patch-2_6_7-vs1_9_1_12
[linux-2.6.git] / arch / sparc / mm / srmmu.c
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10
11 #include <linux/config.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/bootmem.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22
23 #include <asm/bitext.h>
24 #include <asm/page.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28 #include <asm/kdebug.h>
29 #include <asm/vaddrs.h>
30 #include <asm/traps.h>
31 #include <asm/smp.h>
32 #include <asm/mbus.h>
33 #include <asm/cache.h>
34 #include <asm/oplib.h>
35 #include <asm/sbus.h>
36 #include <asm/asi.h>
37 #include <asm/msi.h>
38 #include <asm/a.out.h>
39 #include <asm/mmu_context.h>
40 #include <asm/io-unit.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlbflush.h>
43
44 /* Now the cpu specific definitions. */
45 #include <asm/viking.h>
46 #include <asm/mxcc.h>
47 #include <asm/ross.h>
48 #include <asm/tsunami.h>
49 #include <asm/swift.h>
50 #include <asm/turbosparc.h>
51
52 #include <asm/btfixup.h>
53
54 enum mbus_module srmmu_modtype;
55 unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 int vac_line_size;
58
59 extern struct resource sparc_iomap;
60
61 extern unsigned long last_valid_pfn;
62
63 extern unsigned long page_kernel;
64
65 pgd_t *srmmu_swapper_pg_dir;
66
67 #ifdef CONFIG_SMP
68 #define FLUSH_BEGIN(mm)
69 #define FLUSH_END
70 #else
71 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
72 #define FLUSH_END       }
73 #endif
74
75 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
76 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
77
78 int flush_page_for_dma_global = 1;
79
80 #ifdef CONFIG_SMP
81 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
82 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
83 #endif
84
85 char *srmmu_name;
86
87 ctxd_t *srmmu_ctx_table_phys;
88 ctxd_t *srmmu_context_table;
89
90 int viking_mxcc_present;
91 static spinlock_t srmmu_context_spinlock = SPIN_LOCK_UNLOCKED;
92
93 int is_hypersparc;
94
95 /*
96  * In general all page table modifications should use the V8 atomic
97  * swap instruction.  This insures the mmu and the cpu are in sync
98  * with respect to ref/mod bits in the page tables.
99  */
100 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
101 {
102         __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
103         return value;
104 }
105
106 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
107 {
108         srmmu_swap((unsigned long *)ptep, pte_val(pteval));
109 }
110
111 /* The very generic SRMMU page table operations. */
112 static inline int srmmu_device_memory(unsigned long x)
113 {
114         return ((x & 0xF0000000) != 0);
115 }
116
117 int srmmu_cache_pagetables;
118
119 /* these will be initialized in srmmu_nocache_calcsize() */
120 unsigned long srmmu_nocache_size;
121 unsigned long srmmu_nocache_end;
122
123 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
124 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
125
126 /* The context table is a nocache user with the biggest alignment needs. */
127 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
128
129 void *srmmu_nocache_pool;
130 void *srmmu_nocache_bitmap;
131 static struct bit_map srmmu_nocache_map;
132
133 static unsigned long srmmu_pte_pfn(pte_t pte)
134 {
135         if (srmmu_device_memory(pte_val(pte))) {
136                 /* XXX Anton obviously had something in mind when he did this.
137                  * But what?
138                  */
139                 /* return (struct page *)~0; */
140                 BUG();
141         }
142         return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
143 }
144
145 static struct page *srmmu_pmd_page(pmd_t pmd)
146 {
147
148         if (srmmu_device_memory(pmd_val(pmd)))
149                 BUG();
150         return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
151 }
152
153 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
154 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
155
156
157 static inline int srmmu_pte_none(pte_t pte)
158 { return !(pte_val(pte) & 0xFFFFFFF); }
159
160 static inline int srmmu_pte_present(pte_t pte)
161 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
162
163 static inline void srmmu_pte_clear(pte_t *ptep)
164 { srmmu_set_pte(ptep, __pte(0)); }
165
166 static inline int srmmu_pmd_none(pmd_t pmd)
167 { return !(pmd_val(pmd) & 0xFFFFFFF); }
168
169 static inline int srmmu_pmd_bad(pmd_t pmd)
170 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
171
172 static inline int srmmu_pmd_present(pmd_t pmd)
173 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
174
175 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
176         int i;
177         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
178                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
179 }
180
181 static inline int srmmu_pgd_none(pgd_t pgd)          
182 { return !(pgd_val(pgd) & 0xFFFFFFF); }
183
184 static inline int srmmu_pgd_bad(pgd_t pgd)
185 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
186
187 static inline int srmmu_pgd_present(pgd_t pgd)
188 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
189
190 static inline void srmmu_pgd_clear(pgd_t * pgdp)
191 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
192
193 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
194 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
195
196 static inline pte_t srmmu_pte_mkclean(pte_t pte)
197 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
198
199 static inline pte_t srmmu_pte_mkold(pte_t pte)
200 { return __pte(pte_val(pte) & ~SRMMU_REF);}
201
202 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
203 { return __pte(pte_val(pte) | SRMMU_WRITE);}
204
205 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
206 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
207
208 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
209 { return __pte(pte_val(pte) | SRMMU_REF);}
210
211 /*
212  * Conversion functions: convert a page and protection to a page entry,
213  * and a page entry and page directory to the page they refer to.
