vserver 1.9.5.x5
[linux-2.6.git] / arch / ppc / kernel / process.c
1 /*
2  *  arch/ppc/kernel/process.c
3  *
4  *  Derived from "arch/i386/kernel/process.c"
5  *    Copyright (C) 1995  Linus Torvalds
6  *
7  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8  *  Paul Mackerras (paulus@cs.anu.edu.au)
9  *
10  *  PowerPC version
11  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
12  *
13  *  This program is free software; you can redistribute it and/or
14  *  modify it under the terms of the GNU General Public License
15  *  as published by the Free Software Foundation; either version
16  *  2 of the License, or (at your option) any later version.
17  *
18  */
19
20 #include <linux/config.h>
21 #include <linux/errno.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/smp.h>
26 #include <linux/smp_lock.h>
27 #include <linux/stddef.h>
28 #include <linux/unistd.h>
29 #include <linux/ptrace.h>
30 #include <linux/slab.h>
31 #include <linux/user.h>
32 #include <linux/elf.h>
33 #include <linux/init.h>
34 #include <linux/prctl.h>
35 #include <linux/init_task.h>
36 #include <linux/module.h>
37 #include <linux/kallsyms.h>
38 #include <linux/mqueue.h>
39 #include <linux/hardirq.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48
49 extern unsigned long _get_SP(void);
50
51 struct task_struct *last_task_used_math = NULL;
52 struct task_struct *last_task_used_altivec = NULL;
53 struct task_struct *last_task_used_spe = NULL;
54
55 static struct fs_struct init_fs = INIT_FS;
56 static struct files_struct init_files = INIT_FILES;
57 static struct signal_struct init_signals = INIT_SIGNALS(init_signals);
58 static struct sighand_struct init_sighand = INIT_SIGHAND(init_sighand);
59 struct mm_struct init_mm = INIT_MM(init_mm);
60 EXPORT_SYMBOL(init_mm);
61
62 /* this is 8kB-aligned so we can get to the thread_info struct
63    at the base of it from the stack pointer with 1 integer instruction. */
64 union thread_union init_thread_union
65         __attribute__((__section__(".data.init_task"))) =
66 { INIT_THREAD_INFO(init_task) };
67
68 /* initial task structure */
69 struct task_struct init_task = INIT_TASK(init_task);
70 EXPORT_SYMBOL(init_task);
71
72 /* only used to get secondary processor up */
73 struct task_struct *current_set[NR_CPUS] = {&init_task, };
74
75 #undef SHOW_TASK_SWITCHES
76 #undef CHECK_STACK
77
78 #if defined(CHECK_STACK)
79 unsigned long
80 kernel_stack_top(struct task_struct *tsk)
81 {
82         return ((unsigned long)tsk) + sizeof(union task_union);
83 }
84
85 unsigned long
86 task_top(struct task_struct *tsk)
87 {
88         return ((unsigned long)tsk) + sizeof(struct thread_info);
89 }
90
91 /* check to make sure the kernel stack is healthy */
92 int check_stack(struct task_struct *tsk)
93 {
94         unsigned long stack_top = kernel_stack_top(tsk);
95         unsigned long tsk_top = task_top(tsk);
96         int ret = 0;
97
98 #if 0
99         /* check thread magic */
100         if ( tsk->thread.magic != THREAD_MAGIC )
101         {
102                 ret |= 1;
103                 printk("thread.magic bad: %08x\n", tsk->thread.magic);
104         }
105 #endif
106
107         if ( !tsk )
108                 printk("check_stack(): tsk bad tsk %p\n",tsk);
109
110         /* check if stored ksp is bad */
111         if ( (tsk->thread.ksp > stack_top) || (tsk->thread.ksp < tsk_top) )
112         {
113                 printk("stack out of bounds: %s/%d\n"
114                        " tsk_top %08lx ksp %08lx stack_top %08lx\n",
115                        tsk->comm,tsk->pid,
116                        tsk_top, tsk->thread.ksp, stack_top);
117                 ret |= 2;
118         }
119
120         /* check if stack ptr RIGHT NOW is bad */
121         if ( (tsk == current) && ((_get_SP() > stack_top ) || (_get_SP() < tsk_top)) )
122         {
123                 printk("current stack ptr out of bounds: %s/%d\n"
124                        " tsk_top %08lx sp %08lx stack_top %08lx\n",
125                        current->comm,current->pid,
126                        tsk_top, _get_SP(), stack_top);
127                 ret |= 4;
128         }
129
130 #if 0
131         /* check amount of free stack */
132         for ( i = (unsigned long *)task_top(tsk) ; i < kernel_stack_top(tsk) ; i++ )
133         {
134                 if ( !i )
135                         printk("check_stack(): i = %p\n", i);
