vserver 1.9.5.x5
[linux-2.6.git] / arch / parisc / mm / init.c
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *
10  */
11
12 #include <linux/config.h>
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h>     /* for node_online_map */
24
25 #include <asm/pgalloc.h>
26 #include <asm/tlb.h>
27 #include <asm/pdc_chassis.h>
28 #include <asm/mmzone.h>
29
30 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
31
32 extern char _text;      /* start of kernel code, defined by linker */
33 extern int  data_start;
34 extern char _end;       /* end of BSS, defined by linker */
35 extern char __init_begin, __init_end;
36
37 #ifdef CONFIG_DISCONTIGMEM
38 struct node_map_data node_data[MAX_NUMNODES];
39 bootmem_data_t bmem_data[MAX_NUMNODES];
40 unsigned char pfnnid_map[PFNNID_MAP_MAX];
41 #endif
42
43 static struct resource data_resource = {
44         .name   = "Kernel data",
45         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
46 };
47
48 static struct resource code_resource = {
49         .name   = "Kernel code",
50         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
51 };
52
53 static struct resource pdcdata_resource = {
54         .name   = "PDC data (Page Zero)",
55         .start  = 0,
56         .end    = 0x9ff,
57         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
58 };
59
60 static struct resource sysram_resources[MAX_PHYSMEM_RANGES];
61
62 static unsigned long max_pfn;
63
64 /* The following array is initialized from the firmware specific
65  * information retrieved in kernel/inventory.c.
66  */
67
68 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES];
69 int npmem_ranges;
70
71 #ifdef __LP64__
72 #define MAX_MEM         (~0UL)
73 #else /* !__LP64__ */
74 #define MAX_MEM         (3584U*1024U*1024U)
75 #endif /* !__LP64__ */
76
77 static unsigned long mem_limit = MAX_MEM;
78
79 static void __init mem_limit_func(void)
80 {
81         char *cp, *end;
82         unsigned long limit;
83         extern char saved_command_line[];
84
85         /* We need this before __setup() functions are called */
86
87         limit = MAX_MEM;
88         for (cp = saved_command_line; *cp; ) {
89                 if (memcmp(cp, "mem=", 4) == 0) {
90                         cp += 4;
91                         limit = memparse(cp, &end);
92                         if (end != cp)
93                                 break;
94                         cp = end;
95                 } else {
96                         while (*cp != ' ' && *cp)
97                                 ++cp;
98                         while (*cp == ' ')
99                                 ++cp;
100                 }
101         }
102
103         if (limit < mem_limit)
104                 mem_limit = limit;
105 }
106
107 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
108
109 static void __init setup_bootmem(void)
110 {
111         unsigned long bootmap_size;
112         unsigned long mem_max;
113         unsigned long bootmap_pages;
114         unsigned long bootmap_start_pfn;
115         unsigned long bootmap_pfn;
116 #ifndef CONFIG_DISCONTIGMEM
117         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
118         int npmem_holes;
119 #endif
120         int i, sysram_resource_count;
121
122         disable_sr_hashing(); /* Turn off space register hashing */
123
124         /*
125          * Sort the ranges. Since the number of ranges is typically
126          * small, and performance is not an issue here, just do
127          * a simple insertion sort.
128          */
129
130         for (i = 1; i < npmem_ranges; i++) {
131                 int j;
132
133                 for (j = i; j > 0; j--) {
134                         unsigned long tmp;
135
136                         if (pmem_ranges[j-1].start_pfn <
137                             pmem_ranges[j].start_pfn) {
138
139                                 break;
140                         }
141                         tmp = pmem_ranges[j-1].start_pfn;
142                         pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
143                         pmem_ranges[j].start_pfn = tmp;
144                         tmp = pmem_ranges[j-1].pages;
145                         pmem_ranges[j-1].pages = pmem_ranges[j].pages;
146                         pmem_ranges[j].pages = tmp;
147                 }
148         }
149
150 #ifndef CONFIG_DISCONTIGMEM
151         /*
152          * Throw out ranges that are too far apart (controlled by
153          * MAX_GAP).
