vserver 1.9.3
[linux-2.6.git] / arch / ppc64 / kernel / process.c
1 /*
2  *  linux/arch/ppc64/kernel/process.c
3  *
4  *  Derived from "arch/i386/kernel/process.c"
5  *    Copyright (C) 1995  Linus Torvalds
6  *
7  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8  *  Paul Mackerras (paulus@cs.anu.edu.au)
9  *
10  *  PowerPC version 
11  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
12  *
13  *  This program is free software; you can redistribute it and/or
14  *  modify it under the terms of the GNU General Public License
15  *  as published by the Free Software Foundation; either version
16  *  2 of the License, or (at your option) any later version.
17  */
18
19 #include <linux/config.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/smp.h>
26 #include <linux/smp_lock.h>
27 #include <linux/stddef.h>
28 #include <linux/unistd.h>
29 #include <linux/slab.h>
30 #include <linux/user.h>
31 #include <linux/elf.h>
32 #include <linux/init.h>
33 #include <linux/init_task.h>
34 #include <linux/prctl.h>
35 #include <linux/ptrace.h>
36 #include <linux/kallsyms.h>
37 #include <linux/interrupt.h>
38 #include <linux/version.h>
39
40 #include <asm/pgtable.h>
41 #include <asm/uaccess.h>
42 #include <asm/system.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/mmu_context.h>
47 #include <asm/prom.h>
48 #include <asm/ppcdebug.h>
49 #include <asm/machdep.h>
50 #include <asm/iSeries/HvCallHpt.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/tlbflush.h>
54
55 #ifndef CONFIG_SMP
56 struct task_struct *last_task_used_math = NULL;
57 struct task_struct *last_task_used_altivec = NULL;
58 #endif
59
60 struct mm_struct ioremap_mm = {
61         .pgd            = ioremap_dir,
62         .mm_users       = ATOMIC_INIT(2),
63         .mm_count       = ATOMIC_INIT(1),
64         .cpu_vm_mask    = CPU_MASK_ALL,
65         .page_table_lock = SPIN_LOCK_UNLOCKED,
66 };
67
68 /*
69  * Make sure the floating-point register state in the
70  * the thread_struct is up to date for task tsk.
71  */
72 void flush_fp_to_thread(struct task_struct *tsk)
73 {
74         if (tsk->thread.regs) {
75                 /*
76                  * We need to disable preemption here because if we didn't,
77                  * another process could get scheduled after the regs->msr
78                  * test but before we have finished saving the FP registers
79                  * to the thread_struct.  That process could take over the
80                  * FPU, and then when we get scheduled again we would store
81                  * bogus values for the remaining FP registers.
82                  */
83                 preempt_disable();
84                 if (tsk->thread.regs->msr & MSR_FP) {
85 #ifdef CONFIG_SMP
86                         /*
87                          * This should only ever be called for current or
88                          * for a stopped child process.  Since we save away
89                          * the FP register state on context switch on SMP,
90                          * there is something wrong if a stopped child appears
91                          * to still have its FP state in the CPU registers.
92                          */
93                         BUG_ON(tsk != current);
94 #endif
95                         giveup_fpu(current);
96                 }
97                 preempt_enable();
98         }
99 }
100
101 void enable_kernel_fp(void)
102 {
103         WARN_ON(preemptible());
104
105 #ifdef CONFIG_SMP
106         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
107                 giveup_fpu(current);
108         else
109                 giveup_fpu(NULL);       /* just enables FP for kernel */
110 #else
111         giveup_fpu(last_task_used_math);
112 #endif /* CONFIG_SMP */
113 }
114 EXPORT_SYMBOL(enable_kernel_fp);
115
116 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
117 {
118         if (!tsk->thread.regs)
119                 return 0;
120         flush_fp_to_thread(current);
121
122         memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
123
124         return 1;
125 }
126
127 #ifdef CONFIG_ALTIVEC
128
129 void enable_kernel_altivec(void)
130 {
131         WARN_ON(preemptible());
132
133 #ifdef CONFIG_SMP
134         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
135                 giveup_altivec(current);
136         else
137                 giveup_altivec(NULL);   /* just enables FP for kernel */
138 #else
139         giveup_altivec(last_task_used_altivec);
140 #endif /* CONFIG_SMP */
141 }
142 EXPORT_SYMBOL(enable_kernel_altivec);
143
144 /*
145  * Make sure the VMX/Altivec register state in the
146  * the thread_struct is up to date for task tsk.