136                 if ( *i != 0 )
137                 {
138                         /* only notify if it's less than 900 bytes */
139                         if ( (i - (unsigned long *)task_top(tsk))  < 900 )
140                                 printk("%d bytes free on stack\n",
141                                        i - task_top(tsk));
142                         break;
143                 }
144         }
145 #endif
146
147         if (ret)
148         {
149                 panic("bad kernel stack");
150         }
151         return(ret);
152 }
153 #endif /* defined(CHECK_STACK) */
154
155 #ifdef CONFIG_ALTIVEC
156 int
157 dump_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
158 {
159         if (regs->msr & MSR_VEC)
160                 giveup_altivec(current);
161         memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
162         return 1;
163 }
164
165 void
166 enable_kernel_altivec(void)
167 {
168         WARN_ON(preemptible());
169
170 #ifdef CONFIG_SMP
171         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
172                 giveup_altivec(current);
173         else
174                 giveup_altivec(NULL);   /* just enable AltiVec for kernel - force */
175 #else
176         giveup_altivec(last_task_used_altivec);
177 #endif /* __SMP __ */
178 }
179 EXPORT_SYMBOL(enable_kernel_altivec);
180 #endif /* CONFIG_ALTIVEC */
181
182 #ifdef CONFIG_SPE
183 int
184 dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
185 {
186         if (regs->msr & MSR_SPE)
187                 giveup_spe(current);
188         /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
189         memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
190         return 1;
191 }
192
193 void
194 enable_kernel_spe(void)
195 {
196         WARN_ON(preemptible());
197
198 #ifdef CONFIG_SMP
199         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
200                 giveup_spe(current);
201         else
202                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
203 #else
204         giveup_spe(last_task_used_spe);
205 #endif /* __SMP __ */
206 }
207 EXPORT_SYMBOL(enable_kernel_spe);
208 #endif /* CONFIG_SPE */
209
210 void
211 enable_kernel_fp(void)
212 {
213         WARN_ON(preemptible());
214
215 #ifdef CONFIG_SMP
216         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
217                 giveup_fpu(current);
218         else
219                 giveup_fpu(NULL);       /* just enables FP for kernel */
220 #else
221         giveup_fpu(last_task_used_math);
222 #endif /* CONFIG_SMP */
223 }
224 EXPORT_SYMBOL(enable_kernel_fp);
225
226 int
227 dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
228 {
229         preempt_disable();
230         if (tsk->thread.regs && (tsk->thread.regs->msr & MSR_FP))
231                 giveup_fpu(tsk);
232         preempt_enable();
233         memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
234         return 1;
235 }
236
237 struct task_struct *__switch_to(struct task_struct *prev,
238         struct task_struct *new)
239 {
240         struct thread_struct *new_thread, *old_thread;
241         unsigned long s;
242         struct task_struct *last;
243
244         local_irq_save(s);
245 #ifdef CHECK_STACK
246         check_stack(prev);
247         check_stack(new);
248 #endif
249
250 #ifdef CONFIG_SMP
251         /* avoid complexity of lazy save/restore of fpu
252          * by just saving it every time we switch out if
253          * this task used the fpu during the last quantum.
254          *
255          * If it tries to use the fpu again, it'll trap and
256          * reload its fp regs.  So we don't have to do a restore
257          * every switch, just a save.
258          *  -- Cort
259          */
260         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
261                 giveup_fpu(prev);
262 #ifdef CONFIG_ALTIVEC
263         /*
264          * If the previous thread used altivec in the last quantum
265          * (thus changing altivec regs) then save them.
266          * We used to check the VRSAVE register but not all apps
267          * set it, so we don't rely on it now (and in fact we need
268          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
269          *
270          * On SMP we always save/restore altivec regs just to avoid the
271          * complexity of changing processors.
