fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / arch / ia64 / kernel / setup.c
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  *      Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  *      Rohit Seth <rohit.seth@intel.com>
9  *      Suresh Siddha <suresh.b.siddha@intel.com>
10  *      Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *                      Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth      cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth      fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian   added the support for command line argument
22  * 06/24/99 W.Drummond  added boot_cpu_data.
23  * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/system.h>
64 #ifdef CONFIG_XEN
65 #include <asm/hypervisor.h>
66 #endif
67 #include <linux/dma-mapping.h>
68
69 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
70 # error "struct cpuinfo_ia64 too big!"
71 #endif
72
73 #ifdef CONFIG_SMP
74 unsigned long __per_cpu_offset[NR_CPUS];
75 EXPORT_SYMBOL(__per_cpu_offset);
76 #endif
77
78 #ifdef CONFIG_XEN
79 static int
80 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
81 {
82         HYPERVISOR_shutdown(SHUTDOWN_crash);
83         /* we're never actually going to get here... */
84         return NOTIFY_DONE;
85 }
86
87 static struct notifier_block xen_panic_block = {
88         .notifier_call  = xen_panic_event,
89         .next           = NULL,
90         .priority       = 0     /* try to go last */
91 };
92 #endif
93
94 extern void ia64_setup_printk_clock(void);
95
96 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
97 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
98 DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
99 unsigned long ia64_cycles_per_usec;
100 struct ia64_boot_param *ia64_boot_param;
101 struct screen_info screen_info;
102 unsigned long vga_console_iobase;
103 unsigned long vga_console_membase;
104
105 static struct resource data_resource = {
106         .name   = "Kernel data",
107         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
108 };
109
110 static struct resource code_resource = {
111         .name   = "Kernel code",
112         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
113 };
114 extern void efi_initialize_iomem_resources(struct resource *,
115                 struct resource *);
116 extern char _text[], _end[], _etext[];
117
118 unsigned long ia64_max_cacheline_size;
119
120 int dma_get_cache_alignment(void)
121 {
122         return ia64_max_cacheline_size;
123 }
124 EXPORT_SYMBOL(dma_get_cache_alignment);
125
126 unsigned long ia64_iobase;      /* virtual address for I/O accesses */
127 EXPORT_SYMBOL(ia64_iobase);
128 struct io_space io_space[MAX_IO_SPACES];
129 EXPORT_SYMBOL(io_space);
130 unsigned int num_io_spaces;
131
132 /*
133  * "flush_icache_range()" needs to know what processor dependent stride size to use
134  * when it makes i-cache(s) coherent with d-caches.
135  */
136 #define I_CACHE_STRIDE_SHIFT    5       /* Safest way to go: 32 bytes by 32 bytes */
137 unsigned long ia64_i_cache_stride_shift = ~0;
138
139 /*
140  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
141  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
142  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
143  * address of the second buffer must be aligned to (merge_mask+1) in order to be
144  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
145  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
146  * page-size of 2^64.
147  */
148 unsigned long ia64_max_iommu_merge_mask = ~0UL;
149 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
150
151 /*
152  * We use a special marker for the end of memory and it uses the extra (+1) slot
153  */
154 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
155 int num_rsvd_regions __initdata;
156
157
158 /*
159  * Filter incoming memory segments based on the primitive map created from the boot
160  * parameters. Segments contained in the map are removed from the memory ranges. A
161  * caller-specified function is called with the memory ranges that remain after filtering.
162  * This routine does not assume the incoming segments are sorted.
