloc_sem);
-+      mutex_unlock(&inode->i_mutex);
-+
-+      return 0;
-+}
-+
-+/*
-+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
-+ * but allow concurrent faults), and pte mapped but not yet locked.
-+ * We return with mmap_sem still held, but pte unmapped and unlocked.
-+ */
-+static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
-+              unsigned long address, pte_t *page_table, pmd_t *pmd,
-+              int write_access, pte_t orig_pte)
-+{
-+      spinlock_t *ptl;
-+      struct page *page;
-+      swp_entry_t entry;
-+      pte_t pte;
-+      int ret = 0;
-+
-+      if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
-+              goto out;
-+
-+      entry = pte_to_swp_entry(orig_pte);
-+      if (is_migration_entry(entry)) {
-+              migration_entry_wait(mm, pmd, address);
-+              goto out;
-+      }
-+      delayacct_set_flag(DELAYACCT_PF_SWAPIN);
-+      page = lookup_swap_cache(entry);
-+      if (!page) {
-+              grab_swap_token(); /* Contend for token _before_ read-in */
-+              page = swapin_readahead(entry,
-+                                      GFP_HIGHUSER_MOVABLE, vma, address);
-+              if (!page) {
-+                      /*
-+                       * Back out if somebody else faulted in this pte
-+                       * while we released the pte lock.
-+                       */
-+                      page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
-+                      if (likely(pte_same(*page_table, orig_pte)))
-+                              ret = VM_FAULT_OOM;
-+                      delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
-+                      goto unlock;
-+              }
-+
-+              /* Had to read the page from swap area: Major fault */
-+              ret = VM_FAULT_MAJOR;
-+              count_vm_event(PGMAJFAULT);
-+      }
-+
-+      if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
-+              delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
-+              ret = VM_FAULT_OOM;
-+              goto out;
-+      }
-+
-+      if (!vx_rss_avail(mm, 1)) {
-+              ret = VM_FAULT_OOM;
-+              goto out;
-+      }
-+
-+      mark_page_accessed(page);
-+      lock_page(page);
-+      delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
-+
-+      /*
-+       * Back out if somebody else already faulted in this pte.
-+       */
-+      page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
-+      if (unlikely(!pte_same(*page_table, orig_pte)))
-+              goto out_nomap;
-+
-+      if (unlikely(!PageUptodate(page))) {
-+              ret = VM_FAULT_SIGBUS;
-+              goto out_nomap;
-+      }
-+
-+      /* The page isn't present yet, go ahead with the fault. */
-+
-+      inc_mm_counter(mm, anon_rss);
-+      pte = mk_pte(page, vma->vm_page_prot);
-+      if (write_access && can_share_swap_page(page)) {
-+              pte = maybe_mkwrite(pte_mkdirty(pte), vma);
-+              write_access = 0;
-+      }
-+
-+      flush_icache_page(vma, page);
-+      set_pte_at(mm, address, page_table, pte);
-+      page_add_anon_rmap(page, vma, address);
-+
-+      swap_free(entry);
-+      if (vm_swap_full())
-+              remove_exclusive_swap_page(page);
-+      unlock_page(page);
-+
-+      if (write_access) {
-+              ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
-+              if (ret & VM_FAULT_ERROR)
-+                      ret &= VM_FAULT_ERROR;
-+              goto out;
-+      }
-+
-+      /* No need to invalidate - it was non-present before */
-+      update_mmu_cache(vma, address, pte);
-+unlock:
-+      pte_unmap_unlock(page_table, ptl);
-+out:
-+      return ret;
-+out_nomap:
-+      mem_cgroup_uncharge_page(page);
-+      pte_unmap_unlock(page_table, ptl);
-+      unlock_page(page);
-+      page_cache_release(page);
-+      return ret;
-+}
-+
-+/*
-+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
-+ * but allow concurrent faults), and pte mapped but not yet locked.
-+ * We return with mmap_sem still held, but pte unmapped and unlocked.