272          *  -- Cort
273          */
274         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)))
275                 giveup_altivec(prev);
276 #endif /* CONFIG_ALTIVEC */
277 #ifdef CONFIG_SPE
278         /*
279          * If the previous thread used spe in the last quantum
280          * (thus changing spe regs) then save them.
281          *
282          * On SMP we always save/restore spe regs just to avoid the
283          * complexity of changing processors.
284          */
285         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
286                 giveup_spe(prev);
287 #endif /* CONFIG_SPE */
288 #endif /* CONFIG_SMP */
289
290         /* Avoid the trap.  On smp this this never happens since
291          * we don't set last_task_used_altivec -- Cort
292          */
293         if (new->thread.regs && last_task_used_altivec == new)
294                 new->thread.regs->msr |= MSR_VEC;
295 #ifdef CONFIG_SPE
296         /* Avoid the trap.  On smp this this never happens since
297          * we don't set last_task_used_spe
298          */
299         if (new->thread.regs && last_task_used_spe == new)
300                 new->thread.regs->msr |= MSR_SPE;
301 #endif /* CONFIG_SPE */
302         new_thread = &new->thread;
303         old_thread = &current->thread;
304         last = _switch(old_thread, new_thread);
305         local_irq_restore(s);
306         return last;
307 }
308
309 void show_regs(struct pt_regs * regs)
310 {
311         int i, trap;
312
313         printk("NIP: %08lX LR: %08lX SP: %08lX REGS: %p TRAP: %04lx    %s\n",
314                regs->nip, regs->link, regs->gpr[1], regs, regs->trap,
315                print_tainted());
316         printk("MSR: %08lx EE: %01x PR: %01x FP: %01x ME: %01x IR/DR: %01x%01x\n",
317                regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0,
318                regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0,
319                regs->msr&MSR_IR ? 1 : 0,
320                regs->msr&MSR_DR ? 1 : 0);
321         trap = TRAP(regs);
322         if (trap == 0x300 || trap == 0x600)
323                 printk("DAR: %08lX, DSISR: %08lX\n", regs->dar, regs->dsisr);
324         printk("TASK = %p[%d] '%s' THREAD: %p\n",
325                current, current->pid, current->comm, current->thread_info);
326         printk("Last syscall: %ld ", current->thread.last_syscall);
327
328 #ifdef CONFIG_SMP
329         printk(" CPU: %d", smp_processor_id());
330 #endif /* CONFIG_SMP */
331
332         for (i = 0;  i < 32;  i++) {
333                 long r;
334                 if ((i % 8) == 0)
335                         printk("\n" KERN_INFO "GPR%02d: ", i);
336                 if (__get_user(r, &regs->gpr[i]))
337                         break;
338                 printk("%08lX ", r);
339                 if (i == 12 && !FULL_REGS(regs))
340                         break;
341         }
342         printk("\n");
343 #ifdef CONFIG_KALLSYMS
344         /*
345          * Lookup NIP late so we have the best change of getting the
346          * above info out without failing
347          */
348         printk("NIP [%08lx] ", regs->nip);
349         print_symbol("%s\n", regs->nip);
350         printk("LR [%08lx] ", regs->link);
351         print_symbol("%s\n", regs->link);
352 #endif
353         show_stack(current, (unsigned long *) regs->gpr[1]);
354 }
355
356 void exit_thread(void)
357 {
358         if (last_task_used_math == current)
359                 last_task_used_math = NULL;
360         if (last_task_used_altivec == current)
361                 last_task_used_altivec = NULL;
362 #ifdef CONFIG_SPE
363         if (last_task_used_spe == current)
364                 last_task_used_spe = NULL;
365 #endif
366 }
367
368 void flush_thread(void)
369 {
370         if (last_task_used_math == current)
371                 last_task_used_math = NULL;
372         if (last_task_used_altivec == current)
373                 last_task_used_altivec = NULL;
374 #ifdef CONFIG_SPE
375         if (last_task_used_spe == current)
376                 last_task_used_spe = NULL;
377 #endif
378 }
379
380 void
381 release_thread(struct task_struct *t)
382 {
383 }
384
385 /*
386  * This gets called before we allocate a new thread and copy
387  * the current task into it.