214  */
215 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
216 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
217
218 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
219 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
220
221 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
222 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
223
224 /* XXX should we hyper_flush_whole_icache here - Anton */
225 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
226 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
227
228 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
229 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
230
231 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
232 {
233         unsigned long ptp;      /* Physical address, shifted right by 4 */
234         int i;
235
236         ptp = __nocache_pa((unsigned long) ptep) >> 4;
237         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
238                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
239                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
240         }
241 }
242
243 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
244 {
245         unsigned long ptp;      /* Physical address, shifted right by 4 */
246         int i;
247
248         ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
249         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
250                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
251                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
252         }
253 }
254
255 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
256 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
257
258 /* to find an entry in a top-level page table... */
259 extern inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
260 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
261
262 /* Find an entry in the second-level page table.. */
263 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
264 {
265         return (pmd_t *) srmmu_pgd_page(*dir) +
266             ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
267 }
268
269 /* Find an entry in the third-level page table.. */ 
270 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
271 {
272         void *pte;
273
274         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
275         return (pte_t *) pte +
276             ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
277 }
278
279 static unsigned long srmmu_swp_type(swp_entry_t entry)
280 {
281         return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
282 }
283
284 static unsigned long srmmu_swp_offset(swp_entry_t entry)
285 {
286         return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
287 }
288
289 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
290 {
291         return (swp_entry_t) {
292                   (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
293                 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
294 }
295
296 /*
297  * size: bytes to allocate in the nocache area.
298  * align: bytes, number to align at.
299  * Returns the virtual address of the allocated area.
300  */
301 static unsigned long __srmmu_get_nocache(int size, int align)
302 {
303         int offset;
304
305         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
306                 printk("Size 0x%x too small for nocache request\n", size);
307                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
308         }
309         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
310                 printk("Size 0x%x unaligned int nocache request\n", size);
311                 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
312         }
313         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
314
315         offset = bit_map_string_get(&srmmu_nocache_map,
316                                         size >> SRMMU_NOCACHE_BITMAP_SHIFT,
317                                         align >> SRMMU_NOCACHE_BITMAP_SHIFT);
318         if (offset == -1) {
319                 printk("srmmu: out of nocache %d: %d/%d\n",
320                     size, (int) srmmu_nocache_size,
321                     srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
322                 return 0;
323         }
324
325         return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
326 }
327
328 unsigned inline long srmmu_get_nocache(int size, int align)
329 {
330         unsigned long tmp;
331
332         tmp = __srmmu_get_nocache(size, align);
333
334         if (tmp)
335                 memset((void *)tmp, 0, size);
336
337         return tmp;
338 }
339
340 void srmmu_free_nocache(unsigned long vaddr, int size)
341 {
342         int offset;
343
344         if (vaddr < SRMMU_NOCACHE_VADDR) {
345                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
346                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
347                 BUG();
348         }
349         if (vaddr+size > srmmu_nocache_end) {
350                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
351                     vaddr, srmmu_nocache_end);
352                 BUG();
353         }
354         if (size & (size-1)) {
355                 printk("Size 0x%x is not a power of 2\n", size);
356                 BUG();
357         }
358         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
359                 printk("Size 0x%x is too small\n", size);
360                 BUG();
361         }
362         if (vaddr & (size-1)) {
363                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
364                 BUG();
365         }
366
367         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
368         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
369
370         bit_map_clear(&srmmu_nocache_map, offset, size);
371 }
372
373 void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end);
374
375 extern unsigned long probe_memory(void);        /* in fault.c */
376
377 /*
378  * Reserve nocache dynamically proportionally to the amount of
379  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
380  */
381 void srmmu_nocache_calcsize(void)
382 {
383         unsigned long sysmemavail = probe_memory() / 1024;
384         int srmmu_nocache_npages;
385
386         srmmu_nocache_npages =
387                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
388
389  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
390         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
391         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
392                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
393
394         /* anything above 1280 blows up */
395         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
396                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
397
398         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
399         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
400 }
401
402 void srmmu_nocache_init(void)
403 {
404         unsigned int bitmap_bits;
405         pgd_t *pgd;
406         pmd_t *pmd;
407         pte_t *pte;
408         unsigned long paddr, vaddr;
409         unsigned long pteval;
410
411         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
412
413         srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
414                 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
415         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
416
417         srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
418         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
419
420         srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
421         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
422         init_mm.pgd = srmmu_swapper_pg_dir;
423
424         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
425
426         paddr = __pa((unsigned long)srmmu_nocache_pool);
427         vaddr = SRMMU_NOCACHE_VADDR;
428
429         while (vaddr < srmmu_nocache_end) {
430                 pgd = pgd_offset_k(vaddr);
431                 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
432                 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
433
434                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
435
436                 if (srmmu_cache_pagetables)
437                         pteval |= SRMMU_CACHE;
438
439                 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
440
441                 vaddr += PAGE_SIZE;
442                 paddr += PAGE_SIZE;
443         }
444
445         flush_cache_all();
446         flush_tlb_all();
447 }
448
449 static inline pgd_t *srmmu_get_pgd_fast(void)
450 {
451         pgd_t *pgd = NULL;
452
453         pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
454         if (pgd) {
455                 pgd_t *init = pgd_offset_k(0);
456                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
457                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
458                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
459         }
460
461         return pgd;
462 }
463
464 static void srmmu_free_pgd_fast(pgd_t *pgd)
465 {
466         srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
467 }
468
469 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
470 {
471         return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
472 }
473
474 static void srmmu_pmd_free(pmd_t * pmd)
475 {
476         srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
477 }
478
479 /*
480  * Hardware needs alignment to 256 only, but we align to whole page size
481  * to reduce fragmentation problems due to the buddy principle.
482  * XXX Provide actual fragmentation statistics in /proc.
483  *
484  * Alignments up to the page size are the same for physical and virtual
485  * addresses of the nocache area.
