vserver 1.9.3
[linux-2.6.git] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch   GUID cleanups
26  *
27  * 02/01/04 J. Hall     Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *                      error flag, set SAL default return values, changed
29  *                      error record structure to linked list, added init call
30  *                      to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  */
52 #include <linux/config.h>
53 #include <linux/types.h>
54 #include <linux/init.h>
55 #include <linux/sched.h>
56 #include <linux/interrupt.h>
57 #include <linux/irq.h>
58 #include <linux/kallsyms.h>
59 #include <linux/smp_lock.h>
60 #include <linux/bootmem.h>
61 #include <linux/acpi.h>
62 #include <linux/timer.h>
63 #include <linux/module.h>
64 #include <linux/kernel.h>
65 #include <linux/smp.h>
66 #include <linux/workqueue.h>
67
68 #include <asm/delay.h>
69 #include <asm/machvec.h>
70 #include <asm/page.h>
71 #include <asm/ptrace.h>
72 #include <asm/system.h>
73 #include <asm/sal.h>
74 #include <asm/mca.h>
75
76 #include <asm/irq.h>
77 #include <asm/hw_irq.h>
78
79 #if defined(IA64_MCA_DEBUG_INFO)
80 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
81 #else
82 # define IA64_MCA_DEBUG(fmt...)
83 #endif
84
85 /* Used by mca_asm.S */
86 ia64_mca_sal_to_os_state_t      ia64_sal_to_os_handoff_state;
87 ia64_mca_os_to_sal_state_t      ia64_os_to_sal_handoff_state;
88 u64                             ia64_mca_proc_state_dump[512];
89 u64                             ia64_mca_stack[1024] __attribute__((aligned(16)));
90 u64                             ia64_mca_stackframe[32];
91 u64                             ia64_mca_bspstore[1024];
92 u64                             ia64_init_stack[KERNEL_STACK_SIZE/8] __attribute__((aligned(16)));
93 u64                             ia64_mca_serialize;
94
95 /* In mca_asm.S */
96 extern void                     ia64_monarch_init_handler (void);
97 extern void                     ia64_slave_init_handler (void);
98
99 static ia64_mc_info_t           ia64_mc_info;
100
101 struct ia64_mca_tlb_info ia64_mca_tlb_list[NR_CPUS];
102
103 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
104 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
105 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
106 #define CPE_HISTORY_LENGTH    5
107 #define CMC_HISTORY_LENGTH    5
108
109 static struct timer_list cpe_poll_timer;
110 static struct timer_list cmc_poll_timer;
111 /*
112  * This variable tells whether we are currently in polling mode.
113  * Start with this in the wrong state so we won't play w/ timers
114  * before the system is ready.
115  */
116 static int cmc_polling_enabled = 1;
117
118 /*
119  * Clearing this variable prevents CPE polling from getting activated
120  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
121  * but encounters problems retrieving CPE logs.  This should only be
122  * necessary for debugging.
123  */
124 static int cpe_poll_enabled = 1;
125
126 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
127
128 static int mca_init;
129
130 /*
131  * IA64_MCA log support
132  */
133 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
134 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
135
136 typedef struct ia64_state_log_s
137 {
138         spinlock_t      isl_lock;
139         int             isl_index;
140         unsigned long   isl_count;
141         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
142 } ia64_state_log_t;
143
144 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
145
146 #define IA64_LOG_ALLOCATE(it, size) \
147         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
148                 (ia64_err_rec_t *)alloc_bootmem(size); \
149         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
150                 (ia64_err_rec_t *)alloc_bootmem(size);}
151 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
152 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
153 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
154 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
155 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
156 #define IA64_LOG_INDEX_INC(it) \
157     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
158     ia64_state_log[it].isl_count++;}
159 #define IA64_LOG_INDEX_DEC(it) \
160     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
161 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
162 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
163 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
164
165 /*
166  * ia64_log_init
167  *      Reset the OS ia64 log buffer
168  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
169  * Outputs      :       None
170  */
171 static void
172 ia64_log_init(int sal_info_type)
173 {
174         u64     max_size = 0;
175
176         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
177         IA64_LOG_LOCK_INIT(sal_info_type);
178
179         // SAL will tell us the maximum size of any error record of this type
180         max_size = ia64_sal_get_state_info_size(sal_info_type);
181         if (!max_size)
182                 /* alloc_bootmem() doesn't like zero-sized allocations! */
183                 return;
184
185         // set up OS data structures to hold error info
186         IA64_LOG_ALLOCATE(sal_info_type, max_size);
187         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
188         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
189 }
190
191 /*
192  * ia64_log_get
193  *
194  *      Get the current MCA log from SAL and copy it into the OS log buffer.
195  *
196  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
197  *              irq_safe    whether you can use printk at this point
198  *  Outputs :   size        (total record length)
199  *              *buffer     (ptr to error record)
200  *
201  */
202 static u64
203 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
204 {
205         sal_log_record_header_t     *log_buffer;
206         u64                         total_len = 0;
207         int                         s;
208
209         IA64_LOG_LOCK(sal_info_type);
210
211         /* Get the process state information */
212         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
213
214         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
215
216         if (total_len) {
217                 IA64_LOG_INDEX_INC(sal_info_type);
218                 IA64_LOG_UNLOCK(sal_info_type);
219                 if (irq_safe) {
220                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
221                                        "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
222                 }
223                 *buffer = (u8 *) log_buffer;
224                 return total_len;
225         } else {
226                 IA64_LOG_UNLOCK(sal_info_type);
227                 return 0;
228         }
229 }
230
231 /*
232  *  ia64_mca_log_sal_error_record
233  *
234  *  This function retrieves a specified error record type from SAL
235  *  and wakes up any processes waiting for error records.
