fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/smp_lock.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/user.h>
28 #include <linux/elf.h>
29 #include <linux/init.h>
30 #include <linux/prctl.h>
31 #include <linux/init_task.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/mqueue.h>
35 #include <linux/hardirq.h>
36 #include <linux/utsname.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
41 #include <asm/io.h>
42 #include <asm/processor.h>
43 #include <asm/mmu.h>
44 #include <asm/prom.h>
45 #include <asm/machdep.h>
46 #include <asm/time.h>
47 #include <asm/syscalls.h>
48 #ifdef CONFIG_PPC64
49 #include <asm/firmware.h>
50 #endif
51
52 extern unsigned long _get_SP(void);
53
54 #ifndef CONFIG_SMP
55 struct task_struct *last_task_used_math = NULL;
56 struct task_struct *last_task_used_altivec = NULL;
57 struct task_struct *last_task_used_spe = NULL;
58 #endif
59
60 /*
61  * Make sure the floating-point register state in the
62  * the thread_struct is up to date for task tsk.
63  */
64 void flush_fp_to_thread(struct task_struct *tsk)
65 {
66         if (tsk->thread.regs) {
67                 /*
68                  * We need to disable preemption here because if we didn't,
69                  * another process could get scheduled after the regs->msr
70                  * test but before we have finished saving the FP registers
71                  * to the thread_struct.  That process could take over the
72                  * FPU, and then when we get scheduled again we would store
73                  * bogus values for the remaining FP registers.
74                  */
75                 preempt_disable();
76                 if (tsk->thread.regs->msr & MSR_FP) {
77 #ifdef CONFIG_SMP
78                         /*
79                          * This should only ever be called for current or
80                          * for a stopped child process.  Since we save away
81                          * the FP register state on context switch on SMP,
82                          * there is something wrong if a stopped child appears
83                          * to still have its FP state in the CPU registers.
84                          */
85                         BUG_ON(tsk != current);
86 #endif
87                         giveup_fpu(current);
88                 }
89                 preempt_enable();
90         }
91 }
92
93 void enable_kernel_fp(void)
94 {
95         WARN_ON(preemptible());
96
97 #ifdef CONFIG_SMP
98         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
99                 giveup_fpu(current);
100         else
101                 giveup_fpu(NULL);       /* just enables FP for kernel */
102 #else
103         giveup_fpu(last_task_used_math);
104 #endif /* CONFIG_SMP */
105 }
106 EXPORT_SYMBOL(enable_kernel_fp);
107
108 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
109 {
110         if (!tsk->thread.regs)
111                 return 0;
112         flush_fp_to_thread(current);
113
114         memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
115
116         return 1;
117 }
118
119 #ifdef CONFIG_ALTIVEC
120 void enable_kernel_altivec(void)
121 {
122         WARN_ON(preemptible());
123
124 #ifdef CONFIG_SMP
125         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
126                 giveup_altivec(current);
127         else
128                 giveup_altivec(NULL);   /* just enable AltiVec for kernel - force */
129 #else
130         giveup_altivec(last_task_used_altivec);
131 #endif /* CONFIG_SMP */
132 }
133 EXPORT_SYMBOL(enable_kernel_altivec);
134
135 /*
136  * Make sure the VMX/Altivec register state in the
137  * the thread_struct is up to date for task tsk.
