ftp://ftp.kernel.org/pub/linux/kernel/v2.6/linux-2.6.6.tar.bz2
[linux-2.6.git] / arch / arm26 / kernel / irq.c
1 /*
2  *  linux/arch/arm/kernel/irq.c
3  *
4  *  Copyright (C) 1992 Linus Torvalds
5  *  Modifications for ARM processor Copyright (C) 1995-2000 Russell King.
6  *  'Borrowed' for ARM26 and (C) 2003 Ian Molton.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  *  This file contains the code used by various IRQ handling routines:
13  *  asking for different IRQ's should be done through these routines
14  *  instead of just grabbing them. Thus setups with different IRQ numbers
15  *  shouldn't result in any weird surprises, and installing new handlers
16  *  should be easier.
17  *
18  *  IRQ's are in fact implemented a bit like signal handlers for the kernel.
19  *  Naturally it's not a 1:1 relation, but there are similarities.
20  */
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/ptrace.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/signal.h>
26 #include <linux/sched.h>
27 #include <linux/ioport.h>
28 #include <linux/interrupt.h>
29 #include <linux/slab.h>
30 #include <linux/random.h>
31 #include <linux/smp.h>
32 #include <linux/init.h>
33 #include <linux/seq_file.h>
34 #include <linux/errno.h>
35
36 #include <asm/irq.h>
37 #include <asm/system.h>
38 #include <asm/irqchip.h>
39
40 //FIXME - this ought to be in a header IMO
41 void __init arc_init_irq(void);
42
43 /*
44  * Maximum IRQ count.  Currently, this is arbitary.  However, it should
45  * not be set too low to prevent false triggering.  Conversely, if it
46  * is set too high, then you could miss a stuck IRQ.
47  *
48  * FIXME Maybe we ought to set a timer and re-enable the IRQ at a later time?
49  */
50 #define MAX_IRQ_CNT     100000
51
52 static volatile unsigned long irq_err_count;
53 static spinlock_t irq_controller_lock = SPIN_LOCK_UNLOCKED;
54
55 struct irqdesc irq_desc[NR_IRQS];
56
57 /*
58  * Dummy mask/unmask handler
59  */
60 void dummy_mask_unmask_irq(unsigned int irq)
61 {
62 }
63
64 void do_bad_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
65 {
66         irq_err_count += 1;
67         printk(KERN_ERR "IRQ: spurious interrupt %d\n", irq);
68 }
69
70 static struct irqchip bad_chip = {
71         .ack    = dummy_mask_unmask_irq,
72         .mask   = dummy_mask_unmask_irq,
73         .unmask = dummy_mask_unmask_irq,
74 };
75
76 static struct irqdesc bad_irq_desc = {
77         .chip   = &bad_chip,
78         .handle = do_bad_IRQ,
79         .depth  = 1,
80 };
81
82 /**
83  *      disable_irq - disable an irq and wait for completion
84  *      @irq: Interrupt to disable
85  *
86  *      Disable the selected interrupt line.  We do this lazily.
87  *
88  *      This function may be called from IRQ context.
89  */
90 void disable_irq(unsigned int irq)
91 {
92         struct irqdesc *desc = irq_desc + irq;
93         unsigned long flags;
94         spin_lock_irqsave(&irq_controller_lock, flags);
95         if (!desc->depth++)
96                 desc->enabled = 0;
97         spin_unlock_irqrestore(&irq_controller_lock, flags);
98 }
99
100 /**
101  *      enable_irq - enable interrupt handling on an irq
102  *      @irq: Interrupt to enable
103  *
104  *      Re-enables the processing of interrupts on this IRQ line.
105  *      Note that this may call the interrupt handler, so you may
106  *      get unexpected results if you hold IRQs disabled.
107  *
108  *      This function may be called from IRQ context.
109  */
110 void enable_irq(unsigned int irq)
111 {
112         struct irqdesc *desc = irq_desc + irq;
113         unsigned long flags;
114         int pending = 0;
115
116         spin_lock_irqsave(&irq_controller_lock, flags);
117         if (unlikely(!desc->depth)) {
118                 printk("enable_irq(%u) unbalanced from %p\n", irq,
119                         __builtin_return_address(0)); //FIXME bum addresses reported - why?
120         } else if (!--desc->depth) {
121                 desc->probing = 0;
122                 desc->enabled = 1;
123                 desc->chip->unmask(irq);
124                 pending = desc->pending;
125                 desc->pending = 0;
126                 /*
127                  * If the interrupt was waiting to be processed,
128                  * retrigger it.
