patch-2_6_7-vs1_9_1_12
[linux-2.6.git] / arch / ppc64 / kernel / smp.c
1 /*
2  * SMP support for ppc.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5  * deal of code from the sparc and intel versions.
6  *
7  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8  *
9  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  */
17
18 #include <linux/config.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 #include <linux/smp_lock.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/spinlock.h>
29 #include <linux/cache.h>
30 #include <linux/err.h>
31 #include <linux/sysdev.h>
32 #include <linux/cpu.h>
33
34 #include <asm/ptrace.h>
35 #include <asm/atomic.h>
36 #include <asm/irq.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/hardirq.h>
40 #include <asm/io.h>
41 #include <asm/prom.h>
42 #include <asm/smp.h>
43 #include <asm/naca.h>
44 #include <asm/paca.h>
45 #include <asm/iSeries/LparData.h>
46 #include <asm/iSeries/HvCall.h>
47 #include <asm/iSeries/HvCallCfg.h>
48 #include <asm/time.h>
49 #include <asm/ppcdebug.h>
50 #include "open_pic.h"
51 #include <asm/machdep.h>
52 #include <asm/xics.h>
53 #include <asm/cputable.h>
54 #include <asm/system.h>
55
56 int smp_threads_ready;
57 unsigned long cache_decay_ticks;
58
59 cpumask_t cpu_possible_map = CPU_MASK_NONE;
60 cpumask_t cpu_online_map = CPU_MASK_NONE;
61 cpumask_t cpu_available_map = CPU_MASK_NONE;
62 cpumask_t cpu_present_at_boot = CPU_MASK_NONE;
63
64 EXPORT_SYMBOL(cpu_online_map);
65 EXPORT_SYMBOL(cpu_possible_map);
66
67 struct smp_ops_t *smp_ops;
68
69 static volatile unsigned int cpu_callin_map[NR_CPUS];
70
71 extern unsigned char stab_array[];
72
73 extern int cpu_idle(void *unused);
74 void smp_call_function_interrupt(void);
75 extern long register_vpa(unsigned long flags, unsigned long proc,
76                          unsigned long vpa);
77
78 /* Low level assembly function used to backup CPU 0 state */
79 extern void __save_cpu_setup(void);
80
81 #ifdef CONFIG_PPC_ISERIES
82 static unsigned long iSeries_smp_message[NR_CPUS];
83
84 void iSeries_smp_message_recv( struct pt_regs * regs )
85 {
86         int cpu = smp_processor_id();
87         int msg;
88
89         if ( num_online_cpus() < 2 )
90                 return;
91
92         for ( msg = 0; msg < 4; ++msg )
93                 if ( test_and_clear_bit( msg, &iSeries_smp_message[cpu] ) )
94                         smp_message_recv( msg, regs );
95 }
96
97 static inline void smp_iSeries_do_message(int cpu, int msg)
98 {
99         set_bit(msg, &iSeries_smp_message[cpu]);
100         HvCall_sendIPI(&(paca[cpu]));
101 }
102
103 static void smp_iSeries_message_pass(int target, int msg)
104 {
105         int i;
106
107         if (target < NR_CPUS)
108                 smp_iSeries_do_message(target, msg);
109         else {
110                 for_each_online_cpu(i) {
111                         if (target == MSG_ALL_BUT_SELF
112                             && i == smp_processor_id())
113                                 continue;
114                         smp_iSeries_do_message(i, msg);
115                 }
116         }
117 }
118
119 static int smp_iSeries_numProcs(void)
120 {
121         unsigned np, i;
122         struct ItLpPaca * lpPaca;
123
124         np = 0;
125         for (i=0; i < NR_CPUS; ++i) {
126                 lpPaca = paca[i].xLpPacaPtr;
127                 if ( lpPaca->xDynProcStatus < 2 ) {
128                         cpu_set(i, cpu_available_map);
129                         cpu_set(i, cpu_possible_map);
130                         cpu_set(i, cpu_present_at_boot);
131                         ++np;
132                 }
133         }
134         return np;
135 }
136
137 static int smp_iSeries_probe(void)
138 {
139         unsigned i;
140         unsigned np = 0;
141         struct ItLpPaca *lpPaca;
142
143         for (i=0; i < NR_CPUS; ++i) {
144                 lpPaca = paca[i].xLpPacaPtr;
145                 if (lpPaca->xDynProcStatus < 2) {
146                         /*paca[i].active = 1;*/
147                         ++np;
148                 }
149         }
150
151         return np;
152 }
153
154 static void smp_iSeries_kick_cpu(int nr)
155 {
156         struct ItLpPaca *lpPaca;
157
158         BUG_ON(nr < 0 || nr >= NR_CPUS);
159
160         /* Verify that our partition has a processor nr */
161         lpPaca = paca[nr].xLpPacaPtr;
162         if (lpPaca->xDynProcStatus >= 2)
163                 return;
164
165         /* The processor is currently spinning, waiting
166          * for the xProcStart field to become non-zero
167          * After we set xProcStart, the processor will
168          * continue on to secondary_start in iSeries_head.S
169          */
170         paca[nr].xProcStart = 1;