236  *
237  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE/INIT)
238  */
239 static void
240 ia64_mca_log_sal_error_record(int sal_info_type)
241 {
242         u8 *buffer;
243         u64 size;
244         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA && sal_info_type != SAL_INFO_TYPE_INIT;
245 #ifdef IA64_MCA_DEBUG_INFO
246         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
247 #endif
248
249         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
250         if (!size)
251                 return;
252
253         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
254
255         if (irq_safe)
256                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
257                         smp_processor_id(),
258                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
259
260         /* Clear logs from corrected errors in case there's no user-level logger */
261         if (sal_info_type == SAL_INFO_TYPE_CPE || sal_info_type == SAL_INFO_TYPE_CMC)
262                 ia64_sal_clear_state_info(sal_info_type);
263 }
264
265 /*
266  * platform dependent error handling
267  */
268 #ifndef PLATFORM_MCA_HANDLERS
269
270 #ifdef CONFIG_ACPI
271
272 static int cpe_vector = -1;
273
274 static irqreturn_t
275 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
276 {
277         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
278         static int              index;
279         static spinlock_t       cpe_history_lock = SPIN_LOCK_UNLOCKED;
280
281         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
282                        __FUNCTION__, cpe_irq, smp_processor_id());
283
284         /* SAL spec states this should run w/ interrupts enabled */
285         local_irq_enable();
286
287         /* Get the CPE error record and log it */
288         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
289
290         spin_lock(&cpe_history_lock);
291         if (!cpe_poll_enabled && cpe_vector >= 0) {
292
293                 int i, count = 1; /* we know 1 happened now */
294                 unsigned long now = jiffies;
295
296                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
297                         if (now - cpe_history[i] <= HZ)
298                                 count++;
299                 }
300
301                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
302                 if (count >= CPE_HISTORY_LENGTH) {
303
304                         cpe_poll_enabled = 1;
305                         spin_unlock(&cpe_history_lock);
306                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
307
308                         /*
309                          * Corrected errors will still be corrected, but
310                          * make sure there's a log somewhere that indicates
311                          * something is generating more than we can handle.
312                          */
313                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
314
315                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
316
317                         /* lock already released, get out now */
318                         return IRQ_HANDLED;
319                 } else {
320                         cpe_history[index++] = now;
321                         if (index == CPE_HISTORY_LENGTH)
322                                 index = 0;
323                 }
324         }
325         spin_unlock(&cpe_history_lock);
326         return IRQ_HANDLED;
327 }
328
329 #endif /* CONFIG_ACPI */
330
331 static void
332 show_min_state (pal_min_state_area_t *minstate)
333 {
334         u64 iip = minstate->pmsa_iip + ((struct ia64_psr *)(&minstate->pmsa_ipsr))->ri;
335         u64 xip = minstate->pmsa_xip + ((struct ia64_psr *)(&minstate->pmsa_xpsr))->ri;
336
337         printk("NaT bits\t%016lx\n", minstate->pmsa_nat_bits);
338         printk("pr\t\t%016lx\n", minstate->pmsa_pr);
339         printk("b0\t\t%016lx ", minstate->pmsa_br0); print_symbol("%s\n", minstate->pmsa_br0);
340         printk("ar.rsc\t\t%016lx\n", minstate->pmsa_rsc);
341         printk("cr.iip\t\t%016lx ", iip); print_symbol("%s\n", iip);
342         printk("cr.ipsr\t\t%016lx\n", minstate->pmsa_ipsr);
343         printk("cr.ifs\t\t%016lx\n", minstate->pmsa_ifs);
344         printk("xip\t\t%016lx ", xip); print_symbol("%s\n", xip);
345         printk("xpsr\t\t%016lx\n", minstate->pmsa_xpsr);
346         printk("xfs\t\t%016lx\n", minstate->pmsa_xfs);
347         printk("b1\t\t%016lx ", minstate->pmsa_br1);
348         print_symbol("%s\n", minstate->pmsa_br1);
349
350         printk("\nstatic registers r0-r15:\n");
351         printk(" r0- 3 %016lx %016lx %016lx %016lx\n",
352                0UL, minstate->pmsa_gr[0], minstate->pmsa_gr[1], minstate->pmsa_gr[2]);
353         printk(" r4- 7 %016lx %016lx %016lx %016lx\n",
354                minstate->pmsa_gr[3], minstate->pmsa_gr[4],
355                minstate->pmsa_gr[5], minstate->pmsa_gr[6]);
356         printk(" r8-11 %016lx %016lx %016lx %016lx\n",
357                minstate->pmsa_gr[7], minstate->pmsa_gr[8],
358                minstate->pmsa_gr[9], minstate->pmsa_gr[10]);
359         printk("r12-15 %016lx %016lx %016lx %016lx\n",
360                minstate->pmsa_gr[11], minstate->pmsa_gr[12],
361                minstate->pmsa_gr[13], minstate->pmsa_gr[14]);
362
363         printk("\nbank 0:\n");
364         printk("r16-19 %016lx %016lx %016lx %016lx\n",
365                minstate->pmsa_bank0_gr[0], minstate->pmsa_bank0_gr[1],
366                minstate->pmsa_bank0_gr[2], minstate->pmsa_bank0_gr[3]);
367         printk("r20-23 %016lx %016lx %016lx %016lx\n",
368                minstate->pmsa_bank0_gr[4], minstate->pmsa_bank0_gr[5],
369                minstate->pmsa_bank0_gr[6], minstate->pmsa_bank0_gr[7]);