129                  */
130                 if (pending)
131                         desc->chip->rerun(irq);
132         }
133         spin_unlock_irqrestore(&irq_controller_lock, flags);
134 }
135
136 int show_interrupts(struct seq_file *p, void *v)
137 {
138         int i = *(loff_t *) v;
139         struct irqaction * action;
140
141         if (i < NR_IRQS) {
142                 action = irq_desc[i].action;
143                 if (!action)
144                         continue;
145                 seq_printf(p, "%3d: %10u ", i, kstat_irqs(i));
146                 seq_printf(p, "  %s", action->name);
147                 for (action = action->next; action; action = action->next) {
148                         seq_printf(p, ", %s", action->name);
149                 }
150                 seq_putc(p, '\n');
151         } else if (i == NR_IRQS) {
152                 show_fiq_list(p, v);
153                 seq_printf(p, "Err: %10lu\n", irq_err_count);
154         }
155         return 0;
156 }
157
158 /*
159  * IRQ lock detection.
160  *
161  * Hopefully, this should get us out of a few locked situations.
162  * However, it may take a while for this to happen, since we need
163  * a large number if IRQs to appear in the same jiffie with the
164  * same instruction pointer (or within 2 instructions).
165  */
166 static int check_irq_lock(struct irqdesc *desc, int irq, struct pt_regs *regs)
167 {
168         unsigned long instr_ptr = instruction_pointer(regs);
169
170         if (desc->lck_jif == jiffies &&
171             desc->lck_pc >= instr_ptr && desc->lck_pc < instr_ptr + 8) {
172                 desc->lck_cnt += 1;
173
174                 if (desc->lck_cnt > MAX_IRQ_CNT) {
175                         printk(KERN_ERR "IRQ LOCK: IRQ%d is locking the system, disabled\n", irq);
176                         return 1;
177                 }
178         } else {
179                 desc->lck_cnt = 0;
180                 desc->lck_pc  = instruction_pointer(regs);
181                 desc->lck_jif = jiffies;
182         }
183         return 0;
184 }
185
186 static void
187 __do_irq(unsigned int irq, struct irqaction *action, struct pt_regs *regs)
188 {
189         unsigned int status;
190
191         spin_unlock(&irq_controller_lock);
192         if (!(action->flags & SA_INTERRUPT))
193                 local_irq_enable();
194
195         status = 0;
196         do {
197                 status |= action->flags;
198                 action->handler(irq, action->dev_id, regs);
199                 action = action->next;
200         } while (action);
201
202         if (status & SA_SAMPLE_RANDOM)
203                 add_interrupt_randomness(irq);
204
205         spin_lock_irq(&irq_controller_lock);
206 }
207
208 /*
209  * This is for software-decoded IRQs.  The caller is expected to
210  * handle the ack, clear, mask and unmask issues.
211  */
212 void
213 do_simple_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
214 {
215         struct irqaction *action;
216         const int cpu = smp_processor_id();
217
218         desc->triggered = 1;
219
220         kstat_cpu(cpu).irqs[irq]++;
221
222         action = desc->action;
223         if (action)
224                 __do_irq(irq, desc->action, regs);
225 }
226
227 /*
228  * Most edge-triggered IRQ implementations seem to take a broken
229  * approach to this.  Hence the complexity.
230  */
231 void
232 do_edge_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
233 {
234         const int cpu = smp_processor_id();
235
236         desc->triggered = 1;
237
238         /*
239          * If we're currently running this IRQ, or its disabled,
240          * we shouldn't process the IRQ.  Instead, turn on the
241          * hardware masks.
242          */
243         if (unlikely(desc->running || !desc->enabled))
244                 goto running;
245
246         /*
247          * Acknowledge and clear the IRQ, but don't mask it.
248          */
249         desc->chip->ack(irq);
250
251         /*
252          * Mark the IRQ currently in progress.
253          */
254         desc->running = 1;
255
256         kstat_cpu(cpu).irqs[irq]++;
257
258         do {
259                 struct irqaction *action;
260
261                 action = desc->action;
262                 if (!action)
263                         break;
264
265                 if (desc->pending && desc->enabled) {
266                         desc->pending = 0;
267                         desc->chip->unmask(irq);
268                 }
269
270                 __do_irq(irq, action, regs);
271         } while (desc->pending);
272
273         desc->running = 0;
274
275         /*
276          * If we were disabled or freed, shut down the handler.
277          */
278         if (likely(desc->action && !check_irq_lock(desc, irq, regs)))
279                 return;
280
281  running:
282         /*
283          * We got another IRQ while this one was masked or
284          * currently running.  Delay it.
