patch-2_6_7-vs1_9_1_12
[linux-2.6.git] / arch / sparc / mm / fault.c
1 /* $Id: fault.c,v 1.122 2001/11/17 07:19:26 davem Exp $
2  * fault.c:  Page fault handlers for the Sparc.
3  *
4  * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5  * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
6  * Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8
9 #include <asm/head.h>
10
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/sched.h>
14 #include <linux/ptrace.h>
15 #include <linux/mman.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/signal.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/smp_lock.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24
25 #include <asm/system.h>
26 #include <asm/segment.h>
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/memreg.h>
30 #include <asm/openprom.h>
31 #include <asm/oplib.h>
32 #include <asm/smp.h>
33 #include <asm/traps.h>
34 #include <asm/kdebug.h>
35 #include <asm/uaccess.h>
36
37 #define ELEMENTS(arr) (sizeof (arr)/sizeof (arr[0]))
38
39 extern int prom_node_root;
40
41 /* At boot time we determine these two values necessary for setting
42  * up the segment maps and page table entries (pte's).
43  */
44
45 int num_segmaps, num_contexts;
46 int invalid_segment;
47
48 /* various Virtual Address Cache parameters we find at boot time... */
49
50 int vac_size, vac_linesize, vac_do_hw_vac_flushes;
51 int vac_entries_per_context, vac_entries_per_segment;
52 int vac_entries_per_page;
53
54 /* Nice, simple, prom library does all the sweating for us. ;) */
55 int prom_probe_memory (void)
56 {
57         register struct linux_mlist_v0 *mlist;
58         register unsigned long bytes, base_paddr, tally;
59         register int i;
60
61         i = 0;
62         mlist= *prom_meminfo()->v0_available;
63         bytes = tally = mlist->num_bytes;
64         base_paddr = (unsigned long) mlist->start_adr;
65   
66         sp_banks[0].base_addr = base_paddr;
67         sp_banks[0].num_bytes = bytes;
68
69         while (mlist->theres_more != (void *) 0){
70                 i++;
71                 mlist = mlist->theres_more;
72                 bytes = mlist->num_bytes;
73                 tally += bytes;
74                 if (i > SPARC_PHYS_BANKS-1) {
75                         printk ("The machine has more banks than "
76                                 "this kernel can support\n"
77                                 "Increase the SPARC_PHYS_BANKS "
78                                 "setting (currently %d)\n",
79                                 SPARC_PHYS_BANKS);
80                         i = SPARC_PHYS_BANKS-1;
81                         break;
82                 }
83     
84                 sp_banks[i].base_addr = (unsigned long) mlist->start_adr;
85                 sp_banks[i].num_bytes = mlist->num_bytes;
86         }
87
88         i++;
89         sp_banks[i].base_addr = 0xdeadbeef;
90         sp_banks[i].num_bytes = 0;
91
92         /* Now mask all bank sizes on a page boundary, it is all we can
93          * use anyways.
94          */
95         for(i=0; sp_banks[i].num_bytes != 0; i++)
96                 sp_banks[i].num_bytes &= PAGE_MASK;
97
98         return tally;
99 }
100
101 /* Traverse the memory lists in the prom to see how much physical we
102  * have.