370         printk("r24-27 %016lx %016lx %016lx %016lx\n",
371                minstate->pmsa_bank0_gr[8], minstate->pmsa_bank0_gr[9],
372                minstate->pmsa_bank0_gr[10], minstate->pmsa_bank0_gr[11]);
373         printk("r28-31 %016lx %016lx %016lx %016lx\n",
374                minstate->pmsa_bank0_gr[12], minstate->pmsa_bank0_gr[13],
375                minstate->pmsa_bank0_gr[14], minstate->pmsa_bank0_gr[15]);
376
377         printk("\nbank 1:\n");
378         printk("r16-19 %016lx %016lx %016lx %016lx\n",
379                minstate->pmsa_bank1_gr[0], minstate->pmsa_bank1_gr[1],
380                minstate->pmsa_bank1_gr[2], minstate->pmsa_bank1_gr[3]);
381         printk("r20-23 %016lx %016lx %016lx %016lx\n",
382                minstate->pmsa_bank1_gr[4], minstate->pmsa_bank1_gr[5],
383                minstate->pmsa_bank1_gr[6], minstate->pmsa_bank1_gr[7]);
384         printk("r24-27 %016lx %016lx %016lx %016lx\n",
385                minstate->pmsa_bank1_gr[8], minstate->pmsa_bank1_gr[9],
386                minstate->pmsa_bank1_gr[10], minstate->pmsa_bank1_gr[11]);
387         printk("r28-31 %016lx %016lx %016lx %016lx\n",
388                minstate->pmsa_bank1_gr[12], minstate->pmsa_bank1_gr[13],
389                minstate->pmsa_bank1_gr[14], minstate->pmsa_bank1_gr[15]);
390 }
391
392 static void
393 fetch_min_state (pal_min_state_area_t *ms, struct pt_regs *pt, struct switch_stack *sw)
394 {
395         u64 *dst_banked, *src_banked, bit, shift, nat_bits;
396         int i;
397
398         /*
399          * First, update the pt-regs and switch-stack structures with the contents stored
400          * in the min-state area:
401          */
402         if (((struct ia64_psr *) &ms->pmsa_ipsr)->ic == 0) {
403                 pt->cr_ipsr = ms->pmsa_xpsr;
404                 pt->cr_iip = ms->pmsa_xip;
405                 pt->cr_ifs = ms->pmsa_xfs;
406         } else {
407                 pt->cr_ipsr = ms->pmsa_ipsr;
408                 pt->cr_iip = ms->pmsa_iip;
409                 pt->cr_ifs = ms->pmsa_ifs;
410         }
411         pt->ar_rsc = ms->pmsa_rsc;
412         pt->pr = ms->pmsa_pr;
413         pt->r1 = ms->pmsa_gr[0];
414         pt->r2 = ms->pmsa_gr[1];
415         pt->r3 = ms->pmsa_gr[2];
416         sw->r4 = ms->pmsa_gr[3];
417         sw->r5 = ms->pmsa_gr[4];
418         sw->r6 = ms->pmsa_gr[5];
419         sw->r7 = ms->pmsa_gr[6];
420         pt->r8 = ms->pmsa_gr[7];
421         pt->r9 = ms->pmsa_gr[8];
422         pt->r10 = ms->pmsa_gr[9];
423         pt->r11 = ms->pmsa_gr[10];
424         pt->r12 = ms->pmsa_gr[11];
425         pt->r13 = ms->pmsa_gr[12];
426         pt->r14 = ms->pmsa_gr[13];
427         pt->r15 = ms->pmsa_gr[14];
428         dst_banked = &pt->r16;          /* r16-r31 are contiguous in struct pt_regs */
429         src_banked = ms->pmsa_bank1_gr;
430         for (i = 0; i < 16; ++i)
431                 dst_banked[i] = src_banked[i];
432         pt->b0 = ms->pmsa_br0;
433         sw->b1 = ms->pmsa_br1;
434
435         /* construct the NaT bits for the pt-regs structure: */
436 #       define PUT_NAT_BIT(dst, addr)                                   \
437         do {                                                            \
438                 bit = nat_bits & 1; nat_bits >>= 1;                     \
439                 shift = ((unsigned long) addr >> 3) & 0x3f;             \
440                 dst = ((dst) & ~(1UL << shift)) | (bit << shift);       \
441         } while (0)
442
443         /* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */
444         shift = ((unsigned long) &ms->pmsa_gr[0] >> 3) & 0x3f;
445         nat_bits = (ms->pmsa_nat_bits >> shift) | (ms->pmsa_nat_bits << (64 - shift));
446
447         PUT_NAT_BIT(sw->caller_unat, &pt->r1);
448         PUT_NAT_BIT(sw->caller_unat, &pt->r2);
449         PUT_NAT_BIT(sw->caller_unat, &pt->r3);
450         PUT_NAT_BIT(sw->ar_unat, &sw->r4);
451         PUT_NAT_BIT(sw->ar_unat, &sw->r5);
452         PUT_NAT_BIT(sw->ar_unat, &sw->r6);
453         PUT_NAT_BIT(sw->ar_unat, &sw->r7);
454         PUT_NAT_BIT(sw->caller_unat, &pt->r8);  PUT_NAT_BIT(sw->caller_unat, &pt->r9);
455         PUT_NAT_BIT(sw->caller_unat, &pt->r10); PUT_NAT_BIT(sw->caller_unat, &pt->r11);
456         PUT_NAT_BIT(sw->caller_unat, &pt->r12); PUT_NAT_BIT(sw->caller_unat, &pt->r13);
457         PUT_NAT_BIT(sw->caller_unat, &pt->r14); PUT_NAT_BIT(sw->caller_unat, &pt->r15);
458         nat_bits >>= 16;        /* skip over bank0 NaT bits */
459         PUT_NAT_BIT(sw->caller_unat, &pt->r16); PUT_NAT_BIT(sw->caller_unat, &pt->r17);
460         PUT_NAT_BIT(sw->caller_unat, &pt->r18); PUT_NAT_BIT(sw->caller_unat, &pt->r19);
461         PUT_NAT_BIT(sw->caller_unat, &pt->r20); PUT_NAT_BIT(sw->caller_unat, &pt->r21);
462         PUT_NAT_BIT(sw->caller_unat, &pt->r22); PUT_NAT_BIT(sw->caller_unat, &pt->r23);
463         PUT_NAT_BIT(sw->caller_unat, &pt->r24); PUT_NAT_BIT(sw->caller_unat, &pt->r25);
464         PUT_NAT_BIT(sw->caller_unat, &pt->r26); PUT_NAT_BIT(sw->caller_unat, &pt->r27);
465         PUT_NAT_BIT(sw->caller_unat, &pt->r28); PUT_NAT_BIT(sw->caller_unat, &pt->r29);
466         PUT_NAT_BIT(sw->caller_unat, &pt->r30); PUT_NAT_BIT(sw->caller_unat, &pt->r31);
467 }
468
469 static void
470 init_handler_platform (pal_min_state_area_t *ms,
471                        struct pt_regs *pt, struct switch_stack *sw)
472 {
473         struct unw_frame_info info;
474
475         /* if a kernel debugger is available call it here else just dump the registers */
476
477         /*
478          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
479          * generated via the BMC's command-line interface, but since the console is on the
480          * same serial line, the user will need some time to switch out of the BMC before
481          * the dump begins.
