patch-2_6_7-vs1_9_1_12
[linux-2.6.git] / arch / parisc / mm / init.c
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *
9  */
10
11 #include <linux/config.h>
12
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/bootmem.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
19 #include <linux/initrd.h>
20 #include <linux/swap.h>
21 #include <linux/unistd.h>
22
23 #include <asm/pgalloc.h>
24 #include <asm/tlb.h>
25 #include <asm/pdc_chassis.h>
26
27 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
28
29 extern char _text;      /* start of kernel code, defined by linker */
30 extern int  data_start;
31 extern char _end;       /* end of BSS, defined by linker */
32 extern char __init_begin, __init_end;
33
34 #ifdef CONFIG_DISCONTIGMEM
35 struct node_map_data node_data[MAX_PHYSMEM_RANGES];
36 bootmem_data_t bmem_data[MAX_PHYSMEM_RANGES];
37 unsigned char *chunkmap;
38 unsigned int maxchunkmap;
39 #endif
40
41 static struct resource data_resource = {
42         .name   = "Kernel data",
43         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
44 };
45
46 static struct resource code_resource = {
47         .name   = "Kernel code",
48         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
49 };
50
51 static struct resource pdcdata_resource = {
52         .name   = "PDC data (Page Zero)",
53         .start  = 0,
54         .end    = 0x9ff,
55         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
56 };
57
58 static struct resource sysram_resources[MAX_PHYSMEM_RANGES];
59
60 static unsigned long max_pfn;
61
62 /* The following array is initialized from the firmware specific
63  * information retrieved in kernel/inventory.c.
64  */
65
66 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES];
67 int npmem_ranges;
68
69 #ifdef __LP64__
70 #define MAX_MEM         (~0UL)
71 #else /* !__LP64__ */
72 #define MAX_MEM         (3584U*1024U*1024U)
73 #endif /* !__LP64__ */
74
75 static unsigned long mem_limit = MAX_MEM;
76
77 static void __init mem_limit_func(void)
78 {
79         char *cp, *end;
80         unsigned long limit;
81         extern char saved_command_line[];
82
83         /* We need this before __setup() functions are called */
84
85         limit = MAX_MEM;
86         for (cp = saved_command_line; *cp; ) {
87                 if (memcmp(cp, "mem=", 4) == 0) {
88                         cp += 4;
89                         limit = memparse(cp, &end);
90                         if (end != cp)
91                                 break;
92                         cp = end;
93                 } else {
94                         while (*cp != ' ' && *cp)
95                                 ++cp;
96                         while (*cp == ' ')
97                                 ++cp;
98                 }
99         }
100
101         if (limit < mem_limit)
102                 mem_limit = limit;
103 }
104
105 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
106
107 static void __init setup_bootmem(void)
108 {
109         unsigned long bootmap_size;
110         unsigned long mem_max;
111         unsigned long bootmap_pages;
112         unsigned long bootmap_start_pfn;
113         unsigned long bootmap_pfn;
114 #ifndef CONFIG_DISCONTIGMEM
115         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
116         int npmem_holes;
117 #endif
118         int i, sysram_resource_count;
119
120         disable_sr_hashing(); /* Turn off space register hashing */
121
122 #ifdef CONFIG_DISCONTIGMEM
123         /*
124          * The below is still true as of 2.4.2. If this is ever fixed,
125          * we can remove this warning!
126          */
127
128         printk(KERN_WARNING "\n\n");
129         printk(KERN_WARNING "CONFIG_DISCONTIGMEM is enabled, which is probably a mistake. This\n");
130         printk(KERN_WARNING "option can lead to heavy swapping, even when there are gigabytes\n");
131         printk(KERN_WARNING "of free memory.\n\n");
132 #endif
133
134 #ifdef __LP64__
135
136 #ifndef CONFIG_DISCONTIGMEM
137         /*
138          * Sort the ranges. Since the number of ranges is typically
139          * small, and performance is not an issue here, just do
140          * a simple insertion sort.