163  */
164 int __init
165 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
166 {
167         unsigned long range_start, range_end, prev_start;
168         void (*func)(unsigned long, unsigned long, int);
169         int i;
170
171 #if IGNORE_PFN0
172         if (start == PAGE_OFFSET) {
173                 printk(KERN_WARNING "warning: skipping physical page 0\n");
174                 start += PAGE_SIZE;
175                 if (start >= end) return 0;
176         }
177 #endif
178         /*
179          * lowest possible address(walker uses virtual)
180          */
181         prev_start = PAGE_OFFSET;
182         func = arg;
183
184         for (i = 0; i < num_rsvd_regions; ++i) {
185                 range_start = max(start, prev_start);
186                 range_end   = min(end, rsvd_region[i].start);
187
188                 if (range_start < range_end)
189                         call_pernode_memory(__pa(range_start), range_end - range_start, func);
190
191                 /* nothing more available in this segment */
192                 if (range_end == end) return 0;
193
194                 prev_start = rsvd_region[i].end;
195         }
196         /* end of memory marker allows full processing inside loop body */
197         return 0;
198 }
199
200 static int __init
201 rsvd_region_cmp(struct rsvd_region *lhs, struct rsvd_region *rhs)
202 {
203         if (lhs->start > rhs->start)
204                 return 1;
205         if (lhs->start < rhs->start)
206                 return -1;
207
208         if (lhs->end > rhs->end)
209                 return 1;
210         if (lhs->end < rhs->end)
211                 return -1;
212
213         return 0;
214 }
215
216 static void __init
217 sort_regions (struct rsvd_region *rsvd_region, int max)
218 {
219         int num = max;
220         int j;
221
222         /* simple bubble sorting */
223         while (max--) {
224                 for (j = 0; j < max; ++j) {
225                         if (rsvd_region_cmp(&rsvd_region[j],
226                                             &rsvd_region[j + 1]) > 0) {
227                                 struct rsvd_region tmp;
228                                 tmp = rsvd_region[j];
229                                 rsvd_region[j] = rsvd_region[j + 1];
230                                 rsvd_region[j + 1] = tmp;
231                         }
232                 }
233         }
234
235         for (j = 0; j < num - 1; j++) {
236                 int k;
237                 unsigned long start = rsvd_region[j].start;
238                 unsigned long end = rsvd_region[j].end;
239                 int collapsed;
240                 
241                 for (k = j + 1; k < num; k++) {
242                         BUG_ON(start > rsvd_region[k].start);
243                         if (end < rsvd_region[k].start) {
244                                 k--;
245                                 break;
246                         }
247                         end = max(end, rsvd_region[k].end);
248                 }
249                 if (k == num)
250                         k--;
251                 rsvd_region[j].end = end;
252                 collapsed = k - j;
253                 num -= collapsed;
254                 for (k = j + 1; k < num; k++) {
255                         rsvd_region[k] = rsvd_region[k + collapsed];
256                 }
257         }
258
259         num_rsvd_regions = num;
260         for (j = 0; j < num; j++) {
261                 printk("rsvd_region[%d]: [0x%016lx, 0x%06lx)\n",
262                        j, rsvd_region[j].start, rsvd_region[j].end);
263         }
264 }
265
266 /*
267  * Request address space for all standard resources
268  */
269 static int __init register_memory(void)
270 {
271         code_resource.start = ia64_tpa(_text);
272         code_resource.end   = ia64_tpa(_etext) - 1;
273         data_resource.start = ia64_tpa(_etext);
274         data_resource.end   = ia64_tpa(_end) - 1;
275         efi_initialize_iomem_resources(&code_resource, &data_resource);
276
277         return 0;
278 }
279
280 __initcall(register_memory);
281
282 /**
283  * reserve_memory - setup reserved memory areas
284  *
285  * Setup the reserved memory areas set aside for the boot parameters,
286  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
287  * see include/asm-ia64/meminit.h if you need to define more.
288  */
289 void __init
290 reserve_memory (void)
291 {
292         int n = 0;
293
294         /*
295          * none of the entries in this table overlap
296          */
297         rsvd_region[n].start = (unsigned long) ia64_boot_param;
298         rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
299         n++;
300
301         rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
302         rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
303         n++;
304
305         rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
306         rsvd_region[n].end   = (rsvd_region[n].start
307                                 + strlen(__va(ia64_boot_param->command_line)) + 1);
308         n++;
309
310         rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
311         rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
312         n++;
313
314 #ifdef CONFIG_XEN
315         if (is_running_on_xen()) {
316                 rsvd_region[n].start = (unsigned long)__va((HYPERVISOR_shared_info->arch.start_info_pfn << PAGE_SHIFT));
317                 rsvd_region[n].end   = rsvd_region[n].start + PAGE_SIZE;
318                 n++;
319         }
320 #endif
321
322 #ifdef CONFIG_BLK_DEV_INITRD
323         if (ia64_boot_param->initrd_start) {
324                 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
325                 rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
326                 n++;
327         }
328 #endif
329
330         efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
331         n++;
332
333 #ifdef CONFIG_KEXEC
334         /* crashkernel=size@offset specifies the size to reserve for a crash
335          * kernel. If offset is 0, then it is determined automatically.