147  */
148 void flush_altivec_to_thread(struct task_struct *tsk)
149 {
150         if (tsk->thread.regs) {
151                 preempt_disable();
152                 if (tsk->thread.regs->msr & MSR_VEC) {
153 #ifdef CONFIG_SMP
154                         BUG_ON(tsk != current);
155 #endif
156                         giveup_altivec(current);
157                 }
158                 preempt_enable();
159         }
160 }
161
162 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
163 {
164         flush_altivec_to_thread(current);
165         memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
166         return 1;
167 }
168
169 #endif /* CONFIG_ALTIVEC */
170
171 struct task_struct *__switch_to(struct task_struct *prev,
172                                 struct task_struct *new)
173 {
174         struct thread_struct *new_thread, *old_thread;
175         unsigned long flags;
176         struct task_struct *last;
177
178 #ifdef CONFIG_SMP
179         /* avoid complexity of lazy save/restore of fpu
180          * by just saving it every time we switch out if
181          * this task used the fpu during the last quantum.
182          * 
183          * If it tries to use the fpu again, it'll trap and
184          * reload its fp regs.  So we don't have to do a restore
185          * every switch, just a save.
186          *  -- Cort
187          */
188         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
189                 giveup_fpu(prev);
190 #ifdef CONFIG_ALTIVEC
191         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
192                 giveup_altivec(prev);
193 #endif /* CONFIG_ALTIVEC */
194 #endif /* CONFIG_SMP */
195
196 #if defined(CONFIG_ALTIVEC) && !defined(CONFIG_SMP)
197         /* Avoid the trap.  On smp this this never happens since
198          * we don't set last_task_used_altivec -- Cort
199          */
200         if (new->thread.regs && last_task_used_altivec == new)
201                 new->thread.regs->msr |= MSR_VEC;
202 #endif /* CONFIG_ALTIVEC */
203
204         flush_tlb_pending();
205
206         new_thread = &new->thread;
207         old_thread = &current->thread;
208
209         local_irq_save(flags);
210         last = _switch(old_thread, new_thread);
211
212         local_irq_restore(flags);
213
214         return last;
215 }
216
217 void show_regs(struct pt_regs * regs)
218 {
219         int i;
220         unsigned long trap;
221
222         printk("NIP: %016lX XER: %016lX LR: %016lX\n",
223                regs->nip, regs->xer, regs->link);
224         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
225                regs, regs->trap, print_tainted(), UTS_RELEASE);
226         printk("MSR: %016lx EE: %01x PR: %01x FP: %01x ME: %01x IR/DR: %01x%01x\n",
227                regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0,
228                regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0,
229                regs->msr&MSR_IR ? 1 : 0,
230                regs->msr&MSR_DR ? 1 : 0);
231         trap = TRAP(regs);
232         if (trap == 0x300 || trap == 0x380 || trap == 0x600)
233                 printk("DAR: %016lx, DSISR: %016lx\n", regs->dar, regs->dsisr);
234         printk("TASK: %p[%d] '%s' THREAD: %p",
235                current, current->pid, current->comm, current->thread_info);
236
237 #ifdef CONFIG_SMP
238         printk(" CPU: %d", smp_processor_id());
239 #endif /* CONFIG_SMP */
240
241         for (i = 0; i < 32; i++) {
242                 if ((i % 4) == 0) {
243                         printk("\n" KERN_INFO "GPR%02d: ", i);
244                 }
245
246                 printk("%016lX ", regs->gpr[i]);
247                 if (i == 13 && !FULL_REGS(regs))
248                         break;
249         }
250         printk("\n");
251         /*
252          * Lookup NIP late so we have the best change of getting the
253          * above info out without failing
254          */
255         printk("NIP [%016lx] ", regs->nip);
256         print_symbol("%s\n", regs->nip);
257         printk("LR [%016lx] ", regs->link);
258         print_symbol("%s\n", regs->link);
259         show_stack(current, (unsigned long *)regs->gpr[1]);
260 }
261
262 void exit_thread(void)
263 {
264 #ifndef CONFIG_SMP
265         if (last_task_used_math == current)
266                 last_task_used_math = NULL;
267 #ifdef CONFIG_ALTIVEC
268         if (last_task_used_altivec == current)
269                 last_task_used_altivec = NULL;
270 #endif /* CONFIG_ALTIVEC */
271 #endif /* CONFIG_SMP */
272 }
273
274 void flush_thread(void)
275 {
276         struct thread_info *t = current_thread_info();
277
278         if (t->flags & _TIF_ABI_PENDING)
279                 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
280
281 #ifndef CONFIG_SMP
282         if (last_task_used_math == current)
283                 last_task_used_math = NULL;
284 #ifdef CONFIG_ALTIVEC
285         if (last_task_used_altivec == current)
286                 last_task_used_altivec = NULL;
287 #endif /* CONFIG_ALTIVEC */
288 #endif /* CONFIG_SMP */
289 }
290
291 void
292 release_thread(struct task_struct *t)
293 {
294 }
295
296
297 /*
298  * This gets called before we allocate a new thread and copy
299  * the current task into it.