486  */
487 static pte_t *
488 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
489 {
490         return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
491 }
492
493 static struct page *
494 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
495 {
496         unsigned long pte;
497
498         if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
499                 return NULL;
500         return pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
501 }
502
503 static void srmmu_free_pte_fast(pte_t *pte)
504 {
505         srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
506 }
507
508 static void srmmu_pte_free(struct page *pte)
509 {
510         unsigned long p;
511
512         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
513         if (p == 0)
514                 BUG();
515         p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
516         p = (unsigned long) __nocache_va(p);    /* Nocached virtual */
517         srmmu_free_nocache(p, PTE_SIZE);
518 }
519
520 /*
521  */
522 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
523 {
524         struct ctx_list *ctxp;
525
526         ctxp = ctx_free.next;
527         if(ctxp != &ctx_free) {
528                 remove_from_ctx_list(ctxp);
529                 add_to_used_ctxlist(ctxp);
530                 mm->context = ctxp->ctx_number;
531                 ctxp->ctx_mm = mm;
532                 return;
533         }
534         ctxp = ctx_used.next;
535         if(ctxp->ctx_mm == old_mm)
536                 ctxp = ctxp->next;
537         if(ctxp == &ctx_used)
538                 panic("out of mmu contexts");
539         flush_cache_mm(ctxp->ctx_mm);
540         flush_tlb_mm(ctxp->ctx_mm);
541         remove_from_ctx_list(ctxp);
542         add_to_used_ctxlist(ctxp);
543         ctxp->ctx_mm->context = NO_CONTEXT;
544         ctxp->ctx_mm = mm;
545         mm->context = ctxp->ctx_number;
546 }
547
548 static inline void free_context(int context)
549 {
550         struct ctx_list *ctx_old;
551
552         ctx_old = ctx_list_pool + context;
553         remove_from_ctx_list(ctx_old);
554         add_to_free_ctxlist(ctx_old);
555 }
556
557
558 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
559     struct task_struct *tsk, int cpu)
560 {
561         if(mm->context == NO_CONTEXT) {
562                 spin_lock(&srmmu_context_spinlock);
563                 alloc_context(old_mm, mm);
564                 spin_unlock(&srmmu_context_spinlock);
565                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
566         }
567
568         if (is_hypersparc)
569                 hyper_flush_whole_icache();
570
571         srmmu_set_context(mm->context);
572 }
573
574 /* Low level IO area allocation on the SRMMU. */
575 static inline void srmmu_mapioaddr(unsigned long physaddr,
576     unsigned long virt_addr, int bus_type)
577 {
578         pgd_t *pgdp;
579         pmd_t *pmdp;
580         pte_t *ptep;
581         unsigned long tmp;
582
583         physaddr &= PAGE_MASK;
584         pgdp = pgd_offset_k(virt_addr);
585         pmdp = srmmu_pmd_offset(pgdp, virt_addr);
586         ptep = srmmu_pte_offset(pmdp, virt_addr);
587         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
588
589         /*
590          * I need to test whether this is consistent over all
591          * sun4m's.  The bus_type represents the upper 4 bits of
592          * 36-bit physical address on the I/O space lines...
593          */
594         tmp |= (bus_type << 28);
595         tmp |= SRMMU_PRIV;
596         __flush_page_to_ram(virt_addr);
597         srmmu_set_pte(ptep, __pte(tmp));
598 }
599
600 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
601     unsigned long xva, unsigned int len)
602 {
603         while (len != 0) {
604                 len -= PAGE_SIZE;
605                 srmmu_mapioaddr(xpa, xva, bus);
606                 xva += PAGE_SIZE;
607                 xpa += PAGE_SIZE;
608         }
609         flush_tlb_all();
610 }
611
612 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
613 {
614         pgd_t *pgdp;
615         pmd_t *pmdp;
616         pte_t *ptep;
617
618         pgdp = pgd_offset_k(virt_addr);
619         pmdp = srmmu_pmd_offset(pgdp, virt_addr);
620         ptep = srmmu_pte_offset(pmdp, virt_addr);
621
622         /* No need to flush uncacheable page. */
623         srmmu_pte_clear(ptep);
624 }
625
626 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
627 {
628         while (len != 0) {
629                 len -= PAGE_SIZE;
630                 srmmu_unmapioaddr(virt_addr);
631                 virt_addr += PAGE_SIZE;
632         }
633         flush_tlb_all();
634 }
635
636 /*
637  * On the SRMMU we do not have the problems with limited tlb entries
638  * for mapping kernel pages, so we just take things from the free page
639  * pool.  As a side effect we are putting a little too much pressure
640  * on the gfp() subsystem.  This setup also makes the logic of the
641  * iommu mapping code a lot easier as we can transparently handle
642  * mappings on the kernel stack without any special code as we did
643  * need on the sun4c.
644  */
645 struct thread_info *srmmu_alloc_thread_info(void)
646 {
647         struct thread_info *ret;
648
649         ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
650                                                      THREAD_INFO_ORDER);
651 #ifdef CONFIG_DEBUG_STACK_USAGE
652         if (ret)
653                 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
654 #endif /* DEBUG_STACK_USAGE */
655
656         return ret;
657 }
658
659 static void srmmu_free_thread_info(struct thread_info *ti)
660 {
661         free_pages((unsigned long)ti, THREAD_INFO_ORDER);
662 }
663
664 /* tsunami.S */
665 extern void tsunami_flush_cache_all(void);
666 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
667 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
668 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
669 extern void tsunami_flush_page_to_ram(unsigned long page);
670 extern void tsunami_flush_page_for_dma(unsigned long page);
671 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
672 extern void tsunami_flush_tlb_all(void);
673 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
674 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
675 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
676 extern void tsunami_setup_blockops(void);
677
678 /*
679  * Workaround, until we find what's going on with Swift. When low on memory,
680  * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
681  * out it is already in page tables/ fault again on the same instruction.
682  * I really don't understand it, have checked it and contexts
683  * are right, flush_tlb_all is done as well, and it faults again...