138  */
139 void flush_altivec_to_thread(struct task_struct *tsk)
140 {
141         if (tsk->thread.regs) {
142                 preempt_disable();
143                 if (tsk->thread.regs->msr & MSR_VEC) {
144 #ifdef CONFIG_SMP
145                         BUG_ON(tsk != current);
146 #endif
147                         giveup_altivec(current);
148                 }
149                 preempt_enable();
150         }
151 }
152
153 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
154 {
155         flush_altivec_to_thread(current);
156         memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
157         return 1;
158 }
159 #endif /* CONFIG_ALTIVEC */
160
161 #ifdef CONFIG_SPE
162
163 void enable_kernel_spe(void)
164 {
165         WARN_ON(preemptible());
166
167 #ifdef CONFIG_SMP
168         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
169                 giveup_spe(current);
170         else
171                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
172 #else
173         giveup_spe(last_task_used_spe);
174 #endif /* __SMP __ */
175 }
176 EXPORT_SYMBOL(enable_kernel_spe);
177
178 void flush_spe_to_thread(struct task_struct *tsk)
179 {
180         if (tsk->thread.regs) {
181                 preempt_disable();
182                 if (tsk->thread.regs->msr & MSR_SPE) {
183 #ifdef CONFIG_SMP
184                         BUG_ON(tsk != current);
185 #endif
186                         giveup_spe(current);
187                 }
188                 preempt_enable();
189         }
190 }
191
192 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
193 {
194         flush_spe_to_thread(current);
195         /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
196         memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
197         return 1;
198 }
199 #endif /* CONFIG_SPE */
200
201 #ifndef CONFIG_SMP
202 /*
203  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
204  * and the current task has some state, discard it.
205  */
206 void discard_lazy_cpu_state(void)
207 {
208         preempt_disable();
209         if (last_task_used_math == current)
210                 last_task_used_math = NULL;
211 #ifdef CONFIG_ALTIVEC
212         if (last_task_used_altivec == current)
213                 last_task_used_altivec = NULL;
214 #endif /* CONFIG_ALTIVEC */
215 #ifdef CONFIG_SPE
216         if (last_task_used_spe == current)
217                 last_task_used_spe = NULL;
218 #endif
219         preempt_enable();
220 }
221 #endif /* CONFIG_SMP */
222
223 #ifdef CONFIG_PPC_MERGE         /* XXX for now */
224 int set_dabr(unsigned long dabr)
225 {
226         if (ppc_md.set_dabr)
227                 return ppc_md.set_dabr(dabr);
228
229         mtspr(SPRN_DABR, dabr);
230         return 0;
231 }
232 #endif
233
234 #ifdef CONFIG_PPC64
235 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
236 static DEFINE_PER_CPU(unsigned long, current_dabr);
237 #endif
238
239 struct task_struct *__switch_to(struct task_struct *prev,
240         struct task_struct *new)
241 {
242         struct thread_struct *new_thread, *old_thread;
243         unsigned long flags;
244         struct task_struct *last;
245
246 #ifdef CONFIG_SMP
247         /* avoid complexity of lazy save/restore of fpu
248          * by just saving it every time we switch out if
249          * this task used the fpu during the last quantum.
250          *
251          * If it tries to use the fpu again, it'll trap and
252          * reload its fp regs.  So we don't have to do a restore
253          * every switch, just a save.
254          *  -- Cort
255          */
256         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
257                 giveup_fpu(prev);
258 #ifdef CONFIG_ALTIVEC
259         /*
260          * If the previous thread used altivec in the last quantum
261          * (thus changing altivec regs) then save them.
262          * We used to check the VRSAVE register but not all apps
263          * set it, so we don't rely on it now (and in fact we need
264          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
265          *
266          * On SMP we always save/restore altivec regs just to avoid the
267          * complexity of changing processors.
268          *  -- Cort
269          */
270         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
271                 giveup_altivec(prev);
272 #endif /* CONFIG_ALTIVEC */
273 #ifdef CONFIG_SPE
274         /*
275          * If the previous thread used spe in the last quantum
276          * (thus changing spe regs) then save them.
277          *
278          * On SMP we always save/restore spe regs just to avoid the
279          * complexity of changing processors.