482          */
483         printk("Delaying for 5 seconds...\n");
484         udelay(5*1000000);
485         show_min_state(ms);
486
487         printk("Backtrace of current task (pid %d, %s)\n", current->pid, current->comm);
488         fetch_min_state(ms, pt, sw);
489         unw_init_from_interruption(&info, current, pt, sw);
490         ia64_do_show_stack(&info, NULL);
491
492 #ifdef CONFIG_SMP
493         /* read_trylock() would be handy... */
494         if (!tasklist_lock.write_lock)
495                 read_lock(&tasklist_lock);
496 #endif
497         {
498                 struct task_struct *g, *t;
499                 do_each_thread (g, t) {
500                         if (t == current)
501                                 continue;
502
503                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
504                         show_stack(t, NULL);
505                 } while_each_thread (g, t);
506         }
507 #ifdef CONFIG_SMP
508         if (!tasklist_lock.write_lock)
509                 read_unlock(&tasklist_lock);
510 #endif
511
512         printk("\nINIT dump complete.  Please reboot now.\n");
513         while (1);                      /* hang city if no debugger */
514 }
515
516 #ifdef CONFIG_ACPI
517 /*
518  * ia64_mca_register_cpev
519  *
520  *  Register the corrected platform error vector with SAL.
521  *
522  *  Inputs
523  *      cpev        Corrected Platform Error Vector number
524  *
525  *  Outputs
526  *      None
527  */
528 static void
529 ia64_mca_register_cpev (int cpev)
530 {
531         /* Register the CPE interrupt vector with SAL */
532         struct ia64_sal_retval isrv;
533
534         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
535         if (isrv.status) {
536                 printk(KERN_ERR "Failed to register Corrected Platform "
537                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
538                 return;
539         }
540
541         IA64_MCA_DEBUG("%s: corrected platform error "
542                        "vector %#x registered\n", __FUNCTION__, cpev);
543 }
544 #endif /* CONFIG_ACPI */
545
546 #endif /* PLATFORM_MCA_HANDLERS */
547
548 /*
549  * ia64_mca_cmc_vector_setup
550  *
551  *  Setup the corrected machine check vector register in the processor.
552  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
553  *  This function is invoked on a per-processor basis.
554  *
555  * Inputs
556  *      None
557  *
558  * Outputs
559  *      None
560  */
561 void
562 ia64_mca_cmc_vector_setup (void)
563 {
564         cmcv_reg_t      cmcv;
565
566         cmcv.cmcv_regval        = 0;
567         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
568         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
569         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
570
571         IA64_MCA_DEBUG("%s: CPU %d corrected "
572                        "machine check vector %#x registered.\n",
573                        __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
574
575         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
576                        __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
577 }
578
579 /*
580  * ia64_mca_cmc_vector_disable
581  *
582  *  Mask the corrected machine check vector register in the processor.
583  *  This function is invoked on a per-processor basis.
584  *
585  * Inputs
586  *      dummy(unused)
587  *
588  * Outputs
589  *      None
590  */
591 static void
592 ia64_mca_cmc_vector_disable (void *dummy)
593 {
594         cmcv_reg_t      cmcv;
595
596         cmcv = (cmcv_reg_t)ia64_getreg(_IA64_REG_CR_CMCV);
597
598         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
599         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
600
601         IA64_MCA_DEBUG("%s: CPU %d corrected "
602                        "machine check vector %#x disabled.\n",
603                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
604 }
605
606 /*
607  * ia64_mca_cmc_vector_enable
608  *
609  *  Unmask the corrected machine check vector register in the processor.
610  *  This function is invoked on a per-processor basis.
611  *
612  * Inputs
613  *      dummy(unused)
614  *
615  * Outputs
616  *      None
617  */
618 static void
619 ia64_mca_cmc_vector_enable (void *dummy)
620 {
621         cmcv_reg_t      cmcv;
622
623         cmcv = (cmcv_reg_t)ia64_getreg(_IA64_REG_CR_CMCV);
624
625         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
626         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
627
628         IA64_MCA_DEBUG("%s: CPU %d corrected "
629                        "machine check vector %#x enabled.\n",
630                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
631 }
632
633 /*
634  * ia64_mca_cmc_vector_disable_keventd
635  *
636  * Called via keventd (smp_call_function() is not safe in interrupt context) to
637  * disable the cmc interrupt vector.