684  * Strange. -jj
685  *
686  * The following code is a deadwood that may be necessary when
687  * we start to make precise page flushes again. --zaitcev
688  */
689 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
690 {
691 #if 0
692         static unsigned long last;
693         unsigned int val;
694         /* unsigned int n; */
695
696         if (address == last) {
697                 val = srmmu_hwprobe(address);
698                 if (val != 0 && pte_val(pte) != val) {
699                         printk("swift_update_mmu_cache: "
700                             "addr %lx put %08x probed %08x from %p\n",
701                             address, pte_val(pte), val,
702                             __builtin_return_address(0));
703                         srmmu_flush_whole_tlb();
704                 }
705         }
706         last = address;
707 #endif
708 }
709
710 /* swift.S */
711 extern void swift_flush_cache_all(void);
712 extern void swift_flush_cache_mm(struct mm_struct *mm);
713 extern void swift_flush_cache_range(struct vm_area_struct *vma,
714                                     unsigned long start, unsigned long end);
715 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
716 extern void swift_flush_page_to_ram(unsigned long page);
717 extern void swift_flush_page_for_dma(unsigned long page);
718 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
719 extern void swift_flush_tlb_all(void);
720 extern void swift_flush_tlb_mm(struct mm_struct *mm);
721 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
722                                   unsigned long start, unsigned long end);
723 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
724
725 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
726 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
727 {
728         int cctx, ctx1;
729
730         page &= PAGE_MASK;
731         if ((ctx1 = vma->vm_mm->context) != -1) {
732                 cctx = srmmu_get_context();
733 /* Is context # ever different from current context? P3 */
734                 if (cctx != ctx1) {
735                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
736                         srmmu_set_context(ctx1);
737                         swift_flush_page(page);
738                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
739                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
740                         srmmu_set_context(cctx);
741                 } else {
742                          /* Rm. prot. bits from virt. c. */
743                         /* swift_flush_cache_all(); */
744                         /* swift_flush_cache_page(vma, page); */
745                         swift_flush_page(page);
746
747                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
748                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
749                         /* same as above: srmmu_flush_tlb_page() */
750                 }
751         }
752 }
753 #endif
754
755 /*
756  * The following are all MBUS based SRMMU modules, and therefore could
757  * be found in a multiprocessor configuration.  On the whole, these
758  * chips seems to be much more touchy about DVMA and page tables
759  * with respect to cache coherency.
760  */
761
762 /* Cypress flushes. */
763 static void cypress_flush_cache_all(void)
764 {
765         volatile unsigned long cypress_sucks;
766         unsigned long faddr, tagval;
767
768         flush_user_windows();
769         for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
770                 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
771                                      "=r" (tagval) :
772                                      "r" (faddr), "r" (0x40000),
773                                      "i" (ASI_M_DATAC_TAG));
774
775                 /* If modified and valid, kick it. */
776                 if((tagval & 0x60) == 0x60)
777                         cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
778         }
779 }
780
781 static void cypress_flush_cache_mm(struct mm_struct *mm)
782 {
783         register unsigned long a, b, c, d, e, f, g;
784         unsigned long flags, faddr;
785         int octx;
786
787         FLUSH_BEGIN(mm)
788         flush_user_windows();
789         local_irq_save(flags);
790         octx = srmmu_get_context();
791         srmmu_set_context(mm->context);
792         a = 0x20; b = 0x40; c = 0x60;
793         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
794
795         faddr = (0x10000 - 0x100);
796         goto inside;
797         do {
798                 faddr -= 0x100;
799         inside:
800                 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
801                                      "sta %%g0, [%0 + %2] %1\n\t"
802                                      "sta %%g0, [%0 + %3] %1\n\t"
803                                      "sta %%g0, [%0 + %4] %1\n\t"
804                                      "sta %%g0, [%0 + %5] %1\n\t"
805                                      "sta %%g0, [%0 + %6] %1\n\t"
806                                      "sta %%g0, [%0 + %7] %1\n\t"
807                                      "sta %%g0, [%0 + %8] %1\n\t" : :
808                                      "r" (faddr), "i" (ASI_M_FLUSH_CTX),
809                                      "r" (a), "r" (b), "r" (c), "r" (d),
810                                      "r" (e), "r" (f), "r" (g));
811         } while(faddr);
812         srmmu_set_context(octx);
813         local_irq_restore(flags);
814         FLUSH_END
815 }
816
817 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
818 {
819         struct mm_struct *mm = vma->vm_mm;
820         register unsigned long a, b, c, d, e, f, g;
821         unsigned long flags, faddr;
822         int octx;
823
824         FLUSH_BEGIN(mm)
825         flush_user_windows();
826         local_irq_save(flags);
827         octx = srmmu_get_context();
828         srmmu_set_context(mm->context);
829         a = 0x20; b = 0x40; c = 0x60;
830         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
831
832         start &= SRMMU_REAL_PMD_MASK;
833         while(start < end) {
834                 faddr = (start + (0x10000 - 0x100));
835                 goto inside;
836                 do {
837                         faddr -= 0x100;
838                 inside:
839                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
840                                              "sta %%g0, [%0 + %2] %1\n\t"
841                                              "sta %%g0, [%0 + %3] %1\n\t"
842                                              "sta %%g0, [%0 + %4] %1\n\t"
843                                              "sta %%g0, [%0 + %5] %1\n\t"
844                                              "sta %%g0, [%0 + %6] %1\n\t"
845                                              "sta %%g0, [%0 + %7] %1\n\t"
846                                              "sta %%g0, [%0 + %8] %1\n\t" : :
847                                              "r" (faddr),
848                                              "i" (ASI_M_FLUSH_SEG),
849                                              "r" (a), "r" (b), "r" (c), "r" (d),
850                                              "r" (e), "r" (f), "r" (g));
851                 } while (faddr != start);
852                 start += SRMMU_REAL_PMD_SIZE;
853         }
854         srmmu_set_context(octx);
855         local_irq_restore(flags);
856         FLUSH_END
857 }
858
859 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
860 {
861         register unsigned long a, b, c, d, e, f, g;
862         struct mm_struct *mm = vma->vm_mm;