171 }
172
173 static void __devinit smp_iSeries_setup_cpu(int nr)
174 {
175 }
176
177 static struct smp_ops_t iSeries_smp_ops = {
178         .message_pass = smp_iSeries_message_pass,
179         .probe        = smp_iSeries_probe,
180         .kick_cpu     = smp_iSeries_kick_cpu,
181         .setup_cpu    = smp_iSeries_setup_cpu,
182 };
183
184 /* This is called very early. */
185 void __init smp_init_iSeries(void)
186 {
187         smp_ops = &iSeries_smp_ops;
188         systemcfg->processorCount       = smp_iSeries_numProcs();
189 }
190 #endif
191
192 #ifdef CONFIG_PPC_PSERIES
193 void smp_openpic_message_pass(int target, int msg)
194 {
195         /* make sure we're sending something that translates to an IPI */
196         if ( msg > 0x3 ){
197                 printk("SMP %d: smp_message_pass: unknown msg %d\n",
198                        smp_processor_id(), msg);
199                 return;
200         }
201         switch ( target )
202         {
203         case MSG_ALL:
204                 openpic_cause_IPI(msg, 0xffffffff);
205                 break;
206         case MSG_ALL_BUT_SELF:
207                 openpic_cause_IPI(msg,
208                                   0xffffffff & ~(1 << smp_processor_id()));
209                 break;
210         default:
211                 openpic_cause_IPI(msg, 1<<target);
212                 break;
213         }
214 }
215
216 static int __init smp_openpic_probe(void)
217 {
218         int nr_cpus;
219
220         nr_cpus = cpus_weight(cpu_possible_map);
221
222         if (nr_cpus > 1)
223                 openpic_request_IPIs();
224
225         return nr_cpus;
226 }
227
228 static void __devinit smp_openpic_setup_cpu(int cpu)
229 {
230         do_openpic_setup_cpu();
231 }
232
233 #ifdef CONFIG_HOTPLUG_CPU
234 /* Get state of physical CPU.
235  * Return codes:
236  *      0       - The processor is in the RTAS stopped state
237  *      1       - stop-self is in progress
238  *      2       - The processor is not in the RTAS stopped state
239  *      -1      - Hardware Error
240  *      -2      - Hardware Busy, Try again later.
241  */
242 static int query_cpu_stopped(unsigned int pcpu)
243 {
244         long cpu_status;
245         int status, qcss_tok;
246
247         qcss_tok = rtas_token("query-cpu-stopped-state");
248         BUG_ON(qcss_tok == RTAS_UNKNOWN_SERVICE);
249         status = rtas_call(qcss_tok, 1, 2, &cpu_status, pcpu);
250         if (status != 0) {
251                 printk(KERN_ERR
252                        "RTAS query-cpu-stopped-state failed: %i\n", status);
253                 return status;
254         }
255
256         return cpu_status;
257 }
258
259 int __cpu_disable(void)
260 {
261         /* FIXME: go put this in a header somewhere */
262         extern void xics_migrate_irqs_away(void);
263
264         systemcfg->processorCount--;
265
266         /*fix boot_cpuid here*/
267         if (smp_processor_id() == boot_cpuid)
268                 boot_cpuid = any_online_cpu(cpu_online_map);
269
270         /* FIXME: abstract this to not be platform specific later on */
271         xics_migrate_irqs_away();
272         return 0;
273 }
274
275 void __cpu_die(unsigned int cpu)
276 {
277         int tries;
278         int cpu_status;
279         unsigned int pcpu = get_hard_smp_processor_id(cpu);
280
281         for (tries = 0; tries < 5; tries++) {
282                 cpu_status = query_cpu_stopped(pcpu);
283
284                 if (cpu_status == 0)
285                         break;
286                 set_current_state(TASK_UNINTERRUPTIBLE);
287                 schedule_timeout(HZ);
288         }
289         if (cpu_status != 0) {
290                 printk("Querying DEAD? cpu %i (%i) shows %i\n",
291                        cpu, pcpu, cpu_status);
292         }
293
294         /* Isolation and deallocation are definatly done by
295          * drslot_chrp_cpu.  If they were not they would be
296          * done here.  Change isolate state to Isolate and
297          * change allocation-state to Unusable.
298          */
299         paca[cpu].xProcStart = 0;
300
301         /* So we can recognize if it fails to come up next time. */
302         cpu_callin_map[cpu] = 0;
303 }
304
305 /* Kill this cpu */
306 void cpu_die(void)
307 {
308         local_irq_disable();
309         rtas_stop_self();
310         /* Should never get here... */
311         BUG();
312         for(;;);
313 }
314
315 /* Search all cpu device nodes for an offline logical cpu.  If a
316  * device node has a "ibm,my-drc-index" property (meaning this is an
317  * LPAR), paranoid-check whether we own the cpu.  For each "thread"
318  * of a cpu, if it is offline and has the same hw index as before,
319  * grab that in preference.