-+ */
-+static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
-+              unsigned long address, pte_t *page_table, pmd_t *pmd,
-+              int write_access)
-+{
-+      struct page *page;
-+      spinlock_t *ptl;
-+      pte_t entry;
-+
-+      /* Allocate our own private page. */
-+      pte_unmap(page_table);
-+
-+      if (!vx_rss_avail(mm, 1))
-+              goto oom;
-+      if (unlikely(anon_vma_prepare(vma)))
-+              goto oom;
-+      page = alloc_zeroed_user_highpage_movable(vma, address);
-+      if (!page)
-+              goto oom;
-+      __SetPageUptodate(page);
-+
-+      if (mem_cgroup_charge(page, mm, GFP_KERNEL))
-+              goto oom_free_page;
-+
-+      entry = mk_pte(page, vma->vm_page_prot);
-+      entry = maybe_mkwrite(pte_mkdirty(entry), vma);
-+
-+      page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
-+      if (!pte_none(*page_table))
-+              goto release;
-+      inc_mm_counter(mm, anon_rss);
-+      lru_cache_add_active(page);
-+      page_add_new_anon_rmap(page, vma, address);
-+      set_pte_at(mm, address, page_table, entry);
-+
-+      /* No need to invalidate - it was non-present before */
-+      update_mmu_cache(vma, address, entry);
-+unlock:
-+      pte_unmap_unlock(page_table, ptl);
-+      return 0;
-+release:
-+      mem_cgroup_uncharge_page(page);
-+      page_cache_release(page);
-+      goto unlock;
-+oom_free_page:
-+      page_cache_release(page);
-+oom:
-+      return VM_FAULT_OOM;
-+}
-+
-+/*
-+ * __do_fault() tries to create a new page mapping. It aggressively
-+ * tries to share with existing pages, but makes a separate copy if
-+ * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
-+ * the next page fault.
-+ *
-+ * As this is called only for pages that do not currently exist, we
-+ * do not need to flush old virtual caches or the TLB.
-+ *
-+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
-+ * but allow concurrent faults), and pte neither mapped nor locked.
-+ * We return with mmap_sem still held, but pte unmapped and unlocked.
-+ */
-+static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
-+              unsigned long address, pmd_t *pmd,
-+              pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
-+{
-+      pte_t *page_table;
-+      spinlock_t *ptl;
-+      struct page *page;
-+      pte_t entry;
-+      int anon = 0;
-+      struct page *dirty_page = NULL;
-+      struct vm_fault vmf;
-+      int ret;
-+      int page_mkwrite = 0;
-+
-+      vmf.virtual_address = (void __user *)(address & PAGE_MASK);
-+      vmf.pgoff = pgoff;
-+      vmf.flags = flags;
-+      vmf.page = NULL;
-+
-+      ret = vma->vm_ops->fault(vma, &vmf);
-+      if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
-+              return ret;
-+
-+      /*
-+       * For consistency in subsequent calls, make the faulted page always
-+       * locked.
-+       */
-+      if (unlikely(!(ret & VM_FAULT_LOCKED)))
-+              lock_page(vmf.page);
-+      else
-+              VM_BUG_ON(!PageLocked(vmf.page));
-+
-+      /*
-+       * Should we do an early C-O-W break?
-+       */
-+      page = vmf.page;
-+      if (flags & FAULT_FLAG_WRITE) {
-+              if (!(vma->vm_flags & VM_SHARED)) {
-+                      anon = 1;
-+                      if (unlikely(anon_vma_prepare(vma))) {
-+                              ret = VM_FAULT_OOM;
-+                              goto out;
-+                      }
-+                      page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
-+                                              vma, address);
-+                      if (!page) {
-+                              ret = VM_FAULT_OOM;
-+                              goto out;
-+                      }
-+                      copy_user_highpage(page, vmf.page, address, vma);
-+                      __SetPageUptodate(page);
-+              } else {
-+                      /*
-+                       * If the page will be shareable, see if the backing
-+                       * address space wants to know that the page is about
-+                       * to become writable
-+                       */
-+                      if (vma->vm_ops->page_mkwrite) {
-+                              unlock_page(page);
-+                              if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
-+                                      ret = VM_FAULT_SIGBUS;
-+                                      anon = 1; /* no anon but release vmf.page */
-+                                      goto out_unlocked;
-+                              }
-+                              lock_page(page);
-+                              /*
-+                               * XXX: this is not quite right (racy vs
-+                               * invalidate) to unlock and relock the page
-+                               * like this, however a better fix requires
-+                               * reworking page_mkwrite locking API, which
-+                               * is better done later.
