vserver 1.9.3
[linux-2.6.git] / arch / ppc64 / kernel / rtasd.c
1 /*
2  * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  *
9  * Communication to userspace based on kernel/printk.c
10  */
11
12 #include <linux/types.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/init.h>
19 #include <linux/vmalloc.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpu.h>
22
23 #include <asm/uaccess.h>
24 #include <asm/io.h>
25 #include <asm/rtas.h>
26 #include <asm/prom.h>
27 #include <asm/nvram.h>
28 #include <asm/atomic.h>
29
30 #if 0
31 #define DEBUG(A...)     printk(KERN_ERR A)
32 #else
33 #define DEBUG(A...)
34 #endif
35
36 static spinlock_t rtasd_log_lock = SPIN_LOCK_UNLOCKED;
37
38 DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
39
40 static char *rtas_log_buf;
41 static unsigned long rtas_log_start;
42 static unsigned long rtas_log_size;
43
44 static int surveillance_timeout = -1;
45 static unsigned int rtas_event_scan_rate;
46 static unsigned int rtas_error_log_max;
47 static unsigned int rtas_error_log_buffer_max;
48
49 static int full_rtas_msgs = 0;
50
51 extern volatile int no_more_logging;
52
53 volatile int error_log_cnt = 0;
54
55 /*
56  * Since we use 32 bit RTAS, the physical address of this must be below
57  * 4G or else bad things happen. Allocate this in the kernel data and
58  * make it big enough.
59  */
60 static unsigned char logdata[RTAS_ERROR_LOG_MAX];
61
62 static int get_eventscan_parms(void);
63
64 static char *rtas_type[] = {
65         "Unknown", "Retry", "TCE Error", "Internal Device Failure",
66         "Timeout", "Data Parity", "Address Parity", "Cache Parity",
67         "Address Invalid", "ECC Uncorrected", "ECC Corrupted",
68 };
69
70 static char *rtas_event_type(int type)
71 {
72         if ((type > 0) && (type < 11))
73                 return rtas_type[type];
74
75         switch (type) {
76                 case RTAS_TYPE_EPOW:
77                         return "EPOW";
78                 case RTAS_TYPE_PLATFORM:
79                         return "Platform Error";
80                 case RTAS_TYPE_IO:
81                         return "I/O Event";
82                 case RTAS_TYPE_INFO:
83                         return "Platform Information Event";
84                 case RTAS_TYPE_DEALLOC:
85                         return "Resource Deallocation Event";
86                 case RTAS_TYPE_DUMP:
87                         return "Dump Notification Event";
88         }
89
90         return rtas_type[0];
91 }
92
93 /* To see this info, grep RTAS /var/log/messages and each entry
94  * will be collected together with obvious begin/end.
95  * There will be a unique identifier on the begin and end lines.
96  * This will persist across reboots.
97  *
98  * format of error logs returned from RTAS:
99  * bytes        (size)  : contents
100  * --------------------------------------------------------
101  * 0-7          (8)     : rtas_error_log
102  * 8-47         (40)    : extended info
103  * 48-51        (4)     : vendor id
104  * 52-1023 (vendor specific) : location code and debug data
105  */
106 static void printk_log_rtas(char *buf, int len)
107 {
108
109         int i,j,n = 0;
110         int perline = 16;
111         char buffer[64];
112         char * str = "RTAS event";
113
114         if (full_rtas_msgs) {
115                 printk(RTAS_DEBUG "%d -------- %s begin --------\n",
116                        error_log_cnt, str);
117
118                 /*
119                  * Print perline bytes on each line, each line will start
120                  * with RTAS and a changing number, so syslogd will
121                  * print lines that are otherwise the same.  Separate every
122                  * 4 bytes with a space.