154          */
155
156         for (i = 1; i < npmem_ranges; i++) {
157                 if (pmem_ranges[i].start_pfn -
158                         (pmem_ranges[i-1].start_pfn +
159                          pmem_ranges[i-1].pages) > MAX_GAP) {
160                         npmem_ranges = i;
161                         printk("Large gap in memory detected (%ld pages). "
162                                "Consider turning on CONFIG_DISCONTIGMEM\n",
163                                pmem_ranges[i].start_pfn -
164                                (pmem_ranges[i-1].start_pfn +
165                                 pmem_ranges[i-1].pages));
166                         break;
167                 }
168         }
169 #endif
170
171         if (npmem_ranges > 1) {
172
173                 /* Print the memory ranges */
174
175                 printk(KERN_INFO "Memory Ranges:\n");
176
177                 for (i = 0; i < npmem_ranges; i++) {
178                         unsigned long start;
179                         unsigned long size;
180
181                         size = (pmem_ranges[i].pages << PAGE_SHIFT);
182                         start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
183                         printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld Mb\n",
184                                 i,start, start + (size - 1), size >> 20);
185                 }
186         }
187
188         sysram_resource_count = npmem_ranges;
189         for (i = 0; i < sysram_resource_count; i++) {
190                 struct resource *res = &sysram_resources[i];
191                 res->name = "System RAM";
192                 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
193                 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
194                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
195                 request_resource(&iomem_resource, res);
196         }
197
198         /*
199          * For 32 bit kernels we limit the amount of memory we can
200          * support, in order to preserve enough kernel address space
201          * for other purposes. For 64 bit kernels we don't normally
202          * limit the memory, but this mechanism can be used to
203          * artificially limit the amount of memory (and it is written
204          * to work with multiple memory ranges).
205          */
206
207         mem_limit_func();       /* check for "mem=" argument */
208
209         mem_max = 0;
210         num_physpages = 0;
211         for (i = 0; i < npmem_ranges; i++) {
212                 unsigned long rsize;
213
214                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
215                 if ((mem_max + rsize) > mem_limit) {
216                         printk(KERN_WARNING "Memory truncated to %ld Mb\n", mem_limit >> 20);
217                         if (mem_max == mem_limit)
218                                 npmem_ranges = i;
219                         else {
220                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
221                                                        - (mem_max >> PAGE_SHIFT);
222                                 npmem_ranges = i + 1;
223                                 mem_max = mem_limit;
224                         }
225                 num_physpages += pmem_ranges[i].pages;
226                         break;
227                 }
228             num_physpages += pmem_ranges[i].pages;
229                 mem_max += rsize;
230         }
231
232         printk(KERN_INFO "Total Memory: %ld Mb\n",mem_max >> 20);
233
234 #ifndef CONFIG_DISCONTIGMEM
235         /* Merge the ranges, keeping track of the holes */
236
237         {
238                 unsigned long end_pfn;
239                 unsigned long hole_pages;
240
241                 npmem_holes = 0;
242                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
243                 for (i = 1; i < npmem_ranges; i++) {
244
245                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
246                         if (hole_pages) {
247                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
248                                 pmem_holes[npmem_holes++].pages = hole_pages;
249                                 end_pfn += hole_pages;
250                         }
251                         end_pfn += pmem_ranges[i].pages;
252                 }
253
254                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
255                 npmem_ranges = 1;
256         }
257 #endif
258
259         bootmap_pages = 0;
260         for (i = 0; i < npmem_ranges; i++)
261                 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
262
263         bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
264
265 #ifdef CONFIG_DISCONTIGMEM
266         for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
267                 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
268                 NODE_DATA(i)->bdata = &bmem_data[i];
269         }
270         memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
271
272         for (i = 0; i < npmem_ranges; i++)
273                 node_set_online(i);
274 #endif
275
276         /*
277          * Initialize and free the full range of memory in each range.
278          * Note that the only writing these routines do are to the bootmap,
279          * and we've made sure to locate the bootmap properly so that they
280          * won't be writing over anything important.
