patch-2_6_7-vs1_9_1_12
[linux-2.6.git] / arch / ia64 / kernel / time.c
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      Stephane Eranian <eranian@hpl.hp.com>
6  *      David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 #include <linux/config.h>
12
13 #include <linux/cpu.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/sched.h>
19 #include <linux/time.h>
20 #include <linux/interrupt.h>
21 #include <linux/efi.h>
22 #include <linux/profile.h>
23 #include <linux/timex.h>
24
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/ptrace.h>
29 #include <asm/sal.h>
30 #include <asm/sections.h>
31 #include <asm/system.h>
32
33 extern unsigned long wall_jiffies;
34
35 u64 jiffies_64 = INITIAL_JIFFIES;
36
37 EXPORT_SYMBOL(jiffies_64);
38
39 #define TIME_KEEPER_ID  0       /* smp_processor_id() of time-keeper */
40
41 #ifdef CONFIG_IA64_DEBUG_IRQ
42
43 unsigned long last_cli_ip;
44 EXPORT_SYMBOL(last_cli_ip);
45
46 #endif
47
48 static void
49 itc_reset (void)
50 {
51 }
52
53 /*
54  * Adjust for the fact that xtime has been advanced by delta_nsec (may be negative and/or
55  * larger than NSEC_PER_SEC.
56  */
57 static void
58 itc_update (long delta_nsec)
59 {
60 }
61
62 /*
63  * Return the number of nano-seconds that elapsed since the last
64  * update to jiffy.  It is quite possible that the timer interrupt
65  * will interrupt this and result in a race for any of jiffies,
66  * wall_jiffies or itm_next.  Thus, the xtime_lock must be at least
67  * read synchronised when calling this routine (see do_gettimeofday()
68  * below for an example).
69  */
70 unsigned long
71 itc_get_offset (void)
72 {
73         unsigned long elapsed_cycles, lost = jiffies - wall_jiffies;
74         unsigned long now = ia64_get_itc(), last_tick;
75
76         last_tick = (cpu_data(TIME_KEEPER_ID)->itm_next
77                      - (lost + 1)*cpu_data(TIME_KEEPER_ID)->itm_delta);
78
79         elapsed_cycles = now - last_tick;
80         return (elapsed_cycles*local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT;
81 }
82
83 static struct time_interpolator itc_interpolator = {
84         .get_offset =   itc_get_offset,
85         .update =       itc_update,
86         .reset =        itc_reset
87 };
88
89 int
90 do_settimeofday (struct timespec *tv)
91 {
92         time_t wtm_sec, sec = tv->tv_sec;
93         long wtm_nsec, nsec = tv->tv_nsec;
94
95         if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
96                 return -EINVAL;
97
98         write_seqlock_irq(&xtime_lock);
99         {
100                 /*
101                  * This is revolting. We need to set "xtime" correctly. However, the value
102                  * in this location is the value at the most recent update of wall time.
103                  * Discover what correction gettimeofday would have done, and then undo
104                  * it!
105                  */
106                 nsec -= time_interpolator_get_offset();
107
108                 wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
109                 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
110
111                 set_normalized_timespec(&xtime, sec, nsec);
112                 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
113
114                 time_adjust = 0;                /* stop active adjtime() */
115                 time_status |= STA_UNSYNC;
116                 time_maxerror = NTP_PHASE_LIMIT;
117                 time_esterror = NTP_PHASE_LIMIT;
118                 time_interpolator_reset();
119         }
120         write_sequnlock_irq(&xtime_lock);
121         clock_was_set();
122         return 0;
123 }
124
125 EXPORT_SYMBOL(do_settimeofday);
126
127 void
128 do_gettimeofday (struct timeval *tv)
129 {
130         unsigned long seq, nsec, usec, sec, old, offset;
131
132         while (1) {
133                 seq = read_seqbegin(&xtime_lock);
134                 {
135                         old = last_nsec_offset;
136                         offset = time_interpolator_get_offset();
137                         sec = xtime.tv_sec;
138                         nsec = xtime.tv_nsec;
139                 }
140                 if (unlikely(read_seqretry(&xtime_lock, seq)))
141                         continue;
142                 /*
143                  * Ensure that for any pair of causally ordered gettimeofday() calls, time
144                  * never goes backwards (even when ITC on different CPUs are not perfectly
145                  * synchronized).  (A pair of concurrent calls to gettimeofday() is by
146                  * definition non-causal and hence it makes no sense to talk about
147                  * time-continuity for such calls.)