-+                               */
-+                              if (!page->mapping) {
-+                                      ret = 0;
-+                                      anon = 1; /* no anon but release vmf.page */
-+                                      goto out;
-+                              }
-+                              page_mkwrite = 1;
-+                      }
-+              }
-+
-+      }
-+
-+      if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
-+              ret = VM_FAULT_OOM;
-+              goto out;
-+      }
-+
-+      page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
-+
-+      /*
-+       * This silly early PAGE_DIRTY setting removes a race
-+       * due to the bad i386 page protection. But it's valid
-+       * for other architectures too.
-+       *
-+       * Note that if write_access is true, we either now have
-+       * an exclusive copy of the page, or this is a shared mapping,
-+       * so we can make it writable and dirty to avoid having to
-+       * handle that later.
-+       */
-+      /* Only go through if we didn't race with anybody else... */
-+      if (likely(pte_same(*page_table, orig_pte))) {
-+              flush_icache_page(vma, page);
-+              entry = mk_pte(page, vma->vm_page_prot);
-+              if (flags & FAULT_FLAG_WRITE)
-+                      entry = maybe_mkwrite(pte_mkdirty(entry), vma);
-+              set_pte_at(mm, address, page_table, entry);
-+              if (anon) {
-+                        inc_mm_counter(mm, anon_rss);
-+                        lru_cache_add_active(page);
-+                        page_add_new_anon_rmap(page, vma, address);
-+              } else {
-+                      inc_mm_counter(mm, file_rss);
-+                      page_add_file_rmap(page);
-+                      if (flags & FAULT_FLAG_WRITE) {
-+                              dirty_page = page;
-+                              get_page(dirty_page);
-+                      }
-+              }
-+
-+              /* no need to invalidate: a not-present page won't be cached */
-+              update_mmu_cache(vma, address, entry);
-+      } else {
-+              mem_cgroup_uncharge_page(page);
-+              if (anon)
-+                      page_cache_release(page);
-+              else
-+                      anon = 1; /* no anon but release faulted_page */
-+      }
-+
-+      pte_unmap_unlock(page_table, ptl);
-+
-+out:
-+      unlock_page(vmf.page);
-+out_unlocked:
-+      if (anon)
-+              page_cache_release(vmf.page);
-+      else if (dirty_page) {
-+              if (vma->vm_file)
-+                      file_update_time(vma->vm_file);
-+
-+              set_page_dirty_balance(dirty_page, page_mkwrite);
-+              put_page(dirty_page);
-+      }
-+
-+      return ret;
-+}
-+
-+static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
-+              unsigned long address, pte_t *page_table, pmd_t *pmd,
-+              int write_access, pte_t orig_pte)
-+{
-+      pgoff_t pgoff = (((address & PAGE_MASK)
-+                      - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
-+      unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
-+
-+      pte_unmap(page_table);
-+      return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
-+}
-+
-+/*
-+ * Fault of a previously existing named mapping. Repopulate the pte
-+ * from the encoded file_pte if possible. This enables swappable
-+ * nonlinear vmas.
-+ *
-+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
-+ * but allow concurrent faults), and pte mapped but not yet locked.
-+ * We return with mmap_sem still held, but pte unmapped and unlocked.
-+ */
-+static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
-+              unsigned long address, pte_t *page_table, pmd_t *pmd,
-+              int write_access, pte_t orig_pte)
-+{
-+      unsigned int flags = FAULT_FLAG_NONLINEAR |
-+                              (write_access ? FAULT_FLAG_WRITE : 0);
-+      pgoff_t pgoff;
-+
-+      if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
-+              return 0;
-+
-+      if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
-+                      !(vma->vm_flags & VM_CAN_NONLINEAR))) {
-+              /*
-+               * Page table corrupted: show pte and kill process.
-+               */
-+              print_bad_pte(vma, orig_pte, address);
-+              return VM_FAULT_OOM;
-+      }
-+
-+      pgoff = pte_to_pgoff(orig_pte);
-+      return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
-+}
-+
-+/*
-+ * These routines also need to handle stuff like marking pages dirty
-+ * and/or accessed for architectures that don't do it in hardware (most
-+ * RISC architectures).  The early dirtying is also good on the i386.
-+ *
-+ * There is also a hook called "update_mmu_cache()" that architectures
-+ * with external mmu caches can use to update those (ie the Sparc or
-+ * PowerPC hashed page tables that act as extended TLBs).
-+ *
-+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
-+ * but allow concurrent faults), and pte mapped but not yet locked.