123                  */
124                 for (i = 0; i < len; i++) {
125                         j = i % perline;
126                         if (j == 0) {
127                                 memset(buffer, 0, sizeof(buffer));
128                                 n = sprintf(buffer, "RTAS %d:", i/perline);
129                         }
130
131                         if ((i % 4) == 0)
132                                 n += sprintf(buffer+n, " ");
133
134                         n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
135
136                         if (j == (perline-1))
137                                 printk(KERN_DEBUG "%s\n", buffer);
138                 }
139                 if ((i % perline) != 0)
140                         printk(KERN_DEBUG "%s\n", buffer);
141
142                 printk(RTAS_DEBUG "%d -------- %s end ----------\n",
143                        error_log_cnt, str);
144         } else {
145                 struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
146
147                 printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
148                        error_log_cnt, rtas_event_type(errlog->type),
149                        errlog->severity);
150         }
151 }
152
153 static int log_rtas_len(char * buf)
154 {
155         int len;
156         struct rtas_error_log *err;
157
158         /* rtas fixed header */
159         len = 8;
160         err = (struct rtas_error_log *)buf;
161         if (err->extended_log_length) {
162
163                 /* extended header */
164                 len += err->extended_log_length;
165         }
166
167         if (rtas_error_log_max == 0) {
168                 get_eventscan_parms();
169         }
170         if (len > rtas_error_log_max)
171                 len = rtas_error_log_max;
172
173         return len;
174 }
175
176 /*
177  * First write to nvram, if fatal error, that is the only
178  * place we log the info.  The error will be picked up
179  * on the next reboot by rtasd.  If not fatal, run the
180  * method for the type of error.  Currently, only RTAS
181  * errors have methods implemented, but in the future
182  * there might be a need to store data in nvram before a
183  * call to panic().
184  *
185  * XXX We write to nvram periodically, to indicate error has
186  * been written and sync'd, but there is a possibility
187  * that if we don't shutdown correctly, a duplicate error
188  * record will be created on next reboot.
189  */
190 void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
191 {
192         unsigned long offset;
193         unsigned long s;
194         int len = 0;
195
196         DEBUG("logging event\n");
197         if (buf == NULL)
198                 return;
199
200         spin_lock_irqsave(&rtasd_log_lock, s);
201
202         /* get length and increase count */
203         switch (err_type & ERR_TYPE_MASK) {
204         case ERR_TYPE_RTAS_LOG:
205                 len = log_rtas_len(buf);
206                 if (!(err_type & ERR_FLAG_BOOT))
207                         error_log_cnt++;
208                 break;
209         case ERR_TYPE_KERNEL_PANIC:
210         default:
211                 spin_unlock_irqrestore(&rtasd_log_lock, s);
212                 return;
213         }
214
215         /* Write error to NVRAM */
216         if (!no_more_logging && !(err_type & ERR_FLAG_BOOT))
217                 nvram_write_error_log(buf, len, err_type);
218
219         /*
220          * rtas errors can occur during boot, and we do want to capture
221          * those somewhere, even if nvram isn't ready (why not?), and even
222          * if rtasd isn't ready. Put them into the boot log, at least.
223          */
224         if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
225                 printk_log_rtas(buf, len);
226
227         /* Check to see if we need to or have stopped logging */
228         if (fatal || no_more_logging) {
229                 no_more_logging = 1;
230                 spin_unlock_irqrestore(&rtasd_log_lock, s);
231                 return;
232         }
233
234         /* call type specific method for error */
235         switch (err_type & ERR_TYPE_MASK) {
236         case ERR_TYPE_RTAS_LOG:
237                 offset = rtas_error_log_buffer_max *
238                         ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
239
240                 /* First copy over sequence number */
241                 memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
242
243                 /* Second copy over error log data */
244                 offset += sizeof(int);
245                 memcpy(&rtas_log_buf[offset], buf, len);
246
247                 if (rtas_log_size < LOG_NUMBER)
248                         rtas_log_size += 1;
249                 else
250                         rtas_log_start += 1;
251
252                 spin_unlock_irqrestore(&rtasd_log_lock, s);
253                 wake_up_interruptible(&rtas_log_wait);
254                 break;
255         case ERR_TYPE_KERNEL_PANIC:
256         default:
257                 spin_unlock_irqrestore(&rtasd_log_lock, s);
258                 return;
259         }
260
261 }
262
263
264 static int rtas_log_open(struct inode * inode, struct file * file)
265 {
266         return 0;
267 }
268
269 static int rtas_log_release(struct inode * inode, struct file * file)
270 {
271         return 0;
272 }
273
274 /* This will check if all events are logged, if they are then, we
275  * know that we can safely clear the events in NVRAM.