320  */
321 static unsigned int find_physical_cpu_to_start(unsigned int old_hwindex)
322 {
323         struct device_node *np = NULL;
324         unsigned int best = -1U;
325
326         while ((np = of_find_node_by_type(np, "cpu"))) {
327                 int nr_threads, len;
328                 u32 *index = (u32 *)get_property(np, "ibm,my-drc-index", NULL);
329                 u32 *tid = (u32 *)
330                         get_property(np, "ibm,ppc-interrupt-server#s", &len);
331
332                 if (!tid)
333                         tid = (u32 *)get_property(np, "reg", &len);
334
335                 if (!tid)
336                         continue;
337
338                 /* If there is a drc-index, make sure that we own
339                  * the cpu.
340                  */
341                 if (index) {
342                         int state;
343                         int rc = rtas_get_sensor(9003, *index, &state);
344                         if (rc != 0 || state != 1)
345                                 continue;
346                 }
347
348                 nr_threads = len / sizeof(u32);
349
350                 while (nr_threads--) {
351                         if (0 == query_cpu_stopped(tid[nr_threads])) {
352                                 best = tid[nr_threads];
353                                 if (best == old_hwindex)
354                                         goto out;
355                         }
356                 }
357         }
358 out:
359         of_node_put(np);
360         return best;
361 }
362
363 /**
364  * smp_startup_cpu() - start the given cpu
365  *
366  * At boot time, there is nothing to do.  At run-time, call RTAS with
367  * the appropriate start location, if the cpu is in the RTAS stopped
368  * state.
369  *
370  * Returns:
371  *      0       - failure
372  *      1       - success
373  */
374 static inline int __devinit smp_startup_cpu(unsigned int lcpu)
375 {
376         int status;
377         extern void (*pseries_secondary_smp_init)(unsigned int cpu);
378         unsigned long start_here = __pa(pseries_secondary_smp_init);
379         unsigned int pcpu;
380
381         /* At boot time the cpus are already spinning in hold
382          * loops, so nothing to do. */
383         if (system_state == SYSTEM_BOOTING)
384                 return 1;
385
386         pcpu = find_physical_cpu_to_start(get_hard_smp_processor_id(lcpu));
387         if (pcpu == -1U) {
388                 printk(KERN_INFO "No more cpus available, failing\n");
389                 return 0;
390         }
391
392         /* Fixup atomic count: it exited inside IRQ handler. */
393         paca[lcpu].xCurrent->thread_info->preempt_count = 0;
394         /* Fixup SLB round-robin so next segment (kernel) goes in segment 0 */
395         paca[lcpu].xStab_data.next_round_robin = 0;
396
397         /* At boot this is done in prom.c. */
398         paca[lcpu].xHwProcNum = pcpu;
399
400         status = rtas_call(rtas_token("start-cpu"), 3, 1, NULL,
401                            pcpu, start_here, lcpu);
402         if (status != 0) {
403                 printk(KERN_ERR "start-cpu failed: %i\n", status);
404                 return 0;
405         }
406         return 1;
407 }
408
409 static inline void look_for_more_cpus(void)
410 {
411         int num_addr_cell, num_size_cell, len, i, maxcpus;
412         struct device_node *np;
413         unsigned int *ireg;
414
415         /* Find the property which will tell us about how many CPUs
416          * we're allowed to have. */
417         if ((np = find_path_device("/rtas")) == NULL) {
418                 printk(KERN_ERR "Could not find /rtas in device tree!");
419                 return;
420         }
421         num_addr_cell = prom_n_addr_cells(np);
422         num_size_cell = prom_n_size_cells(np);
423
424         ireg = (unsigned int *)get_property(np, "ibm,lrdr-capacity", &len);
425         if (ireg == NULL) {
426                 /* FIXME: make sure not marked as lrdr_capable() */
427                 return;
428         }
429
430         maxcpus = ireg[num_addr_cell + num_size_cell];
431         /* DRENG need to account for threads here too */
432
433         if (maxcpus > NR_CPUS) {
434                 printk(KERN_WARNING
435                        "Partition configured for %d cpus, "
436                        "operating system maximum is %d.\n", maxcpus, NR_CPUS);
437                 maxcpus = NR_CPUS;
438         } else
439                 printk(KERN_INFO "Partition configured for %d cpus.\n",
440                        maxcpus);
441
442         /* Make those cpus (which might appear later) possible too. */
443         for (i = 0; i < maxcpus; i++)
444                 cpu_set(i, cpu_possible_map);
445 }
446 #else /* ... CONFIG_HOTPLUG_CPU */
447 static inline int __devinit smp_startup_cpu(unsigned int lcpu)
448 {
449         return 1;
450 }
451 static inline void look_for_more_cpus(void)
452 {
453 }
454 #endif /* CONFIG_HOTPLUG_CPU */
455
456 static void smp_pSeries_kick_cpu(int nr)
457 {
458         BUG_ON(nr < 0 || nr >= NR_CPUS);
459
460         if (!smp_startup_cpu(nr))
461                 return;
462
463         /* The processor is currently spinning, waiting
464          * for the xProcStart field to become non-zero
465          * After we set xProcStart, the processor will
466          * continue on to secondary_start
467          */
468         paca[nr].xProcStart = 1;
469 }
470 #endif /* CONFIG_PPC_PSERIES */
471
472 static void __init smp_space_timers(unsigned int max_cpus)
473 {
474         int i;