141          */
142
143         for (i = 1; i < npmem_ranges; i++) {
144                 int j;
145
146                 for (j = i; j > 0; j--) {
147                         unsigned long tmp;
148
149                         if (pmem_ranges[j-1].start_pfn <
150                             pmem_ranges[j].start_pfn) {
151
152                                 break;
153                         }
154                         tmp = pmem_ranges[j-1].start_pfn;
155                         pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
156                         pmem_ranges[j].start_pfn = tmp;
157                         tmp = pmem_ranges[j-1].pages;
158                         pmem_ranges[j-1].pages = pmem_ranges[j].pages;
159                         pmem_ranges[j].pages = tmp;
160                 }
161         }
162
163         /*
164          * Throw out ranges that are too far apart (controlled by
165          * MAX_GAP). If CONFIG_DISCONTIGMEM wasn't implemented so
166          * poorly, we would recommend enabling that option, but,
167          * until it is fixed, this is the best way to go.
168          */
169
170         for (i = 1; i < npmem_ranges; i++) {
171                 if (pmem_ranges[i].start_pfn -
172                         (pmem_ranges[i-1].start_pfn +
173                          pmem_ranges[i-1].pages) > MAX_GAP) {
174                         npmem_ranges = i;
175                         break;
176                 }
177         }
178 #endif
179
180         if (npmem_ranges > 1) {
181
182                 /* Print the memory ranges */
183
184                 printk(KERN_INFO "Memory Ranges:\n");
185
186                 for (i = 0; i < npmem_ranges; i++) {
187                         unsigned long start;
188                         unsigned long size;
189
190                         size = (pmem_ranges[i].pages << PAGE_SHIFT);
191                         start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
192                         printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld Mb\n",
193                                 i,start, start + (size - 1), size >> 20);
194                 }
195         }
196
197 #endif /* __LP64__ */
198
199         sysram_resource_count = npmem_ranges;
200         for (i = 0; i < sysram_resource_count; i++) {
201                 struct resource *res = &sysram_resources[i];
202                 res->name = "System RAM";
203                 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
204                 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
205                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
206                 request_resource(&iomem_resource, res);
207         }
208
209         /*
210          * For 32 bit kernels we limit the amount of memory we can
211          * support, in order to preserve enough kernel address space
212          * for other purposes. For 64 bit kernels we don't normally
213          * limit the memory, but this mechanism can be used to
214          * artificially limit the amount of memory (and it is written
215          * to work with multiple memory ranges).
216          */
217
218         mem_limit_func();       /* check for "mem=" argument */
219
220         mem_max = 0;
221         for (i = 0; i < npmem_ranges; i++) {
222                 unsigned long rsize;
223
224                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
225                 if ((mem_max + rsize) > mem_limit) {
226                         printk(KERN_WARNING "Memory truncated to %ld Mb\n", mem_limit >> 20);
227                         if (mem_max == mem_limit)
228                                 npmem_ranges = i;
229                         else {
230                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
231                                                        - (mem_max >> PAGE_SHIFT);
232                                 npmem_ranges = i + 1;
233                                 mem_max = mem_limit;
234                         }
235                         break;
236                 }
237                 mem_max += rsize;
238         }
239
240         printk(KERN_INFO "Total Memory: %ld Mb\n",mem_max >> 20);
241
242 #ifndef CONFIG_DISCONTIGMEM
243
244         /* Merge the ranges, keeping track of the holes */
245
246         {
247                 unsigned long end_pfn;
248                 unsigned long hole_pages;
249
250                 npmem_holes = 0;
251                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
252                 for (i = 1; i < npmem_ranges; i++) {
253
254                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
255                         if (hole_pages) {
256                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
257                                 pmem_holes[npmem_holes++].pages = hole_pages;
258                                 end_pfn += hole_pages;
259                         }
260                         end_pfn += pmem_ranges[i].pages;
261                 }
262
263                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
264                 npmem_ranges = 1;
265         }
266 #endif
267
268         bootmap_pages = 0;
269         for (i = 0; i < npmem_ranges; i++)
270                 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
271
272         bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
273
274 #ifdef CONFIG_DISCONTIGMEM
275         for (i = 0; i < npmem_ranges; i++)
276                 node_data[i].pg_data.bdata = &bmem_data[i];
277 #endif
278         /*
279          * Initialize and free the full range of memory in each range.
280          * Note that the only writing these routines do are to the bootmap,
281          * and we've made sure to locate the bootmap properly so that they
282          * won't be writing over anything important.