-+ * We return with mmap_sem still held, but pte unmapped and unlocked.
-+ */
-+static inline int handle_pte_fault(struct mm_struct *mm,
-+              struct vm_area_struct *vma, unsigned long address,
-+              pte_t *pte, pmd_t *pmd, int write_access)
-+{
-+      pte_t entry;
-+      spinlock_t *ptl;
-+      int ret = 0, type = VXPT_UNKNOWN;
-+
-+      entry = *pte;
-+      if (!pte_present(entry)) {
-+              if (pte_none(entry)) {
-+                      if (vma->vm_ops) {
-+                              if (likely(vma->vm_ops->fault))
-+                                      return do_linear_fault(mm, vma, address,
-+                                              pte, pmd, write_access, entry);
-+                      }
-+                      return do_anonymous_page(mm, vma, address,
-+                                               pte, pmd, write_access);
-+              }
-+              if (pte_file(entry))
-+                      return do_nonlinear_fault(mm, vma, address,
-+                                      pte, pmd, write_access, entry);
-+              return do_swap_page(mm, vma, address,
-+                                      pte, pmd, write_access, entry);
-+      }
-+
-+      ptl = pte_lockptr(mm, pmd);
-+      spin_lock(ptl);
-+      if (unlikely(!pte_same(*pte, entry)))
-+              goto unlock;
-+      if (write_access) {
-+              if (!pte_write(entry)) {
-+                      ret = do_wp_page(mm, vma, address,
-+                                      pte, pmd, ptl, entry);
-+                      type = VXPT_WRITE;
-+                      goto out;
-+              }
-+              entry = pte_mkdirty(entry);
-+      }
-+      entry = pte_mkyoung(entry);
-+      if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
-+              update_mmu_cache(vma, address, entry);
-+      } else {
-+              /*
-+               * This is needed only for protection faults but the arch code
-+               * is not yet telling us if this is a protection fault or not.
-+               * This still avoids useless tlb flushes for .text page faults
-+               * with threads.
-+               */
-+              if (write_access)
-+                      flush_tlb_page(vma, address);
-+      }
-+unlock:
-+      pte_unmap_unlock(pte, ptl);
-+      ret = 0;
-+out:
-+      vx_page_fault(mm, vma, type, ret);
-+      return ret;
-+}
-+
-+/*
-+ * By the time we get here, we already hold the mm semaphore
-+ */
-+int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
-+              unsigned long address, int write_access)
-+{
-+      pgd_t *pgd;
-+      pud_t *pud;
-+      pmd_t *pmd;
-+      pte_t *pte;
-+
-+      __set_current_state(TASK_RUNNING);
-+
-+      count_vm_event(PGFAULT);
-+
-+      if (unlikely(is_vm_hugetlb_page(vma)))
-+              return hugetlb_fault(mm, vma, address, write_access);
-+
-+      pgd = pgd_offset(mm, address);
-+      pud = pud_alloc(mm, pgd, address);
-+      if (!pud)
-+              return VM_FAULT_OOM;
-+      pmd = pmd_alloc(mm, pud, address);
-+      if (!pmd)
-+              return VM_FAULT_OOM;
-+      pte = pte_alloc_map(mm, pmd, address);
-+      if (!pte)
-+              return VM_FAULT_OOM;
-+
-+      return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
-+}
-+
-+#ifndef __PAGETABLE_PUD_FOLDED
-+/*
-+ * Allocate page upper directory.
-+ * We've already handled the fast-path in-line.
-+ */
-+int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
-+{
-+      pud_t *new = pud_alloc_one(mm, address);
-+      if (!new)
-+              return -ENOMEM;
-+
-+      smp_wmb(); /* See comment in __pte_alloc */
-+
-+      spin_lock(&mm->page_table_lock);
-+      if (pgd_present(*pgd))          /* Another has populated it */
-+              pud_free(mm, new);
-+      else
-+              pgd_populate(mm, pgd, new);
-+      spin_unlock(&mm->page_table_lock);
-+      return 0;
-+}
-+#endif /* __PAGETABLE_PUD_FOLDED */
-+
-+#ifndef __PAGETABLE_PMD_FOLDED
-+/*
-+ * Allocate page middle directory.
-+ * We've already handled the fast-path in-line.