280          */
281         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
282                 giveup_spe(prev);
283 #endif /* CONFIG_SPE */
284
285 #else  /* CONFIG_SMP */
286 #ifdef CONFIG_ALTIVEC
287         /* Avoid the trap.  On smp this this never happens since
288          * we don't set last_task_used_altivec -- Cort
289          */
290         if (new->thread.regs && last_task_used_altivec == new)
291                 new->thread.regs->msr |= MSR_VEC;
292 #endif /* CONFIG_ALTIVEC */
293 #ifdef CONFIG_SPE
294         /* Avoid the trap.  On smp this this never happens since
295          * we don't set last_task_used_spe
296          */
297         if (new->thread.regs && last_task_used_spe == new)
298                 new->thread.regs->msr |= MSR_SPE;
299 #endif /* CONFIG_SPE */
300
301 #endif /* CONFIG_SMP */
302
303 #ifdef CONFIG_PPC64     /* for now */
304         if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
305                 set_dabr(new->thread.dabr);
306                 __get_cpu_var(current_dabr) = new->thread.dabr;
307         }
308
309         flush_tlb_pending();
310 #endif
311
312         new_thread = &new->thread;
313         old_thread = &current->thread;
314
315 #ifdef CONFIG_PPC64
316         /*
317          * Collect processor utilization data per process
318          */
319         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
320                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
321                 long unsigned start_tb, current_tb;
322                 start_tb = old_thread->start_tb;
323                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
324                 old_thread->accum_tb += (current_tb - start_tb);
325                 new_thread->start_tb = current_tb;
326         }
327 #endif
328
329         local_irq_save(flags);
330
331         account_system_vtime(current);
332         account_process_vtime(current);
333         calculate_steal_time();
334
335         last = _switch(old_thread, new_thread);
336
337         local_irq_restore(flags);
338
339         return last;
340 }
341
342 static int instructions_to_print = 16;
343
344 static void show_instructions(struct pt_regs *regs)
345 {
346         int i;
347         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
348                         sizeof(int));
349
350         printk("Instruction dump:");
351
352         for (i = 0; i < instructions_to_print; i++) {
353                 int instr;
354
355                 if (!(i % 8))
356                         printk("\n");
357
358                 /* We use __get_user here *only* to avoid an OOPS on a
359                  * bad address because the pc *should* only be a
360                  * kernel address.
361                  */
362                 if (!__kernel_text_address(pc) ||
363                      __get_user(instr, (unsigned int __user *)pc)) {
364                         printk("XXXXXXXX ");
365                 } else {
366                         if (regs->nip == pc)
367                                 printk("<%08x> ", instr);
368                         else
369                                 printk("%08x ", instr);
370                 }
371
372                 pc += sizeof(int);
373         }
374
375         printk("\n");
376 }
377
378 static struct regbit {
379         unsigned long bit;
380         const char *name;
381 } msr_bits[] = {
382         {MSR_EE,        "EE"},
383         {MSR_PR,        "PR"},
384         {MSR_FP,        "FP"},
385         {MSR_ME,        "ME"},
386         {MSR_IR,        "IR"},
387         {MSR_DR,        "DR"},
388         {0,             NULL}
389 };
390
391 static void printbits(unsigned long val, struct regbit *bits)
392 {
393         const char *sep = "";
394
395         printk("<");
396         for (; bits->bit; ++bits)
397                 if (val & bits->bit) {
398                         printk("%s%s", sep, bits->name);
399                         sep = ",";
400                 }
401         printk(">");
402 }
403
404 #ifdef CONFIG_PPC64
405 #define REG             "%016lX"
406 #define REGS_PER_LINE   4
407 #define LAST_VOLATILE   13
408 #else
409 #define REG             "%08lX"
410 #define REGS_PER_LINE   8
411 #define LAST_VOLATILE   12
412 #endif
413
414 void show_regs(struct pt_regs * regs)
415 {
416         int i, trap;
417
418         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
419                regs->nip, regs->link, regs->ctr);
420         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
421                regs, regs->trap, print_tainted(), init_utsname()->release);
422         printk("MSR: "REG" ", regs->msr);
423         printbits(regs->msr, msr_bits);
424         printk("  CR: %08lX  XER: %08lX\n", regs->ccr, regs->xer);
425         trap = TRAP(regs);
426         if (trap == 0x300 || trap == 0x600)
427                 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