283          */
284
285         bootmap_pfn = bootmap_start_pfn;
286         max_pfn = 0;
287         for (i = 0; i < npmem_ranges; i++) {
288                 unsigned long start_pfn;
289                 unsigned long npages;
290
291                 start_pfn = pmem_ranges[i].start_pfn;
292                 npages = pmem_ranges[i].pages;
293
294                 bootmap_size = init_bootmem_node(NODE_DATA(i),
295                                                 bootmap_pfn,
296                                                 start_pfn,
297                                                 (start_pfn + npages) );
298                 free_bootmem_node(NODE_DATA(i),
299                                   (start_pfn << PAGE_SHIFT),
300                                   (npages << PAGE_SHIFT) );
301                 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
302                 if ((start_pfn + npages) > max_pfn)
303                         max_pfn = start_pfn + npages;
304         }
305
306         if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
307                 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
308                 BUG();
309         }
310
311         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
312
313 #define PDC_CONSOLE_IO_IODC_SIZE 32768
314
315         reserve_bootmem_node(NODE_DATA(0), 0UL,
316                         (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
317         reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
318                         (unsigned long)(&_end - &_text));
319         reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
320                         ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
321
322 #ifndef CONFIG_DISCONTIGMEM
323
324         /* reserve the holes */
325
326         for (i = 0; i < npmem_holes; i++) {
327                 reserve_bootmem_node(NODE_DATA(0),
328                                 (pmem_holes[i].start_pfn << PAGE_SHIFT),
329                                 (pmem_holes[i].pages << PAGE_SHIFT));
330         }
331 #endif
332
333 #ifdef CONFIG_BLK_DEV_INITRD
334         if (initrd_start) {
335                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
336                 if (__pa(initrd_start) < mem_max) {
337                         unsigned long initrd_reserve;
338
339                         if (__pa(initrd_end) > mem_max) {
340                                 initrd_reserve = mem_max - __pa(initrd_start);
341                         } else {
342                                 initrd_reserve = initrd_end - initrd_start;
343                         }
344                         initrd_below_start_ok = 1;
345                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
346
347                         reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
348                 }
349         }
350 #endif
351
352         data_resource.start =  virt_to_phys(&data_start);
353         data_resource.end = virt_to_phys(&_end)-1;
354         code_resource.start = virt_to_phys(&_text);
355         code_resource.end = virt_to_phys(&data_start)-1;
356
357         /* We don't know which region the kernel will be in, so try
358          * all of them.
359          */
360         for (i = 0; i < sysram_resource_count; i++) {
361                 struct resource *res = &sysram_resources[i];
362                 request_resource(res, &code_resource);
363                 request_resource(res, &data_resource);
364         }
365         request_resource(&sysram_resources[0], &pdcdata_resource);
366 }
367
368 void free_initmem(void)
369 {
370         /* FIXME: */
371 #if 0
372         printk(KERN_INFO "NOT FREEING INITMEM (%dk)\n",
373                         (&__init_end - &__init_begin) >> 10);
374         return;
375 #else
376         unsigned long addr;
377         
378         printk(KERN_INFO "Freeing unused kernel memory: ");
379
380 #if 1
381         /* Attempt to catch anyone trying to execute code here
382          * by filling the page with BRK insns.
383          * 
384          * If we disable interrupts for all CPUs, then IPI stops working.
385          * Kinda breaks the global cache flushing.
386          */
387         local_irq_disable();
388
389         memset(&__init_begin, 0x00, 
390                 (unsigned long)&__init_end - (unsigned long)&__init_begin);
391
392         flush_data_cache();
393         asm volatile("sync" : : );
394         flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
395         asm volatile("sync" : : );
396
397         local_irq_enable();
398 #endif
399         
400         addr = (unsigned long)(&__init_begin);
401         for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
402                 ClearPageReserved(virt_to_page(addr));
403                 set_page_count(virt_to_page(addr), 1);
404                 free_page(addr);
405                 num_physpages++;
406                 totalram_pages++;
407         }
408
409         /* set up a new led state on systems shipped LED State panel */
410         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
411         
412         printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10);
413 #endif
414 }
415
416 /*
417  * Just an arbitrary offset to serve as a "hole" between mapping areas
418  * (between top of physical memory and a potential pcxl dma mapping
419  * area, and below the vmalloc mapping area).
420  *
421  * The current 32K value just means that there will be a 32K "hole"
422  * between mapping areas. That means that  any out-of-bounds memory
423  * accesses will hopefully be caught. The vmalloc() routines leaves
424  * a hole of 4kB between each vmalloced area for the same reason.