-+ */
-+int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
-+{
-+      pmd_t *new = pmd_alloc_one(mm, address);
-+      if (!new)
-+              return -ENOMEM;
-+
-+      smp_wmb(); /* See comment in __pte_alloc */
-+
-+      spin_lock(&mm->page_table_lock);
-+#ifndef __ARCH_HAS_4LEVEL_HACK
-+      if (pud_present(*pud))          /* Another has populated it */
-+              pmd_free(mm, new);
-+      else
-+              pud_populate(mm, pud, new);
-+#else
-+      if (pgd_present(*pud))          /* Another has populated it */
-+              pmd_free(mm, new);
-+      else
-+              pgd_populate(mm, pud, new);
-+#endif /* __ARCH_HAS_4LEVEL_HACK */
-+      spin_unlock(&mm->page_table_lock);
-+      return 0;
-+}
-+#endif /* __PAGETABLE_PMD_FOLDED */
-+
-+int make_pages_present(unsigned long addr, unsigned long end)
-+{
-+      int ret, len, write;
-+      struct vm_area_struct * vma;
-+
-+      vma = find_vma(current->mm, addr);
-+      if (!vma)
-+              return -ENOMEM;
-+      write = (vma->vm_flags & VM_WRITE) != 0;
-+      BUG_ON(addr >= end);
-+      BUG_ON(end > vma->vm_end);
-+      len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
-+      ret = get_user_pages(current, current->mm, addr,
-+                      len, write, 0, NULL, NULL);
-+      if (ret < 0) {
-+              /*
-+                 SUS require strange return value to mlock
-+                  - invalid addr generate to ENOMEM.
-+                  - out of memory should generate EAGAIN.
-+              */
-+              if (ret == -EFAULT)
-+                      ret = -ENOMEM;
-+              else if (ret == -ENOMEM)
-+                      ret = -EAGAIN;
-+              return ret;
-+      }
-+      return ret == len ? 0 : -ENOMEM;
-+}
-+
-+#if !defined(__HAVE_ARCH_GATE_AREA)
-+
-+#if defined(AT_SYSINFO_EHDR)
-+static struct vm_area_struct gate_vma;
-+
-+static int __init gate_vma_init(void)
-+{
-+      gate_vma.vm_mm = NULL;
-+      gate_vma.vm_start = FIXADDR_USER_START;
-+      gate_vma.vm_end = FIXADDR_USER_END;
-+      gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
-+      gate_vma.vm_page_prot = __P101;
-+      /*
-+       * Make sure the vDSO gets into every core dump.
-+       * Dumping its contents makes post-mortem fully interpretable later
-+       * without matching up the same kernel and hardware config to see
-+       * what PC values meant.
-+       */
-+      gate_vma.vm_flags |= VM_ALWAYSDUMP;
-+      return 0;
-+}
-+__initcall(gate_vma_init);
-+#endif
-+
-+struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
-+{
-+#ifdef AT_SYSINFO_EHDR
-+      return &gate_vma;
-+#else
-+      return NULL;
-+#endif
-+}
-+
-+int in_gate_area_no_task(unsigned long addr)
-+{
-+#ifdef AT_SYSINFO_EHDR
-+      if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
-+              return 1;
-+#endif
-+      return 0;
-+}
-+
-+#endif        /* __HAVE_ARCH_GATE_AREA */
-+
-+#ifdef CONFIG_HAVE_IOREMAP_PROT
-+static resource_size_t follow_phys(struct vm_area_struct *vma,
-+                      unsigned long address, unsigned int flags,
-+                      unsigned long *prot)
-+{
-+      pgd_t *pgd;
-+      pud_t *pud;
-+      pmd_t *pmd;
-+      pte_t *ptep, pte;
-+      spinlock_t *ptl;
-+      resource_size_t phys_addr = 0;
-+      struct mm_struct *mm = vma->vm_mm;
-+
-+      VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
-+
-+      pgd = pgd_offset(mm, address);
-+      if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
-+              goto no_page_table;
-+
-+      pud = pud_offset(pgd, address);
-+      if (pud_none(*pud) || unlikely(pud_bad(*pud)))
-+              goto no_page_table;
-+
-+      pmd = pmd_offset(pud, address);
-+      if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
-+              goto no_page_table;
-+
-+      /* We cannot handle huge page PFN maps. Luckily they don't exist. */
-+      if (pmd_huge(*pmd))
-+              goto no_page_table;
-+
-+      ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
-+      if (!ptep)
-+              goto out;
-+
-+      pte = *ptep;
-+      if (!pte_present(pte))
-+              goto unlock;
-+      if ((flags & FOLL_WRITE) && !pte_write(pte))
-+              goto unlock;
-+      phys_addr = pte_pfn(pte);
-+      phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
-+
-+      *prot = pgprot_val(pte_pgprot(pte));
-+
-+unlock:
-+      pte_unmap_unlock(ptep, ptl);
-+out:
-+      return phys_addr;
-+no_page_table:
-+      return 0;
-+}
-+
-+int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
-+                      void *buf, int len, int write)
-+{
-+      resource_size_t phys_addr;
-+      unsigned long prot = 0;
-+      void *maddr;
-+      int offset = addr & (PAGE_SIZE-1);
-+
-+      if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
-+              return -EINVAL;
-+
-+      phys_addr = follow_phys(vma, addr, write, &prot);
-+
-+      if (!phys_addr)
-+              return -EINVAL;
-+
-+      maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
-+      if (write)
-+              memcpy_toio(maddr + offset, buf, len);
-+      else
-+              memcpy_fromio(buf, maddr + offset, len);
-+      iounmap(maddr);
-+
-+      return len;
-+}
-+#endif
-+
-+/*
-+ * Access another process' address space.
