fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / arch / i386 / kernel / tsc.c
1 /*
2  * This code largely moved from arch/i386/kernel/timer/timer_tsc.c
3  * which was originally moved from arch/i386/kernel/time.c.
4  * See comments there for proper credits.
5  */
6
7 #include <linux/clocksource.h>
8 #include <linux/workqueue.h>
9 #include <linux/cpufreq.h>
10 #include <linux/jiffies.h>
11 #include <linux/init.h>
12 #include <linux/dmi.h>
13
14 #include <asm/delay.h>
15 #include <asm/tsc.h>
16 #include <asm/io.h>
17
18 #include "mach_timer.h"
19
20 /*
21  * On some systems the TSC frequency does not
22  * change with the cpu frequency. So we need
23  * an extra value to store the TSC freq
24  */
25 unsigned int tsc_khz;
26
27 int tsc_disable;
28
29 #ifdef CONFIG_X86_TSC
30 static int __init tsc_setup(char *str)
31 {
32         printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
33                                 "cannot disable TSC.\n");
34         return 1;
35 }
36 #else
37 /*
38  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
39  * in cpu/common.c
40  */
41 static int __init tsc_setup(char *str)
42 {
43         tsc_disable = 1;
44
45         return 1;
46 }
47 #endif
48
49 __setup("notsc", tsc_setup);
50
51 /*
52  * code to mark and check if the TSC is unstable
53  * due to cpufreq or due to unsynced TSCs
54  */
55 static int tsc_unstable;
56
57 static inline int check_tsc_unstable(void)
58 {
59         return tsc_unstable;
60 }
61
62 void mark_tsc_unstable(void)
63 {
64         tsc_unstable = 1;
65 }
66 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
67
68 /* Accellerators for sched_clock()
69  * convert from cycles(64bits) => nanoseconds (64bits)
70  *  basic equation:
71  *              ns = cycles / (freq / ns_per_sec)
72  *              ns = cycles * (ns_per_sec / freq)
73  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
74  *              ns = cycles * (10^6 / cpu_khz)
75  *
76  *      Then we use scaling math (suggested by george@mvista.com) to get:
77  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
78  *              ns = cycles * cyc2ns_scale / SC
79  *
80  *      And since SC is a constant power of two, we can convert the div
81  *  into a shift.
82  *
83  *  We can use khz divisor instead of mhz to keep a better percision, since
84  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
85  *  (mathieu.desnoyers@polymtl.ca)
86  *
87  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
88  */
89 static unsigned long cyc2ns_scale __read_mostly;
90
91 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
92
93 static inline void set_cyc2ns_scale(unsigned long cpu_khz)
94 {
95         cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
96 }
97
98 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
99 {
100         return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
101 }
102
103 #ifndef CONFIG_XEN
104 /*
105  * Scheduler clock - returns current time in nanosec units.
106  */
107 unsigned long long sched_clock(void)
108 {
109         unsigned long long this_offset;
110
111         /*
112          * in the NUMA case we dont use the TSC as they are not
113          * synchronized across all CPUs.
114          */
115 #ifndef CONFIG_NUMA
116         if (!cpu_khz || check_tsc_unstable())
117 #endif
118                 /* no locking but a rare wrong value is not a big deal */
119                 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
120
121         /* read the Time Stamp Counter: */
122         rdtscll(this_offset);
123
124         /* return the value in ns */
125         return cycles_2_ns(this_offset);
126 }
127 #endif
128
129 static unsigned long calculate_cpu_khz(void)
130 {
131         unsigned long long start, end;
132         unsigned long count;
133         u64 delta64;
134         int i;
135         unsigned long flags;
136
137         local_irq_save(flags);
138
139         /* run 3 times to ensure the cache is warm */
140         for (i = 0; i < 3; i++) {
141                 mach_prepare_counter();
142                 rdtscll(start);
143                 mach_countup(&count);
144                 rdtscll(end);
145         }
146         /*
147          * Error: ECTCNEVERSET
148          * The CTC wasn't reliable: we got a hit on the very first read,
149          * or the CPU was so fast/slow that the quotient wouldn't fit in
150          * 32 bits..