388  */
389 void prepare_to_copy(struct task_struct *tsk)
390 {
391         struct pt_regs *regs = tsk->thread.regs;
392
393         if (regs == NULL)
394                 return;
395         preempt_disable();
396         if (regs->msr & MSR_FP)
397                 giveup_fpu(current);
398 #ifdef CONFIG_ALTIVEC
399         if (regs->msr & MSR_VEC)
400                 giveup_altivec(current);
401 #endif /* CONFIG_ALTIVEC */
402 #ifdef CONFIG_SPE
403         if (regs->msr & MSR_SPE)
404                 giveup_spe(current);
405 #endif /* CONFIG_SPE */
406         preempt_enable();
407 }
408
409 /*
410  * Copy a thread..
411  */
412 int
413 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
414             unsigned long unused,
415             struct task_struct *p, struct pt_regs *regs)
416 {
417         struct pt_regs *childregs, *kregs;
418         extern void ret_from_fork(void);
419         unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE;
420         unsigned long childframe;
421
422         CHECK_FULL_REGS(regs);
423         /* Copy registers */
424         sp -= sizeof(struct pt_regs);
425         childregs = (struct pt_regs *) sp;
426         *childregs = *regs;
427         if ((childregs->msr & MSR_PR) == 0) {
428                 /* for kernel thread, set `current' and stackptr in new task */
429                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
430                 childregs->gpr[2] = (unsigned long) p;
431                 p->thread.regs = NULL;  /* no user register state */
432         } else {
433                 childregs->gpr[1] = usp;
434                 p->thread.regs = childregs;
435                 if (clone_flags & CLONE_SETTLS)
436                         childregs->gpr[2] = childregs->gpr[6];
437         }
438         childregs->gpr[3] = 0;  /* Result from fork() */
439         sp -= STACK_FRAME_OVERHEAD;
440         childframe = sp;
441
442         /*
443          * The way this works is that at some point in the future
444          * some task will call _switch to switch to the new task.
445          * That will pop off the stack frame created below and start
446          * the new task running at ret_from_fork.  The new task will
447          * do some house keeping and then return from the fork or clone
448          * system call, using the stack frame created above.
449          */
450         sp -= sizeof(struct pt_regs);
451         kregs = (struct pt_regs *) sp;
452         sp -= STACK_FRAME_OVERHEAD;
453         p->thread.ksp = sp;
454         kregs->nip = (unsigned long)ret_from_fork;
455
456         p->thread.last_syscall = -1;
457
458         return 0;
459 }
460
461 /*
462  * Set up a thread for executing a new program
463  */
464 void start_thread(struct pt_regs *regs, unsigned long nip, unsigned long sp)
465 {
466         set_fs(USER_DS);
467         memset(regs->gpr, 0, sizeof(regs->gpr));
468         regs->ctr = 0;
469         regs->link = 0;
470         regs->xer = 0;
471         regs->ccr = 0;
472         regs->mq = 0;
473         regs->nip = nip;
474         regs->gpr[1] = sp;
475         regs->msr = MSR_USER;
476         if (last_task_used_math == current)
477                 last_task_used_math = NULL;
478         if (last_task_used_altivec == current)
479                 last_task_used_altivec = NULL;
480 #ifdef CONFIG_SPE
481         if (last_task_used_spe == current)
482                 last_task_used_spe = NULL;
483 #endif
484         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
485         current->thread.fpscr = 0;
486 #ifdef CONFIG_ALTIVEC
487         memset(current->thread.vr, 0, sizeof(current->thread.vr));
488         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
489         current->thread.vrsave = 0;
490         current->thread.used_vr = 0;
491 #endif /* CONFIG_ALTIVEC */
492 #ifdef CONFIG_SPE
493         memset(current->thread.evr, 0, sizeof(current->thread.evr));
494         current->thread.acc = 0;
495         current->thread.spefscr = 0;
496         current->thread.used_spe = 0;
497 #endif /* CONFIG_SPE */
498 }
499
500 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
501                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
502
503 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
504 {
505         struct pt_regs *regs = tsk->thread.regs;
506
507         /* This is a bit hairy.  If we are an SPE enabled  processor
508          * (have embedded fp) we store the IEEE exception enable flags in
509          * fpexc_mode.  fpexc_mode is also used for setting FP exception
510          * mode (asyn, precise, disabled) for 'Classic' FP. */