281          */
282
283         bootmap_pfn = bootmap_start_pfn;
284         max_pfn = 0;
285         for (i = 0; i < npmem_ranges; i++) {
286                 unsigned long start_pfn;
287                 unsigned long npages;
288
289                 start_pfn = pmem_ranges[i].start_pfn;
290                 npages = pmem_ranges[i].pages;
291
292                 bootmap_size = init_bootmem_node(NODE_DATA(i),
293                                                 bootmap_pfn,
294                                                 start_pfn,
295                                                 (start_pfn + npages) );
296                 free_bootmem_node(NODE_DATA(i),
297                                   (start_pfn << PAGE_SHIFT),
298                                   (npages << PAGE_SHIFT) );
299                 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
300                 if ((start_pfn + npages) > max_pfn)
301                         max_pfn = start_pfn + npages;
302         }
303
304         if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
305                 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
306                 BUG();
307         }
308
309         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
310
311 #define PDC_CONSOLE_IO_IODC_SIZE 32768
312
313         reserve_bootmem_node(NODE_DATA(0), 0UL,
314                         (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
315         reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
316                         (unsigned long)(&_end - &_text));
317         reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
318                         ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
319
320 #ifndef CONFIG_DISCONTIGMEM
321
322         /* reserve the holes */
323
324         for (i = 0; i < npmem_holes; i++) {
325                 reserve_bootmem_node(NODE_DATA(0),
326                                 (pmem_holes[i].start_pfn << PAGE_SHIFT),
327                                 (pmem_holes[i].pages << PAGE_SHIFT));
328         }
329 #endif
330
331 #ifdef CONFIG_BLK_DEV_INITRD
332         if (initrd_start) {
333                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
334                 if (__pa(initrd_start) < mem_max) {
335                         unsigned long initrd_reserve;
336
337                         if (__pa(initrd_end) > mem_max) {
338                                 initrd_reserve = mem_max - __pa(initrd_start);
339                         } else {
340                                 initrd_reserve = initrd_end - initrd_start;
341                         }
342                         initrd_below_start_ok = 1;
343                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
344
345                         reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
346                 }
347         }
348 #endif
349
350         data_resource.start =  virt_to_phys(&data_start);
351         data_resource.end = virt_to_phys(&_end)-1;
352         code_resource.start = virt_to_phys(&_text);
353         code_resource.end = virt_to_phys(&data_start)-1;
354
355         /* We don't know which region the kernel will be in, so try
356          * all of them.
357          */
358         for (i = 0; i < sysram_resource_count; i++) {
359                 struct resource *res = &sysram_resources[i];
360                 request_resource(res, &code_resource);
361                 request_resource(res, &data_resource);
362         }
363         request_resource(&sysram_resources[0], &pdcdata_resource);
364 }
365
366 void free_initmem(void)
367 {
368         /* FIXME: */
369 #if 0
370         printk(KERN_INFO "NOT FREEING INITMEM (%dk)\n",
371                         (&__init_end - &__init_begin) >> 10);
372         return;
373 #else
374         unsigned long addr;
375         
376         printk(KERN_INFO "Freeing unused kernel memory: ");
377
378 #if 1
379         /* Attempt to catch anyone trying to execute code here
380          * by filling the page with BRK insns.
381          * 
382          * If we disable interrupts for all CPUs, then IPI stops working.
383          * Kinda breaks the global cache flushing.
384          */
385         local_irq_disable();
386
387         memset(&__init_begin, 0x00, 
388                 (unsigned long)&__init_end - (unsigned long)&__init_begin);
389
390         flush_data_cache();
391         asm volatile("sync" : : );
392         flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
393         asm volatile("sync" : : );
394
395         local_irq_enable();
396 #endif
397         
398         addr = (unsigned long)(&__init_begin);
399         for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
400                 ClearPageReserved(virt_to_page(addr));
401                 set_page_count(virt_to_page(addr), 1);
402                 free_page(addr);
403                 num_physpages++;
404                 totalram_pages++;
405         }
406
407         /* set up a new led state on systems shipped LED State panel */
408         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
409         
410         printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10);
411 #endif
412 }
413
414 /*
415  * Just an arbitrary offset to serve as a "hole" between mapping areas
416  * (between top of physical memory and a potential pcxl dma mapping
417  * area, and below the vmalloc mapping area).
418  *
419  * The current 32K value just means that there will be a 32K "hole"
420  * between mapping areas. That means that  any out-of-bounds memory
421  * accesses will hopefully be caught. The vmalloc() routines leaves
422  * a hole of 4kB between each vmalloced area for the same reason.