151          */
152         if (count <= 1)
153                 goto err;
154
155         delta64 = end - start;
156
157         /* cpu freq too fast: */
158         if (delta64 > (1ULL<<32))
159                 goto err;
160
161         /* cpu freq too slow: */
162         if (delta64 <= CALIBRATE_TIME_MSEC)
163                 goto err;
164
165         delta64 += CALIBRATE_TIME_MSEC/2; /* round for do_div */
166         do_div(delta64,CALIBRATE_TIME_MSEC);
167
168         local_irq_restore(flags);
169         return (unsigned long)delta64;
170 err:
171         local_irq_restore(flags);
172         return 0;
173 }
174
175 int recalibrate_cpu_khz(void)
176 {
177 #ifndef CONFIG_SMP
178         unsigned long cpu_khz_old = cpu_khz;
179
180         if (cpu_has_tsc) {
181                 cpu_khz = calculate_cpu_khz();
182                 tsc_khz = cpu_khz;
183                 cpu_data[0].loops_per_jiffy =
184                         cpufreq_scale(cpu_data[0].loops_per_jiffy,
185                                         cpu_khz_old, cpu_khz);
186                 return 0;
187         } else
188                 return -ENODEV;
189 #else
190         return -ENODEV;
191 #endif
192 }
193
194 EXPORT_SYMBOL(recalibrate_cpu_khz);
195
196 void __init tsc_init(void)
197 {
198         if (!cpu_has_tsc || tsc_disable)
199                 return;
200
201         cpu_khz = calculate_cpu_khz();
202         tsc_khz = cpu_khz;
203
204         if (!cpu_khz)
205                 return;
206
207         printk("Detected %lu.%03lu MHz processor.\n",
208                                 (unsigned long)cpu_khz / 1000,
209                                 (unsigned long)cpu_khz % 1000);
210
211         set_cyc2ns_scale(cpu_khz);
212         use_tsc_delay();
213 }
214
215 #ifdef CONFIG_CPU_FREQ
216
217 static unsigned int cpufreq_delayed_issched = 0;
218 static unsigned int cpufreq_init = 0;
219 static struct work_struct cpufreq_delayed_get_work;
220
221 static void handle_cpufreq_delayed_get(struct work_struct *work)
222 {
223         unsigned int cpu;
224
225         for_each_online_cpu(cpu)
226                 cpufreq_get(cpu);
227
228         cpufreq_delayed_issched = 0;
229 }
230
231 /*
232  * if we notice cpufreq oddness, schedule a call to cpufreq_get() as it tries
233  * to verify the CPU frequency the timing core thinks the CPU is running
234  * at is still correct.
235  */
236 static inline void cpufreq_delayed_get(void)
237 {
238         if (cpufreq_init && !cpufreq_delayed_issched) {
239                 cpufreq_delayed_issched = 1;
240                 printk(KERN_DEBUG "Checking if CPU frequency changed.\n");
241                 schedule_work(&cpufreq_delayed_get_work);
242         }
243 }
244
245 /*
246  * if the CPU frequency is scaled, TSC-based delays will need a different
247  * loops_per_jiffy value to function properly.
248  */
249 static unsigned int ref_freq = 0;
250 static unsigned long loops_per_jiffy_ref = 0;
251 static unsigned long cpu_khz_ref = 0;
252
253 static int
254 time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data)
255 {
256         struct cpufreq_freqs *freq = data;
257
258         if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
259                 write_seqlock_irq(&xtime_lock);
260
261         if (!ref_freq) {
262                 if (!freq->old){
263                         ref_freq = freq->new;
264                         goto end;
265                 }
266                 ref_freq = freq->old;
267                 loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy;
268                 cpu_khz_ref = cpu_khz;
269         }
270
271         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
272             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
273             (val == CPUFREQ_RESUMECHANGE)) {
274                 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
275                         cpu_data[freq->cpu].loops_per_jiffy =
276                                 cpufreq_scale(loops_per_jiffy_ref,
277                                                 ref_freq, freq->new);
278
279                 if (cpu_khz) {
280
281                         if (num_online_cpus() == 1)
282                                 cpu_khz = cpufreq_scale(cpu_khz_ref,
283                                                 ref_freq, freq->new);
284                         if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
285                                 tsc_khz = cpu_khz;
286                                 set_cyc2ns_scale(cpu_khz);
287                                 /*
288                                  * TSC based sched_clock turns
289                                  * to junk w/ cpufreq
290                                  */
291                                 mark_tsc_unstable();
292                         }
293                 }
294         }
295 end:
296         if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
297                 write_sequnlock_irq(&xtime_lock);
298
299         return 0;
300 }
301
302 static struct notifier_block time_cpufreq_notifier_block = {
303         .notifier_call  = time_cpufreq_notifier
304 };
305
306 static int __init cpufreq_tsc(void)
307 {
308         int ret;
309
310         INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get);
311         ret = cpufreq_register_notifier(&time_cpufreq_notifier_block,
312                                         CPUFREQ_TRANSITION_NOTIFIER);