425  */
426
427  /* Leave room for gateway page expansion */
428 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
429 #error KERNEL_MAP_START is in gateway reserved region
430 #endif
431 #define MAP_START (KERNEL_MAP_START)
432
433 #define VM_MAP_OFFSET  (32*1024)
434 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
435                                      & ~(VM_MAP_OFFSET-1)))
436
437 void *vmalloc_start;
438 EXPORT_SYMBOL(vmalloc_start);
439
440 #ifdef CONFIG_PA11
441 unsigned long pcxl_dma_start;
442 #endif
443
444 void __init mem_init(void)
445 {
446         int i;
447
448         high_memory = __va((max_pfn << PAGE_SHIFT));
449         max_mapnr = (virt_to_page(high_memory - 1) - mem_map) + 1;
450
451         num_physpages = 0;
452         mem_map = zone_table[0]->zone_mem_map;
453         for (i = 0; i < npmem_ranges; i++)
454                 num_physpages += free_all_bootmem_node(NODE_DATA(i));
455         totalram_pages = num_physpages;
456
457         printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
458
459 #ifdef CONFIG_PA11
460         if (hppa_dma_ops == &pcxl_dma_ops) {
461                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
462                 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
463         } else {
464                 pcxl_dma_start = 0;
465                 vmalloc_start = SET_MAP_OFFSET(MAP_START);
466         }
467 #else
468         vmalloc_start = SET_MAP_OFFSET(MAP_START);
469 #endif
470
471 }
472
473 int do_check_pgt_cache(int low, int high)
474 {
475         return 0;
476 }
477
478 unsigned long *empty_zero_page;
479
480 void show_mem(void)
481 {
482         int i,free = 0,total = 0,reserved = 0;
483         int shared = 0, cached = 0;
484
485         printk(KERN_INFO "Mem-info:\n");
486         show_free_areas();
487         printk(KERN_INFO "Free swap:     %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
488         i = max_mapnr;
489         while (i-- > 0) {
490                 total++;
491                 if (PageReserved(mem_map+i))
492                         reserved++;
493                 else if (PageSwapCache(mem_map+i))
494                         cached++;
495                 else if (!atomic_read(&mem_map[i].count))
496                         free++;
497                 else
498                         shared += atomic_read(&mem_map[i].count) - 1;
499         }
500         printk(KERN_INFO "%d pages of RAM\n", total);
501         printk(KERN_INFO "%d reserved pages\n", reserved);
502         printk(KERN_INFO "%d pages shared\n", shared);
503         printk(KERN_INFO "%d pages swap cached\n", cached);
504 }
505
506
507 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
508 {
509         pgd_t *pg_dir;
510         pmd_t *pmd;
511         pte_t *pg_table;
512         unsigned long end_paddr;
513         unsigned long start_pmd;
514         unsigned long start_pte;
515         unsigned long tmp1;
516         unsigned long tmp2;
517         unsigned long address;
518         unsigned long ro_start;
519         unsigned long ro_end;
520         unsigned long fv_addr;
521         unsigned long gw_addr;
522         extern const unsigned long fault_vector_20;
523         extern void * const linux_gateway_page;
524
525         ro_start = __pa((unsigned long)&_text);
526         ro_end   = __pa((unsigned long)&data_start);
527         fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
528         gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
529
530         end_paddr = start_paddr + size;
531
532         pg_dir = pgd_offset_k(start_vaddr);
533
534 #if PTRS_PER_PMD == 1
535         start_pmd = 0;
536 #else
537         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
538 #endif
539         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
540
541         address = start_paddr;
542         while (address < end_paddr) {
543 #if PTRS_PER_PMD == 1
544                 pmd = (pmd_t *)__pa(pg_dir);
545 #else
546                 pmd = (pmd_t *) (PAGE_MASK & pgd_val(*pg_dir));
547
548                 /*
549                  * pmd is physical at this point
550                  */
551
552                 if (!pmd) {
553                         pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
554                         pmd = (pmd_t *) __pa(pmd);
555                 }
556
557                 pgd_val(*pg_dir) = _PAGE_TABLE | (unsigned long) pmd;
558 #endif
559                 pg_dir++;
560
561                 /* now change pmd to kernel virtual addresses */
562
563                 pmd = (pmd_t *)__va(pmd) + start_pmd;
564                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
565
566                         /*
567                          * pg_table is physical at this point
568                          */
569
570                         pg_table = (pte_t *) (PAGE_MASK & pmd_val(*pmd));
571                         if (!pg_table) {
572                                 pg_table = (pte_t *)
573                                         alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
574                                 pg_table = (pte_t *) __pa(pg_table);
575                         }
576
577                         pmd_val(*pmd) = _PAGE_TABLE |
578                                            (unsigned long) pg_table;
579
580                         /* now change pg_table to kernel virtual addresses */
581
582                         pg_table = (pte_t *) __va(pg_table) + start_pte;
583                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
584                                 pte_t pte;
585
586 #if !defined(CONFIG_STI_CONSOLE)
587 #warning STI console should explicitly allocate executable pages but does not
588                                 /*
589                                  * Map the fault vector writable so we can
590                                  * write the HPMC checksum.