423  */
424
425  /* Leave room for gateway page expansion */
426 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
427 #error KERNEL_MAP_START is in gateway reserved region
428 #endif
429 #define MAP_START (KERNEL_MAP_START)
430
431 #define VM_MAP_OFFSET  (32*1024)
432 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
433                                      & ~(VM_MAP_OFFSET-1)))
434
435 void *vmalloc_start;
436 EXPORT_SYMBOL(vmalloc_start);
437
438 #ifdef CONFIG_PA11
439 unsigned long pcxl_dma_start;
440 #endif
441
442 void __init mem_init(void)
443 {
444         high_memory = __va((max_pfn << PAGE_SHIFT));
445
446 #ifndef CONFIG_DISCONTIGMEM
447         max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
448         mem_map = zone_table[ZONE_DMA]->zone_mem_map;
449         totalram_pages += free_all_bootmem();
450 #else
451         {
452                 int i;
453
454                 for (i = 0; i < npmem_ranges; i++)
455                         totalram_pages += free_all_bootmem_node(NODE_DATA(i));
456         }
457 #endif
458
459         printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
460
461 #ifdef CONFIG_PA11
462         if (hppa_dma_ops == &pcxl_dma_ops) {
463                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
464                 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
465         } else {
466                 pcxl_dma_start = 0;
467                 vmalloc_start = SET_MAP_OFFSET(MAP_START);
468         }
469 #else
470         vmalloc_start = SET_MAP_OFFSET(MAP_START);
471 #endif
472
473 }
474
475 int do_check_pgt_cache(int low, int high)
476 {
477         return 0;
478 }
479
480 unsigned long *empty_zero_page;
481
482 void show_mem(void)
483 {
484         int i,free = 0,total = 0,reserved = 0;
485         int shared = 0, cached = 0;
486
487         printk(KERN_INFO "Mem-info:\n");
488         show_free_areas();
489         printk(KERN_INFO "Free swap:     %6ldkB\n",
490                                 nr_swap_pages<<(PAGE_SHIFT-10));
491 #ifndef CONFIG_DISCONTIGMEM
492         i = max_mapnr;
493         while (i-- > 0) {
494                 total++;
495                 if (PageReserved(mem_map+i))
496                         reserved++;
497                 else if (PageSwapCache(mem_map+i))
498                         cached++;
499                 else if (!page_count(&mem_map[i]))
500                         free++;
501                 else
502                         shared += page_count(&mem_map[i]) - 1;
503         }
504 #else
505         for (i = 0; i < npmem_ranges; i++) {
506                 int j;
507
508                 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
509                         struct page *p;
510
511                         p = node_mem_map(i) + j - node_start_pfn(i);
512
513                         total++;
514                         if (PageReserved(p))
515                                 reserved++;
516                         else if (PageSwapCache(p))
517                                 cached++;
518                         else if (!page_count(p))
519                                 free++;
520                         else
521                                 shared += page_count(p) - 1;
522                 }
523         }
524 #endif
525         printk(KERN_INFO "%d pages of RAM\n", total);
526         printk(KERN_INFO "%d reserved pages\n", reserved);
527         printk(KERN_INFO "%d pages shared\n", shared);
528         printk(KERN_INFO "%d pages swap cached\n", cached);
529
530
531 #ifdef CONFIG_DISCONTIGMEM
532         {
533                 struct zonelist *zl;
534                 int i, j, k;
535
536                 for (i = 0; i < npmem_ranges; i++) {
537                         for (j = 0; j < MAX_NR_ZONES; j++) {
538                                 zl = NODE_DATA(i)->node_zonelists + j;
539
540                                 printk("Zone list for zone %d on node %d: ", j, i);
541                                 for (k = 0; zl->zones[k] != NULL; k++) 
542                                         printk("[%d/%s] ", zl->zones[k]->zone_pgdat->node_id, zl->zones[k]->name);
543                                 printk("\n");
544                         }
545                 }
546         }
547 #endif
548 }
549
550
551 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
552 {
553         pgd_t *pg_dir;
554         pmd_t *pmd;
555         pte_t *pg_table;
556         unsigned long end_paddr;
557         unsigned long start_pmd;
558         unsigned long start_pte;
559         unsigned long tmp1;
560         unsigned long tmp2;
561         unsigned long address;
562         unsigned long ro_start;
563         unsigned long ro_end;
564         unsigned long fv_addr;
565         unsigned long gw_addr;
566         extern const unsigned long fault_vector_20;
567         extern void * const linux_gateway_page;
568
569         ro_start = __pa((unsigned long)&_text);
570         ro_end   = __pa((unsigned long)&data_start);
571         fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
572         gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