285          */
286         desc->pending = 1;
287         desc->chip->mask(irq);
288         desc->chip->ack(irq);
289 }
290
291 /*
292  * Level-based IRQ handler.  Nice and simple.
293  */
294 void
295 do_level_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
296 {
297         struct irqaction *action;
298         const int cpu = smp_processor_id();
299
300         desc->triggered = 1;
301
302         /*
303          * Acknowledge, clear _AND_ disable the interrupt.
304          */
305         desc->chip->ack(irq);
306
307         if (likely(desc->enabled)) {
308                 kstat_cpu(cpu).irqs[irq]++;
309
310                 /*
311                  * Return with this interrupt masked if no action
312                  */
313                 action = desc->action;
314                 if (action) {
315                         __do_irq(irq, desc->action, regs);
316
317                         if (likely(desc->enabled &&
318                                    !check_irq_lock(desc, irq, regs)))
319                                 desc->chip->unmask(irq);
320                 }
321         }
322 }
323
324 /*
325  * do_IRQ handles all hardware IRQ's.  Decoded IRQs should not
326  * come via this function.  Instead, they should provide their
327  * own 'handler'
328  */
329 asmlinkage void asm_do_IRQ(int irq, struct pt_regs *regs)
330 {
331         struct irqdesc *desc = irq_desc + irq;
332
333         /*
334          * Some hardware gives randomly wrong interrupts.  Rather
335          * than crashing, do something sensible.
336          */
337         if (irq >= NR_IRQS)
338                 desc = &bad_irq_desc;
339
340         irq_enter();
341         spin_lock(&irq_controller_lock);
342         desc->handle(irq, desc, regs);
343         spin_unlock(&irq_controller_lock);
344         irq_exit();
345 }
346
347 void __set_irq_handler(unsigned int irq, irq_handler_t handle, int is_chained)
348 {
349         struct irqdesc *desc;
350         unsigned long flags;
351
352         if (irq >= NR_IRQS) {
353                 printk(KERN_ERR "Trying to install handler for IRQ%d\n", irq);
354                 return;
355         }
356
357         if (handle == NULL)
358                 handle = do_bad_IRQ;
359
360         desc = irq_desc + irq;
361
362         if (is_chained && desc->chip == &bad_chip)
363                 printk(KERN_WARNING "Trying to install chained handler for IRQ%d\n", irq);
364
365         spin_lock_irqsave(&irq_controller_lock, flags);
366         if (handle == do_bad_IRQ) {
367                 desc->chip->mask(irq);
368                 desc->chip->ack(irq);
369                 desc->depth = 1;
370                 desc->enabled = 0;
371         }
372         desc->handle = handle;
373         if (handle != do_bad_IRQ && is_chained) {
374                 desc->valid = 0;
375                 desc->probe_ok = 0;
376                 desc->depth = 0;
377                 desc->chip->unmask(irq);
378         }
379         spin_unlock_irqrestore(&irq_controller_lock, flags);
380 }
381
382 void set_irq_chip(unsigned int irq, struct irqchip *chip)
383 {
384         struct irqdesc *desc;
385         unsigned long flags;
386
387         if (irq >= NR_IRQS) {
388                 printk(KERN_ERR "Trying to install chip for IRQ%d\n", irq);
389                 return;
390         }
391
392         if (chip == NULL)
393                 chip = &bad_chip;
394
395         desc = irq_desc + irq;
396         spin_lock_irqsave(&irq_controller_lock, flags);
397         desc->chip = chip;
398         spin_unlock_irqrestore(&irq_controller_lock, flags);
399 }
400
401 int set_irq_type(unsigned int irq, unsigned int type)
402 {
403         struct irqdesc *desc;
404         unsigned long flags;
405         int ret = -ENXIO;
406
407         if (irq >= NR_IRQS) {
408                 printk(KERN_ERR "Trying to set irq type for IRQ%d\n", irq);
409                 return -ENODEV;
410         }
411
412         desc = irq_desc + irq;
413         if (desc->chip->type) {
414                 spin_lock_irqsave(&irq_controller_lock, flags);
415                 ret = desc->chip->type(irq, type);
416                 spin_unlock_irqrestore(&irq_controller_lock, flags);
417         }
418
419         return ret;
420 }
421
422 void set_irq_flags(unsigned int irq, unsigned int iflags)
423 {
424         struct irqdesc *desc;
425         unsigned long flags;
426
427         if (irq >= NR_IRQS) {
428                 printk(KERN_ERR "Trying to set irq flags for IRQ%d\n", irq);
429                 return;
430         }
431
432         desc = irq_desc + irq;
433         spin_lock_irqsave(&irq_controller_lock, flags);
434         desc->valid = (iflags & IRQF_VALID) != 0;
435         desc->probe_ok = (iflags & IRQF_PROBE) != 0;
436         desc->noautoenable = (iflags & IRQF_NOAUTOEN) != 0;
437         spin_unlock_irqrestore(&irq_controller_lock, flags);
438 }
439
440 int setup_irq(unsigned int irq, struct irqaction *new)
441 {
442         int shared = 0;
443         struct irqaction *old, **p;
444         unsigned long flags;
445         struct irqdesc *desc;
446
447         /*
448          * Some drivers like serial.c use request_irq() heavily,
449          * so we have to be careful not to interfere with a
450          * running system.
