vserver 1.9.5.x5
[linux-2.6.git] / arch / ia64 / kernel / time.c
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      Stephane Eranian <eranian@hpl.hp.com>
6  *      David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 #include <linux/config.h>
12
13 #include <linux/cpu.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/sched.h>
19 #include <linux/time.h>
20 #include <linux/interrupt.h>
21 #include <linux/efi.h>
22 #include <linux/profile.h>
23 #include <linux/timex.h>
24
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/ptrace.h>
29 #include <asm/sal.h>
30 #include <asm/sections.h>
31 #include <asm/system.h>
32
33 extern unsigned long wall_jiffies;
34
35 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
36
37 EXPORT_SYMBOL(jiffies_64);
38
39 #define TIME_KEEPER_ID  0       /* smp_processor_id() of time-keeper */
40
41 #ifdef CONFIG_IA64_DEBUG_IRQ
42
43 unsigned long last_cli_ip;
44 EXPORT_SYMBOL(last_cli_ip);
45
46 #endif
47
48 static struct time_interpolator itc_interpolator = {
49         .shift = 16,
50         .mask = 0xffffffffffffffffLL,
51         .source = TIME_SOURCE_CPU
52 };
53
54 static irqreturn_t
55 timer_interrupt (int irq, void *dev_id, struct pt_regs *regs)
56 {
57         unsigned long new_itm;
58
59         if (unlikely(cpu_is_offline(smp_processor_id()))) {
60                 return IRQ_HANDLED;
61         }
62
63         platform_timer_interrupt(irq, dev_id, regs);
64
65         new_itm = local_cpu_data->itm_next;
66
67         if (!time_after(ia64_get_itc(), new_itm))
68                 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
69                        ia64_get_itc(), new_itm);
70
71         profile_tick(CPU_PROFILING, regs);
72
73         while (1) {
74                 update_process_times(user_mode(regs));
75
76                 new_itm += local_cpu_data->itm_delta;
77
78                 if (smp_processor_id() == TIME_KEEPER_ID) {
79                         /*
80                          * Here we are in the timer irq handler. We have irqs locally
81                          * disabled, but we don't know if the timer_bh is running on
82                          * another CPU. We need to avoid to SMP race by acquiring the
83                          * xtime_lock.
84                          */
85                         write_seqlock(&xtime_lock);
86                         do_timer(regs);
87                         local_cpu_data->itm_next = new_itm;
88                         write_sequnlock(&xtime_lock);
89                 } else
90                         local_cpu_data->itm_next = new_itm;
91
92                 if (time_after(new_itm, ia64_get_itc()))
93                         break;
94         }
95
96         do {
97                 /*
98                  * If we're too close to the next clock tick for
99                  * comfort, we increase the safety margin by
100                  * intentionally dropping the next tick(s).  We do NOT
101                  * update itm.next because that would force us to call
102                  * do_timer() which in turn would let our clock run
103                  * too fast (with the potentially devastating effect
104                  * of losing monotony of time).
105                  */
106                 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
107                         new_itm += local_cpu_data->itm_delta;
108                 ia64_set_itm(new_itm);
109                 /* double check, in case we got hit by a (slow) PMI: */
110         } while (time_after_eq(ia64_get_itc(), new_itm));
111         return IRQ_HANDLED;
112 }
113
114 /*
115  * Encapsulate access to the itm structure for SMP.
116  */
117 void
118 ia64_cpu_local_tick (void)
119 {
120         int cpu = smp_processor_id();
121         unsigned long shift = 0, delta;
122
123         /* arrange for the cycle counter to generate a timer interrupt: */
124         ia64_set_itv(IA64_TIMER_VECTOR);
125
126         delta = local_cpu_data->itm_delta;
127         /*
128          * Stagger the timer tick for each CPU so they don't occur all at (almost) the
129          * same time:
130          */
131         if (cpu) {
132                 unsigned long hi = 1UL << ia64_fls(cpu);
133                 shift = (2*(cpu - hi) + 1) * delta/hi/2;
134         }
135         local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
136         ia64_set_itm(local_cpu_data->itm_next);
137 }
138
139 static int nojitter;
140
141 static int __init nojitter_setup(char *str)
142 {
143         nojitter = 1;
144         printk("Jitter checking for ITC timers disabled\n");
145         return 1;
146 }
147
148 __setup("nojitter", nojitter_setup);
149
150
151 void __devinit
152 ia64_init_itm (void)
153 {
154         unsigned long platform_base_freq, itc_freq;
155         struct pal_freq_ratio itc_ratio, proc_ratio;
156         long status, platform_base_drift, itc_drift;
157
158         /*
159          * According to SAL v2.6, we need to use a SAL call to determine the platform base
160          * frequency and then a PAL call to determine the frequency ratio between the ITC
161          * and the base frequency.
162          */
163         status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
164                                     &platform_base_freq, &platform_base_drift);
165         if (status != 0) {
166                 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
167         } else {
168                 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
169                 if (status != 0)
170                         printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
171         }
172         if (status != 0) {
173                 /* invent "random" values */
174                 printk(KERN_ERR
175                        "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
176                 platform_base_freq = 100000000;
177                 platform_base_drift = -1;       /* no drift info */
178                 itc_ratio.num = 3;
179                 itc_ratio.den = 1;
180         }
181         if (platform_base_freq < 40000000) {
182                 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
183                        platform_base_freq);
184                 platform_base_freq = 75000000;
185                 platform_base_drift = -1;
186         }
187         if (!proc_ratio.den)
188                 proc_ratio.den = 1;     /* avoid division by zero */
189         if (!itc_ratio.den)
190                 itc_ratio.den = 1;      /* avoid division by zero */
191
192         itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
193
194         local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
195         printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%lu/%lu, "
196                "ITC freq=%lu.%03luMHz", smp_processor_id(),
197                platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
198                itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
199
200         if (platform_base_drift != -1) {
201                 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
202                 printk("+/-%ldppm\n", itc_drift);
203         } else {
204                 itc_drift = -1;
205                 printk("\n");
206         }
207
208         local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
209         local_cpu_data->itc_freq = itc_freq;
210         local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
211         local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
212                                         + itc_freq/2)/itc_freq;
213
214         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
215                 itc_interpolator.frequency = local_cpu_data->itc_freq;
216                 itc_interpolator.drift = itc_drift;
217 #ifdef CONFIG_SMP
218                 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
219                  * Jitter compensation requires a cmpxchg which may limit
220                  * the scalability of the syscalls for retrieving time.
221                  * The ITC synchronization is usually successful to within a few
222                  * ITC ticks but this is not a sure thing. If you need to improve
223                  * timer performance in SMP situations then boot the kernel with the
224                  * "nojitter" option. However, doing so may result in time fluctuating (maybe
225                  * even going backward) if the ITC offsets between the individual CPUs
226                  * are too large.
227                  */
228                 if (!nojitter) itc_interpolator.jitter = 1;
229 #endif
230                 register_time_interpolator(&itc_interpolator);
231         }
232
233         /* Setup the CPU local timer tick */
234         ia64_cpu_local_tick();
235 }
236
237 static struct irqaction timer_irqaction = {
238         .handler =      timer_interrupt,
239         .flags =        SA_INTERRUPT,
240         .name =         "timer"
241 };
242
243 void __init
244 time_init (void)
245 {
246         register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
247         efi_gettimeofday(&xtime);
248         ia64_init_itm();
249
250         /*
251          * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
252          * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
253          */
254         set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
255 }