103  */
104 unsigned long
105 probe_memory(void)
106 {
107         int total;
108
109         total = prom_probe_memory();
110
111         /* Oh man, much nicer, keep the dirt in promlib. */
112         return total;
113 }
114
115 extern void sun4c_complete_all_stores(void);
116
117 /* Whee, a level 15 NMI interrupt memory error.  Let's have fun... */
118 asmlinkage void sparc_lvl15_nmi(struct pt_regs *regs, unsigned long serr,
119                                 unsigned long svaddr, unsigned long aerr,
120                                 unsigned long avaddr)
121 {
122         sun4c_complete_all_stores();
123         printk("FAULT: NMI received\n");
124         printk("SREGS: Synchronous Error %08lx\n", serr);
125         printk("       Synchronous Vaddr %08lx\n", svaddr);
126         printk("      Asynchronous Error %08lx\n", aerr);
127         printk("      Asynchronous Vaddr %08lx\n", avaddr);
128         if (sun4c_memerr_reg)
129                 printk("     Memory Parity Error %08lx\n", *sun4c_memerr_reg);
130         printk("REGISTER DUMP:\n");
131         show_regs(regs);
132         prom_halt();
133 }
134
135 static void unhandled_fault(unsigned long, struct task_struct *,
136                 struct pt_regs *) __attribute__ ((noreturn));
137
138 static void unhandled_fault(unsigned long address, struct task_struct *tsk,
139                      struct pt_regs *regs)
140 {
141         if((unsigned long) address < PAGE_SIZE) {
142                 printk(KERN_ALERT
143                     "Unable to handle kernel NULL pointer dereference\n");
144         } else {
145                 printk(KERN_ALERT "Unable to handle kernel paging request "
146                        "at virtual address %08lx\n", address);
147         }
148         printk(KERN_ALERT "tsk->{mm,active_mm}->context = %08lx\n",
149                 (tsk->mm ? tsk->mm->context : tsk->active_mm->context));
150         printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %08lx\n",
151                 (tsk->mm ? (unsigned long) tsk->mm->pgd :
152                         (unsigned long) tsk->active_mm->pgd));
153         die_if_kernel("Oops", regs);
154 }
155
156 asmlinkage int lookup_fault(unsigned long pc, unsigned long ret_pc, 
157                             unsigned long address)
158 {
159         struct pt_regs regs;
160         unsigned long g2;
161         unsigned int insn;
162         int i;
163         
164         i = search_extables_range(ret_pc, &g2);
165         switch (i) {
166         case 3:
167                 /* load & store will be handled by fixup */
168                 return 3;
169
170         case 1:
171                 /* store will be handled by fixup, load will bump out */
172                 /* for _to_ macros */
173                 insn = *((unsigned int *) pc);
174                 if ((insn >> 21) & 1)
175                         return 1;
176                 break;
177
178         case 2:
179                 /* load will be handled by fixup, store will bump out */
180                 /* for _from_ macros */
181                 insn = *((unsigned int *) pc);
182                 if (!((insn >> 21) & 1) || ((insn>>19)&0x3f) == 15)
183                         return 2; 
184                 break; 
185
186         default:
187                 break;
188         };
189
190         memset(&regs, 0, sizeof (regs));
191         regs.pc = pc;
192         regs.npc = pc + 4;
193         __asm__ __volatile__(
194                 "rd %%psr, %0\n\t"
195                 "nop\n\t"
196                 "nop\n\t"
197                 "nop\n" : "=r" (regs.psr));
198         unhandled_fault(address, current, &regs);
199
200         /* Not reached */
201         return 0;
202 }
203
204 extern unsigned long safe_compute_effective_address(struct pt_regs *,
205                                                     unsigned int);
206
207 static unsigned long compute_si_addr(struct pt_regs *regs, int text_fault)
208 {
209         unsigned int insn;
210
211         if (text_fault)
212                 return regs->pc;
213
214         if (regs->psr & PSR_PS) {
215                 insn = *(unsigned int *) regs->pc;
216         } else {
217                 __get_user(insn, (unsigned int *) regs->pc);
218         }
219
220         return safe_compute_effective_address(regs, insn);
221 }
222
223 asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
224                                unsigned long address)
225 {
226         struct vm_area_struct *vma;
227         struct task_struct *tsk = current;
228         struct mm_struct *mm = tsk->mm;
229         unsigned int fixup;
230         unsigned long g2;
231         siginfo_t info;
232         int from_user = !(regs->psr & PSR_PS);
233
234         if(text_fault)
235                 address = regs->pc;
236
237         /*
238          * We fault-in kernel-space virtual memory on-demand. The
239          * 'reference' page table is init_mm.pgd.
240          *
241          * NOTE! We MUST NOT take any locks for this case. We may
242          * be in an interrupt or a critical region, and should
243          * only copy the information from the master page table,
244          * nothing more.