863         unsigned long flags, line;
864         int octx;
865
866         FLUSH_BEGIN(mm)
867         flush_user_windows();
868         local_irq_save(flags);
869         octx = srmmu_get_context();
870         srmmu_set_context(mm->context);
871         a = 0x20; b = 0x40; c = 0x60;
872         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
873
874         page &= PAGE_MASK;
875         line = (page + PAGE_SIZE) - 0x100;
876         goto inside;
877         do {
878                 line -= 0x100;
879         inside:
880                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
881                                              "sta %%g0, [%0 + %2] %1\n\t"
882                                              "sta %%g0, [%0 + %3] %1\n\t"
883                                              "sta %%g0, [%0 + %4] %1\n\t"
884                                              "sta %%g0, [%0 + %5] %1\n\t"
885                                              "sta %%g0, [%0 + %6] %1\n\t"
886                                              "sta %%g0, [%0 + %7] %1\n\t"
887                                              "sta %%g0, [%0 + %8] %1\n\t" : :
888                                              "r" (line),
889                                              "i" (ASI_M_FLUSH_PAGE),
890                                              "r" (a), "r" (b), "r" (c), "r" (d),
891                                              "r" (e), "r" (f), "r" (g));
892         } while(line != page);
893         srmmu_set_context(octx);
894         local_irq_restore(flags);
895         FLUSH_END
896 }
897
898 /* Cypress is copy-back, at least that is how we configure it. */
899 static void cypress_flush_page_to_ram(unsigned long page)
900 {
901         register unsigned long a, b, c, d, e, f, g;
902         unsigned long line;
903
904         a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
905         page &= PAGE_MASK;
906         line = (page + PAGE_SIZE) - 0x100;
907         goto inside;
908         do {
909                 line -= 0x100;
910         inside:
911                 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
912                                      "sta %%g0, [%0 + %2] %1\n\t"
913                                      "sta %%g0, [%0 + %3] %1\n\t"
914                                      "sta %%g0, [%0 + %4] %1\n\t"
915                                      "sta %%g0, [%0 + %5] %1\n\t"
916                                      "sta %%g0, [%0 + %6] %1\n\t"
917                                      "sta %%g0, [%0 + %7] %1\n\t"
918                                      "sta %%g0, [%0 + %8] %1\n\t" : :
919                                      "r" (line),
920                                      "i" (ASI_M_FLUSH_PAGE),
921                                      "r" (a), "r" (b), "r" (c), "r" (d),
922                                      "r" (e), "r" (f), "r" (g));
923         } while(line != page);
924 }
925
926 /* Cypress is also IO cache coherent. */
927 static void cypress_flush_page_for_dma(unsigned long page)
928 {
929 }
930
931 /* Cypress has unified L2 VIPT, from which both instructions and data
932  * are stored.  It does not have an onboard icache of any sort, therefore
933  * no flush is necessary.
934  */
935 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
936 {
937 }
938
939 static void cypress_flush_tlb_all(void)
940 {
941         srmmu_flush_whole_tlb();
942 }
943
944 static void cypress_flush_tlb_mm(struct mm_struct *mm)
945 {
946         FLUSH_BEGIN(mm)
947         __asm__ __volatile__(
948         "lda    [%0] %3, %%g5\n\t"
949         "sta    %2, [%0] %3\n\t"
950         "sta    %%g0, [%1] %4\n\t"
951         "sta    %%g5, [%0] %3\n"
952         : /* no outputs */
953         : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
954           "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
955         : "g5");
956         FLUSH_END
957 }
958
959 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
960 {
961         struct mm_struct *mm = vma->vm_mm;
962         unsigned long size;
963
964         FLUSH_BEGIN(mm)
965         start &= SRMMU_PGDIR_MASK;
966         size = SRMMU_PGDIR_ALIGN(end) - start;
967         __asm__ __volatile__(
968                 "lda    [%0] %5, %%g5\n\t"
969                 "sta    %1, [%0] %5\n"
970                 "1:\n\t"
971                 "subcc  %3, %4, %3\n\t"
972                 "bne    1b\n\t"
973                 " sta   %%g0, [%2 + %3] %6\n\t"
974                 "sta    %%g5, [%0] %5\n"
975         : /* no outputs */
976         : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
977           "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
978           "i" (ASI_M_FLUSH_PROBE)
979         : "g5", "cc");
980         FLUSH_END
981 }
982
983 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
984 {
985         struct mm_struct *mm = vma->vm_mm;
986
987         FLUSH_BEGIN(mm)
988         __asm__ __volatile__(
989         "lda    [%0] %3, %%g5\n\t"
990         "sta    %1, [%0] %3\n\t"
991         "sta    %%g0, [%2] %4\n\t"
992         "sta    %%g5, [%0] %3\n"
993         : /* no outputs */
994         : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
995           "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
996         : "g5");
997         FLUSH_END
998 }
999
1000 /* viking.S */
1001 extern void viking_flush_cache_all(void);
1002 extern void viking_flush_cache_mm(struct mm_struct *mm);
1003 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1004                                      unsigned long end);
1005 extern void viking_flush_cache_page(struct vm_area_struct *vma,
1006                                     unsigned long page);
1007 extern void viking_flush_page_to_ram(unsigned long page);
1008 extern void viking_flush_page_for_dma(unsigned long page);
1009 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1010 extern void viking_flush_page(unsigned long page);
1011 extern void viking_mxcc_flush_page(unsigned long page);
1012 extern void viking_flush_tlb_all(void);
1013 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1014 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1015                                    unsigned long end);
1016 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1017                                   unsigned long page);
1018 extern void sun4dsmp_flush_tlb_all(void);
1019 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1020 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1021                                    unsigned long end);
1022 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1023                                   unsigned long page);
1024
1025 /* hypersparc.S */
1026 extern void hypersparc_flush_cache_all(void);
1027 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1028 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1029 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1030 extern void hypersparc_flush_page_to_ram(unsigned long page);
1031 extern void hypersparc_flush_page_for_dma(unsigned long page);
1032 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1033 extern void hypersparc_flush_tlb_all(void);
1034 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1035 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1036 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1037 extern void hypersparc_setup_blockops(void);
1038
1039 /*
1040  * NOTE: All of this startup code assumes the low 16mb (approx.) of
1041  *       kernel mappings are done with one single contiguous chunk of
1042  *       ram.  On small ram machines (classics mainly) we only get
1043  *       around 8mb mapped for us.