573
574         end_paddr = start_paddr + size;
575
576         pg_dir = pgd_offset_k(start_vaddr);
577
578 #if PTRS_PER_PMD == 1
579         start_pmd = 0;
580 #else
581         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
582 #endif
583         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
584
585         address = start_paddr;
586         while (address < end_paddr) {
587 #if PTRS_PER_PMD == 1
588                 pmd = (pmd_t *)__pa(pg_dir);
589 #else
590                 pmd = (pmd_t *)pgd_address(*pg_dir);
591
592                 /*
593                  * pmd is physical at this point
594                  */
595
596                 if (!pmd) {
597                         pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
598                         pmd = (pmd_t *) __pa(pmd);
599                 }
600
601                 pgd_populate(NULL, pg_dir, __va(pmd));
602 #endif
603                 pg_dir++;
604
605                 /* now change pmd to kernel virtual addresses */
606
607                 pmd = (pmd_t *)__va(pmd) + start_pmd;
608                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
609
610                         /*
611                          * pg_table is physical at this point
612                          */
613
614                         pg_table = (pte_t *)pmd_address(*pmd);
615                         if (!pg_table) {
616                                 pg_table = (pte_t *)
617                                         alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
618                                 pg_table = (pte_t *) __pa(pg_table);
619                         }
620
621                         pmd_populate_kernel(NULL, pmd, __va(pg_table));
622
623                         /* now change pg_table to kernel virtual addresses */
624
625                         pg_table = (pte_t *) __va(pg_table) + start_pte;
626                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
627                                 pte_t pte;
628
629                                 /*
630                                  * Map the fault vector writable so we can
631                                  * write the HPMC checksum.
632                                  */
633                                 if (address >= ro_start && address < ro_end
634                                                         && address != fv_addr
635                                                         && address != gw_addr)
636                                     pte = __mk_pte(address, PAGE_KERNEL_RO);
637                                 else
638                                     pte = __mk_pte(address, pgprot);
639
640                                 if (address >= end_paddr)
641                                         pte_val(pte) = 0;
642
643                                 set_pte(pg_table, pte);
644
645                                 address += PAGE_SIZE;
646                         }
647                         start_pte = 0;
648
649                         if (address >= end_paddr)
650                             break;
651                 }
652                 start_pmd = 0;
653         }
654 }
655
656 /*
657  * pagetable_init() sets up the page tables
658  *
659  * Note that gateway_init() places the Linux gateway page at page 0.
660  * Since gateway pages cannot be dereferenced this has the desirable
661  * side effect of trapping those pesky NULL-reference errors in the
662  * kernel.
663  */
664 static void __init pagetable_init(void)
665 {
666         int range;
667
668         /* Map each physical memory range to its kernel vaddr */
669
670         for (range = 0; range < npmem_ranges; range++) {
671                 unsigned long start_paddr;
672                 unsigned long end_paddr;
673                 unsigned long size;
674
675                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
676                 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
677                 size = pmem_ranges[range].pages << PAGE_SHIFT;
678
679                 map_pages((unsigned long)__va(start_paddr), start_paddr,
680                         size, PAGE_KERNEL);
681         }
682
683 #ifdef CONFIG_BLK_DEV_INITRD
684         if (initrd_end && initrd_end > mem_limit) {
685                 printk("initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
686                 map_pages(initrd_start, __pa(initrd_start),
687                         initrd_end - initrd_start, PAGE_KERNEL);
688         }
689 #endif
690
691         empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
692         memset(empty_zero_page, 0, PAGE_SIZE);
693 }
694
695 static void __init gateway_init(void)
696 {
697         unsigned long linux_gateway_page_addr;
698         /* FIXME: This is 'const' in order to trick the compiler
699            into not treating it as DP-relative data. */
700         extern void * const linux_gateway_page;
701
702         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
703
704         /*
705          * Setup Linux Gateway page.