475         unsigned long offset = tb_ticks_per_jiffy / max_cpus;
476         unsigned long previous_tb = paca[boot_cpuid].next_jiffy_update_tb;
477
478         for_each_cpu(i) {
479                 if (i != boot_cpuid) {
480                         paca[i].next_jiffy_update_tb =
481                                 previous_tb + offset;
482                         previous_tb = paca[i].next_jiffy_update_tb;
483                 }
484         }
485 }
486
487 #ifdef CONFIG_PPC_PSERIES
488 void vpa_init(int cpu)
489 {
490         unsigned long flags;
491
492         /* Register the Virtual Processor Area (VPA) */
493         printk(KERN_INFO "register_vpa: cpu 0x%x\n", cpu);
494         flags = 1UL << (63 - 18);
495         paca[cpu].xLpPaca.xSLBCount = 64; /* SLB restore highwater mark */
496         register_vpa(flags, cpu, __pa((unsigned long)&(paca[cpu].xLpPaca))); 
497 }
498
499 static inline void smp_xics_do_message(int cpu, int msg)
500 {
501         set_bit(msg, &xics_ipi_message[cpu].value);
502         mb();
503         xics_cause_IPI(cpu);
504 }
505
506 static void smp_xics_message_pass(int target, int msg)
507 {
508         unsigned int i;
509
510         if (target < NR_CPUS) {
511                 smp_xics_do_message(target, msg);
512         } else {
513                 for_each_online_cpu(i) {
514                         if (target == MSG_ALL_BUT_SELF
515                             && i == smp_processor_id())
516                                 continue;
517                         smp_xics_do_message(i, msg);
518                 }
519         }
520 }
521
522 extern void xics_request_IPIs(void);
523
524 static int __init smp_xics_probe(void)
525 {
526 #ifdef CONFIG_SMP
527         xics_request_IPIs();
528 #endif
529
530         return cpus_weight(cpu_possible_map);
531 }
532
533 static void __devinit smp_xics_setup_cpu(int cpu)
534 {
535         if (cpu != boot_cpuid)
536                 xics_setup_cpu();
537 }
538
539 static spinlock_t timebase_lock = SPIN_LOCK_UNLOCKED;
540 static unsigned long timebase = 0;
541
542 static void __devinit pSeries_give_timebase(void)
543 {
544         spin_lock(&timebase_lock);
545         rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL);
546         timebase = get_tb();
547         spin_unlock(&timebase_lock);
548
549         while (timebase)
550                 barrier();
551         rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL);
552 }
553
554 static void __devinit pSeries_take_timebase(void)
555 {
556         while (!timebase)
557                 barrier();
558         spin_lock(&timebase_lock);
559         set_tb(timebase >> 32, timebase & 0xffffffff);
560         timebase = 0;
561         spin_unlock(&timebase_lock);
562 }
563
564 static struct smp_ops_t pSeries_openpic_smp_ops = {
565         .message_pass   = smp_openpic_message_pass,
566         .probe          = smp_openpic_probe,
567         .kick_cpu       = smp_pSeries_kick_cpu,
568         .setup_cpu      = smp_openpic_setup_cpu,
569 };
570
571 static struct smp_ops_t pSeries_xics_smp_ops = {
572         .message_pass   = smp_xics_message_pass,
573         .probe          = smp_xics_probe,
574         .kick_cpu       = smp_pSeries_kick_cpu,
575         .setup_cpu      = smp_xics_setup_cpu,
576 };
577
578 /* This is called very early */
579 void __init smp_init_pSeries(void)
580 {
581
582         if (naca->interrupt_controller == IC_OPEN_PIC)
583                 smp_ops = &pSeries_openpic_smp_ops;
584         else
585                 smp_ops = &pSeries_xics_smp_ops;
586
587         /* Non-lpar has additional take/give timebase */
588         if (systemcfg->platform == PLATFORM_PSERIES) {
589                 smp_ops->give_timebase = pSeries_give_timebase;
590                 smp_ops->take_timebase = pSeries_take_timebase;
591         }
592 }
593 #endif
594
595 void smp_local_timer_interrupt(struct pt_regs * regs)
596 {
597         if (!--(get_paca()->prof_counter)) {
598                 update_process_times(user_mode(regs));
599                 (get_paca()->prof_counter)=get_paca()->prof_multiplier;
600         }
601 }
602
603 void smp_message_recv(int msg, struct pt_regs *regs)
604 {
605         switch(msg) {
606         case PPC_MSG_CALL_FUNCTION:
607                 smp_call_function_interrupt();
608                 break;
609         case PPC_MSG_RESCHEDULE: 
610                 /* XXX Do we have to do this? */
611                 set_need_resched();
612                 break;
613 #if 0
614         case PPC_MSG_MIGRATE_TASK:
615                 /* spare */
616                 break;
617 #endif
618 #ifdef CONFIG_DEBUGGER
619         case PPC_MSG_DEBUGGER_BREAK:
620                 debugger_ipi(regs);
621                 break;
622 #endif
623         default:
624                 printk("SMP %d: smp_message_recv(): unknown msg %d\n",
625                        smp_processor_id(), msg);
626                 break;
627         }
628 }
629
630 void smp_send_reschedule(int cpu)
631 {
632         smp_ops->message_pass(cpu, PPC_MSG_RESCHEDULE);
633 }
634
635 #ifdef CONFIG_DEBUGGER
636 void smp_send_debugger_break(int cpu)
637 {
638         smp_ops->message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
639 }
640 #endif
641
642 static void stop_this_cpu(void *dummy)
643 {
644         local_irq_disable();
645         while (1)
646                 ;
647 }
648
649 void smp_send_stop(void)
650 {
651         smp_call_function(stop_this_cpu, NULL, 1, 0);
652 }
653
654 /*
655  * Structure and data for smp_call_function(). This is designed to minimise
656  * static memory requirements. It also looks cleaner.