638  */
639 static void
640 ia64_mca_cmc_vector_disable_keventd(void *unused)
641 {
642         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
643 }
644
645 /*
646  * ia64_mca_cmc_vector_enable_keventd
647  *
648  * Called via keventd (smp_call_function() is not safe in interrupt context) to
649  * enable the cmc interrupt vector.
650  */
651 static void
652 ia64_mca_cmc_vector_enable_keventd(void *unused)
653 {
654         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
655 }
656
657 /*
658  * ia64_mca_wakeup_ipi_wait
659  *
660  *      Wait for the inter-cpu interrupt to be sent by the
661  *      monarch processor once it is done with handling the
662  *      MCA.
663  *
664  *  Inputs  :   None
665  *  Outputs :   None
666  */
667 static void
668 ia64_mca_wakeup_ipi_wait(void)
669 {
670         int     irr_num = (IA64_MCA_WAKEUP_VECTOR >> 6);
671         int     irr_bit = (IA64_MCA_WAKEUP_VECTOR & 0x3f);
672         u64     irr = 0;
673
674         do {
675                 switch(irr_num) {
676                       case 0:
677                         irr = ia64_getreg(_IA64_REG_CR_IRR0);
678                         break;
679                       case 1:
680                         irr = ia64_getreg(_IA64_REG_CR_IRR1);
681                         break;
682                       case 2:
683                         irr = ia64_getreg(_IA64_REG_CR_IRR2);
684                         break;
685                       case 3:
686                         irr = ia64_getreg(_IA64_REG_CR_IRR3);
687                         break;
688                 }
689         } while (!(irr & (1UL << irr_bit))) ;
690 }
691
692 /*
693  * ia64_mca_wakeup
694  *
695  *      Send an inter-cpu interrupt to wake-up a particular cpu
696  *      and mark that cpu to be out of rendez.
697  *
698  *  Inputs  :   cpuid
699  *  Outputs :   None
700  */
701 static void
702 ia64_mca_wakeup(int cpu)
703 {
704         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
705         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
706
707 }
708
709 /*
710  * ia64_mca_wakeup_all
711  *
712  *      Wakeup all the cpus which have rendez'ed previously.
713  *
714  *  Inputs  :   None
715  *  Outputs :   None
716  */
717 static void
718 ia64_mca_wakeup_all(void)
719 {
720         int cpu;
721
722         /* Clear the Rendez checkin flag for all cpus */
723         for(cpu = 0; cpu < NR_CPUS; cpu++) {
724                 if (!cpu_online(cpu))
725                         continue;
726                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
727                         ia64_mca_wakeup(cpu);
728         }
729
730 }
731
732 /*
733  * ia64_mca_rendez_interrupt_handler
734  *
735  *      This is handler used to put slave processors into spinloop
736  *      while the monarch processor does the mca handling and later
737  *      wake each slave up once the monarch is done.
738  *
739  *  Inputs  :   None
740  *  Outputs :   None
741  */
742 static irqreturn_t
743 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
744 {
745         unsigned long flags;
746         int cpu = smp_processor_id();
747
748         /* Mask all interrupts */
749         local_irq_save(flags);
750
751         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
752         /* Register with the SAL monarch that the slave has
753          * reached SAL
754          */
755         ia64_sal_mc_rendez();
756
757         /* Wait for the wakeup IPI from the monarch
758          * This waiting is done by polling on the wakeup-interrupt
759          * vector bit in the processor's IRRs
760          */
761         ia64_mca_wakeup_ipi_wait();
762
763         /* Enable all interrupts */
764         local_irq_restore(flags);
765         return IRQ_HANDLED;
766 }
767
768 /*
769  * ia64_mca_wakeup_int_handler
770  *
771  *      The interrupt handler for processing the inter-cpu interrupt to the
772  *      slave cpu which was spinning in the rendez loop.
773  *      Since this spinning is done by turning off the interrupts and
774  *      polling on the wakeup-interrupt bit in the IRR, there is
775  *      nothing useful to be done in the handler.
776  *
777  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
778  *      arg             (Interrupt handler specific argument)
779  *      ptregs          (Exception frame at the time of the interrupt)
780  *  Outputs :   None
781  *
782  */
783 static irqreturn_t
784 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
785 {
786         return IRQ_HANDLED;
787 }
788
789 /*
790  * ia64_return_to_sal_check
791  *
792  *      This is function called before going back from the OS_MCA handler
793  *      to the OS_MCA dispatch code which finally takes the control back
794  *      to the SAL.
795  *      The main purpose of this routine is to setup the OS_MCA to SAL
796  *      return state which can be used by the OS_MCA dispatch code
797  *      just before going back to SAL.
798  *
799  *  Inputs  :   None
800  *  Outputs :   None
801  */
802
803 static void
804 ia64_return_to_sal_check(int recover)
805 {
806
807         /* Copy over some relevant stuff from the sal_to_os_mca_handoff
808          * so that it can be used at the time of os_mca_to_sal_handoff
809          */
810         ia64_os_to_sal_handoff_state.imots_sal_gp =
811                 ia64_sal_to_os_handoff_state.imsto_sal_gp;
812
813         ia64_os_to_sal_handoff_state.imots_sal_check_ra =
814                 ia64_sal_to_os_handoff_state.imsto_sal_check_ra;
815
816         if (recover)
817                 ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_CORRECTED;
818         else
819                 ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_COLD_BOOT;
820
821         /* Default = tell SAL to return to same context */
822         ia64_os_to_sal_handoff_state.imots_context = IA64_MCA_SAME_CONTEXT;
823
824         ia64_os_to_sal_handoff_state.imots_new_min_state =
825                 (u64 *)ia64_sal_to_os_handoff_state.pal_min_state;
826
827 }
828
829 /* Function pointer for extra MCA recovery */
830 int (*ia64_mca_ucmc_extension)
831         (void*,ia64_mca_sal_to_os_state_t*,ia64_mca_os_to_sal_state_t*)
832         = NULL;
833
834 int
835 ia64_reg_MCA_extension(void *fn)
836 {
837         if (ia64_mca_ucmc_extension)
838                 return 1;
839
840         ia64_mca_ucmc_extension = fn;
841         return 0;
842 }
843
844 void
845 ia64_unreg_MCA_extension(void)
846 {
847         if (ia64_mca_ucmc_extension)
848                 ia64_mca_ucmc_extension = NULL;
849 }
850
851 EXPORT_SYMBOL(ia64_reg_MCA_extension);
852 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
853
854 /*
855  * ia64_mca_ucmc_handler
856  *
857  *      This is uncorrectable machine check handler called from OS_MCA
858  *      dispatch code which is in turn called from SAL_CHECK().