300  */
301 void prepare_to_copy(struct task_struct *tsk)
302 {
303         flush_fp_to_thread(current);
304         flush_altivec_to_thread(current);
305 }
306
307 /*
308  * Copy a thread..
309  */
310 int
311 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
312             unsigned long unused, struct task_struct *p, struct pt_regs *regs)
313 {
314         struct pt_regs *childregs, *kregs;
315         extern void ret_from_fork(void);
316         unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE;
317
318         p->set_child_tid = p->clear_child_tid = NULL;
319
320         /* Copy registers */
321         sp -= sizeof(struct pt_regs);
322         childregs = (struct pt_regs *) sp;
323         *childregs = *regs;
324         if ((childregs->msr & MSR_PR) == 0) {
325                 /* for kernel thread, set stackptr in new task */
326                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
327                 p->thread.regs = NULL;  /* no user register state */
328                 clear_ti_thread_flag(p->thread_info, TIF_32BIT);
329 #ifdef CONFIG_PPC_ISERIES
330                 set_ti_thread_flag(p->thread_info, TIF_RUN_LIGHT);
331 #endif
332         } else {
333                 childregs->gpr[1] = usp;
334                 p->thread.regs = childregs;
335                 if (clone_flags & CLONE_SETTLS) {
336                         if (test_thread_flag(TIF_32BIT))
337                                 childregs->gpr[2] = childregs->gpr[6];
338                         else
339                                 childregs->gpr[13] = childregs->gpr[6];
340                 }
341         }
342         childregs->gpr[3] = 0;  /* Result from fork() */
343         sp -= STACK_FRAME_OVERHEAD;
344
345         /*
346          * The way this works is that at some point in the future
347          * some task will call _switch to switch to the new task.
348          * That will pop off the stack frame created below and start
349          * the new task running at ret_from_fork.  The new task will
350          * do some house keeping and then return from the fork or clone
351          * system call, using the stack frame created above.
352          */
353         sp -= sizeof(struct pt_regs);
354         kregs = (struct pt_regs *) sp;
355         sp -= STACK_FRAME_OVERHEAD;
356         p->thread.ksp = sp;
357         if (cur_cpu_spec->cpu_features & CPU_FTR_SLB) {
358                 unsigned long sp_vsid = get_kernel_vsid(sp);
359
360                 sp_vsid <<= SLB_VSID_SHIFT;
361                 sp_vsid |= SLB_VSID_KERNEL;
362                 if (cur_cpu_spec->cpu_features & CPU_FTR_16M_PAGE)
363                         sp_vsid |= SLB_VSID_L;
364
365                 p->thread.ksp_vsid = sp_vsid;
366         }
367
368         /*
369          * The PPC64 ABI makes use of a TOC to contain function 
370          * pointers.  The function (ret_from_except) is actually a pointer
371          * to the TOC entry.  The first entry is a pointer to the actual
372          * function.