657  * Stolen from the i386 version.
658  */
659 static spinlock_t call_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
660
661 static struct call_data_struct {
662         void (*func) (void *info);
663         void *info;
664         atomic_t started;
665         atomic_t finished;
666         int wait;
667 } *call_data;
668
669 /* delay of at least 8 seconds on 1GHz cpu */
670 #define SMP_CALL_TIMEOUT (1UL << (30 + 3))
671
672 /*
673  * This function sends a 'generic call function' IPI to all other CPUs
674  * in the system.
675  *
676  * [SUMMARY] Run a function on all other CPUs.
677  * <func> The function to run. This must be fast and non-blocking.
678  * <info> An arbitrary pointer to pass to the function.
679  * <nonatomic> currently unused.
680  * <wait> If true, wait (atomically) until function has completed on other CPUs.
681  * [RETURNS] 0 on success, else a negative status code. Does not return until
682  * remote CPUs are nearly ready to execute <<func>> or are or have executed.
683  *
684  * You must not call this function with disabled interrupts or from a
685  * hardware interrupt handler or from a bottom half handler.
686  */
687 int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
688                        int wait)
689
690         struct call_data_struct data;
691         int ret = -1, cpus;
692         unsigned long timeout;
693
694         /* Can deadlock when called with interrupts disabled */
695         WARN_ON(irqs_disabled());
696
697         data.func = func;
698         data.info = info;
699         atomic_set(&data.started, 0);
700         data.wait = wait;
701         if (wait)
702                 atomic_set(&data.finished, 0);
703
704         spin_lock(&call_lock);
705         /* Must grab online cpu count with preempt disabled, otherwise
706          * it can change. */
707         cpus = num_online_cpus() - 1;
708         if (!cpus) {
709                 ret = 0;
710                 goto out;
711         }
712
713         call_data = &data;
714         wmb();
715         /* Send a message to all other CPUs and wait for them to respond */
716         smp_ops->message_pass(MSG_ALL_BUT_SELF, PPC_MSG_CALL_FUNCTION);
717
718         /* Wait for response */
719         timeout = SMP_CALL_TIMEOUT;
720         while (atomic_read(&data.started) != cpus) {
721                 HMT_low();
722                 if (--timeout == 0) {
723                         printk("smp_call_function on cpu %d: other cpus not "
724                                "responding (%d)\n", smp_processor_id(),
725                                atomic_read(&data.started));
726                         debugger(0);
727                         goto out;
728                 }
729         }
730
731         if (wait) {
732                 timeout = SMP_CALL_TIMEOUT;
733                 while (atomic_read(&data.finished) != cpus) {
734                         HMT_low();
735                         if (--timeout == 0) {
736                                 printk("smp_call_function on cpu %d: other "
737                                        "cpus not finishing (%d/%d)\n",
738                                        smp_processor_id(),
739                                        atomic_read(&data.finished),
740                                        atomic_read(&data.started));
741                                 debugger(0);
742                                 goto out;
743                         }
744                 }
745         }
746
747         ret = 0;
748
749 out:
750         call_data = NULL;
751         HMT_medium();
752         spin_unlock(&call_lock);
753         return ret;
754 }
755
756 void smp_call_function_interrupt(void)
757 {
758         void (*func) (void *info);
759         void *info;
760         int wait;
761
762         /* call_data will be NULL if the sender timed out while
763          * waiting on us to receive the call.