245          */
246         if (!ARCH_SUN4C_SUN4 && address >= TASK_SIZE)
247                 goto vmalloc_fault;
248
249         info.si_code = SEGV_MAPERR;
250
251         /*
252          * If we're in an interrupt or have no user
253          * context, we must not take the fault..
254          */
255         if (in_atomic() || !mm)
256                 goto no_context;
257
258         down_read(&mm->mmap_sem);
259
260         /*
261          * The kernel referencing a bad kernel pointer can lock up
262          * a sun4c machine completely, so we must attempt recovery.
263          */
264         if(!from_user && address >= PAGE_OFFSET)
265                 goto bad_area;
266
267         vma = find_vma(mm, address);
268         if(!vma)
269                 goto bad_area;
270         if(vma->vm_start <= address)
271                 goto good_area;
272         if(!(vma->vm_flags & VM_GROWSDOWN))
273                 goto bad_area;
274         if(expand_stack(vma, address))
275                 goto bad_area;
276         /*
277          * Ok, we have a good vm_area for this memory access, so
278          * we can handle it..
279          */
280 good_area:
281         info.si_code = SEGV_ACCERR;
282         if(write) {
283                 if(!(vma->vm_flags & VM_WRITE))
284                         goto bad_area;
285         } else {
286                 /* Allow reads even for write-only mappings */
287                 if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
288                         goto bad_area;
289         }
290
291         /*
292          * If for any reason at all we couldn't handle the fault,
293          * make sure we exit gracefully rather than endlessly redo
294          * the fault.
295          */
296         switch (handle_mm_fault(mm, vma, address, write)) {
297         case 1:
298                 current->min_flt++;
299                 break;
300         case 2:
301                 current->maj_flt++;
302                 break;
303         case 0:
304                 goto do_sigbus;
305         default:
306                 goto out_of_memory;
307         }
308         up_read(&mm->mmap_sem);
309         return;
310
311         /*
312          * Something tried to access memory that isn't in our memory map..
313          * Fix it, but check if it's kernel or user first..
314          */
315 bad_area:
316         up_read(&mm->mmap_sem);
317
318 bad_area_nosemaphore:
319         /* User mode accesses just cause a SIGSEGV */
320         if(from_user) {
321 #if 0
322                 printk("Fault whee %s [%d]: segfaults at %08lx pc=%08lx\n",
323                        tsk->comm, tsk->pid, address, regs->pc);
324 #endif
325                 info.si_signo = SIGSEGV;
326                 info.si_errno = 0;
327                 /* info.si_code set above to make clear whether
328                    this was a SEGV_MAPERR or SEGV_ACCERR fault.  */
329                 info.si_addr = (void *) compute_si_addr(regs, text_fault);
330                 info.si_trapno = 0;
331                 force_sig_info (SIGSEGV, &info, tsk);
332                 return;
333         }
334
335         /* Is this in ex_table? */
336 no_context:
337         g2 = regs->u_regs[UREG_G2];
338         if (!from_user && (fixup = search_extables_range(regs->pc, &g2))) {
339                 if (fixup > 10) { /* Values below are reserved for other things */
340                         extern const unsigned __memset_start[];
341                         extern const unsigned __memset_end[];
342                         extern const unsigned __csum_partial_copy_start[];
343                         extern const unsigned __csum_partial_copy_end[];
344
345 #ifdef DEBUG_EXCEPTIONS
346                         printk("Exception: PC<%08lx> faddr<%08lx>\n", regs->pc, address);
347                         printk("EX_TABLE: insn<%08lx> fixup<%08x> g2<%08lx>\n",
348                                 regs->pc, fixup, g2);
349 #endif
350                         if ((regs->pc >= (unsigned long)__memset_start &&
351                              regs->pc < (unsigned long)__memset_end) ||
352                             (regs->pc >= (unsigned long)__csum_partial_copy_start &&
353                              regs->pc < (unsigned long)__csum_partial_copy_end)) {
354                                 regs->u_regs[UREG_I4] = address;
355                                 regs->u_regs[UREG_I5] = regs->pc;
356                         }
357                         regs->u_regs[UREG_G2] = g2;
358                         regs->pc = fixup;
359                         regs->npc = regs->pc + 4;
360                         return;
361                 }
362         }
363         
364         unhandled_fault (address, tsk, regs);
365         do_exit(SIGKILL);
366
367 /*
368  * We ran out of memory, or some other thing happened to us that made
369  * us unable to handle the page fault gracefully.