276  * Next we'll sit and wait for something else to log.
277  */
278 static ssize_t rtas_log_read(struct file * file, char * buf,
279                          size_t count, loff_t *ppos)
280 {
281         int error;
282         char *tmp;
283         unsigned long s;
284         unsigned long offset;
285
286         if (!buf || count < rtas_error_log_buffer_max)
287                 return -EINVAL;
288
289         count = rtas_error_log_buffer_max;
290
291         error = verify_area(VERIFY_WRITE, buf, count);
292         if (error)
293                 return -EFAULT;
294
295         tmp = kmalloc(count, GFP_KERNEL);
296         if (!tmp)
297                 return -ENOMEM;
298
299
300         spin_lock_irqsave(&rtasd_log_lock, s);
301         /* if it's 0, then we know we got the last one (the one in NVRAM) */
302         if (rtas_log_size == 0 && !no_more_logging)
303                 nvram_clear_error_log();
304         spin_unlock_irqrestore(&rtasd_log_lock, s);
305
306
307         error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
308         if (error)
309                 goto out;
310
311         spin_lock_irqsave(&rtasd_log_lock, s);
312         offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
313         memcpy(tmp, &rtas_log_buf[offset], count);
314
315         rtas_log_start += 1;
316         rtas_log_size -= 1;
317         spin_unlock_irqrestore(&rtasd_log_lock, s);
318
319         error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
320 out:
321         kfree(tmp);
322         return error;
323 }
324
325 static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
326 {
327         poll_wait(file, &rtas_log_wait, wait);
328         if (rtas_log_size)
329                 return POLLIN | POLLRDNORM;
330         return 0;
331 }
332
333 struct file_operations proc_rtas_log_operations = {
334         .read =         rtas_log_read,
335         .poll =         rtas_log_poll,
336         .open =         rtas_log_open,
337         .release =      rtas_log_release,
338 };
339
340 static int enable_surveillance(int timeout)
341 {
342         int error;
343
344         error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
345
346         if (error == 0)
347                 return 0;
348
349         if (error == RTAS_NO_SUCH_INDICATOR) {
350                 printk(KERN_INFO "rtasd: surveillance not supported\n");
351                 return 0;
352         }
353
354         printk(KERN_ERR "rtasd: could not update surveillance\n");
355         return -1;
356 }
357
358 static int get_eventscan_parms(void)
359 {
360         struct device_node *node;
361         int *ip;
362
363         node = of_find_node_by_path("/rtas");
364
365         ip = (int *)get_property(node, "rtas-event-scan-rate", NULL);
366         if (ip == NULL) {
367                 printk(KERN_ERR "rtasd: no rtas-event-scan-rate\n");
368                 of_node_put(node);
369                 return -1;
370         }
371         rtas_event_scan_rate = *ip;
372         DEBUG("rtas-event-scan-rate %d\n", rtas_event_scan_rate);
373
374         /* Make room for the sequence number */
375         rtas_error_log_max = rtas_get_error_log_max();
376         rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
377
378         of_node_put(node);
379
380         return 0;
381 }
382
383 static void do_event_scan(int event_scan)
384 {
385         int error;
386         do {
387                 memset(logdata, 0, rtas_error_log_max);
388                 error = rtas_call(event_scan, 4, 1, NULL,
389                                   RTAS_EVENT_SCAN_ALL_EVENTS, 0,
390                                   __pa(logdata), rtas_error_log_max);
391                 if (error == -1) {
392                         printk(KERN_ERR "event-scan failed\n");
393                         break;
394                 }
395
396                 if (error == 0)
397                         pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
398
399         } while(error == 0);
400 }
401
402 static int rtasd(void *unused)
403 {
404         unsigned int err_type;
405         int cpu = 0;
406         int event_scan = rtas_token("event-scan");
407         int rc;
408