428         printk("TASK = %p[%d,#%u] '%s' THREAD: %p",
429                current, current->pid, current->xid,
430                current->comm, task_thread_info(current));
431
432 #ifdef CONFIG_SMP
433         printk(" CPU: %d", smp_processor_id());
434 #endif /* CONFIG_SMP */
435
436         for (i = 0;  i < 32;  i++) {
437                 if ((i % REGS_PER_LINE) == 0)
438                         printk("\n" KERN_INFO "GPR%02d: ", i);
439                 printk(REG " ", regs->gpr[i]);
440                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
441                         break;
442         }
443         printk("\n");
444 #ifdef CONFIG_KALLSYMS
445         /*
446          * Lookup NIP late so we have the best change of getting the
447          * above info out without failing
448          */
449         printk("NIP ["REG"] ", regs->nip);
450         print_symbol("%s\n", regs->nip);
451         printk("LR ["REG"] ", regs->link);
452         print_symbol("%s\n", regs->link);
453 #endif
454         show_stack(current, (unsigned long *) regs->gpr[1]);
455         if (!user_mode(regs))
456                 show_instructions(regs);
457 }
458
459 void exit_thread(void)
460 {
461         discard_lazy_cpu_state();
462 }
463
464 void flush_thread(void)
465 {
466 #ifdef CONFIG_PPC64
467         struct thread_info *t = current_thread_info();
468
469         if (t->flags & _TIF_ABI_PENDING)
470                 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
471 #endif
472
473         discard_lazy_cpu_state();
474
475 #ifdef CONFIG_PPC64     /* for now */
476         if (current->thread.dabr) {
477                 current->thread.dabr = 0;
478                 set_dabr(0);
479         }
480 #endif
481 }
482
483 void
484 release_thread(struct task_struct *t)
485 {
486 }
487
488 /*
489  * This gets called before we allocate a new thread and copy
490  * the current task into it.
491  */
492 void prepare_to_copy(struct task_struct *tsk)
493 {
494         flush_fp_to_thread(current);
495         flush_altivec_to_thread(current);
496         flush_spe_to_thread(current);
497 }
498
499 /*
500  * Copy a thread..
501  */
502 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
503                 unsigned long unused, struct task_struct *p,
504                 struct pt_regs *regs)
505 {
506         struct pt_regs *childregs, *kregs;
507         extern void ret_from_fork(void);
508         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
509
510         CHECK_FULL_REGS(regs);
511         /* Copy registers */
512         sp -= sizeof(struct pt_regs);
513         childregs = (struct pt_regs *) sp;
514         *childregs = *regs;
515         if ((childregs->msr & MSR_PR) == 0) {
516                 /* for kernel thread, set `current' and stackptr in new task */
517                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
518 #ifdef CONFIG_PPC32
519                 childregs->gpr[2] = (unsigned long) p;
520 #else
521                 clear_tsk_thread_flag(p, TIF_32BIT);
522 #endif
523                 p->thread.regs = NULL;  /* no user register state */
524         } else {
525                 childregs->gpr[1] = usp;
526                 p->thread.regs = childregs;
527                 if (clone_flags & CLONE_SETTLS) {
528 #ifdef CONFIG_PPC64
529                         if (!test_thread_flag(TIF_32BIT))
530                                 childregs->gpr[13] = childregs->gpr[6];
531                         else
532 #endif
533                                 childregs->gpr[2] = childregs->gpr[6];
534                 }
535         }
536         childregs->gpr[3] = 0;  /* Result from fork() */
537         sp -= STACK_FRAME_OVERHEAD;
538
539         /*
540          * The way this works is that at some point in the future
541          * some task will call _switch to switch to the new task.
542          * That will pop off the stack frame created below and start
543          * the new task running at ret_from_fork.  The new task will
544          * do some house keeping and then return from the fork or clone
545          * system call, using the stack frame created above.
546          */
547         sp -= sizeof(struct pt_regs);
548         kregs = (struct pt_regs *) sp;
549         sp -= STACK_FRAME_OVERHEAD;
550         p->thread.ksp = sp;
551
552 #ifdef CONFIG_PPC64
553         if (cpu_has_feature(CPU_FTR_SLB)) {
554                 unsigned long sp_vsid = get_kernel_vsid(sp);
555                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
556
557                 sp_vsid <<= SLB_VSID_SHIFT;
558                 sp_vsid |= SLB_VSID_KERNEL | llp;
559                 p->thread.ksp_vsid = sp_vsid;
560         }
561
562         /*
563          * The PPC64 ABI makes use of a TOC to contain function 
564          * pointers.  The function (ret_from_except) is actually a pointer
565          * to the TOC entry.  The first entry is a pointer to the actual
566          * function.