511         if (val & PR_FP_EXC_SW_ENABLE) {
512 #ifdef CONFIG_SPE
513                 tsk->thread.fpexc_mode = val &
514                         (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
515 #else
516                 return -EINVAL;
517 #endif
518         } else {
519                 /* on a CONFIG_SPE this does not hurt us.  The bits that
520                  * __pack_fe01 use do not overlap with bits used for
521                  * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
522                  * on CONFIG_SPE implementations are reserved so writing to
523                  * them does not change anything */
524                 if (val > PR_FP_EXC_PRECISE)
525                         return -EINVAL;
526                 tsk->thread.fpexc_mode = __pack_fe01(val);
527                 if (regs != NULL && (regs->msr & MSR_FP) != 0)
528                         regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
529                                 | tsk->thread.fpexc_mode;
530         }
531         return 0;
532 }
533
534 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
535 {
536         unsigned int val;
537
538         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
539 #ifdef CONFIG_SPE
540                 val = tsk->thread.fpexc_mode;
541 #else
542                 return -EINVAL;
543 #endif
544         else
545                 val = __unpack_fe01(tsk->thread.fpexc_mode);
546         return put_user(val, (unsigned int __user *) adr);
547 }
548
549 int sys_clone(unsigned long clone_flags, unsigned long usp,
550               int __user *parent_tidp, void __user *child_threadptr,
551               int __user *child_tidp, int p6,
552               struct pt_regs *regs)
553 {
554         CHECK_FULL_REGS(regs);
555         if (usp == 0)
556                 usp = regs->gpr[1];     /* stack pointer for child */
557         return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
558 }
559
560 int sys_fork(int p1, int p2, int p3, int p4, int p5, int p6,
561              struct pt_regs *regs)
562 {
563         CHECK_FULL_REGS(regs);
564         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
565 }
566
567 int sys_vfork(int p1, int p2, int p3, int p4, int p5, int p6,
568               struct pt_regs *regs)
569 {
570         CHECK_FULL_REGS(regs);
571         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
572                         regs, 0, NULL, NULL);
573 }
574
575 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
576                unsigned long a3, unsigned long a4, unsigned long a5,
577                struct pt_regs *regs)
578 {
579         int error;
580         char * filename;
581
582         filename = getname((char __user *) a0);
583         error = PTR_ERR(filename);
584         if (IS_ERR(filename))
585                 goto out;
586         preempt_disable();
587         if (regs->msr & MSR_FP)
588                 giveup_fpu(current);
589 #ifdef CONFIG_ALTIVEC
590         if (regs->msr & MSR_VEC)
591                 giveup_altivec(current);
592 #endif /* CONFIG_ALTIVEC */
593 #ifdef CONFIG_SPE
594         if (regs->msr & MSR_SPE)
595                 giveup_spe(current);
596 #endif /* CONFIG_SPE */
597         preempt_enable();
598         error = do_execve(filename, (char __user *__user *) a1,
599                           (char __user *__user *) a2, regs);
600         if (error == 0) {
601                 task_lock(current);
602                 current->ptrace &= ~PT_DTRACE;
603                 task_unlock(current);
604         }
605         putname(filename);
606 out:
607         return error;
608 }
609
610 void dump_stack(void)
611 {
612         show_stack(current, NULL);
613 }
614
615 EXPORT_SYMBOL(dump_stack);
616
617 void show_stack(struct task_struct *tsk, unsigned long *stack)
618 {
619         unsigned long sp, stack_top, prev_sp, ret;
620         int count = 0;
621         unsigned long next_exc = 0;
622         struct pt_regs *regs;
623         extern char ret_from_except, ret_from_except_full, ret_from_syscall;
624
625         sp = (unsigned long) stack;
626         if (tsk == NULL)
627                 tsk = current;
628         if (sp == 0) {
629                 if (tsk == current)
630                         asm("mr %0,1" : "=r" (sp));
631                 else
632                         sp = tsk->thread.ksp;
633         }
634
635         prev_sp = (unsigned long) (tsk->thread_info + 1);
636         stack_top = (unsigned long) tsk->thread_info + THREAD_SIZE;
637         while (count < 16 && sp > prev_sp && sp < stack_top && (sp & 3) == 0) {
638                 if (count == 0) {