451          */
452         if (new->flags & SA_SAMPLE_RANDOM) {
453                 /*
454                  * This function might sleep, we want to call it first,
455                  * outside of the atomic block.
456                  * Yes, this might clear the entropy pool if the wrong
457                  * driver is attempted to be loaded, without actually
458                  * installing a new handler, but is this really a problem,
459                  * only the sysadmin is able to do this.
460                  */
461                 rand_initialize_irq(irq);
462         }
463
464         /*
465          * The following block of code has to be executed atomically
466          */
467         desc = irq_desc + irq;
468         spin_lock_irqsave(&irq_controller_lock, flags);
469         p = &desc->action;
470         if ((old = *p) != NULL) {
471                 /* Can't share interrupts unless both agree to */
472                 if (!(old->flags & new->flags & SA_SHIRQ)) {
473                         spin_unlock_irqrestore(&irq_controller_lock, flags);
474                         return -EBUSY;
475                 }
476
477                 /* add new interrupt at end of irq queue */
478                 do {
479                         p = &old->next;
480                         old = *p;
481                 } while (old);
482                 shared = 1;
483         }
484
485         *p = new;
486
487         if (!shared) {
488                 desc->probing = 0;
489                 desc->running = 0;
490                 desc->pending = 0;
491                 desc->depth = 1;
492                 if (!desc->noautoenable) {
493                         desc->depth = 0;
494                         desc->enabled = 1;
495                         desc->chip->unmask(irq);
496                 }
497         }
498
499         spin_unlock_irqrestore(&irq_controller_lock, flags);
500         return 0;
501 }
502
503 /**
504  *      request_irq - allocate an interrupt line
505  *      @irq: Interrupt line to allocate
506  *      @handler: Function to be called when the IRQ occurs
507  *      @irqflags: Interrupt type flags
508  *      @devname: An ascii name for the claiming device
509  *      @dev_id: A cookie passed back to the handler function
510  *
511  *      This call allocates interrupt resources and enables the
512  *      interrupt line and IRQ handling. From the point this
513  *      call is made your handler function may be invoked. Since
514  *      your handler function must clear any interrupt the board
515  *      raises, you must take care both to initialise your hardware
516  *      and to set up the interrupt handler in the right order.
517  *
518  *      Dev_id must be globally unique. Normally the address of the
519  *      device data structure is used as the cookie. Since the handler
520  *      receives this value it makes sense to use it.
521  *
522  *      If your interrupt is shared you must pass a non NULL dev_id
523  *      as this is required when freeing the interrupt.
524  *
525  *      Flags:
526  *
527  *      SA_SHIRQ                Interrupt is shared
528  *
529  *      SA_INTERRUPT            Disable local interrupts while processing
530  *
531  *      SA_SAMPLE_RANDOM        The interrupt can be used for entropy
532  *
533  */
534
535 //FIXME - handler used to return void - whats the significance of the change?
536 int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),
537                  unsigned long irq_flags, const char * devname, void *dev_id)
538 {
539         unsigned long retval;
540         struct irqaction *action;
541
542         if (irq >= NR_IRQS || !irq_desc[irq].valid || !handler ||
543             (irq_flags & SA_SHIRQ && !dev_id))
544                 return -EINVAL;
545
546         action = (struct irqaction *)kmalloc(sizeof(struct irqaction), GFP_KERNEL);
547         if (!action)
548                 return -ENOMEM;
549
550         action->handler = handler;
551         action->flags = irq_flags;
552         action->mask = 0;
553         action->name = devname;
554         action->next = NULL;
555         action->dev_id = dev_id;
556
557         retval = setup_irq(irq, action);
558
559         if (retval)
560                 kfree(action);
561         return retval;
562 }
563
564 EXPORT_SYMBOL(request_irq);
565
566 /**
567  *      free_irq - free an interrupt
568  *      @irq: Interrupt line to free
569  *      @dev_id: Device identity to free
570  *
571  *      Remove an interrupt handler. The handler is removed and if the
572  *      interrupt line is no longer in use by any driver it is disabled.