859  *      This is the place where the core of OS MCA handling is done.
860  *      Right now the logs are extracted and displayed in a well-defined
861  *      format. This handler code is supposed to be run only on the
862  *      monarch processor. Once the monarch is done with MCA handling
863  *      further MCA logging is enabled by clearing logs.
864  *      Monarch also has the duty of sending wakeup-IPIs to pull the
865  *      slave processors out of rendezvous spinloop.
866  *
867  *  Inputs  :   None
868  *  Outputs :   None
869  */
870 void
871 ia64_mca_ucmc_handler(void)
872 {
873         pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
874                 &ia64_sal_to_os_handoff_state.proc_state_param;
875         int recover; 
876
877         /* Get the MCA error record and log it */
878         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
879
880         /* TLB error is only exist in this SAL error record */
881         recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
882         /* other error recovery */
883            || (ia64_mca_ucmc_extension 
884                 && ia64_mca_ucmc_extension(
885                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
886                         &ia64_sal_to_os_handoff_state,
887                         &ia64_os_to_sal_handoff_state)); 
888
889         /*
890          *  Wakeup all the processors which are spinning in the rendezvous
891          *  loop.
892          */
893         ia64_mca_wakeup_all();
894
895         /* Return to SAL */
896         ia64_return_to_sal_check(recover);
897 }
898
899 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
900 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
901
902 /*
903  * ia64_mca_cmc_int_handler
904  *
905  *  This is corrected machine check interrupt handler.
906  *      Right now the logs are extracted and displayed in a well-defined
907  *      format.
908  *
909  * Inputs
910  *      interrupt number
911  *      client data arg ptr
912  *      saved registers ptr
913  *
914  * Outputs
915  *      None
916  */
917 static irqreturn_t
918 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
919 {
920         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
921         static int              index;
922         static spinlock_t       cmc_history_lock = SPIN_LOCK_UNLOCKED;
923
924         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
925                        __FUNCTION__, cmc_irq, smp_processor_id());
926
927         /* SAL spec states this should run w/ interrupts enabled */
928         local_irq_enable();
929
930         /* Get the CMC error record and log it */
931         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
932
933         spin_lock(&cmc_history_lock);
934         if (!cmc_polling_enabled) {
935                 int i, count = 1; /* we know 1 happened now */
936                 unsigned long now = jiffies;
937
938                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
939                         if (now - cmc_history[i] <= HZ)
940                                 count++;
941                 }
942
943                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
944                 if (count >= CMC_HISTORY_LENGTH) {
945
946                         cmc_polling_enabled = 1;
947                         spin_unlock(&cmc_history_lock);
948                         schedule_work(&cmc_disable_work);
949
950                         /*
951                          * Corrected errors will still be corrected, but
952                          * make sure there's a log somewhere that indicates
953                          * something is generating more than we can handle.
954                          */
955                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
956
957                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
958
959                         /* lock already released, get out now */
960                         return IRQ_HANDLED;
961                 } else {
962                         cmc_history[index++] = now;
963                         if (index == CMC_HISTORY_LENGTH)
964                                 index = 0;
965                 }
966         }
967         spin_unlock(&cmc_history_lock);
968         return IRQ_HANDLED;
969 }
970
971 /*
972  *  ia64_mca_cmc_int_caller
973  *
974  *      Triggered by sw interrupt from CMC polling routine.  Calls
975  *      real interrupt handler and either triggers a sw interrupt
976  *      on the next cpu or does cleanup at the end.
977  *
978  * Inputs
979  *      interrupt number
980  *      client data arg ptr
981  *      saved registers ptr
982  * Outputs
983  *      handled
984  */
985 static irqreturn_t
986 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
987 {
988         static int start_count = -1;
989         unsigned int cpuid;
990
991         cpuid = smp_processor_id();
992
993         /* If first cpu, update count */
994         if (start_count == -1)
995                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
996
997         ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
998
999         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1000
1001         if (cpuid < NR_CPUS) {
1002                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1003         } else {
1004                 /* If no log record, switch out of polling mode */
1005                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1006
1007                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1008                         schedule_work(&cmc_enable_work);
1009                         cmc_polling_enabled = 0;
1010
1011                 } else {
1012
1013                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1014                 }
1015
1016                 start_count = -1;
1017         }
1018
1019         return IRQ_HANDLED;
1020 }
1021
1022 /*
1023  *  ia64_mca_cmc_poll
1024  *
1025  *      Poll for Corrected Machine Checks (CMCs)
1026  *
1027  * Inputs   :   dummy(unused)
1028  * Outputs  :   None
1029  *
1030  */
1031 static void
1032 ia64_mca_cmc_poll (unsigned long dummy)
1033 {
1034         /* Trigger a CMC interrupt cascade  */
1035         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1036 }
1037
1038 /*
1039  *  ia64_mca_cpe_int_caller
1040  *
1041  *      Triggered by sw interrupt from CPE polling routine.  Calls
1042  *      real interrupt handler and either triggers a sw interrupt
1043  *      on the next cpu or does cleanup at the end.