591                                  */
592                                 if (address >= ro_start && address < ro_end
593                                                         && address != fv_addr
594                                                         && address != gw_addr)
595                                     pte = __mk_pte(address, PAGE_KERNEL_RO);
596                                 else
597 #endif
598                                     pte = __mk_pte(address, pgprot);
599
600                                 if (address >= end_paddr)
601                                         pte_val(pte) = 0;
602
603                                 set_pte(pg_table, pte);
604
605                                 address += PAGE_SIZE;
606                         }
607                         start_pte = 0;
608
609                         if (address >= end_paddr)
610                             break;
611                 }
612                 start_pmd = 0;
613         }
614 }
615
616 /*
617  * pagetable_init() sets up the page tables
618  *
619  * Note that gateway_init() places the Linux gateway page at page 0.
620  * Since gateway pages cannot be dereferenced this has the desirable
621  * side effect of trapping those pesky NULL-reference errors in the
622  * kernel.
623  */
624 static void __init pagetable_init(void)
625 {
626         int range;
627
628         /* Map each physical memory range to its kernel vaddr */
629
630         for (range = 0; range < npmem_ranges; range++) {
631                 unsigned long start_paddr;
632                 unsigned long end_paddr;
633                 unsigned long size;
634
635                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
636                 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
637                 size = pmem_ranges[range].pages << PAGE_SHIFT;
638
639                 map_pages((unsigned long)__va(start_paddr), start_paddr,
640                         size, PAGE_KERNEL);
641         }
642
643 #ifdef CONFIG_BLK_DEV_INITRD
644         if (initrd_end && initrd_end > mem_limit) {
645                 printk("initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
646                 map_pages(initrd_start, __pa(initrd_start),
647                         initrd_end - initrd_start, PAGE_KERNEL);
648         }
649 #endif
650
651         empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
652         memset(empty_zero_page, 0, PAGE_SIZE);
653 }
654
655 static void __init gateway_init(void)
656 {
657         unsigned long linux_gateway_page_addr;
658         /* FIXME: This is 'const' in order to trick the compiler
659            into not treating it as DP-relative data. */
660         extern void * const linux_gateway_page;
661
662         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
663
664         /*
665          * Setup Linux Gateway page.
666          *
667          * The Linux gateway page will reside in kernel space (on virtual
668          * page 0), so it doesn't need to be aliased into user space.
669          */
670
671         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
672                 PAGE_SIZE, PAGE_GATEWAY);
673 }
674
675 #ifdef CONFIG_HPUX
676 void
677 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
678 {
679         pgd_t *pg_dir;
680         pmd_t *pmd;
681         pte_t *pg_table;
682         unsigned long start_pmd;
683         unsigned long start_pte;
684         unsigned long address;
685         unsigned long hpux_gw_page_addr;
686         /* FIXME: This is 'const' in order to trick the compiler
687            into not treating it as DP-relative data. */
688         extern void * const hpux_gateway_page;
689
690         hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
691
692         /*
693          * Setup HP-UX Gateway page.
694          *
695          * The HP-UX gateway page resides in the user address space,
696          * so it needs to be aliased into each process.