706          *
707          * The Linux gateway page will reside in kernel space (on virtual
708          * page 0), so it doesn't need to be aliased into user space.
709          */
710
711         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
712                 PAGE_SIZE, PAGE_GATEWAY);
713 }
714
715 #ifdef CONFIG_HPUX
716 void
717 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
718 {
719         pgd_t *pg_dir;
720         pmd_t *pmd;
721         pte_t *pg_table;
722         unsigned long start_pmd;
723         unsigned long start_pte;
724         unsigned long address;
725         unsigned long hpux_gw_page_addr;
726         /* FIXME: This is 'const' in order to trick the compiler
727            into not treating it as DP-relative data. */
728         extern void * const hpux_gateway_page;
729
730         hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
731
732         /*
733          * Setup HP-UX Gateway page.
734          *
735          * The HP-UX gateway page resides in the user address space,
736          * so it needs to be aliased into each process.
737          */
738
739         pg_dir = pgd_offset(mm,hpux_gw_page_addr);
740
741 #if PTRS_PER_PMD == 1
742         start_pmd = 0;
743 #else
744         start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
745 #endif
746         start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
747
748         address = __pa(&hpux_gateway_page);
749 #if PTRS_PER_PMD == 1
750         pmd = (pmd_t *)__pa(pg_dir);
751 #else
752         pmd = (pmd_t *) pgd_address(*pg_dir);
753
754         /*
755          * pmd is physical at this point
756          */
757
758         if (!pmd) {
759                 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
760                 pmd = (pmd_t *) __pa(pmd);
761         }
762
763         __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
764 #endif
765         /* now change pmd to kernel virtual addresses */
766
767         pmd = (pmd_t *)__va(pmd) + start_pmd;
768
769         /*
770          * pg_table is physical at this point
771          */
772
773         pg_table = (pte_t *) pmd_address(*pmd);
774         if (!pg_table)
775                 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
776
777         __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
778
779         /* now change pg_table to kernel virtual addresses */
780
781         pg_table = (pte_t *) __va(pg_table) + start_pte;
782         set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
783 }
784 EXPORT_SYMBOL(map_hpux_gateway_page);
785 #endif
786
787 extern void flush_tlb_all_local(void);
788
789 void __init paging_init(void)
790 {
791         int i;
792
793         setup_bootmem();
794         pagetable_init();
795         gateway_init();
796         flush_cache_all_local(); /* start with known state */
797         flush_tlb_all_local();
798
799         for (i = 0; i < npmem_ranges; i++) {
800                 unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0 };
801
802                 /* We have an IOMMU, so all memory can go into a single
803                    ZONE_DMA zone. */
804                 zones_size[ZONE_DMA] = pmem_ranges[i].pages;
805
806 #ifdef CONFIG_DISCONTIGMEM
807                 /* Need to initialize the pfnnid_map before we can initialize
808                    the zone */
809                 {
810                     int j;
811                     for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
812                          j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
813                          j++) {
814                         pfnnid_map[j] = i;
815                     }
816                 }
817 #endif
818
819                 free_area_init_node(i, NODE_DATA(i), zones_size,
820                                 pmem_ranges[i].start_pfn, NULL);
821         }
822 }
823
824 #ifdef CONFIG_PA20
825
826 /*
827  * Currently, all PA20 chips have 18 bit protection id's, which is the
828  * limiting factor (space ids are 32 bits).
829  */
830
831 #define NR_SPACE_IDS 262144
832
833 #else
834
835 /*
836  * Currently we have a one-to-one relationship between space id's and
837  * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
838  * support 15 bit protection id's, so that is the limiting factor.
839  * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
840  * probably not worth the effort for a special case here.