373          */
374         kregs->nip = *((unsigned long *)ret_from_fork);
375
376         return 0;
377 }
378
379 /*
380  * Set up a thread for executing a new program
381  */
382 void start_thread(struct pt_regs *regs, unsigned long fdptr, unsigned long sp)
383 {
384         unsigned long entry, toc, load_addr = regs->gpr[2];
385
386         /* fdptr is a relocated pointer to the function descriptor for
387          * the elf _start routine.  The first entry in the function
388          * descriptor is the entry address of _start and the second
389          * entry is the TOC value we need to use.
390          */
391         set_fs(USER_DS);
392         __get_user(entry, (unsigned long __user *)fdptr);
393         __get_user(toc, (unsigned long __user *)fdptr+1);
394
395         /* Check whether the e_entry function descriptor entries
396          * need to be relocated before we can use them.
397          */
398         if (load_addr != 0) {
399                 entry += load_addr;
400                 toc   += load_addr;
401         }
402
403         /*
404          * If we exec out of a kernel thread then thread.regs will not be
405          * set. Do it now.
406          */
407         if (!current->thread.regs) {
408                 unsigned long childregs = (unsigned long)current->thread_info +
409                                                 THREAD_SIZE;
410                 childregs -= sizeof(struct pt_regs);
411                 current->thread.regs = (struct pt_regs *)childregs;
412         }
413
414         regs->nip = entry;
415         regs->gpr[1] = sp;
416         regs->gpr[2] = toc;
417         regs->msr = MSR_USER64;
418 #ifndef CONFIG_SMP
419         if (last_task_used_math == current)
420                 last_task_used_math = 0;
421 #endif /* CONFIG_SMP */
422         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
423         current->thread.fpscr = 0;
424 #ifdef CONFIG_ALTIVEC
425 #ifndef CONFIG_SMP
426         if (last_task_used_altivec == current)
427                 last_task_used_altivec = 0;
428 #endif /* CONFIG_SMP */
429         memset(current->thread.vr, 0, sizeof(current->thread.vr));
430         current->thread.vscr.u[0] = 0;
431         current->thread.vscr.u[1] = 0;
432         current->thread.vscr.u[2] = 0;
433         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
434         current->thread.vrsave = 0;
435         current->thread.used_vr = 0;
436 #endif /* CONFIG_ALTIVEC */
437 }
438
439 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
440 {
441         struct pt_regs *regs = tsk->thread.regs;
442
443         if (val > PR_FP_EXC_PRECISE)
444                 return -EINVAL;
445         tsk->thread.fpexc_mode = __pack_fe01(val);
446         if (regs != NULL && (regs->msr & MSR_FP) != 0)
447                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
448                         | tsk->thread.fpexc_mode;
449         return 0;
450 }
451
452 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
453 {
454         unsigned int val;
455
456         val = __unpack_fe01(tsk->thread.fpexc_mode);
457         return put_user(val, (unsigned int __user *) adr);
458 }
459
460 int sys_clone(unsigned long clone_flags, unsigned long p2, unsigned long p3,
461               unsigned long p4, unsigned long p5, unsigned long p6,
462               struct pt_regs *regs)
463 {
464         unsigned long parent_tidptr = 0;
465         unsigned long child_tidptr = 0;
466
467         if (p2 == 0)
468                 p2 = regs->gpr[1];      /* stack pointer for child */
469
470         if (clone_flags & (CLONE_PARENT_SETTID | CLONE_CHILD_SETTID |
471                            CLONE_CHILD_CLEARTID)) {
472                 parent_tidptr = p3;
473                 child_tidptr = p5;
474                 if (test_thread_flag(TIF_32BIT)) {
475                         parent_tidptr &= 0xffffffff;
476                         child_tidptr &= 0xffffffff;
477                 }
478         }
479
480         return do_fork(clone_flags, p2, regs, 0,
481                     (int __user *)parent_tidptr, (int __user *)child_tidptr);
482 }
483
484 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
485              unsigned long p4, unsigned long p5, unsigned long p6,
486              struct pt_regs *regs)
487 {
488         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
489 }
490
491 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
492               unsigned long p4, unsigned long p5, unsigned long p6,
493               struct pt_regs *regs)
494 {
495         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], regs, 0,
496                     NULL, NULL);