567          */
568         kregs->nip = *((unsigned long *)ret_from_fork);
569 #else
570         kregs->nip = (unsigned long)ret_from_fork;
571         p->thread.last_syscall = -1;
572 #endif
573
574         return 0;
575 }
576
577 /*
578  * Set up a thread for executing a new program
579  */
580 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
581 {
582 #ifdef CONFIG_PPC64
583         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
584 #endif
585
586         set_fs(USER_DS);
587
588         /*
589          * If we exec out of a kernel thread then thread.regs will not be
590          * set.  Do it now.
591          */
592         if (!current->thread.regs) {
593                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
594                 current->thread.regs = regs - 1;
595         }
596
597         memset(regs->gpr, 0, sizeof(regs->gpr));
598         regs->ctr = 0;
599         regs->link = 0;
600         regs->xer = 0;
601         regs->ccr = 0;
602         regs->gpr[1] = sp;
603
604 #ifdef CONFIG_PPC32
605         regs->mq = 0;
606         regs->nip = start;
607         regs->msr = MSR_USER;
608 #else
609         if (!test_thread_flag(TIF_32BIT)) {
610                 unsigned long entry, toc;
611
612                 /* start is a relocated pointer to the function descriptor for
613                  * the elf _start routine.  The first entry in the function
614                  * descriptor is the entry address of _start and the second
615                  * entry is the TOC value we need to use.
616                  */
617                 __get_user(entry, (unsigned long __user *)start);
618                 __get_user(toc, (unsigned long __user *)start+1);
619
620                 /* Check whether the e_entry function descriptor entries
621                  * need to be relocated before we can use them.
622                  */
623                 if (load_addr != 0) {
624                         entry += load_addr;
625                         toc   += load_addr;
626                 }
627                 regs->nip = entry;
628                 regs->gpr[2] = toc;
629                 regs->msr = MSR_USER64;
630         } else {
631                 regs->nip = start;
632                 regs->gpr[2] = 0;
633                 regs->msr = MSR_USER32;
634         }
635 #endif
636
637         discard_lazy_cpu_state();
638         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
639         current->thread.fpscr.val = 0;
640 #ifdef CONFIG_ALTIVEC
641         memset(current->thread.vr, 0, sizeof(current->thread.vr));
642         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
643         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
644         current->thread.vrsave = 0;
645         current->thread.used_vr = 0;
646 #endif /* CONFIG_ALTIVEC */
647 #ifdef CONFIG_SPE
648         memset(current->thread.evr, 0, sizeof(current->thread.evr));
649         current->thread.acc = 0;
650         current->thread.spefscr = 0;
651         current->thread.used_spe = 0;
652 #endif /* CONFIG_SPE */
653 }
654
655 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
656                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
657
658 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
659 {
660         struct pt_regs *regs = tsk->thread.regs;
661
662         /* This is a bit hairy.  If we are an SPE enabled  processor
663          * (have embedded fp) we store the IEEE exception enable flags in
664          * fpexc_mode.  fpexc_mode is also used for setting FP exception
665          * mode (asyn, precise, disabled) for 'Classic' FP. */
666         if (val & PR_FP_EXC_SW_ENABLE) {
667 #ifdef CONFIG_SPE
668                 tsk->thread.fpexc_mode = val &
669                         (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
670                 return 0;
671 #else
672                 return -EINVAL;
673 #endif
674         }
675
676         /* on a CONFIG_SPE this does not hurt us.  The bits that
677          * __pack_fe01 use do not overlap with bits used for
678          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
679          * on CONFIG_SPE implementations are reserved so writing to
680          * them does not change anything */
681         if (val > PR_FP_EXC_PRECISE)
682                 return -EINVAL;
683         tsk->thread.fpexc_mode = __pack_fe01(val);
684         if (regs != NULL && (regs->msr & MSR_FP) != 0)
685                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
686                         | tsk->thread.fpexc_mode;
687         return 0;
688 }
689
690 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
691 {
692         unsigned int val;
693