336          * By reserving this memory we guarantee that linux never set's it
337          * up as a DMA target.Useful for holding code to do something
338          * appropriate after a kernel panic.
339          */
340         {
341                 char *from = strstr(saved_command_line, "crashkernel=");
342                 unsigned long base, size;
343                 if (from) {
344                         size = memparse(from + 12, &from);
345                         if (*from == '@')
346                                 base = memparse(from+1, &from);
347                         else
348                                 base = 0;
349                         if (size) {
350                                 if (!base) {
351                                         sort_regions(rsvd_region, n);
352                                         base = kdump_find_rsvd_region(size,
353                                                                 rsvd_region, n);
354                                         }
355                                 if (base != ~0UL) {
356                                         rsvd_region[n].start =
357                                                 (unsigned long)__va(base);
358                                         rsvd_region[n].end =
359                                                 (unsigned long)__va(base + size);
360                                         n++;
361                                         crashk_res.start = base;
362                                         crashk_res.end = base + size - 1;
363                                 }
364                         }
365                 }
366                 efi_memmap_res.start = ia64_boot_param->efi_memmap;
367                 efi_memmap_res.end = efi_memmap_res.start +
368                         ia64_boot_param->efi_memmap_size;
369                 boot_param_res.start = __pa(ia64_boot_param);
370                 boot_param_res.end = boot_param_res.start +
371                         sizeof(*ia64_boot_param);
372         }
373 #endif
374         /* end of memory marker */
375         rsvd_region[n].start = ~0UL;
376         rsvd_region[n].end   = ~0UL;
377         n++;
378
379         num_rsvd_regions = n;
380         BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
381
382         sort_regions(rsvd_region, num_rsvd_regions);
383 }
384
385
386 /**
387  * find_initrd - get initrd parameters from the boot parameter structure
388  *
389  * Grab the initrd start and end from the boot parameter struct given us by
390  * the boot loader.
391  */
392 void __init
393 find_initrd (void)
394 {
395 #ifdef CONFIG_BLK_DEV_INITRD
396         if (ia64_boot_param->initrd_start) {
397                 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
398                 initrd_end   = initrd_start+ia64_boot_param->initrd_size;
399
400                 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
401                        initrd_start, ia64_boot_param->initrd_size);
402         }
403 #endif
404 }
405
406 static void __init
407 io_port_init (void)
408 {
409         unsigned long phys_iobase;
410
411         /*
412          * Set `iobase' based on the EFI memory map or, failing that, the
413          * value firmware left in ar.k0.
414          *
415          * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
416          * the port's virtual address, so ia32_load_state() loads it with a
417          * user virtual address.  But in ia64 mode, glibc uses the
418          * *physical* address in ar.k0 to mmap the appropriate area from
419          * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
420          * cases, user-mode can only use the legacy 0-64K I/O port space.
421          *
422          * ar.k0 is not involved in kernel I/O port accesses, which can use
423          * any of the I/O port spaces and are done via MMIO using the
424          * virtual mmio_base from the appropriate io_space[].
425          */
426         phys_iobase = efi_get_iobase();
427         if (!phys_iobase) {
428                 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
429                 printk(KERN_INFO "No I/O port range found in EFI memory map, "
430                         "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
431         }
432         ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
433         ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
434
435         /* setup legacy IO port space */
436         io_space[0].mmio_base = ia64_iobase;
437         io_space[0].sparse = 1;
438         num_io_spaces = 1;
439 }
440
441 /**
442  * early_console_setup - setup debugging console
443  *
444  * Consoles started here require little enough setup that we can start using
445  * them very early in the boot process, either right after the machine
446  * vector initialization, or even before if the drivers can detect their hw.
447  *
448  * Returns non-zero if a console couldn't be setup.