764          */
765         if (!call_data)
766                 return;
767
768         func = call_data->func;
769         info = call_data->info;
770         wait = call_data->wait;
771
772         if (!wait)
773                 smp_mb__before_atomic_inc();
774
775         /*
776          * Notify initiating CPU that I've grabbed the data and am
777          * about to execute the function
778          */
779         atomic_inc(&call_data->started);
780         /*
781          * At this point the info structure may be out of scope unless wait==1
782          */
783         (*func)(info);
784         if (wait) {
785                 smp_mb__before_atomic_inc();
786                 atomic_inc(&call_data->finished);
787         }
788 }
789
790 extern unsigned long decr_overclock;
791 extern struct gettimeofday_struct do_gtod;
792
793 struct thread_info *current_set[NR_CPUS];
794
795 DECLARE_PER_CPU(unsigned int, pvr);
796
797 static void __devinit smp_store_cpu_info(int id)
798 {
799         per_cpu(pvr, id) = _get_PVR();
800 }
801
802 static void __init smp_create_idle(unsigned int cpu)
803 {
804         struct pt_regs regs;
805         struct task_struct *p;
806
807         /* create a process for the processor */
808         /* only regs.msr is actually used, and 0 is OK for it */
809         memset(&regs, 0, sizeof(struct pt_regs));
810         p = copy_process(CLONE_VM | CLONE_IDLETASK,
811                          0, &regs, 0, NULL, NULL);
812         if (IS_ERR(p))
813                 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
814
815         wake_up_forked_process(p);
816         init_idle(p, cpu);
817         unhash_process(p);
818
819         paca[cpu].xCurrent = p;
820         current_set[cpu] = p->thread_info;
821 }
822
823 void __init smp_prepare_cpus(unsigned int max_cpus)
824 {
825         unsigned int cpu;
826
827         /* 
828          * setup_cpu may need to be called on the boot cpu. We havent
829          * spun any cpus up but lets be paranoid.
830          */
831         BUG_ON(boot_cpuid != smp_processor_id());
832
833         /* Fixup boot cpu */
834         smp_store_cpu_info(boot_cpuid);
835         cpu_callin_map[boot_cpuid] = 1;
836         paca[boot_cpuid].prof_counter = 1;
837         paca[boot_cpuid].prof_multiplier = 1;
838
839 #ifndef CONFIG_PPC_ISERIES
840         paca[boot_cpuid].next_jiffy_update_tb = tb_last_stamp = get_tb();
841
842         /*
843          * Should update do_gtod.stamp_xsec.
844          * For now we leave it which means the time can be some
845          * number of msecs off until someone does a settimeofday()
846          */
847         do_gtod.tb_orig_stamp = tb_last_stamp;
848
849         look_for_more_cpus();
850 #endif
851
852         max_cpus = smp_ops->probe();
853  
854         /* Backup CPU 0 state if necessary */
855         __save_cpu_setup();
856
857         smp_space_timers(max_cpus);
858
859         for_each_cpu(cpu)
860                 if (cpu != boot_cpuid)
861                         smp_create_idle(cpu);
862 }
863
864 void __devinit smp_prepare_boot_cpu(void)
865 {
866         BUG_ON(smp_processor_id() != boot_cpuid);
867
868         /* cpu_possible is set up in prom.c */
869         cpu_set(boot_cpuid, cpu_online_map);
870
871         paca[boot_cpuid].xCurrent = current;
872         current_set[boot_cpuid] = current->thread_info;
873 }
874
875 int __devinit __cpu_up(unsigned int cpu)
876 {
877         int c;
878
879         /* At boot, don't bother with non-present cpus -JSCHOPP */
880         if (system_state == SYSTEM_BOOTING && !cpu_present_at_boot(cpu))
881                 return -ENOENT;
882
883         paca[cpu].prof_counter = 1;
884         paca[cpu].prof_multiplier = 1;
885         paca[cpu].default_decr = tb_ticks_per_jiffy / decr_overclock;
886
887         if (!(cur_cpu_spec->cpu_features & CPU_FTR_SLB)) {
888                 void *tmp;
889
890                 /* maximum of 48 CPUs on machines with a segment table */
891                 if (cpu >= 48)
892                         BUG();
893
894                 tmp = &stab_array[PAGE_SIZE * cpu];
895                 memset(tmp, 0, PAGE_SIZE); 
896                 paca[cpu].xStab_data.virt = (unsigned long)tmp;
897                 paca[cpu].xStab_data.real = virt_to_abs(tmp);
898         }
899
900         /* The information for processor bringup must
901          * be written out to main store before we release
902          * the processor.
903          */
904         mb();
905
906         /* wake up cpus */
907         smp_ops->kick_cpu(cpu);
908
909         /*
910          * wait to see if the cpu made a callin (is actually up).
911          * use this value that I found through experimentation.
912          * -- Cort
913          */
914         if (system_state == SYSTEM_BOOTING)
915                 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
916                         udelay(100);
917 #ifdef CONFIG_HOTPLUG_CPU
918         else
919                 /*
920                  * CPUs can take much longer to come up in the
921                  * hotplug case.  Wait five seconds.