1044  *
1045  * Inputs
1046  *      interrupt number
1047  *      client data arg ptr
1048  *      saved registers ptr
1049  * Outputs
1050  *      handled
1051  */
1052 #ifdef CONFIG_ACPI
1053
1054 static irqreturn_t
1055 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1056 {
1057         static int start_count = -1;
1058         static int poll_time = MIN_CPE_POLL_INTERVAL;
1059         unsigned int cpuid;
1060
1061         cpuid = smp_processor_id();
1062
1063         /* If first cpu, update count */
1064         if (start_count == -1)
1065                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1066
1067         ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1068
1069         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1070
1071         if (cpuid < NR_CPUS) {
1072                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1073         } else {
1074                 /*
1075                  * If a log was recorded, increase our polling frequency,
1076                  * otherwise, backoff or return to interrupt mode.
1077                  */
1078                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1079                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1080                 } else if (cpe_vector < 0) {
1081                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1082                 } else {
1083                         poll_time = MIN_CPE_POLL_INTERVAL;
1084
1085                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1086                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1087                         cpe_poll_enabled = 0;
1088                 }
1089
1090                 if (cpe_poll_enabled)
1091                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1092                 start_count = -1;
1093         }
1094
1095         return IRQ_HANDLED;
1096 }
1097
1098 #endif /* CONFIG_ACPI */
1099
1100 /*
1101  *  ia64_mca_cpe_poll
1102  *
1103  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1104  *      on first cpu, from there it will trickle through all the cpus.
1105  *
1106  * Inputs   :   dummy(unused)
1107  * Outputs  :   None
1108  *
1109  */
1110 static void
1111 ia64_mca_cpe_poll (unsigned long dummy)
1112 {
1113         /* Trigger a CPE interrupt cascade  */
1114         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1115 }
1116
1117 /*
1118  * C portion of the OS INIT handler
1119  *
1120  * Called from ia64_monarch_init_handler
1121  *
1122  * Inputs: pointer to pt_regs where processor info was saved.
1123  *
1124  * Returns:
1125  *   0 if SAL must warm boot the System
1126  *   1 if SAL must return to interrupted context using PAL_MC_RESUME
1127  *
1128  */
1129 void
1130 ia64_init_handler (struct pt_regs *pt, struct switch_stack *sw)
1131 {
1132         pal_min_state_area_t *ms;
1133
1134         oops_in_progress = 1;   /* avoid deadlock in printk, but it makes recovery dodgy */
1135
1136         printk(KERN_INFO "Entered OS INIT handler. PSP=%lx\n",
1137                 ia64_sal_to_os_handoff_state.proc_state_param);
1138
1139         /*
1140          * Address of minstate area provided by PAL is physical,
1141          * uncacheable (bit 63 set). Convert to Linux virtual
1142          * address in region 6.
1143          */
1144         ms = (pal_min_state_area_t *)(ia64_sal_to_os_handoff_state.pal_min_state | (6ul<<61));
1145
1146         init_handler_platform(ms, pt, sw);      /* call platform specific routines */
1147 }
1148
1149 static int __init
1150 ia64_mca_disable_cpe_polling(char *str)
1151 {
1152         cpe_poll_enabled = 0;
1153         return 1;
1154 }
1155
1156 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1157
1158 static struct irqaction cmci_irqaction = {
1159         .handler =      ia64_mca_cmc_int_handler,
1160         .flags =        SA_INTERRUPT,
1161         .name =         "cmc_hndlr"
1162 };
1163
1164 static struct irqaction cmcp_irqaction = {
1165         .handler =      ia64_mca_cmc_int_caller,
1166         .flags =        SA_INTERRUPT,
1167         .name =         "cmc_poll"
1168 };
1169
1170 static struct irqaction mca_rdzv_irqaction = {
1171         .handler =      ia64_mca_rendez_int_handler,
1172         .flags =        SA_INTERRUPT,
1173         .name =         "mca_rdzv"
1174 };
1175
1176 static struct irqaction mca_wkup_irqaction = {
1177         .handler =      ia64_mca_wakeup_int_handler,
1178         .flags =        SA_INTERRUPT,
1179         .name =         "mca_wkup"
1180 };
1181
1182 #ifdef CONFIG_ACPI
1183 static struct irqaction mca_cpe_irqaction = {
1184         .handler =      ia64_mca_cpe_int_handler,
1185         .flags =        SA_INTERRUPT,
1186         .name =         "cpe_hndlr"
1187 };
1188
1189 static struct irqaction mca_cpep_irqaction = {
1190         .handler =      ia64_mca_cpe_int_caller,
1191         .flags =        SA_INTERRUPT,
1192         .name =         "cpe_poll"
1193 };
1194 #endif /* CONFIG_ACPI */
1195
1196 /*
1197  * ia64_mca_init
1198  *
1199  *  Do all the system level mca specific initialization.
1200  *
1201  *      1. Register spinloop and wakeup request interrupt vectors
1202  *
1203  *      2. Register OS_MCA handler entry point
1204  *
1205  *      3. Register OS_INIT handler entry point
1206  *
1207  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1208  *
1209  *  Note that this initialization is done very early before some kernel
1210  *  services are available.