449  */
450 static inline int __init
451 early_console_setup (char *cmdline)
452 {
453         int earlycons = 0;
454
455 #ifdef CONFIG_XEN
456 #ifndef CONFIG_IA64_HP_SIM
457         if (is_running_on_xen()) {
458                 extern struct console hpsim_cons;
459                 hpsim_cons.flags |= CON_BOOT;
460                 register_console(&hpsim_cons);
461                 earlycons++;
462         }
463 #endif
464 #endif
465 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
466         {
467                 extern int sn_serial_console_early_setup(void);
468                 if (!sn_serial_console_early_setup())
469                         earlycons++;
470         }
471 #endif
472 #ifdef CONFIG_EFI_PCDP
473         if (!efi_setup_pcdp_console(cmdline))
474                 earlycons++;
475 #endif
476 #ifdef CONFIG_SERIAL_8250_CONSOLE
477         if (!early_serial_console_init(cmdline))
478                 earlycons++;
479 #endif
480
481         return (earlycons) ? 0 : -1;
482 }
483
484 static inline void
485 mark_bsp_online (void)
486 {
487 #ifdef CONFIG_SMP
488         /* If we register an early console, allow CPU 0 to printk */
489         cpu_set(smp_processor_id(), cpu_online_map);
490 #endif
491 }
492
493 #ifdef CONFIG_SMP
494 static void __init
495 check_for_logical_procs (void)
496 {
497         pal_logical_to_physical_t info;
498         s64 status;
499
500         status = ia64_pal_logical_to_phys(0, &info);
501         if (status == -1) {
502                 printk(KERN_INFO "No logical to physical processor mapping "
503                        "available\n");
504                 return;
505         }
506         if (status) {
507                 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
508                        status);
509                 return;
510         }
511         /*
512          * Total number of siblings that BSP has.  Though not all of them 
513          * may have booted successfully. The correct number of siblings 
514          * booted is in info.overview_num_log.
515          */
516         smp_num_siblings = info.overview_tpc;
517         smp_num_cpucores = info.overview_cpp;
518 }
519 #endif
520
521 static __initdata int nomca;
522 static __init int setup_nomca(char *s)
523 {
524         nomca = 1;
525         return 0;
526 }
527 early_param("nomca", setup_nomca);
528
529 #ifdef CONFIG_PROC_VMCORE
530 /* elfcorehdr= specifies the location of elf core header
531  * stored by the crashed kernel.
532  */
533 static int __init parse_elfcorehdr(char *arg)
534 {
535         if (!arg)
536                 return -EINVAL;
537
538         elfcorehdr_addr = memparse(arg, &arg);
539         return 0;
540 }
541 early_param("elfcorehdr", parse_elfcorehdr);
542 #endif /* CONFIG_PROC_VMCORE */
543
544 void __init
545 setup_arch (char **cmdline_p)
546 {
547         unw_init();
548
549 #ifdef CONFIG_XEN
550         if (is_running_on_xen()) {
551                 setup_xen_features();
552                 /* Register a call for panic conditions. */
553                 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
554         }
555 #endif
556
557         ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
558
559         *cmdline_p = __va(ia64_boot_param->command_line);
560         strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
561
562         efi_init();
563         io_port_init();
564
565         parse_early_param();
566
567 #ifdef CONFIG_IA64_GENERIC
568         machvec_init(NULL);
569 #endif
570
571         if (early_console_setup(*cmdline_p) == 0)
572                 mark_bsp_online();
573
574 #ifdef CONFIG_ACPI
575         /* Initialize the ACPI boot-time table parser */
576         acpi_table_init();
577 # ifdef CONFIG_ACPI_NUMA
578         acpi_numa_init();
579 # endif
580 #else
581 # ifdef CONFIG_SMP
582         smp_build_cpu_map();    /* happens, e.g., with the Ski simulator */
583 # endif
584 #endif /* CONFIG_APCI_BOOT */
585
586         find_memory();
587
588         /* process SAL system table: */
589         ia64_sal_init(__va(efi.sal_systab));
590
591         ia64_setup_printk_clock();
592
593 #ifdef CONFIG_SMP
594         cpu_physical_id(0) = hard_smp_processor_id();
595
596         cpu_set(0, cpu_sibling_map[0]);
597         cpu_set(0, cpu_core_map[0]);
598
599         check_for_logical_procs();
600         if (smp_num_cpucores > 1)
601                 printk(KERN_INFO
602                        "cpu package is Multi-Core capable: number of cores=%d\n",
603                        smp_num_cpucores);
604         if (smp_num_siblings > 1)
605                 printk(KERN_INFO
606                        "cpu package is Multi-Threading capable: number of siblings=%d\n",
607                        smp_num_siblings);
608 #endif
609