148                  *
149                  * Doing this in a lock-free and race-free manner is tricky.  Here is why
150                  * it works (most of the time): read_seqretry() just succeeded, which
151                  * implies we calculated a consistent (valid) value for "offset".  If the
152                  * cmpxchg() below succeeds, we further know that last_nsec_offset still
153                  * has the same value as at the beginning of the loop, so there was
154                  * presumably no timer-tick or other updates to last_nsec_offset in the
155                  * meantime.  This isn't 100% true though: there _is_ a possibility of a
156                  * timer-tick occurring right right after read_seqretry() and then getting
157                  * zero or more other readers which will set last_nsec_offset to the same
158                  * value as the one we read at the beginning of the loop.  If this
159                  * happens, we'll end up returning a slightly newer time than we ought to
160                  * (the jump forward is at most "offset" nano-seconds).  There is no
161                  * danger of causing time to go backwards, though, so we are safe in that
162                  * sense.  We could make the probability of this unlucky case occurring
163                  * arbitrarily small by encoding a version number in last_nsec_offset, but
164                  * even without versioning, the probability of this unlucky case should be
165                  * so small that we won't worry about it.
166                  */
167                 if (offset <= old) {
168                         offset = old;
169                         break;
170                 } else if (likely(cmpxchg(&last_nsec_offset, old, offset) == old))
171                         break;
172
173                 /* someone else beat us to updating last_nsec_offset; try again */
174         }
175
176         usec = (nsec + offset) / 1000;
177
178         while (unlikely(usec >= USEC_PER_SEC)) {
179                 usec -= USEC_PER_SEC;
180                 ++sec;
181         }
182
183         tv->tv_sec = sec;
184         tv->tv_usec = usec;
185 }
186
187 EXPORT_SYMBOL(do_gettimeofday);
188
189 /*
190  * The profiling function is SMP safe. (nothing can mess
191  * around with "current", and the profiling counters are
192  * updated with atomic operations). This is especially
193  * useful with a profiling multiplier != 1
194  */
195 static inline void
196 ia64_do_profile (struct pt_regs * regs)
197 {
198         unsigned long ip, slot;
199         extern cpumask_t prof_cpu_mask;
200
201         profile_hook(regs);
202
203         if (user_mode(regs))
204                 return;
205
206         if (!prof_buffer)
207                 return;
208
209         ip = instruction_pointer(regs);
210         /* Conserve space in histogram by encoding slot bits in address
211          * bits 2 and 3 rather than bits 0 and 1.
212          */
213         slot = ip & 3;
214         ip = (ip & ~3UL) + 4*slot;
215
216         /*
217          * Only measure the CPUs specified by /proc/irq/prof_cpu_mask.
218          * (default is all CPUs.)
219          */
220         if (!cpu_isset(smp_processor_id(), prof_cpu_mask))
221                 return;
222
223         ip -= (unsigned long) &_stext;
224         ip >>= prof_shift;
225         /*
226          * Don't ignore out-of-bounds IP values silently,
227          * put them into the last histogram slot, so if
228          * present, they will show up as a sharp peak.
229          */
230         if (ip > prof_len-1)
231                 ip = prof_len-1;
232         atomic_inc((atomic_t *)&prof_buffer[ip]);
233 }
234
235 static irqreturn_t
236 timer_interrupt (int irq, void *dev_id, struct pt_regs *regs)
237 {
238         unsigned long new_itm;
239
240         if (unlikely(cpu_is_offline(smp_processor_id()))) {
241                 return IRQ_HANDLED;
242         }
243
244         platform_timer_interrupt(irq, dev_id, regs);
245
246         new_itm = local_cpu_data->itm_next;
247
248         if (!time_after(ia64_get_itc(), new_itm))
249                 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
250                        ia64_get_itc(), new_itm);
251
252         ia64_do_profile(regs);
253
254         while (1) {
255 #ifdef CONFIG_SMP
256                 /*
257                  * For UP, this is done in do_timer().  Weird, but
258                  * fixing that would require updates to all
259                  * platforms.
260                  */
261                 update_process_times(user_mode(regs));
262 #endif
263                 new_itm += local_cpu_data->itm_delta;
264
265                 if (smp_processor_id() == TIME_KEEPER_ID) {
266                         /*
267                          * Here we are in the timer irq handler. We have irqs locally
268                          * disabled, but we don't know if the timer_bh is running on
269                          * another CPU. We need to avoid to SMP race by acquiring the
270                          * xtime_lock.