370  */
371 out_of_memory:
372         up_read(&mm->mmap_sem);
373         printk("VM: killing process %s\n", tsk->comm);
374         if (from_user)
375                 do_exit(SIGKILL);
376         goto no_context;
377
378 do_sigbus:
379         up_read(&mm->mmap_sem);
380         info.si_signo = SIGBUS;
381         info.si_errno = 0;
382         info.si_code = BUS_ADRERR;
383         info.si_addr = (void *) compute_si_addr(regs, text_fault);
384         info.si_trapno = 0;
385         force_sig_info (SIGBUS, &info, tsk);
386         if (!from_user)
387                 goto no_context;
388
389 vmalloc_fault:
390         {
391                 /*
392                  * Synchronize this task's top level page-table
393                  * with the 'reference' page table.
394                  */
395                 int offset = pgd_index(address);
396                 pgd_t *pgd, *pgd_k;
397                 pmd_t *pmd, *pmd_k;
398
399                 pgd = tsk->active_mm->pgd + offset;
400                 pgd_k = init_mm.pgd + offset;
401
402                 if (!pgd_present(*pgd)) {
403                         if (!pgd_present(*pgd_k))
404                                 goto bad_area_nosemaphore;
405                         pgd_val(*pgd) = pgd_val(*pgd_k);
406                         return;
407                 }
408
409                 pmd = pmd_offset(pgd, address);
410                 pmd_k = pmd_offset(pgd_k, address);
411
412                 if (pmd_present(*pmd) || !pmd_present(*pmd_k))
413                         goto bad_area_nosemaphore;
414                 *pmd = *pmd_k;
415                 return;
416         }
417 }
418
419 asmlinkage void do_sun4c_fault(struct pt_regs *regs, int text_fault, int write,
420                                unsigned long address)
421 {
422         extern void sun4c_update_mmu_cache(struct vm_area_struct *,
423                                            unsigned long,pte_t);
424         extern pte_t *sun4c_pte_offset_kernel(pmd_t *,unsigned long);
425         struct task_struct *tsk = current;
426         struct mm_struct *mm = tsk->mm;
427         pgd_t *pgdp;
428         pte_t *ptep;
429
430         if (text_fault) {
431                 address = regs->pc;
432         } else if (!write &&
433                    !(regs->psr & PSR_PS)) {
434                 unsigned int insn, __user *ip;
435
436                 ip = (unsigned int __user *)regs->pc;
437                 if (!get_user(insn, ip)) {
438                         if ((insn & 0xc1680000) == 0xc0680000)
439                                 write = 1;
440                 }
441         }
442
443         if (!mm) {
444                 /* We are oopsing. */
445                 do_sparc_fault(regs, text_fault, write, address);
446                 BUG();  /* P3 Oops already, you bitch */
447         }
448
449         pgdp = pgd_offset(mm, address);
450         ptep = sun4c_pte_offset_kernel((pmd_t *) pgdp, address);
451
452         if (pgd_val(*pgdp)) {
453             if (write) {
454                 if ((pte_val(*ptep) & (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT))
455                                    == (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT)) {
456                         unsigned long flags;
457
458                         *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
459                                       _SUN4C_PAGE_MODIFIED |
460                                       _SUN4C_PAGE_VALID |
461                                       _SUN4C_PAGE_DIRTY);
462
463                         local_irq_save(flags);
464                         if (sun4c_get_segmap(address) != invalid_segment) {
465                                 sun4c_put_pte(address, pte_val(*ptep));
466                                 local_irq_restore(flags);
467                                 return;
468                         }
469                         local_irq_restore(flags);
470                 }
471             } else {
472                 if ((pte_val(*ptep) & (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT))
473                                    == (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT)) {
474                         unsigned long flags;
475
476                         *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
477                                       _SUN4C_PAGE_VALID);
478
479                         local_irq_save(flags);
480                         if (sun4c_get_segmap(address) != invalid_segment) {
481                                 sun4c_put_pte(address, pte_val(*ptep));
482                                 local_irq_restore(flags);
483                                 return;
484                         }
485                         local_irq_restore(flags);
486                 }
487             }
488         }
489
490         /* This conditional is 'interesting'. */
491         if (pgd_val(*pgdp) && !(write && !(pte_val(*ptep) & _SUN4C_PAGE_WRITE))
492             && (pte_val(*ptep) & _SUN4C_PAGE_VALID))
493                 /* Note: It is safe to not grab the MMAP semaphore here because
494                  *       we know that update_mmu_cache() will not sleep for
495                  *       any reason (at least not in the current implementation)
496                  *       and therefore there is no danger of another thread getting
497                  *       on the CPU and doing a shrink_mmap() on this vma.