610         cpu_init();     /* initialize the bootstrap CPU */
611         mmu_context_init();     /* initialize context_id bitmap */
612
613         check_sal_cache_flush();
614
615 #ifdef CONFIG_ACPI
616         acpi_boot_init();
617 #endif
618
619 #ifdef CONFIG_VT
620         if (!conswitchp) {
621 # if defined(CONFIG_DUMMY_CONSOLE)
622                 conswitchp = &dummy_con;
623 # endif
624 # if defined(CONFIG_VGA_CONSOLE)
625                 /*
626                  * Non-legacy systems may route legacy VGA MMIO range to system
627                  * memory.  vga_con probes the MMIO hole, so memory looks like
628                  * a VGA device to it.  The EFI memory map can tell us if it's
629                  * memory so we can avoid this problem.
630                  */
631                 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
632                         conswitchp = &vga_con;
633 # endif
634         }
635 #ifdef CONFIG_XEN
636         if (is_running_on_xen()) {
637                 shared_info_t *s = HYPERVISOR_shared_info;
638
639                 xen_start_info = __va(s->arch.start_info_pfn << PAGE_SHIFT);
640
641                 printk("Running on Xen! start_info_pfn=0x%lx nr_pages=%ld "
642                        "flags=0x%x\n", s->arch.start_info_pfn,
643                        xen_start_info->nr_pages, xen_start_info->flags);
644
645                 if (!is_initial_xendomain()) {
646 #if !defined(CONFIG_VT) || !defined(CONFIG_DUMMY_CONSOLE)
647                         conswitchp = NULL;
648 #endif
649                 }
650         }
651 #endif
652 #endif
653
654         /* enable IA-64 Machine Check Abort Handling unless disabled */
655         if (!nomca)
656                 ia64_mca_init();
657
658         platform_setup(cmdline_p);
659         paging_init();
660 #ifdef CONFIG_XEN
661         contiguous_bitmap_init(max_pfn);
662 #endif
663 }
664
665 /*
666  * Display cpu info for all cpu's.
667  */
668 static int
669 show_cpuinfo (struct seq_file *m, void *v)
670 {
671 #ifdef CONFIG_SMP
672 #       define lpj      c->loops_per_jiffy
673 #       define cpunum   c->cpu
674 #else
675 #       define lpj      loops_per_jiffy
676 #       define cpunum   0
677 #endif
678         static struct {
679                 unsigned long mask;
680                 const char *feature_name;
681         } feature_bits[] = {
682                 { 1UL << 0, "branchlong" },
683                 { 1UL << 1, "spontaneous deferral"},
684                 { 1UL << 2, "16-byte atomic ops" }
685         };
686         char features[128], *cp, sep;
687         struct cpuinfo_ia64 *c = v;
688         unsigned long mask;
689         unsigned long proc_freq;
690         int i;
691
692         mask = c->features;
693
694         /* build the feature string: */
695         memcpy(features, " standard", 10);
696         cp = features;
697         sep = 0;
698         for (i = 0; i < (int) ARRAY_SIZE(feature_bits); ++i) {
699                 if (mask & feature_bits[i].mask) {
700                         if (sep)
701                                 *cp++ = sep;
702                         sep = ',';
703                         *cp++ = ' ';
704                         strcpy(cp, feature_bits[i].feature_name);
705                         cp += strlen(feature_bits[i].feature_name);
706                         mask &= ~feature_bits[i].mask;
707                 }
708         }
709         if (mask) {
710                 /* print unknown features as a hex value: */
711                 if (sep)
712                         *cp++ = sep;
713                 sprintf(cp, " 0x%lx", mask);
714         }
715
716         proc_freq = cpufreq_quick_get(cpunum);
717         if (!proc_freq)
718                 proc_freq = c->proc_freq / 1000;
719
720         seq_printf(m,
721                    "processor  : %d\n"
722                    "vendor     : %s\n"
723                    "arch       : IA-64\n"
724                    "family     : %u\n"
725                    "model      : %u\n"
726                    "model name : %s\n"
727                    "revision   : %u\n"
728                    "archrev    : %u\n"
729                    "features   :%s\n"   /* don't change this---it _is_ right! */
730                    "cpu number : %lu\n"
731                    "cpu regs   : %u\n"
732                    "cpu MHz    : %lu.%06lu\n"
733                    "itc MHz    : %lu.%06lu\n"
734                    "BogoMIPS   : %lu.%02lu\n",
735                    cpunum, c->vendor, c->family, c->model,
736                    c->model_name, c->revision, c->archrev,
737                    features, c->ppn, c->number,
738                    proc_freq / 1000, proc_freq % 1000,
739                    c->itc_freq / 1000000, c->itc_freq % 1000000,
740                    lpj*HZ/500000, (lpj*HZ/5000) % 100);