694         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
695 #ifdef CONFIG_SPE
696                 val = tsk->thread.fpexc_mode;
697 #else
698                 return -EINVAL;
699 #endif
700         else
701                 val = __unpack_fe01(tsk->thread.fpexc_mode);
702         return put_user(val, (unsigned int __user *) adr);
703 }
704
705 int set_endian(struct task_struct *tsk, unsigned int val)
706 {
707         struct pt_regs *regs = tsk->thread.regs;
708
709         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
710             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
711                 return -EINVAL;
712
713         if (regs == NULL)
714                 return -EINVAL;
715
716         if (val == PR_ENDIAN_BIG)
717                 regs->msr &= ~MSR_LE;
718         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
719                 regs->msr |= MSR_LE;
720         else
721                 return -EINVAL;
722
723         return 0;
724 }
725
726 int get_endian(struct task_struct *tsk, unsigned long adr)
727 {
728         struct pt_regs *regs = tsk->thread.regs;
729         unsigned int val;
730
731         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
732             !cpu_has_feature(CPU_FTR_REAL_LE))
733                 return -EINVAL;
734
735         if (regs == NULL)
736                 return -EINVAL;
737
738         if (regs->msr & MSR_LE) {
739                 if (cpu_has_feature(CPU_FTR_REAL_LE))
740                         val = PR_ENDIAN_LITTLE;
741                 else
742                         val = PR_ENDIAN_PPC_LITTLE;
743         } else
744                 val = PR_ENDIAN_BIG;
745
746         return put_user(val, (unsigned int __user *)adr);
747 }
748
749 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
750 {
751         tsk->thread.align_ctl = val;
752         return 0;
753 }
754
755 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
756 {
757         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
758 }
759
760 #define TRUNC_PTR(x)    ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
761
762 int sys_clone(unsigned long clone_flags, unsigned long usp,
763               int __user *parent_tidp, void __user *child_threadptr,
764               int __user *child_tidp, int p6,
765               struct pt_regs *regs)
766 {
767         CHECK_FULL_REGS(regs);
768         if (usp == 0)
769                 usp = regs->gpr[1];     /* stack pointer for child */
770 #ifdef CONFIG_PPC64
771         if (test_thread_flag(TIF_32BIT)) {
772                 parent_tidp = TRUNC_PTR(parent_tidp);
773                 child_tidp = TRUNC_PTR(child_tidp);
774         }
775 #endif
776         return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
777 }
778
779 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
780              unsigned long p4, unsigned long p5, unsigned long p6,
781              struct pt_regs *regs)
782 {
783         CHECK_FULL_REGS(regs);
784         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
785 }
786
787 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
788               unsigned long p4, unsigned long p5, unsigned long p6,
789               struct pt_regs *regs)
790 {
791         CHECK_FULL_REGS(regs);
792         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
793                         regs, 0, NULL, NULL);
794 }
795
796 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
797                unsigned long a3, unsigned long a4, unsigned long a5,
798                struct pt_regs *regs)
799 {
800         int error;
801         char *filename;
802
803         filename = getname((char __user *) a0);
804         error = PTR_ERR(filename);
805         if (IS_ERR(filename))
806                 goto out;
807         flush_fp_to_thread(current);
808         flush_altivec_to_thread(current);
809         flush_spe_to_thread(current);
810         error = do_execve(filename, (char __user * __user *) a1,
811                           (char __user * __user *) a2, regs);
812         putname(filename);
813 out:
814         return error;
815 }
816
817 int validate_sp(unsigned long sp, struct task_struct *p,
818                        unsigned long nbytes)
819 {
820         unsigned long stack_page = (unsigned long)task_stack_page(p);
821
822         if (sp >= stack_page + sizeof(struct thread_struct)
823             && sp <= stack_page + THREAD_SIZE - nbytes)
824                 return 1;
825
826 #ifdef CONFIG_IRQSTACKS
827         stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
828         if (sp >= stack_page + sizeof(struct thread_struct)
829             && sp <= stack_page + THREAD_SIZE - nbytes)
830                 return 1;