1044  */
1045
1046 void __init early_pgtable_allocfail(char *type)
1047 {
1048         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1049         prom_halt();
1050 }
1051
1052 void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1053 {
1054         pgd_t *pgdp;
1055         pmd_t *pmdp;
1056         pte_t *ptep;
1057
1058         while(start < end) {
1059                 pgdp = pgd_offset_k(start);
1060                 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1061                         pmdp = (pmd_t *) __srmmu_get_nocache(
1062                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1063                         if (pmdp == NULL)
1064                                 early_pgtable_allocfail("pmd");
1065                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1066                         srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1067                 }
1068                 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1069                 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1070                         ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1071                         if (ptep == NULL)
1072                                 early_pgtable_allocfail("pte");
1073                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
1074                         srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1075                 }
1076                 if (start > (0xffffffffUL - PMD_SIZE))
1077                         break;
1078                 start = (start + PMD_SIZE) & PMD_MASK;
1079         }
1080 }
1081
1082 void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1083 {
1084         pgd_t *pgdp;
1085         pmd_t *pmdp;
1086         pte_t *ptep;
1087
1088         while(start < end) {
1089                 pgdp = pgd_offset_k(start);
1090                 if(srmmu_pgd_none(*pgdp)) {
1091                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1092                         if (pmdp == NULL)
1093                                 early_pgtable_allocfail("pmd");
1094                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1095                         srmmu_pgd_set(pgdp, pmdp);
1096                 }
1097                 pmdp = srmmu_pmd_offset(pgdp, start);
1098                 if(srmmu_pmd_none(*pmdp)) {
1099                         ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1100                                                              PTE_SIZE);
1101                         if (ptep == NULL)
1102                                 early_pgtable_allocfail("pte");
1103                         memset(ptep, 0, PTE_SIZE);
1104                         srmmu_pmd_set(pmdp, ptep);
1105                 }
1106                 if (start > (0xffffffffUL - PMD_SIZE))
1107                         break;
1108                 start = (start + PMD_SIZE) & PMD_MASK;
1109         }
1110 }
1111
1112 /*
1113  * This is much cleaner than poking around physical address space
1114  * looking at the prom's page table directly which is what most
1115  * other OS's do.  Yuck... this is much better.
1116  */
1117 void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)
1118 {
1119         pgd_t *pgdp;
1120         pmd_t *pmdp;
1121         pte_t *ptep;
1122         int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1123         unsigned long prompte;
1124
1125         while(start <= end) {
1126                 if (start == 0)
1127                         break; /* probably wrap around */
1128                 if(start == 0xfef00000)
1129                         start = KADB_DEBUGGER_BEGVM;
1130                 if(!(prompte = srmmu_hwprobe(start))) {
1131                         start += PAGE_SIZE;
1132                         continue;
1133                 }
1134     
1135                 /* A red snapper, see what it really is. */
1136                 what = 0;
1137     
1138                 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1139                         if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1140                                 what = 1;
1141                 }
1142     
1143                 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1144                         if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1145                            prompte)
1146                                 what = 2;
1147                 }
1148     
1149                 pgdp = pgd_offset_k(start);
1150                 if(what == 2) {
1151                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1152                         start += SRMMU_PGDIR_SIZE;
1153                         continue;
1154                 }
1155                 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1156                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1157                         if (pmdp == NULL)
1158                                 early_pgtable_allocfail("pmd");
1159                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1160                         srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1161                 }
1162                 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1163                 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1164                         ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1165                                                              PTE_SIZE);
1166                         if (ptep == NULL)
1167                                 early_pgtable_allocfail("pte");
1168                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
1169                         srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1170                 }
1171                 if(what == 1) {
1172                         /*
1173                          * We bend the rule where all 16 PTPs in a pmd_t point
1174                          * inside the same PTE page, and we leak a perfectly
1175                          * good hardware PTE piece. Alternatives seem worse.