697          */
698
699         pg_dir = pgd_offset(mm,hpux_gw_page_addr);
700
701 #if PTRS_PER_PMD == 1
702         start_pmd = 0;
703 #else
704         start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
705 #endif
706         start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
707
708         address = __pa(&hpux_gateway_page);
709 #if PTRS_PER_PMD == 1
710         pmd = (pmd_t *)__pa(pg_dir);
711 #else
712         pmd = (pmd_t *) (PAGE_MASK & pgd_val(*pg_dir));
713
714         /*
715          * pmd is physical at this point
716          */
717
718         if (!pmd) {
719                 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
720                 pmd = (pmd_t *) __pa(pmd);
721         }
722
723         pgd_val(*pg_dir) = _PAGE_TABLE | (unsigned long) pmd;
724 #endif
725         /* now change pmd to kernel virtual addresses */
726
727         pmd = (pmd_t *)__va(pmd) + start_pmd;
728
729         /*
730          * pg_table is physical at this point
731          */
732
733         pg_table = (pte_t *) (PAGE_MASK & pmd_val(*pmd));
734         if (!pg_table)
735                 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
736
737         pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) pg_table;
738
739         /* now change pg_table to kernel virtual addresses */
740
741         pg_table = (pte_t *) __va(pg_table) + start_pte;
742         set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
743 }
744 EXPORT_SYMBOL(map_hpux_gateway_page);
745 #endif
746
747 extern void flush_tlb_all_local(void);
748
749 void __init paging_init(void)
750 {
751         int i;
752
753         setup_bootmem();
754         pagetable_init();
755         gateway_init();
756         flush_cache_all_local(); /* start with known state */
757         flush_tlb_all_local();
758
759         for (i = 0; i < npmem_ranges; i++) {
760                 unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0, };
761
762                 zones_size[ZONE_DMA] = pmem_ranges[i].pages;
763                 free_area_init_node(i,NODE_DATA(i),NULL,zones_size,
764                                 (pmem_ranges[i].start_pfn << PAGE_SHIFT),0);
765         }
766
767 #ifdef CONFIG_DISCONTIGMEM
768         /*
769          * Initialize support for virt_to_page() macro.
770          *
771          * Note that MAX_ADDRESS is the largest virtual address that
772          * we can map. However, since we map all physical memory into
773          * the kernel address space, it also has an effect on the maximum
774          * physical address we can map (MAX_ADDRESS - PAGE_OFFSET).
775          */
776
777         maxchunkmap = MAX_ADDRESS >> CHUNKSHIFT;
778         chunkmap = (unsigned char *)alloc_bootmem(maxchunkmap);
779
780         for (i = 0; i < maxchunkmap; i++)
781             chunkmap[i] = BADCHUNK;
782
783         for (i = 0; i < npmem_ranges; i++) {
784
785                 ADJ_NODE_MEM_MAP(i) = NODE_MEM_MAP(i) - pmem_ranges[i].start_pfn;
786                 {
787                         unsigned long chunk_paddr;
788                         unsigned long end_paddr;
789                         int chunknum;
790
791                         chunk_paddr = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
792                         end_paddr = chunk_paddr + (pmem_ranges[i].pages << PAGE_SHIFT);
793                         chunk_paddr &= CHUNKMASK;
794
795                         chunknum = (int)CHUNKNUM(chunk_paddr);
796                         while (chunk_paddr < end_paddr) {
797                                 if (chunknum >= maxchunkmap)
798                                         goto badchunkmap1;
799                                 if (chunkmap[chunknum] != BADCHUNK)
800                                         goto badchunkmap2;
801                                 chunkmap[chunknum] = (unsigned char)i;
802                                 chunk_paddr += CHUNKSZ;
803                                 chunknum++;
804                         }
805                 }
806         }
807
808         return;
809
810 badchunkmap1:
811         panic("paging_init: Physical address exceeds maximum address space!\n");
812 badchunkmap2:
813         panic("paging_init: Collision in chunk map array. CHUNKSZ needs to be smaller\n");
814 #endif
815 }
816
817 #ifdef CONFIG_PA20
818
819 /*
820  * Currently, all PA20 chips have 18 bit protection id's, which is the
821  * limiting factor (space ids are 32 bits).
822  */
823
824 #define NR_SPACE_IDS 262144
825
826 #else
827
828 /*
829  * Currently we have a one-to-one relationship between space id's and
830  * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
831  * support 15 bit protection id's, so that is the limiting factor.
832  * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
833  * probably not worth the effort for a special case here.