741 #ifdef CONFIG_SMP
742         seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
743         if (c->threads_per_core > 1 || c->cores_per_socket > 1)
744                 seq_printf(m,
745                            "physical id: %u\n"
746                            "core id    : %u\n"
747                            "thread id  : %u\n",
748                            c->socket_id, c->core_id, c->thread_id);
749 #endif
750         seq_printf(m,"\n");
751
752         return 0;
753 }
754
755 static void *
756 c_start (struct seq_file *m, loff_t *pos)
757 {
758 #ifdef CONFIG_SMP
759         while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
760                 ++*pos;
761 #endif
762         return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
763 }
764
765 static void *
766 c_next (struct seq_file *m, void *v, loff_t *pos)
767 {
768         ++*pos;
769         return c_start(m, pos);
770 }
771
772 static void
773 c_stop (struct seq_file *m, void *v)
774 {
775 }
776
777 struct seq_operations cpuinfo_op = {
778         .start =        c_start,
779         .next =         c_next,
780         .stop =         c_stop,
781         .show =         show_cpuinfo
782 };
783
784 static char brandname[128];
785
786 static char * __cpuinit
787 get_model_name(__u8 family, __u8 model)
788 {
789         char brand[128];
790
791         memcpy(brand, "Unknown", 8);
792         if (ia64_pal_get_brand_info(brand)) {
793                 if (family == 0x7)
794                         memcpy(brand, "Merced", 7);
795                 else if (family == 0x1f) switch (model) {
796                         case 0: memcpy(brand, "McKinley", 9); break;
797                         case 1: memcpy(brand, "Madison", 8); break;
798                         case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
799                 }
800         }
801         if (brandname[0] == '\0')
802                 return strcpy(brandname, brand);
803         else if (strcmp(brandname, brand) == 0)
804                 return brandname;
805         else
806                 return kstrdup(brand, GFP_KERNEL);
807 }
808
809 static void __cpuinit
810 identify_cpu (struct cpuinfo_ia64 *c)
811 {
812         union {
813                 unsigned long bits[5];
814                 struct {
815                         /* id 0 & 1: */
816                         char vendor[16];
817
818                         /* id 2 */
819                         u64 ppn;                /* processor serial number */
820
821                         /* id 3: */
822                         unsigned number         :  8;
823                         unsigned revision       :  8;
824                         unsigned model          :  8;
825                         unsigned family         :  8;
826                         unsigned archrev        :  8;
827                         unsigned reserved       : 24;
828
829                         /* id 4: */
830                         u64 features;
831                 } field;
832         } cpuid;
833         pal_vm_info_1_u_t vm1;
834         pal_vm_info_2_u_t vm2;
835         pal_status_t status;
836         unsigned long impl_va_msb = 50, phys_addr_size = 44;    /* Itanium defaults */
837         int i;
838         for (i = 0; i < 5; ++i)
839                 cpuid.bits[i] = ia64_get_cpuid(i);
840
841         memcpy(c->vendor, cpuid.field.vendor, 16);
842 #ifdef CONFIG_SMP
843         c->cpu = smp_processor_id();
844
845         /* below default values will be overwritten  by identify_siblings() 
846          * for Multi-Threading/Multi-Core capable cpu's
847          */
848         c->threads_per_core = c->cores_per_socket = c->num_log = 1;
849         c->socket_id = -1;
850
851         identify_siblings(c);
852 #endif
853         c->ppn = cpuid.field.ppn;
854         c->number = cpuid.field.number;
855         c->revision = cpuid.field.revision;
856         c->model = cpuid.field.model;
857         c->family = cpuid.field.family;
858         c->archrev = cpuid.field.archrev;
859         c->features = cpuid.field.features;
860         c->model_name = get_model_name(c->family, c->model);
861
862         status = ia64_pal_vm_summary(&vm1, &vm2);
863         if (status == PAL_STATUS_SUCCESS) {
864                 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
865                 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
866         }
867         c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
868         c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
869 }
870
871 void
872 setup_per_cpu_areas (void)
873 {
874         /* start_kernel() requires this... */
875 #ifdef CONFIG_ACPI_HOTPLUG_CPU
876         prefill_possible_map();
877 #endif
878 }
879
880 /*
881  * Calculate the max. cache line size.