409         daemonize("rtasd");
410
411         if (event_scan == RTAS_UNKNOWN_SERVICE || get_eventscan_parms() == -1)
412                 goto error;
413
414         rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
415         if (!rtas_log_buf) {
416                 printk(KERN_ERR "rtasd: no memory\n");
417                 goto error;
418         }
419
420         /* We can use rtas_log_buf now */
421         no_more_logging = 0;
422
423         printk(KERN_ERR "RTAS daemon started\n");
424
425         DEBUG("will sleep for %d jiffies\n", (HZ*60/rtas_event_scan_rate) / 2);
426
427         /* See if we have any error stored in NVRAM */
428         memset(logdata, 0, rtas_error_log_max);
429
430         rc = nvram_read_error_log(logdata, rtas_error_log_max, &err_type);
431         if (!rc) {
432                 if (err_type != ERR_FLAG_ALREADY_LOGGED) {
433                         pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
434                 }
435         }
436
437         /* First pass. */
438         lock_cpu_hotplug();
439         for_each_online_cpu(cpu) {
440                 DEBUG("scheduling on %d\n", cpu);
441                 set_cpus_allowed(current, cpumask_of_cpu(cpu));
442                 DEBUG("watchdog scheduled on cpu %d\n", smp_processor_id());
443
444                 do_event_scan(event_scan);
445                 set_current_state(TASK_INTERRUPTIBLE);
446                 schedule_timeout(HZ);
447         }
448         unlock_cpu_hotplug();
449
450         if (surveillance_timeout != -1) {
451                 DEBUG("enabling surveillance\n");
452                 enable_surveillance(surveillance_timeout);
453                 DEBUG("surveillance enabled\n");
454         }
455
456         lock_cpu_hotplug();
457         cpu = first_cpu(cpu_online_map);
458         for (;;) {
459                 set_cpus_allowed(current, cpumask_of_cpu(cpu));
460                 do_event_scan(event_scan);
461                 set_cpus_allowed(current, CPU_MASK_ALL);
462
463                 /* Drop hotplug lock, and sleep for a bit (at least
464                  * one second since some machines have problems if we
465                  * call event-scan too quickly). */
466                 unlock_cpu_hotplug();
467                 set_current_state(TASK_INTERRUPTIBLE);
468                 schedule_timeout((HZ*60/rtas_event_scan_rate) / 2);
469                 lock_cpu_hotplug();
470
471                 cpu = next_cpu(cpu, cpu_online_map);
472                 if (cpu == NR_CPUS)
473                         cpu = first_cpu(cpu_online_map);
474         }
475
476 error:
477         /* Should delete proc entries */
478         return -EINVAL;
479 }
480
481 static int __init rtas_init(void)
482 {
483         struct proc_dir_entry *entry;
484
485         /* No RTAS, only warn if we are on a pSeries box  */
486         if (rtas_token("event-scan") == RTAS_UNKNOWN_SERVICE) {
487                 if (systemcfg->platform & PLATFORM_PSERIES);
488                         printk(KERN_ERR "rtasd: no RTAS on system\n");
489                 return 1;
490         }
491
492         entry = create_proc_entry("ppc64/rtas/error_log", S_IRUSR, NULL);
493         if (entry)
494                 entry->proc_fops = &proc_rtas_log_operations;
495         else
496                 printk(KERN_ERR "Failed to create error_log proc entry\n");
497
498         if (kernel_thread(rtasd, NULL, CLONE_FS) < 0)
499                 printk(KERN_ERR "Failed to start RTAS daemon\n");
500
501         return 0;
502 }
503
504 static int __init surveillance_setup(char *str)
505 {
506         int i;
507
508         if (get_option(&str,&i)) {
509                 if (i >= 0 && i <= 255)
510                         surveillance_timeout = i;
511         }
512
513         return 1;
514 }
515
516 static int __init rtasmsgs_setup(char *str)
517 {
518         if (strcmp(str, "on") == 0)
519                 full_rtas_msgs = 1;
520         else if (strcmp(str, "off") == 0)
521                 full_rtas_msgs = 0;
522
523         return 1;
524 }
525 __initcall(rtas_init);
526 __setup("surveillance=", surveillance_setup);
527 __setup("rtasmsgs=", rtasmsgs_setup);