573  *      On a shared IRQ the caller must ensure the interrupt is disabled
574  *      on the card it drives before calling this function.
575  *
576  *      This function may be called from interrupt context.
577  */
578 void free_irq(unsigned int irq, void *dev_id)
579 {
580         struct irqaction * action, **p;
581         unsigned long flags;
582
583         if (irq >= NR_IRQS || !irq_desc[irq].valid) {
584                 printk(KERN_ERR "Trying to free IRQ%d\n",irq);
585 #ifdef CONFIG_DEBUG_ERRORS
586                 __backtrace();
587 #endif
588                 return;
589         }
590
591         spin_lock_irqsave(&irq_controller_lock, flags);
592         for (p = &irq_desc[irq].action; (action = *p) != NULL; p = &action->next) {
593                 if (action->dev_id != dev_id)
594                         continue;
595
596                 /* Found it - now free it */
597                 *p = action->next;
598                 kfree(action);
599                 goto out;
600         }
601         printk(KERN_ERR "Trying to free free IRQ%d\n",irq);
602 #ifdef CONFIG_DEBUG_ERRORS
603         __backtrace();
604 #endif
605 out:
606         spin_unlock_irqrestore(&irq_controller_lock, flags);
607 }
608
609 EXPORT_SYMBOL(free_irq);
610
611 /* Start the interrupt probing.  Unlike other architectures,
612  * we don't return a mask of interrupts from probe_irq_on,
613  * but return the number of interrupts enabled for the probe.
614  * The interrupts which have been enabled for probing is
615  * instead recorded in the irq_desc structure.
616  */
617 unsigned long probe_irq_on(void)
618 {
619         unsigned int i, irqs = 0;
620         unsigned long delay;
621
622         /*
623          * first snaffle up any unassigned but
624          * probe-able interrupts
625          */
626         spin_lock_irq(&irq_controller_lock);
627         for (i = 0; i < NR_IRQS; i++) {
628                 if (!irq_desc[i].probe_ok || irq_desc[i].action)
629                         continue;
630
631                 irq_desc[i].probing = 1;
632                 irq_desc[i].triggered = 0;
633                 if (irq_desc[i].chip->type)
634                         irq_desc[i].chip->type(i, IRQT_PROBE);
635                 irq_desc[i].chip->unmask(i);
636                 irqs += 1;
637         }
638         spin_unlock_irq(&irq_controller_lock);
639
640         /*
641          * wait for spurious interrupts to mask themselves out again
642          */
643         for (delay = jiffies + HZ/10; time_before(jiffies, delay); )
644                 /* min 100ms delay */;
645
646         /*
647          * now filter out any obviously spurious interrupts
648          */
649         spin_lock_irq(&irq_controller_lock);
650         for (i = 0; i < NR_IRQS; i++) {
651                 if (irq_desc[i].probing && irq_desc[i].triggered) {
652                         irq_desc[i].probing = 0;
653                         irqs -= 1;
654                 }
655         }
656         spin_unlock_irq(&irq_controller_lock);
657
658         return irqs;
659 }
660
661 EXPORT_SYMBOL(probe_irq_on);
662
663 /*
664  * Possible return values:
665  *  >= 0 - interrupt number
666  *    -1 - no interrupt/many interrupts
667  */
668 int probe_irq_off(unsigned long irqs)
669 {
670         unsigned int i;
671         int irq_found = NO_IRQ;
672
673         /*
674          * look at the interrupts, and find exactly one
675          * that we were probing has been triggered
676          */
677         spin_lock_irq(&irq_controller_lock);
678         for (i = 0; i < NR_IRQS; i++) {
679                 if (irq_desc[i].probing &&
680                     irq_desc[i].triggered) {
681                         if (irq_found != NO_IRQ) {
682                                 irq_found = NO_IRQ;
683                                 goto out;
684                         }
685                         irq_found = i;
686                 }
687         }
688
689         if (irq_found == -1)
690                 irq_found = NO_IRQ;
691 out:
692         spin_unlock_irq(&irq_controller_lock);
693
694         return irq_found;
695 }
696
697 EXPORT_SYMBOL(probe_irq_off);
698
699 void __init init_irq_proc(void)
700 {
701 }
702
703 void __init init_IRQ(void)
704 {
705         struct irqdesc *desc;
706         extern void init_dma(void);
707         int irq;
708
709         for (irq = 0, desc = irq_desc; irq < NR_IRQS; irq++, desc++)
710                 *desc = bad_irq_desc;
711
712         arc_init_irq();
713         init_dma();
714 }