-+ * Source/target buffer must be kernel space,
-+ * Do not walk the page table directly, use get_user_pages
-+ */
-+int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
-+{
-+      struct mm_struct *mm;
-+      struct vm_area_struct *vma;
-+      void *old_buf = buf;
-+
-+      mm = get_task_mm(tsk);
-+      if (!mm)
-+              return 0;
-+
-+      down_read(&mm->mmap_sem);
-+      /* ignore errors, just check how much was successfully transferred */
-+      while (len) {
-+              int bytes, ret, offset;
-+              void *maddr;
-+              struct page *page = NULL;
-+
-+              ret = get_user_pages(tsk, mm, addr, 1,
-+                              write, 1, &page, &vma);
-+              if (ret <= 0) {
-+                      /*
-+                       * Check if this is a VM_IO | VM_PFNMAP VMA, which
-+                       * we can access using slightly different code.
-+                       */
-+#ifdef CONFIG_HAVE_IOREMAP_PROT
-+                      vma = find_vma(mm, addr);
-+                      if (!vma)
-+                              break;
-+                      if (vma->vm_ops && vma->vm_ops->access)
-+                              ret = vma->vm_ops->access(vma, addr, buf,
-+                                                        len, write);
-+                      if (ret <= 0)
-+#endif
-+                              break;
-+                      bytes = ret;
-+              } else {
-+                      bytes = len;
-+                      offset = addr & (PAGE_SIZE-1);
-+                      if (bytes > PAGE_SIZE-offset)
-+                              bytes = PAGE_SIZE-offset;
-+
-+                      maddr = kmap(page);
-+                      if (write) {
-+                              copy_to_user_page(vma, page, addr,
-+                                                maddr + offset, buf, bytes);
-+                              set_page_dirty_lock(page);
-+                      } else {
-+                              copy_from_user_page(vma, page, addr,
-+                                                  buf, maddr + offset, bytes);
-+                      }
-+                      kunmap(page);
-+                      page_cache_release(page);
-+              }
-+              len -= bytes;
-+              buf += bytes;
-+              addr += bytes;
-+      }
-+      up_read(&mm->mmap_sem);
-+      mmput(mm);
-+
-+      return buf - old_buf;
-+}
-+
-+/*
-+ * Print the name of a VMA.