1211  *
1212  *  Inputs  :   None
1213  *
1214  *  Outputs :   None
1215  */
1216 void __init
1217 ia64_mca_init(void)
1218 {
1219         ia64_fptr_t *mon_init_ptr = (ia64_fptr_t *)ia64_monarch_init_handler;
1220         ia64_fptr_t *slave_init_ptr = (ia64_fptr_t *)ia64_slave_init_handler;
1221         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1222         int i;
1223         s64 rc;
1224         struct ia64_sal_retval isrv;
1225         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1226
1227         IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1228
1229         /* Clear the Rendez checkin flag for all cpus */
1230         for(i = 0 ; i < NR_CPUS; i++)
1231                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1232
1233         /*
1234          * Register the rendezvous spinloop and wakeup mechanism with SAL
1235          */
1236
1237         /* Register the rendezvous interrupt vector with SAL */
1238         while (1) {
1239                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1240                                               SAL_MC_PARAM_MECHANISM_INT,
1241                                               IA64_MCA_RENDEZ_VECTOR,
1242                                               timeout,
1243                                               SAL_MC_PARAM_RZ_ALWAYS);
1244                 rc = isrv.status;
1245                 if (rc == 0)
1246                         break;
1247                 if (rc == -2) {
1248                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1249                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1250                         timeout = isrv.v0;
1251                         continue;
1252                 }
1253                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1254                        "with SAL (status %ld)\n", rc);
1255                 return;
1256         }
1257
1258         /* Register the wakeup interrupt vector with SAL */
1259         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1260                                       SAL_MC_PARAM_MECHANISM_INT,
1261                                       IA64_MCA_WAKEUP_VECTOR,
1262                                       0, 0);
1263         rc = isrv.status;
1264         if (rc) {
1265                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1266                        "(status %ld)\n", rc);
1267                 return;
1268         }
1269
1270         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1271
1272         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1273         /*
1274          * XXX - disable SAL checksum by setting size to 0; should be
1275          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1276          */
1277         ia64_mc_info.imi_mca_handler_size       = 0;
1278
1279         /* Register the os mca handler with SAL */
1280         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1281                                        ia64_mc_info.imi_mca_handler,
1282                                        ia64_tpa(mca_hldlr_ptr->gp),
1283                                        ia64_mc_info.imi_mca_handler_size,
1284                                        0, 0, 0)))
1285         {
1286                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1287                        "(status %ld)\n", rc);
1288                 return;
1289         }
1290
1291         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1292                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1293
1294         /*
1295          * XXX - disable SAL checksum by setting size to 0, should be
1296          * size of the actual init handler in mca_asm.S.
1297          */
1298         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(mon_init_ptr->fp);
1299         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1300         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(slave_init_ptr->fp);
1301         ia64_mc_info.imi_slave_init_handler_size        = 0;
1302
1303         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1304                        ia64_mc_info.imi_monarch_init_handler);
1305
1306         /* Register the os init handler with SAL */
1307         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1308                                        ia64_mc_info.imi_monarch_init_handler,
1309                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1310                                        ia64_mc_info.imi_monarch_init_handler_size,
1311                                        ia64_mc_info.imi_slave_init_handler,
1312                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1313                                        ia64_mc_info.imi_slave_init_handler_size)))
1314         {
1315                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1316                        "(status %ld)\n", rc);
1317                 return;
1318         }
1319
1320         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1321
1322         /*
1323          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1324          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1325          */
1326         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1327         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1328         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1329
1330         /* Setup the MCA rendezvous interrupt vector */
1331         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1332
1333         /* Setup the MCA wakeup interrupt vector */
1334         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1335
1336 #ifdef CONFIG_ACPI
1337         /* Setup the CPEI/P vector and handler */
1338         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1339         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1340 #endif
1341
1342         /* Initialize the areas set aside by the OS to buffer the
1343          * platform/processor error states for MCA/INIT/CMC
1344          * handling.
1345          */
1346         ia64_log_init(SAL_INFO_TYPE_MCA);
1347         ia64_log_init(SAL_INFO_TYPE_INIT);
1348         ia64_log_init(SAL_INFO_TYPE_CMC);
1349         ia64_log_init(SAL_INFO_TYPE_CPE);
1350
1351         mca_init = 1;
1352         printk(KERN_INFO "MCA related initialization done\n");
1353 }
1354
1355 /*
1356  * ia64_mca_late_init
1357  *
1358  *      Opportunity to setup things that require initialization later
1359  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
1360  *      platform doesn't support an interrupt driven mechanism.
1361  *
1362  *  Inputs  :   None
1363  *  Outputs :   Status
1364  */
1365 static int __init
1366 ia64_mca_late_init(void)
1367 {
1368         if (!mca_init)
1369                 return 0;
1370
1371         /* Setup the CMCI/P vector and handler */
1372         init_timer(&cmc_poll_timer);
1373         cmc_poll_timer.function = ia64_mca_cmc_poll;
1374
1375         /* Unmask/enable the vector */
1376         cmc_polling_enabled = 0;
1377         schedule_work(&cmc_enable_work);
1378
1379         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1380
1381 #ifdef CONFIG_ACPI
1382         /* Setup the CPEI/P vector and handler */
1383         init_timer(&cpe_poll_timer);
1384         cpe_poll_timer.function = ia64_mca_cpe_poll;
1385
1386         {
1387                 irq_desc_t *desc;
1388                 unsigned int irq;
1389
1390                 if (cpe_vector >= 0) {
1391                         /* If platform supports CPEI, enable the irq. */
1392                         cpe_poll_enabled = 0;
1393                         for (irq = 0; irq < NR_IRQS; ++irq)
1394                                 if (irq_to_vector(irq) == cpe_vector) {
1395                                         desc = irq_descp(irq);
1396                                         desc->status |= IRQ_PER_CPU;
1397                                         setup_irq(irq, &mca_cpe_irqaction);
1398                                 }
1399                         ia64_mca_register_cpev(cpe_vector);
1400                         IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1401                 } else {
1402                         /* If platform doesn't support CPEI, get the timer going. */
1403                         if (cpe_poll_enabled) {
1404                                 ia64_mca_cpe_poll(0UL);
1405                                 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1406                         }
1407                 }
1408         }
1409 #endif
1410
1411         return 0;
1412 }
1413
1414 device_initcall(ia64_mca_late_init);