639                         printk("Call trace:");
640 #ifdef CONFIG_KALLSYMS
641                         printk("\n");
642 #endif
643                 } else {
644                         if (next_exc) {
645                                 ret = next_exc;
646                                 next_exc = 0;
647                         } else
648                                 ret = *(unsigned long *)(sp + 4);
649                         printk(" [%08lx] ", ret);
650 #ifdef CONFIG_KALLSYMS
651                         print_symbol("%s", ret);
652                         printk("\n");
653 #endif
654                         if (ret == (unsigned long) &ret_from_except
655                             || ret == (unsigned long) &ret_from_except_full
656                             || ret == (unsigned long) &ret_from_syscall) {
657                                 /* sp + 16 points to an exception frame */
658                                 regs = (struct pt_regs *) (sp + 16);
659                                 if (sp + 16 + sizeof(*regs) <= stack_top)
660                                         next_exc = regs->nip;
661                         }
662                 }
663                 ++count;
664                 sp = *(unsigned long *)sp;
665         }
666 #ifndef CONFIG_KALLSYMS
667         if (count > 0)
668                 printk("\n");
669 #endif
670 }
671
672 #if 0
673 /*
674  * Low level print for debugging - Cort
675  */
676 int __init ll_printk(const char *fmt, ...)
677 {
678         va_list args;
679         char buf[256];
680         int i;
681
682         va_start(args, fmt);
683         i=vsprintf(buf,fmt,args);
684         ll_puts(buf);
685         va_end(args);
686         return i;
687 }
688
689 int lines = 24, cols = 80;
690 int orig_x = 0, orig_y = 0;
691
692 void puthex(unsigned long val)
693 {
694         unsigned char buf[10];
695         int i;
696         for (i = 7;  i >= 0;  i--)
697         {
698                 buf[i] = "0123456789ABCDEF"[val & 0x0F];
699                 val >>= 4;
700         }
701         buf[8] = '\0';
702         prom_print(buf);
703 }
704
705 void __init ll_puts(const char *s)
706 {
707         int x,y;
708         char *vidmem = (char *)/*(_ISA_MEM_BASE + 0xB8000) */0xD00B8000;
709         char c;
710         extern int mem_init_done;
711
712         if ( mem_init_done ) /* assume this means we can printk */
713         {
714                 printk(s);
715                 return;
716         }
717
718 #if 0
719         if ( have_of )
720         {
721                 prom_print(s);
722                 return;
723         }
724 #endif
725
726         /*
727          * can't ll_puts on chrp without openfirmware yet.
728          * vidmem just needs to be setup for it.
729          * -- Cort
730          */
731         if ( _machine != _MACH_prep )
732                 return;
733         x = orig_x;
734         y = orig_y;
735
736         while ( ( c = *s++ ) != '\0' ) {
737                 if ( c == '\n' ) {
738                         x = 0;
739                         if ( ++y >= lines ) {
740                                 /*scroll();*/
741                                 /*y--;*/
742                                 y = 0;
743                         }
744                 } else {
745                         vidmem [ ( x + cols * y ) * 2 ] = c;
746                         if ( ++x >= cols ) {
747                                 x = 0;
748                                 if ( ++y >= lines ) {
749                                         /*scroll();*/
750                                         /*y--;*/
751                                         y = 0;
752                                 }
753                         }
754                 }
755         }
756
757         orig_x = x;
758         orig_y = y;
759 }
760 #endif
761
762 unsigned long get_wchan(struct task_struct *p)
763 {
764         unsigned long ip, sp;
765         unsigned long stack_page = (unsigned long) p->thread_info;
766         int count = 0;
767         if (!p || p == current || p->state == TASK_RUNNING)
768                 return 0;
769         sp = p->thread.ksp;
770         do {
771                 sp = *(unsigned long *)sp;
772                 if (sp < stack_page || sp >= stack_page + 8188)
773                         return 0;
774                 if (count > 0) {
775                         ip = *(unsigned long *)(sp + 4);
776                         if (!in_sched_functions(ip))
777                                 return ip;
778                 }
779         } while (count++ < 16);
780         return 0;
781 }