313         if (!ret)
314                 cpufreq_init = 1;
315
316         return ret;
317 }
318
319 core_initcall(cpufreq_tsc);
320
321 #endif
322
323 /* clock source code */
324
325 static unsigned long current_tsc_khz = 0;
326 static int tsc_update_callback(void);
327
328 static cycle_t read_tsc(void)
329 {
330         cycle_t ret;
331
332         rdtscll(ret);
333
334         return ret;
335 }
336
337 static struct clocksource clocksource_tsc = {
338         .name                   = "tsc",
339         .rating                 = 300,
340         .read                   = read_tsc,
341         .mask                   = CLOCKSOURCE_MASK(64),
342         .mult                   = 0, /* to be set */
343         .shift                  = 22,
344         .update_callback        = tsc_update_callback,
345         .is_continuous          = 1,
346 };
347
348 static int tsc_update_callback(void)
349 {
350         int change = 0;
351
352         /* check to see if we should switch to the safe clocksource: */
353         if (clocksource_tsc.rating != 0 && check_tsc_unstable()) {
354                 clocksource_tsc.rating = 0;
355                 clocksource_reselect();
356                 change = 1;
357         }
358
359         /* only update if tsc_khz has changed: */
360         if (current_tsc_khz != tsc_khz) {
361                 current_tsc_khz = tsc_khz;
362                 clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz,
363                                                         clocksource_tsc.shift);
364                 change = 1;
365         }
366
367         return change;
368 }
369
370 static int __init dmi_mark_tsc_unstable(struct dmi_system_id *d)
371 {
372         printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
373                        d->ident);
374         mark_tsc_unstable();
375         return 0;
376 }
377
378 /* List of systems that have known TSC problems */
379 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
380         {
381          .callback = dmi_mark_tsc_unstable,
382          .ident = "IBM Thinkpad 380XD",
383          .matches = {
384                      DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
385                      DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
386                      },
387          },
388          {}
389 };
390
391 #define TSC_FREQ_CHECK_INTERVAL (10*MSEC_PER_SEC) /* 10sec in MS */
392 static struct timer_list verify_tsc_freq_timer;
393
394 /* XXX - Probably should add locking */
395 static void verify_tsc_freq(unsigned long unused)
396 {
397         static u64 last_tsc;
398         static unsigned long last_jiffies;
399
400         u64 now_tsc, interval_tsc;
401         unsigned long now_jiffies, interval_jiffies;
402
403
404         if (check_tsc_unstable())
405                 return;
406
407         rdtscll(now_tsc);
408         now_jiffies = jiffies;
409
410         if (!last_jiffies) {
411                 goto out;
412         }
413
414         interval_jiffies = now_jiffies - last_jiffies;
415         interval_tsc = now_tsc - last_tsc;
416         interval_tsc *= HZ;
417         do_div(interval_tsc, cpu_khz*1000);
418
419         if (interval_tsc < (interval_jiffies * 3 / 4)) {
420                 printk("TSC appears to be running slowly. "
421                         "Marking it as unstable\n");
422                 mark_tsc_unstable();
423                 return;
424         }
425
426 out:
427         last_tsc = now_tsc;
428         last_jiffies = now_jiffies;
429         /* set us up to go off on the next interval: */
430         mod_timer(&verify_tsc_freq_timer,
431                 jiffies + msecs_to_jiffies(TSC_FREQ_CHECK_INTERVAL));
432 }
433
434 /*
435  * Make an educated guess if the TSC is trustworthy and synchronized
436  * over all CPUs.
437  */
438 static __init int unsynchronized_tsc(void)
439 {
440         /*
441          * Intel systems are normally all synchronized.
442          * Exceptions must mark TSC as unstable:
443          */
444         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
445                 return 0;
446
447         /* assume multi socket systems are not synchronized: */
448         return num_possible_cpus() > 1;
449 }
450
451 static int __init init_tsc_clocksource(void)
452 {
453
454         if (cpu_has_tsc && tsc_khz && !tsc_disable) {
455                 /* check blacklist */
456                 dmi_check_system(bad_tsc_dmi_table);
457
458                 if (unsynchronized_tsc()) /* mark unstable if unsynced */
459                         mark_tsc_unstable();
460                 current_tsc_khz = tsc_khz;
461                 clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz,
462                                                         clocksource_tsc.shift);
463                 /* lower the rating if we already know its unstable: */
464                 if (check_tsc_unstable())
465                         clocksource_tsc.rating = 0;
466
467                 init_timer(&verify_tsc_freq_timer);
468                 verify_tsc_freq_timer.function = verify_tsc_freq;
469                 verify_tsc_freq_timer.expires =
470                         jiffies + msecs_to_jiffies(TSC_FREQ_CHECK_INTERVAL);
471                 add_timer(&verify_tsc_freq_timer);
472
473                 return clocksource_register(&clocksource_tsc);
474         }
475
476         return 0;
477 }
478
479 module_init(init_tsc_clocksource);