1176                          */
1177                         unsigned int x; /* Index of HW PMD in soft cluster */
1178                         x = (start >> PMD_SHIFT) & 15;
1179                         *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1180                         start += SRMMU_REAL_PMD_SIZE;
1181                         continue;
1182                 }
1183                 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1184                 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1185                 start += PAGE_SIZE;
1186         }
1187 }
1188
1189 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1190
1191 /* Create a third-level SRMMU 16MB page mapping. */
1192 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1193 {
1194         pgd_t *pgdp = pgd_offset_k(vaddr);
1195         unsigned long big_pte;
1196
1197         big_pte = KERNEL_PTE(phys_base >> 4);
1198         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1199 }
1200
1201 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1202 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1203 {
1204         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1205         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1206         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1207         /* Map "low" memory only */
1208         const unsigned long min_vaddr = PAGE_OFFSET;
1209         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1210
1211         if (vstart < min_vaddr || vstart >= max_vaddr)
1212                 return vstart;
1213         
1214         if (vend > max_vaddr || vend < min_vaddr)
1215                 vend = max_vaddr;
1216
1217         while(vstart < vend) {
1218                 do_large_mapping(vstart, pstart);
1219                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1220         }
1221         return vstart;
1222 }
1223
1224 static inline void memprobe_error(char *msg)
1225 {
1226         prom_printf(msg);
1227         prom_printf("Halting now...\n");
1228         prom_halt();
1229 }
1230
1231 static inline void map_kernel(void)
1232 {
1233         int i;
1234
1235         if (phys_base > 0) {
1236                 do_large_mapping(PAGE_OFFSET, phys_base);
1237         }
1238
1239         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1240                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1241         }
1242
1243         BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1244 }
1245
1246 /* Paging initialization on the Sparc Reference MMU. */
1247 extern void sparc_context_init(int);
1248
1249 void (*poke_srmmu)(void) __initdata = NULL;
1250
1251 extern unsigned long bootmem_init(unsigned long *pages_avail);
1252
1253 void __init srmmu_paging_init(void)
1254 {
1255         int i, cpunode;
1256         char node_str[128];
1257         pgd_t *pgd;
1258         pmd_t *pmd;
1259         pte_t *pte;
1260         unsigned long pages_avail;
1261
1262         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1263
1264         if (sparc_cpu_model == sun4d)
1265                 num_contexts = 65536; /* We know it is Viking */
1266         else {
1267                 /* Find the number of contexts on the srmmu. */
1268                 cpunode = prom_getchild(prom_root_node);
1269                 num_contexts = 0;
1270                 while(cpunode != 0) {
1271                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1272                         if(!strcmp(node_str, "cpu")) {
1273                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1274                                 break;
1275                         }
1276                         cpunode = prom_getsibling(cpunode);
1277                 }
1278         }
1279
1280         if(!num_contexts) {
1281                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1282                 prom_halt();
1283         }
1284
1285         pages_avail = 0;
1286         last_valid_pfn = bootmem_init(&pages_avail);
1287
1288         srmmu_nocache_calcsize();
1289         srmmu_nocache_init();
1290         srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1291         map_kernel();
1292
1293         /* ctx table has to be physically aligned to its size */
1294         srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1295         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1296
1297         for(i = 0; i < num_contexts; i++)
1298                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1299
1300         flush_cache_all();
1301         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1302         flush_tlb_all();
1303         poke_srmmu();
1304
1305 #ifdef CONFIG_SUN_IO
1306         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1307         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1308 #endif
1309
1310         srmmu_allocate_ptable_skeleton(
1311                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1312         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1313
1314         pgd = pgd_offset_k(PKMAP_BASE);
1315         pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1316         pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1317         pkmap_page_table = pte;
1318
1319         flush_cache_all();
1320         flush_tlb_all();
1321
1322         sparc_context_init(num_contexts);
1323
1324         kmap_init();
1325
1326         {
1327                 unsigned long zones_size[MAX_NR_ZONES];
1328                 unsigned long zholes_size[MAX_NR_ZONES];
1329                 unsigned long npages;
1330                 int znum;
1331
1332                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1333                         zones_size[znum] = zholes_size[znum] = 0;
1334
1335                 npages = max_low_pfn - pfn_base;
1336
1337                 zones_size[ZONE_DMA] = npages;
1338                 zholes_size[ZONE_DMA] = npages - pages_avail;
1339
1340                 npages = highend_pfn - max_low_pfn;
1341                 zones_size[ZONE_HIGHMEM] = npages;
1342                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1343
1344                 free_area_init_node(0, &contig_page_data, NULL, zones_size,
1345                                     pfn_base, zholes_size);
1346                 mem_map = contig_page_data.node_mem_map;
1347         }
1348 }
1349
1350 static void srmmu_mmu_info(struct seq_file *m)
1351 {
1352         seq_printf(m, 
1353                    "MMU type\t: %s\n"
1354                    "contexts\t: %d\n"
1355                    "nocache total\t: %ld\n"
1356                    "nocache used\t: %d\n",
1357                    srmmu_name,
1358                    num_contexts,
1359                    srmmu_nocache_size,
1360                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1361 }
1362
1363 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1364 {
1365 }
1366
1367 static void srmmu_destroy_context(struct mm_struct *mm)
1368 {
1369
1370         if(mm->context != NO_CONTEXT) {
1371                 flush_cache_mm(mm);
1372                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1373                 flush_tlb_mm(mm);
1374                 spin_lock(&srmmu_context_spinlock);
1375                 free_context(mm->context);
1376                 spin_unlock(&srmmu_context_spinlock);
1377                 mm->context = NO_CONTEXT;
1378         }
1379 }
1380
1381 /* Init various srmmu chip types. */
1382 static void __init srmmu_is_bad(void)
1383 {
1384         prom_printf("Could not determine SRMMU chip type.\n");
1385         prom_halt();
1386 }
1387
1388 static void __init init_vac_layout(void)
1389 {
1390         int nd, cache_lines;
1391         char node_str[128];
1392 #ifdef CONFIG_SMP
1393         int cpu = 0;
1394         unsigned long max_size = 0;
1395         unsigned long min_line_size = 0x10000000;
1396 #endif
1397
1398         nd = prom_getchild(prom_root_node);
1399         while((nd = prom_getsibling(nd)) != 0) {
1400                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1401                 if(!strcmp(node_str, "cpu")) {
1402                         vac_line_size = prom_getint(nd, "cache-line-size");
1403                         if (vac_line_size == -1) {
1404                                 prom_printf("can't determine cache-line-size, "
1405                                             "halting.\n");
1406                                 prom_halt();
1407                         }
1408                         cache_lines = prom_getint(nd, "cache-nlines");
1409                         if (cache_lines == -1) {
1410                                 prom_printf("can't determine cache-nlines, halting.\n");