922                  */
923                 for (c = 25; c && !cpu_callin_map[cpu]; c--) {
924                         set_current_state(TASK_UNINTERRUPTIBLE);
925                         schedule_timeout(HZ/5);
926                 }
927 #endif
928
929         if (!cpu_callin_map[cpu]) {
930                 printk("Processor %u is stuck.\n", cpu);
931                 return -ENOENT;
932         }
933
934         printk("Processor %u found.\n", cpu);
935
936         if (smp_ops->give_timebase)
937                 smp_ops->give_timebase();
938         cpu_set(cpu, cpu_online_map);
939         return 0;
940 }
941
942 extern unsigned int default_distrib_server;
943 /* Activate a secondary processor. */
944 int __devinit start_secondary(void *unused)
945 {
946         unsigned int cpu = smp_processor_id();
947
948         atomic_inc(&init_mm.mm_count);
949         current->active_mm = &init_mm;
950
951         smp_store_cpu_info(cpu);
952         set_dec(paca[cpu].default_decr);
953         cpu_callin_map[cpu] = 1;
954
955         smp_ops->setup_cpu(cpu);
956         if (smp_ops->take_timebase)
957                 smp_ops->take_timebase();
958
959         get_paca()->yielded = 0;
960
961 #ifdef CONFIG_PPC_PSERIES
962         if (cur_cpu_spec->firmware_features & FW_FEATURE_SPLPAR) {
963                 vpa_init(cpu); 
964         }
965
966 #ifdef CONFIG_IRQ_ALL_CPUS
967         /* Put the calling processor into the GIQ.  This is really only
968          * necessary from a secondary thread as the OF start-cpu interface
969          * performs this function for us on primary threads.
970          */
971         /* TODO: 9005 is #defined in rtas-proc.c -- move to a header */
972         rtas_set_indicator(9005, default_distrib_server, 1);
973 #endif
974 #endif
975
976         local_irq_enable();
977
978         return cpu_idle(NULL);
979 }
980
981 int setup_profiling_timer(unsigned int multiplier)
982 {
983         return 0;
984 }
985
986 void __init smp_cpus_done(unsigned int max_cpus)
987 {
988         cpumask_t old_mask;
989
990         /* We want the setup_cpu() here to be called from CPU 0, but our
991          * init thread may have been "borrowed" by another CPU in the meantime
992          * se we pin us down to CPU 0 for a short while
993          */
994         old_mask = current->cpus_allowed;
995         set_cpus_allowed(current, cpumask_of_cpu(boot_cpuid));
996         
997         smp_ops->setup_cpu(boot_cpuid);
998
999         /* XXX fix this, xics currently relies on it - Anton */
1000         smp_threads_ready = 1;
1001
1002         set_cpus_allowed(current, old_mask);
1003 }
1004
1005 #ifdef CONFIG_SCHED_SMT
1006 #ifdef CONFIG_NUMA
1007 static struct sched_group sched_group_cpus[NR_CPUS];
1008 static struct sched_group sched_group_phys[NR_CPUS];
1009 static struct sched_group sched_group_nodes[MAX_NUMNODES];
1010 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
1011 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
1012 static DEFINE_PER_CPU(struct sched_domain, node_domains);
1013 __init void arch_init_sched_domains(void)
1014 {
1015         int i;
1016         struct sched_group *first = NULL, *last = NULL;
1017
1018         /* Set up domains */
1019         for_each_cpu(i) {
1020                 struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i);
1021                 struct sched_domain *phys_domain = &per_cpu(phys_domains, i);
1022                 struct sched_domain *node_domain = &per_cpu(node_domains, i);
1023                 int node = cpu_to_node(i);
1024                 cpumask_t nodemask = node_to_cpumask(node);
1025                 cpumask_t my_cpumask = cpumask_of_cpu(i);
1026                 cpumask_t sibling_cpumask = cpumask_of_cpu(i ^ 0x1);
1027
1028                 *cpu_domain = SD_SIBLING_INIT;
1029                 if (cur_cpu_spec->cpu_features & CPU_FTR_SMT)
1030                         cpus_or(cpu_domain->span, my_cpumask, sibling_cpumask);
1031                 else
1032                         cpu_domain->span = my_cpumask;
1033                 cpu_domain->parent = phys_domain;
1034                 cpu_domain->groups = &sched_group_cpus[i];
1035
1036                 *phys_domain = SD_CPU_INIT;
1037                 phys_domain->span = nodemask;
1038                 phys_domain->parent = node_domain;
1039                 phys_domain->groups = &sched_group_phys[first_cpu(cpu_domain->span)];
1040
1041                 *node_domain = SD_NODE_INIT;
1042                 node_domain->span = cpu_possible_map;
1043                 node_domain->groups = &sched_group_nodes[node];
1044         }
1045
1046         /* Set up CPU (sibling) groups */
1047         for_each_cpu(i) {
1048                 struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i);
1049                 int j;
1050                 first = last = NULL;
1051
1052                 if (i != first_cpu(cpu_domain->span))
1053                         continue;
1054
1055                 for_each_cpu_mask(j, cpu_domain->span) {
1056                         struct sched_group *cpu = &sched_group_cpus[j];
1057
1058                         cpus_clear(cpu->cpumask);
1059                         cpu_set(j, cpu->cpumask);
1060                         cpu->cpu_power = SCHED_LOAD_SCALE;
1061
1062                         if (!first)
1063                                 first = cpu;
1064                         if (last)
1065                                 last->next = cpu;
1066                         last = cpu;
1067                 }
1068                 last->next = first;
1069         }
1070
1071         for (i = 0; i < MAX_NUMNODES; i++) {
1072                 int j;
1073                 cpumask_t nodemask;
1074                 struct sched_group *node = &sched_group_nodes[i];
1075                 cpumask_t node_cpumask = node_to_cpumask(i);
1076                 cpus_and(nodemask, node_cpumask, cpu_possible_map);
1077
1078                 if (cpus_empty(nodemask))
1079                         continue;
1080
1081                 first = last = NULL;
1082                 /* Set up physical groups */
1083                 for_each_cpu_mask(j, nodemask) {
1084                         struct sched_domain *cpu_domain = &per_cpu(cpu_domains, j);
1085                         struct sched_group *cpu = &sched_group_phys[j];
1086
1087                         if (j != first_cpu(cpu_domain->span))
1088                                 continue;
1089
1090                         cpu->cpumask = cpu_domain->span;
1091                         /*
1092                          * Make each extra sibling increase power by 10% of
1093                          * the basic CPU. This is very arbitrary.