498                  */
499                 sun4c_update_mmu_cache (find_vma(current->mm, address), address,
500                                         *ptep);
501         else
502                 do_sparc_fault(regs, text_fault, write, address);
503 }
504
505 /* This always deals with user addresses. */
506 inline void force_user_fault(unsigned long address, int write)
507 {
508         struct vm_area_struct *vma;
509         struct task_struct *tsk = current;
510         struct mm_struct *mm = tsk->mm;
511         siginfo_t info;
512
513         info.si_code = SEGV_MAPERR;
514
515 #if 0
516         printk("wf<pid=%d,wr=%d,addr=%08lx>\n",
517                tsk->pid, write, address);
518 #endif
519         down_read(&mm->mmap_sem);
520         vma = find_vma(mm, address);
521         if(!vma)
522                 goto bad_area;
523         if(vma->vm_start <= address)
524                 goto good_area;
525         if(!(vma->vm_flags & VM_GROWSDOWN))
526                 goto bad_area;
527         if(expand_stack(vma, address))
528                 goto bad_area;
529 good_area:
530         info.si_code = SEGV_ACCERR;
531         if(write) {
532                 if(!(vma->vm_flags & VM_WRITE))
533                         goto bad_area;
534         } else {
535                 if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
536                         goto bad_area;
537         }
538         if (!handle_mm_fault(mm, vma, address, write))
539                 goto do_sigbus;
540         up_read(&mm->mmap_sem);
541         return;
542 bad_area:
543         up_read(&mm->mmap_sem);
544 #if 0
545         printk("Window whee %s [%d]: segfaults at %08lx\n",
546                tsk->comm, tsk->pid, address);
547 #endif
548         info.si_signo = SIGSEGV;
549         info.si_errno = 0;
550         /* info.si_code set above to make clear whether
551            this was a SEGV_MAPERR or SEGV_ACCERR fault.  */
552         info.si_addr = (void *) address;
553         info.si_trapno = 0;
554         force_sig_info (SIGSEGV, &info, tsk);
555         return;
556
557 do_sigbus:
558         up_read(&mm->mmap_sem);
559         info.si_signo = SIGBUS;
560         info.si_errno = 0;
561         info.si_code = BUS_ADRERR;
562         info.si_addr = (void *) address;
563         info.si_trapno = 0;
564         force_sig_info (SIGBUS, &info, tsk);
565 }
566
567 void window_overflow_fault(void)
568 {
569         unsigned long sp;
570
571         sp = current_thread_info()->rwbuf_stkptrs[0];
572         if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
573                 force_user_fault(sp + 0x38, 1);
574         force_user_fault(sp, 1);
575 }
576
577 void window_underflow_fault(unsigned long sp)
578 {
579         if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
580                 force_user_fault(sp + 0x38, 0);
581         force_user_fault(sp, 0);
582 }
583
584 void window_ret_fault(struct pt_regs *regs)
585 {
586         unsigned long sp;
587
588         sp = regs->u_regs[UREG_FP];
589         if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
590                 force_user_fault(sp + 0x38, 0);
591         force_user_fault(sp, 0);
592 }