-+ */
-+void print_vma_addr(char *prefix, unsigned long ip)
-+{
-+      struct mm_struct *mm = current->mm;
-+      struct vm_area_struct *vma;
-+
-+      /*
-+       * Do not print if we are in atomic
-+       * contexts (in exception stacks, etc.):
-+       */
-+      if (preempt_count())
-+              return;
-+
-+      down_read(&mm->mmap_sem);
-+      vma = find_vma(mm, ip);
-+      if (vma && vma->vm_file) {
-+              struct file *f = vma->vm_file;
-+              char *buf = (char *)__get_free_page(GFP_KERNEL);
-+              if (buf) {
-+                      char *p, *s;
-+
-+                      p = d_path(&f->f_path, buf, PAGE_SIZE);
-+                      if (IS_ERR(p))
-+                              p = "?";
-+                      s = strrchr(p, '/');
-+                      if (s)
-+                              p = s+1;
-+                      printk("%s%s[%lx+%lx]", prefix, p,
-+                                      vma->vm_start,
-+                                      vma->vm_end - vma->vm_start);
-+                      free_page((unsigned long)buf);
-+              }
-+      }
-+      up_read(&current->mm->mmap_sem);
-+}
-diff -Nurb linux-2.6.27-590/mm/slab.c linux-2.6.27-591/mm/slab.c
---- linux-2.6.27-590/mm/slab.c 2010-02-01 19:42:07.000000000 -0500
-+++ linux-2.6.27-591/mm/slab.c 2010-02-01 19:43:07.000000000 -0500
+       return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
+ }
+Index: linux-2.6.27.y/mm/slab.c
+===================================================================
+--- linux-2.6.27.y.orig/mm/slab.c
++++ linux-2.6.27.y/mm/slab.c
 @@ -110,6 +110,7 @@
  #include      <linux/fault-inject.h>
  #include      <linux/rtmutex.h>
@@ -13187,7 +545,7 @@ diff -Nurb linux-2.6.27-590/mm/slab.c linux-2.6.27-591/mm/slab.c
  #include      <linux/debugobjects.h>
  
  #include      <asm/cacheflush.h>
-@@ -248,6 +249,14 @@
+@@ -248,6 +249,14 @@ struct slab_rcu {
        void *addr;
  };
  
@@ -13202,7 +560,7 @@ diff -Nurb linux-2.6.27-590/mm/slab.c linux-2.6.27-591/mm/slab.c
  /*
   * struct array_cache
   *
-@@ -3469,6 +3478,19 @@
+@@ -3469,6 +3478,19 @@ __cache_alloc(struct kmem_cache *cachep,
        local_irq_restore(save_flags);
        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
        prefetchw(objp);
@@ -13222,7 +580,7 @@ diff -Nurb linux-2.6.27-590/mm/slab.c linux-2.6.27-591/mm/slab.c
  
        if (unlikely((flags & __GFP_ZERO) && objp))
                memset(objp, 0, obj_size(cachep));
-@@ -3578,12 +3600,26 @@
+@@ -3578,12 +3600,26 @@ free_done:
   * Release an obj back to its cache. If the obj has a constructed state, it must
   * be in this state _before_ it is released.  Called with disabled ints.
   */
@@ -13251,7 +609,7 @@ diff -Nurb linux-2.6.27-590/mm/slab.c linux-2.6.27-591/mm/slab.c
        vx_slab_free(cachep);
  
        /*
-@@ -3714,6 +3750,7 @@
+@@ -3714,6 +3750,7 @@ static __always_inline void *__do_kmallo
                                          void *caller)
  {
        struct kmem_cache *cachep;
@@ -13259,7 +617,7 @@ diff -Nurb linux-2.6.27-590/mm/slab.c linux-2.6.27-591/mm/slab.c
  
        /* If you want to save a few bytes .text space: replace
         * __ with kmem_.
-@@ -3741,10 +3778,17 @@
+@@ -3741,10 +3778,17 @@ void *__kmalloc_track_caller(size_t size
  EXPORT_SYMBOL(__kmalloc_track_caller);
  
  #else
@@ -13277,7 +635,7 @@ diff -Nurb linux-2.6.27-590/mm/slab.c linux-2.6.27-591/mm/slab.c
  EXPORT_SYMBOL(__kmalloc);
  #endif
  
-@@ -3764,7 +3808,7 @@
+@@ -3764,7 +3808,7 @@ void kmem_cache_free(struct kmem_cache *
        debug_check_no_locks_freed(objp, obj_size(cachep));
        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
                debug_check_no_obj_freed(objp, obj_size(cachep));
@@ -13286,7 +644,7 @@ diff -Nurb linux-2.6.27-590/mm/slab.c linux-2.6.27-591/mm/slab.c
        local_irq_restore(flags);
  }
  EXPORT_SYMBOL(kmem_cache_free);
-@@ -3790,7 +3834,7 @@
+@@ -3790,7 +3834,7 @@ void kfree(const void *objp)
        c = virt_to_cache(objp);
        debug_check_no_locks_freed(objp, obj_size(c));
        debug_check_no_obj_freed(objp, obj_size(c));