271                          */
272                         write_seqlock(&xtime_lock);
273                         do_timer(regs);
274                         local_cpu_data->itm_next = new_itm;
275                         write_sequnlock(&xtime_lock);
276                 } else
277                         local_cpu_data->itm_next = new_itm;
278
279                 if (time_after(new_itm, ia64_get_itc()))
280                         break;
281         }
282
283         do {
284                 /*
285                  * If we're too close to the next clock tick for
286                  * comfort, we increase the safety margin by
287                  * intentionally dropping the next tick(s).  We do NOT
288                  * update itm.next because that would force us to call
289                  * do_timer() which in turn would let our clock run
290                  * too fast (with the potentially devastating effect
291                  * of losing monotony of time).
292                  */
293                 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
294                         new_itm += local_cpu_data->itm_delta;
295                 ia64_set_itm(new_itm);
296                 /* double check, in case we got hit by a (slow) PMI: */
297         } while (time_after_eq(ia64_get_itc(), new_itm));
298         return IRQ_HANDLED;
299 }
300
301 /*
302  * Encapsulate access to the itm structure for SMP.
303  */
304 void
305 ia64_cpu_local_tick (void)
306 {
307         int cpu = smp_processor_id();
308         unsigned long shift = 0, delta;
309
310         /* arrange for the cycle counter to generate a timer interrupt: */
311         ia64_set_itv(IA64_TIMER_VECTOR);
312
313         delta = local_cpu_data->itm_delta;
314         /*
315          * Stagger the timer tick for each CPU so they don't occur all at (almost) the
316          * same time:
317          */
318         if (cpu) {
319                 unsigned long hi = 1UL << ia64_fls(cpu);
320                 shift = (2*(cpu - hi) + 1) * delta/hi/2;
321         }
322         local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
323         ia64_set_itm(local_cpu_data->itm_next);
324 }
325
326 void __devinit
327 ia64_init_itm (void)
328 {
329         unsigned long platform_base_freq, itc_freq;
330         struct pal_freq_ratio itc_ratio, proc_ratio;
331         long status, platform_base_drift, itc_drift;
332
333         /*
334          * According to SAL v2.6, we need to use a SAL call to determine the platform base
335          * frequency and then a PAL call to determine the frequency ratio between the ITC
336          * and the base frequency.
337          */
338         status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
339                                     &platform_base_freq, &platform_base_drift);
340         if (status != 0) {
341                 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
342         } else {
343                 status = ia64_pal_freq_ratios(&proc_ratio, 0, &itc_ratio);
344                 if (status != 0)
345                         printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
346         }
347         if (status != 0) {
348                 /* invent "random" values */
349                 printk(KERN_ERR
350                        "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
351                 platform_base_freq = 100000000;
352                 platform_base_drift = -1;       /* no drift info */
353                 itc_ratio.num = 3;
354                 itc_ratio.den = 1;
355         }
356         if (platform_base_freq < 40000000) {
357                 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
358                        platform_base_freq);
359                 platform_base_freq = 75000000;
360                 platform_base_drift = -1;
361         }
362         if (!proc_ratio.den)
363                 proc_ratio.den = 1;     /* avoid division by zero */
364         if (!itc_ratio.den)
365                 itc_ratio.den = 1;      /* avoid division by zero */
366
367         itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
368         if (platform_base_drift != -1)
369                 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
370         else
371                 itc_drift = -1;
372
373         local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
374         printk(KERN_INFO "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%lu/%lu, "
375                "ITC freq=%lu.%03luMHz+/-%ldppm\n", smp_processor_id(),
376                platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
377                itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000,
378                itc_drift);
379
380         local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
381         local_cpu_data->itc_freq = itc_freq;
382         local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
383         local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
384                                         + itc_freq/2)/itc_freq;
385
386         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
387                 itc_interpolator.frequency = local_cpu_data->itc_freq;
388                 itc_interpolator.drift = itc_drift;
389                 register_time_interpolator(&itc_interpolator);
390         }
391
392         /* Setup the CPU local timer tick */
393         ia64_cpu_local_tick();
394 }
395
396 static struct irqaction timer_irqaction = {
397         .handler =      timer_interrupt,
398         .flags =        SA_INTERRUPT,
399         .name =         "timer"
400 };
401
402 void __init
403 time_init (void)
404 {
405         register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
406         efi_gettimeofday(&xtime);
407         ia64_init_itm();
408
409         /*
410          * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
411          * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
412          */
413         set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
414 }