497 }
498
499 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
500                unsigned long a3, unsigned long a4, unsigned long a5,
501                struct pt_regs *regs)
502 {
503         int error;
504         char * filename;
505         
506         filename = getname((char __user *) a0);
507         error = PTR_ERR(filename);
508         if (IS_ERR(filename))
509                 goto out;
510         flush_fp_to_thread(current);
511         flush_altivec_to_thread(current);
512         error = do_execve(filename, (char __user * __user *) a1,
513                                     (char __user * __user *) a2, regs);
514   
515         if (error == 0)
516                 current->ptrace &= ~PT_DTRACE;
517         putname(filename);
518
519 out:
520         return error;
521 }
522
523 static int kstack_depth_to_print = 64;
524
525 static int validate_sp(unsigned long sp, struct task_struct *p,
526                        unsigned long nbytes)
527 {
528         unsigned long stack_page = (unsigned long)p->thread_info;
529
530         if (sp >= stack_page + sizeof(struct thread_struct)
531             && sp <= stack_page + THREAD_SIZE - nbytes)
532                 return 1;
533
534 #ifdef CONFIG_IRQSTACKS
535         stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
536         if (sp >= stack_page + sizeof(struct thread_struct)
537             && sp <= stack_page + THREAD_SIZE - nbytes)
538                 return 1;
539
540         stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
541         if (sp >= stack_page + sizeof(struct thread_struct)
542             && sp <= stack_page + THREAD_SIZE - nbytes)
543                 return 1;
544 #endif
545
546         return 0;
547 }
548
549 unsigned long get_wchan(struct task_struct *p)
550 {
551         unsigned long ip, sp;
552         int count = 0;
553
554         if (!p || p == current || p->state == TASK_RUNNING)
555                 return 0;
556
557         sp = p->thread.ksp;
558         if (!validate_sp(sp, p, 112))
559                 return 0;
560
561         do {
562                 sp = *(unsigned long *)sp;
563                 if (!validate_sp(sp, p, 112))
564                         return 0;
565                 if (count > 0) {
566                         ip = *(unsigned long *)(sp + 16);
567                         if (!in_sched_functions(ip))
568                                 return ip;
569                 }
570         } while (count++ < 16);
571         return 0;
572 }
573
574 void show_stack(struct task_struct *p, unsigned long *_sp)
575 {
576         unsigned long ip, newsp, lr;
577         int count = 0;
578         unsigned long sp = (unsigned long)_sp;
579         int firstframe = 1;
580
581         if (sp == 0) {
582                 if (p) {
583                         sp = p->thread.ksp;
584                 } else {
585                         sp = __get_SP();
586                         p = current;
587                 }
588         }
589
590         lr = 0;
591         printk("Call Trace:\n");
592         do {
593                 if (!validate_sp(sp, p, 112))
594                         return;
595
596                 _sp = (unsigned long *) sp;
597                 newsp = _sp[0];
598                 ip = _sp[2];
599                 if (!firstframe || ip != lr) {
600                         printk("[%016lx] [%016lx] ", sp, ip);
601                         print_symbol("%s", ip);
602                         if (firstframe)
603                                 printk(" (unreliable)");
604                         printk("\n");
605                 }
606                 firstframe = 0;
607
608                 /*
609                  * See if this is an exception frame.
610                  * We look for the "regshere" marker in the current frame.
611                  */
612                 if (validate_sp(sp, p, sizeof(struct pt_regs) + 400)
613                     && _sp[12] == 0x7265677368657265ul) {
614                         struct pt_regs *regs = (struct pt_regs *)
615                                 (sp + STACK_FRAME_OVERHEAD);
616                         printk("--- Exception: %lx", regs->trap);
617                         print_symbol(" at %s\n", regs->nip);
618                         lr = regs->link;
619                         print_symbol("    LR = %s\n", lr);
620                         firstframe = 1;
621                 }
622
623                 sp = newsp;
624         } while (count++ < kstack_depth_to_print);
625 }
626
627 void dump_stack(void)
628 {
629         show_stack(current, (unsigned long *)__get_SP());
630 }
631 EXPORT_SYMBOL(dump_stack);