841  */
842
843 #define NR_SPACE_IDS 32768
844
845 #endif  /* !CONFIG_PA20 */
846
847 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
848 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
849
850 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
851 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
852 static unsigned long space_id_index;
853 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
854 static unsigned long dirty_space_ids = 0;
855
856 static DEFINE_SPINLOCK(sid_lock);
857
858 unsigned long alloc_sid(void)
859 {
860         unsigned long index;
861
862         spin_lock(&sid_lock);
863
864         if (free_space_ids == 0) {
865                 if (dirty_space_ids != 0) {
866                         spin_unlock(&sid_lock);
867                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
868                         spin_lock(&sid_lock);
869                 }
870                 if (free_space_ids == 0)
871                         BUG();
872         }
873
874         free_space_ids--;
875
876         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
877         space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
878         space_id_index = index;
879
880         spin_unlock(&sid_lock);
881
882         return index << SPACEID_SHIFT;
883 }
884
885 void free_sid(unsigned long spaceid)
886 {
887         unsigned long index = spaceid >> SPACEID_SHIFT;
888         unsigned long *dirty_space_offset;
889
890         dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
891         index &= (BITS_PER_LONG - 1);
892
893         spin_lock(&sid_lock);
894
895         if (*dirty_space_offset & (1L << index))
896             BUG(); /* attempt to free space id twice */
897
898         *dirty_space_offset |= (1L << index);
899         dirty_space_ids++;
900
901         spin_unlock(&sid_lock);
902 }
903
904
905 #ifdef CONFIG_SMP
906 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
907 {
908         int i;
909
910         /* NOTE: sid_lock must be held upon entry */
911
912         *ndirtyptr = dirty_space_ids;
913         if (dirty_space_ids != 0) {
914             for (i = 0; i < SID_ARRAY_SIZE; i++) {
915                 dirty_array[i] = dirty_space_id[i];
916                 dirty_space_id[i] = 0;
917             }
918             dirty_space_ids = 0;
919         }
920
921         return;
922 }
923
924 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
925 {
926         int i;
927
928         /* NOTE: sid_lock must be held upon entry */
929
930         if (ndirty != 0) {
931                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
932                         space_id[i] ^= dirty_array[i];
933                 }
934
935                 free_space_ids += ndirty;
936                 space_id_index = 0;
937         }
938 }
939
940 #else /* CONFIG_SMP */
941
942 static void recycle_sids(void)
943 {
944         int i;
945
946         /* NOTE: sid_lock must be held upon entry */
947
948         if (dirty_space_ids != 0) {
949                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
950                         space_id[i] ^= dirty_space_id[i];
951                         dirty_space_id[i] = 0;
952                 }
953
954                 free_space_ids += dirty_space_ids;
955                 dirty_space_ids = 0;
956                 space_id_index = 0;
957         }
958 }
959 #endif
960
961 /*
962  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
963  * purged, we can safely reuse the space ids that were released but
964  * not flushed from the tlb.
965  */
966
967 #ifdef CONFIG_SMP
968
969 static unsigned long recycle_ndirty;
970 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
971 static unsigned int recycle_inuse = 0;
972
973 void flush_tlb_all(void)
974 {
975         int do_recycle;
976
977         do_recycle = 0;
978         spin_lock(&sid_lock);
979         if (dirty_space_ids > RECYCLE_THRESHOLD) {
980             if (recycle_inuse) {
981                 BUG();  /* FIXME: Use a semaphore/wait queue here */
982             }
983             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
984             recycle_inuse++;
985             do_recycle++;
986         }
987         spin_unlock(&sid_lock);
988         on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
989         if (do_recycle) {
990             spin_lock(&sid_lock);
991             recycle_sids(recycle_ndirty,recycle_dirty_array);
992             recycle_inuse = 0;
993             spin_unlock(&sid_lock);
994         }
995 }
996 #else
997 void flush_tlb_all(void)
998 {
999         spin_lock(&sid_lock);
1000         flush_tlb_all_local();
1001         recycle_sids();
1002         spin_unlock(&sid_lock);
1003 }
1004 #endif
1005
1006 #ifdef CONFIG_BLK_DEV_INITRD
1007 void free_initrd_mem(unsigned long start, unsigned long end)
1008 {
1009 #if 0
1010         if (start < end)
1011                 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1012         for (; start < end; start += PAGE_SIZE) {
1013                 ClearPageReserved(virt_to_page(start));
1014                 set_page_count(virt_to_page(start), 1);
1015                 free_page(start);
1016                 num_physpages++;
1017                 totalram_pages++;
1018         }
1019 #endif
1020 }
1021 #endif