831
832         stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
833         if (sp >= stack_page + sizeof(struct thread_struct)
834             && sp <= stack_page + THREAD_SIZE - nbytes)
835                 return 1;
836 #endif
837
838         return 0;
839 }
840
841 #ifdef CONFIG_PPC64
842 #define MIN_STACK_FRAME 112     /* same as STACK_FRAME_OVERHEAD, in fact */
843 #define FRAME_LR_SAVE   2
844 #define INT_FRAME_SIZE  (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
845 #define REGS_MARKER     0x7265677368657265ul
846 #define FRAME_MARKER    12
847 #else
848 #define MIN_STACK_FRAME 16
849 #define FRAME_LR_SAVE   1
850 #define INT_FRAME_SIZE  (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
851 #define REGS_MARKER     0x72656773ul
852 #define FRAME_MARKER    2
853 #endif
854
855 EXPORT_SYMBOL(validate_sp);
856
857 unsigned long get_wchan(struct task_struct *p)
858 {
859         unsigned long ip, sp;
860         int count = 0;
861
862         if (!p || p == current || p->state == TASK_RUNNING)
863                 return 0;
864
865         sp = p->thread.ksp;
866         if (!validate_sp(sp, p, MIN_STACK_FRAME))
867                 return 0;
868
869         do {
870                 sp = *(unsigned long *)sp;
871                 if (!validate_sp(sp, p, MIN_STACK_FRAME))
872                         return 0;
873                 if (count > 0) {
874                         ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
875                         if (!in_sched_functions(ip))
876                                 return ip;
877                 }
878         } while (count++ < 16);
879         return 0;
880 }
881
882 static int kstack_depth_to_print = 64;
883
884 void show_stack(struct task_struct *tsk, unsigned long *stack)
885 {
886         unsigned long sp, ip, lr, newsp;
887         int count = 0;
888         int firstframe = 1;
889
890         sp = (unsigned long) stack;
891         if (tsk == NULL)
892                 tsk = current;
893         if (sp == 0) {
894                 if (tsk == current)
895                         asm("mr %0,1" : "=r" (sp));
896                 else
897                         sp = tsk->thread.ksp;
898         }
899
900         lr = 0;
901         printk("Call Trace:\n");
902         do {
903                 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
904                         return;
905
906                 stack = (unsigned long *) sp;
907                 newsp = stack[0];
908                 ip = stack[FRAME_LR_SAVE];
909                 if (!firstframe || ip != lr) {
910                         printk("["REG"] ["REG"] ", sp, ip);
911                         print_symbol("%s", ip);
912                         if (firstframe)
913                                 printk(" (unreliable)");
914                         printk("\n");
915                 }
916                 firstframe = 0;
917
918                 /*
919                  * See if this is an exception frame.
920                  * We look for the "regshere" marker in the current frame.
921                  */
922                 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
923                     && stack[FRAME_MARKER] == REGS_MARKER) {
924                         struct pt_regs *regs = (struct pt_regs *)
925                                 (sp + STACK_FRAME_OVERHEAD);
926                         printk("--- Exception: %lx", regs->trap);
927                         print_symbol(" at %s\n", regs->nip);
928                         lr = regs->link;
929                         print_symbol("    LR = %s\n", lr);
930                         firstframe = 1;
931                 }
932
933                 sp = newsp;
934         } while (count++ < kstack_depth_to_print);
935 }
936
937 void dump_stack(void)
938 {
939         show_stack(current, NULL);
940 }
941 EXPORT_SYMBOL(dump_stack);
942
943 #ifdef CONFIG_PPC64
944 void ppc64_runlatch_on(void)
945 {
946         unsigned long ctrl;
947
948         if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
949                 HMT_medium();
950
951                 ctrl = mfspr(SPRN_CTRLF);
952                 ctrl |= CTRL_RUNLATCH;
953                 mtspr(SPRN_CTRLT, ctrl);
954
955                 set_thread_flag(TIF_RUNLATCH);
956         }
957 }
958
959 void ppc64_runlatch_off(void)
960 {
961         unsigned long ctrl;
962
963         if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
964                 HMT_medium();
965
966                 clear_thread_flag(TIF_RUNLATCH);
967
968                 ctrl = mfspr(SPRN_CTRLF);
969                 ctrl &= ~CTRL_RUNLATCH;
970                 mtspr(SPRN_CTRLT, ctrl);
971         }
972 }
973 #endif