882  *
883  * In addition, the minimum of the i-cache stride sizes is calculated for
884  * "flush_icache_range()".
885  */
886 static void __cpuinit
887 get_max_cacheline_size (void)
888 {
889         unsigned long line_size, max = 1;
890         unsigned int cache_size = 0;
891         u64 l, levels, unique_caches;
892         pal_cache_config_info_t cci;
893         s64 status;
894
895         status = ia64_pal_cache_summary(&levels, &unique_caches);
896         if (status != 0) {
897                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
898                        __FUNCTION__, status);
899                 max = SMP_CACHE_BYTES;
900                 /* Safest setup for "flush_icache_range()" */
901                 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
902                 goto out;
903         }
904
905         for (l = 0; l < levels; ++l) {
906                 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
907                                                     &cci);
908                 if (status != 0) {
909                         printk(KERN_ERR
910                                "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
911                                __FUNCTION__, l, status);
912                         max = SMP_CACHE_BYTES;
913                         /* The safest setup for "flush_icache_range()" */
914                         cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
915                         cci.pcci_unified = 1;
916                 }
917                 line_size = 1 << cci.pcci_line_size;
918                 if (line_size > max)
919                         max = line_size;
920                 if (cache_size < cci.pcci_cache_size)
921                         cache_size = cci.pcci_cache_size;
922                 if (!cci.pcci_unified) {
923                         status = ia64_pal_cache_config_info(l,
924                                                     /* cache_type (instruction)= */ 1,
925                                                     &cci);
926                         if (status != 0) {
927                                 printk(KERN_ERR
928                                 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
929                                         __FUNCTION__, l, status);
930                                 /* The safest setup for "flush_icache_range()" */
931                                 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
932                         }
933                 }
934                 if (cci.pcci_stride < ia64_i_cache_stride_shift)
935                         ia64_i_cache_stride_shift = cci.pcci_stride;
936         }
937   out:
938 #ifdef CONFIG_SMP
939         max_cache_size = max(max_cache_size, cache_size);
940 #endif
941         if (max > ia64_max_cacheline_size)
942                 ia64_max_cacheline_size = max;
943 }
944
945 /*
946  * cpu_init() initializes state that is per-CPU.  This function acts
947  * as a 'CPU state barrier', nothing should get across.
948  */
949 void __cpuinit
950 cpu_init (void)
951 {
952         extern void __cpuinit ia64_mmu_init (void *);
953         unsigned long num_phys_stacked;
954         pal_vm_info_2_u_t vmi;
955         unsigned int max_ctx;
956         struct cpuinfo_ia64 *cpu_info;
957         void *cpu_data;
958
959         cpu_data = per_cpu_init();
960
961         /*
962          * We set ar.k3 so that assembly code in MCA handler can compute
963          * physical addresses of per cpu variables with a simple:
964          *   phys = ar.k3 + &per_cpu_var
965          */
966         ia64_set_kr(IA64_KR_PER_CPU_DATA,
967                     ia64_tpa(cpu_data) - (long) __per_cpu_start);
968
969         get_max_cacheline_size();
970
971         /*
972          * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
973          * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
974          * depends on the data returned by identify_cpu().  We break the dependency by
975          * accessing cpu_data() through the canonical per-CPU address.