1094                          */
1095                         cpu->cpu_power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE*(cpus_weight(cpu->cpumask)-1) / 10;
1096                         node->cpu_power += cpu->cpu_power;
1097
1098                         if (!first)
1099                                 first = cpu;
1100                         if (last)
1101                                 last->next = cpu;
1102                         last = cpu;
1103                 }
1104                 last->next = first;
1105         }
1106
1107         /* Set up nodes */
1108         first = last = NULL;
1109         for (i = 0; i < MAX_NUMNODES; i++) {
1110                 struct sched_group *cpu = &sched_group_nodes[i];
1111                 cpumask_t nodemask;
1112                 cpumask_t node_cpumask = node_to_cpumask(i);
1113                 cpus_and(nodemask, node_cpumask, cpu_possible_map);
1114
1115                 if (cpus_empty(nodemask))
1116                         continue;
1117
1118                 cpu->cpumask = nodemask;
1119                 /* ->cpu_power already setup */
1120
1121                 if (!first)
1122                         first = cpu;
1123                 if (last)
1124                         last->next = cpu;
1125                 last = cpu;
1126         }
1127         last->next = first;
1128
1129         mb();
1130         for_each_cpu(i) {
1131                 struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i);
1132                 cpu_attach_domain(cpu_domain, i);
1133         }
1134 }
1135 #else /* !CONFIG_NUMA */
1136 static struct sched_group sched_group_cpus[NR_CPUS];
1137 static struct sched_group sched_group_phys[NR_CPUS];
1138 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
1139 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
1140 __init void arch_init_sched_domains(void)
1141 {
1142         int i;
1143         struct sched_group *first = NULL, *last = NULL;
1144
1145         /* Set up domains */
1146         for_each_cpu(i) {
1147                 struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i);
1148                 struct sched_domain *phys_domain = &per_cpu(phys_domains, i);
1149                 cpumask_t my_cpumask = cpumask_of_cpu(i);
1150                 cpumask_t sibling_cpumask = cpumask_of_cpu(i ^ 0x1);
1151
1152                 *cpu_domain = SD_SIBLING_INIT;
1153                 if (cur_cpu_spec->cpu_features & CPU_FTR_SMT)
1154                         cpus_or(cpu_domain->span, my_cpumask, sibling_cpumask);
1155                 else
1156                         cpu_domain->span = my_cpumask;
1157                 cpu_domain->parent = phys_domain;
1158                 cpu_domain->groups = &sched_group_cpus[i];
1159
1160                 *phys_domain = SD_CPU_INIT;
1161                 phys_domain->span = cpu_possible_map;
1162                 phys_domain->groups = &sched_group_phys[first_cpu(cpu_domain->span)];
1163         }
1164
1165         /* Set up CPU (sibling) groups */
1166         for_each_cpu(i) {
1167                 struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i);
1168                 int j;
1169                 first = last = NULL;
1170
1171                 if (i != first_cpu(cpu_domain->span))
1172                         continue;
1173
1174                 for_each_cpu_mask(j, cpu_domain->span) {
1175                         struct sched_group *cpu = &sched_group_cpus[j];
1176
1177                         cpus_clear(cpu->cpumask);
1178                         cpu_set(j, cpu->cpumask);
1179                         cpu->cpu_power = SCHED_LOAD_SCALE;
1180
1181                         if (!first)
1182                                 first = cpu;
1183                         if (last)
1184                                 last->next = cpu;
1185                         last = cpu;
1186                 }
1187                 last->next = first;
1188         }
1189
1190         first = last = NULL;
1191         /* Set up physical groups */
1192         for_each_cpu(i) {
1193                 struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i);
1194                 struct sched_group *cpu = &sched_group_phys[i];
1195
1196                 if (i != first_cpu(cpu_domain->span))
1197                         continue;
1198
1199                 cpu->cpumask = cpu_domain->span;
1200                 /* See SMT+NUMA setup for comment */
1201                 cpu->cpu_power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE*(cpus_weight(cpu->cpumask)-1) / 10;
1202
1203                 if (!first)
1204                         first = cpu;
1205                 if (last)
1206                         last->next = cpu;
1207                 last = cpu;
1208         }
1209         last->next = first;
1210
1211         mb();
1212         for_each_cpu(i) {
1213                 struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i);
1214                 cpu_attach_domain(cpu_domain, i);
1215         }
1216 }
1217 #endif /* CONFIG_NUMA */
1218 #endif /* CONFIG_SCHED_SMT */