834  */
835
836 #define NR_SPACE_IDS 32768
837
838 #endif  /* !CONFIG_PA20 */
839
840 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
841 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
842
843 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
844 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
845 static unsigned long space_id_index;
846 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
847 static unsigned long dirty_space_ids = 0;
848
849 static spinlock_t sid_lock = SPIN_LOCK_UNLOCKED;
850
851 unsigned long alloc_sid(void)
852 {
853         unsigned long index;
854
855         spin_lock(&sid_lock);
856
857         if (free_space_ids == 0) {
858                 if (dirty_space_ids != 0) {
859                         spin_unlock(&sid_lock);
860                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
861                         spin_lock(&sid_lock);
862                 }
863                 if (free_space_ids == 0)
864                         BUG();
865         }
866
867         free_space_ids--;
868
869         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
870         space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
871         space_id_index = index;
872
873         spin_unlock(&sid_lock);
874
875         return index << SPACEID_SHIFT;
876 }
877
878 void free_sid(unsigned long spaceid)
879 {
880         unsigned long index = spaceid >> SPACEID_SHIFT;
881         unsigned long *dirty_space_offset;
882
883         dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
884         index &= (BITS_PER_LONG - 1);
885
886         spin_lock(&sid_lock);
887
888         if (*dirty_space_offset & (1L << index))
889             BUG(); /* attempt to free space id twice */
890
891         *dirty_space_offset |= (1L << index);
892         dirty_space_ids++;
893
894         spin_unlock(&sid_lock);
895 }
896
897
898 #ifdef CONFIG_SMP
899 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
900 {
901         int i;
902
903         /* NOTE: sid_lock must be held upon entry */
904
905         *ndirtyptr = dirty_space_ids;
906         if (dirty_space_ids != 0) {
907             for (i = 0; i < SID_ARRAY_SIZE; i++) {
908                 dirty_array[i] = dirty_space_id[i];
909                 dirty_space_id[i] = 0;
910             }
911             dirty_space_ids = 0;
912         }
913
914         return;
915 }
916
917 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
918 {
919         int i;
920
921         /* NOTE: sid_lock must be held upon entry */
922
923         if (ndirty != 0) {
924                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
925                         space_id[i] ^= dirty_array[i];
926                 }
927
928                 free_space_ids += ndirty;
929                 space_id_index = 0;
930         }
931 }
932
933 #else /* CONFIG_SMP */
934
935 static void recycle_sids(void)
936 {
937         int i;
938
939         /* NOTE: sid_lock must be held upon entry */
940
941         if (dirty_space_ids != 0) {
942                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
943                         space_id[i] ^= dirty_space_id[i];
944                         dirty_space_id[i] = 0;
945                 }
946
947                 free_space_ids += dirty_space_ids;
948                 dirty_space_ids = 0;
949                 space_id_index = 0;
950         }
951 }
952 #endif
953
954 /*
955  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
956  * purged, we can safely reuse the space ids that were released but
957  * not flushed from the tlb.
958  */
959
960 #ifdef CONFIG_SMP
961
962 static unsigned long recycle_ndirty;
963 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
964 static unsigned int recycle_inuse = 0;
965
966 void flush_tlb_all(void)
967 {
968         int do_recycle;
969
970         do_recycle = 0;
971         spin_lock(&sid_lock);
972         if (dirty_space_ids > RECYCLE_THRESHOLD) {
973             if (recycle_inuse) {
974                 BUG();  /* FIXME: Use a semaphore/wait queue here */
975             }
976             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
977             recycle_inuse++;
978             do_recycle++;
979         }
980         spin_unlock(&sid_lock);
981         on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
982         if (do_recycle) {
983             spin_lock(&sid_lock);
984             recycle_sids(recycle_ndirty,recycle_dirty_array);
985             recycle_inuse = 0;
986             spin_unlock(&sid_lock);
987         }
988 }
989 #else
990 void flush_tlb_all(void)
991 {
992         spin_lock(&sid_lock);
993         flush_tlb_all_local();
994         recycle_sids();
995         spin_unlock(&sid_lock);
996 }
997 #endif
998
999 #ifdef CONFIG_BLK_DEV_INITRD
1000 void free_initrd_mem(unsigned long start, unsigned long end)
1001 {
1002 #if 0
1003         if (start < end)
1004                 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1005         for (; start < end; start += PAGE_SIZE) {
1006                 ClearPageReserved(virt_to_page(start));
1007                 set_page_count(virt_to_page(start), 1);
1008                 free_page(start);
1009                 num_physpages++;
1010                 totalram_pages++;
1011         }
1012 #endif
1013 }
1014 #endif