976          */
977         cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
978         identify_cpu(cpu_info);
979
980 #ifdef CONFIG_MCKINLEY
981         {
982 #               define FEATURE_SET 16
983                 struct ia64_pal_retval iprv;
984
985                 if (cpu_info->family == 0x1f) {
986                         PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
987                         if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
988                                 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
989                                               (iprv.v1 | 0x80), FEATURE_SET, 0);
990                 }
991         }
992 #endif
993
994         /* Clear the stack memory reserved for pt_regs: */
995         memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
996
997         ia64_set_kr(IA64_KR_FPU_OWNER, 0);
998
999         /*
1000          * Initialize the page-table base register to a global
1001          * directory with all zeroes.  This ensure that we can handle
1002          * TLB-misses to user address-space even before we created the
1003          * first user address-space.  This may happen, e.g., due to
1004          * aggressive use of lfetch.fault.
1005          */
1006         ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
1007
1008         /*
1009          * Initialize default control register to defer speculative faults except
1010          * for those arising from TLB misses, which are not deferred.  The
1011          * kernel MUST NOT depend on a particular setting of these bits (in other words,
1012          * the kernel must have recovery code for all speculative accesses).  Turn on
1013          * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
1014          * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
1015          * be fine).
1016          */
1017         ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1018                                         | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1019         atomic_inc(&init_mm.mm_count);
1020         current->active_mm = &init_mm;
1021         if (current->mm)
1022                 BUG();
1023
1024         ia64_mmu_init(ia64_imva(cpu_data));
1025         ia64_mca_cpu_init(ia64_imva(cpu_data));
1026
1027 #ifdef CONFIG_IA32_SUPPORT
1028         ia32_cpu_init();
1029 #endif
1030
1031         /* Clear ITC to eliminiate sched_clock() overflows in human time.  */
1032         ia64_set_itc(0);
1033
1034         /* disable all local interrupt sources: */
1035         ia64_set_itv(1 << 16);
1036         ia64_set_lrr0(1 << 16);
1037         ia64_set_lrr1(1 << 16);
1038         ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1039         ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1040
1041         /* clear TPR & XTP to enable all interrupt classes: */
1042         ia64_setreg(_IA64_REG_CR_TPR, 0);
1043 #ifdef CONFIG_SMP
1044         normal_xtp();
1045 #endif
1046
1047         /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1048         if (ia64_pal_vm_summary(NULL, &vmi) == 0)
1049                 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1050         else {
1051                 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1052                 max_ctx = (1U << 15) - 1;       /* use architected minimum */
1053         }
1054         while (max_ctx < ia64_ctx.max_ctx) {
1055                 unsigned int old = ia64_ctx.max_ctx;
1056                 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1057                         break;
1058         }
1059
1060         if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1061                 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1062                        "stacked regs\n");
1063                 num_phys_stacked = 96;
1064         }
1065         /* size of physical stacked register partition plus 8 bytes: */
1066         __get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
1067         platform_cpu_init();
1068
1069 #ifdef CONFIG_XEN
1070         /* Need to be moved into platform_cpu_init later */
1071         if (is_running_on_xen()) {
1072                 extern void xen_smp_intr_init(void);
1073                 xen_smp_intr_init();
1074         }
1075 #endif
1076
1077         pm_idle = default_idle;
1078 }
1079
1080 /*
1081  * On SMP systems, when the scheduler does migration-cost autodetection,
1082  * it needs a way to flush as much of the CPU's caches as possible.
1083  */
1084 void sched_cacheflush(void)
1085 {
1086         ia64_sal_cache_flush(3);
1087 }
1088
1089 void __init
1090 check_bugs (void)
1091 {
1092         ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1093                                (unsigned long) __end___mckinley_e9_bundles);
1094 }
1095
1096 static int __init run_dmi_scan(void)
1097 {
1098         dmi_scan_machine();
1099         return 0;
1100 }
1101 core_initcall(run_dmi_scan);