1411                                 prom_halt();
1412                         }
1413
1414                         vac_cache_size = cache_lines * vac_line_size;
1415 #ifdef CONFIG_SMP
1416                         if(vac_cache_size > max_size)
1417                                 max_size = vac_cache_size;
1418                         if(vac_line_size < min_line_size)
1419                                 min_line_size = vac_line_size;
1420                         cpu++;
1421                         if (cpu >= NR_CPUS || !cpu_online(cpu))
1422                                 break;
1423 #else
1424                         break;
1425 #endif
1426                 }
1427         }
1428         if(nd == 0) {
1429                 prom_printf("No CPU nodes found, halting.\n");
1430                 prom_halt();
1431         }
1432 #ifdef CONFIG_SMP
1433         vac_cache_size = max_size;
1434         vac_line_size = min_line_size;
1435 #endif
1436         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1437                (int)vac_cache_size, (int)vac_line_size);
1438 }
1439
1440 static void __init poke_hypersparc(void)
1441 {
1442         volatile unsigned long clear;
1443         unsigned long mreg = srmmu_get_mmureg();
1444
1445         hyper_flush_unconditional_combined();
1446
1447         mreg &= ~(HYPERSPARC_CWENABLE);
1448         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1449         mreg |= (HYPERSPARC_CMODE);
1450
1451         srmmu_set_mmureg(mreg);
1452
1453 #if 0 /* XXX I think this is bad news... -DaveM */
1454         hyper_clear_all_tags();
1455 #endif
1456
1457         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1458         hyper_flush_whole_icache();
1459         clear = srmmu_get_faddr();
1460         clear = srmmu_get_fstatus();
1461 }
1462
1463 static void __init init_hypersparc(void)
1464 {
1465         srmmu_name = "ROSS HyperSparc";
1466
1467         init_vac_layout();
1468
1469         is_hypersparc = 1;
1470
1471         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1472         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1473         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1474         BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1475         BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1476         BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1477         BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1478
1479         BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1480         BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1481         BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1482         BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1483
1484         BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1485         BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1486         BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1487
1488
1489         poke_srmmu = poke_hypersparc;
1490
1491         hypersparc_setup_blockops();
1492 }
1493
1494 static void __init poke_cypress(void)
1495 {
1496         unsigned long mreg = srmmu_get_mmureg();
1497         unsigned long faddr, tagval;
1498         volatile unsigned long cypress_sucks;
1499         volatile unsigned long clear;
1500
1501         clear = srmmu_get_faddr();
1502         clear = srmmu_get_fstatus();
1503
1504         if (!(mreg & CYPRESS_CENABLE)) {
1505                 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1506                         __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1507                                              "sta %%g0, [%0] %2\n\t" : :
1508                                              "r" (faddr), "r" (0x40000),
1509                                              "i" (ASI_M_DATAC_TAG));
1510                 }
1511         } else {
1512                 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1513                         __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1514                                              "=r" (tagval) :
1515                                              "r" (faddr), "r" (0x40000),
1516                                              "i" (ASI_M_DATAC_TAG));
1517
1518                         /* If modified and valid, kick it. */
1519                         if((tagval & 0x60) == 0x60)
1520                                 cypress_sucks = *(unsigned long *)
1521                                                         (0xf0020000 + faddr);
1522                 }
1523         }
1524
1525         /* And one more, for our good neighbor, Mr. Broken Cypress. */
1526         clear = srmmu_get_faddr();
1527         clear = srmmu_get_fstatus();
1528
1529         mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1530         srmmu_set_mmureg(mreg);
1531 }
1532
1533 static void __init init_cypress_common(void)
1534 {
1535         init_vac_layout();
1536
1537         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1538         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1539         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1540         BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1541         BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1542         BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1543         BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1544
1545         BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1546         BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1547         BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1548         BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1549
1550
1551         BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1552         BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1553         BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1554
1555         poke_srmmu = poke_cypress;
1556 }
1557
1558 static void __init init_cypress_604(void)
1559 {
1560         srmmu_name = "ROSS Cypress-604(UP)";
1561         srmmu_modtype = Cypress;
1562         init_cypress_common();
1563 }
1564
1565 static void __init init_cypress_605(unsigned long mrev)
1566 {
1567         srmmu_name = "ROSS Cypress-605(MP)";
1568         if(mrev == 0xe) {
1569                 srmmu_modtype = Cypress_vE;
1570                 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1571         } else {
1572                 if(mrev == 0xd) {
1573                         srmmu_modtype = Cypress_vD;
1574                         hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1575                 } else {
1576                         srmmu_modtype = Cypress;
1577                 }
1578         }
1579         init_cypress_common();
1580 }
1581
1582 static void __init poke_swift(void)
1583 {
1584         unsigned long mreg;
1585
1586         /* Clear any crap from the cache or else... */
1587         swift_flush_cache_all();
1588
1589         /* Enable I & D caches */
1590         mreg = srmmu_get_mmureg();
1591         mreg |= (SWIFT_IE | SWIFT_DE);
1592         /*
1593          * The Swift branch folding logic is completely broken.  At
1594          * trap time, if things are just right, if can mistakenly
1595          * think that a trap is coming from kernel mode when in fact
1596          * it is coming from user mode (it mis-executes the branch in
1597          * the trap code).  So you see things like crashme completely
1598          * hosing your machine which is completely unacceptable.  Turn
1599          * this shit off... nice job Fujitsu.
1600          */
1601         mreg &= ~(SWIFT_BF);
1602         srmmu_set_mmureg(mreg);
1603 }
1604
1605 #define SWIFT_MASKID_ADDR  0x10003018
1606 static void __init init_swift(void)
1607 {
1608         unsigned long swift_rev;
1609
1610         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1611                              "srl %0, 0x18, %0\n\t" :
1612                              "=r" (swift_rev) :
1613                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1614         srmmu_name = "Fujitsu Swift";
1615         switch(swift_rev) {
1616         case 0x11:
1617         case 0x20:
1618         case 0x23:
1619         case 0x30:
1620                 srmmu_modtype = Swift_lots_o_bugs;
1621                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1622                 /*
1623                  * Gee george, I wonder why Sun is so hush hush about
1624                  * this hardware bug... really braindamage stuff going
1625                  * on here.  However I think we can find a way to avoid
1626                  * all of the workaround overhead under Linux.  Basically,
1627                  * any page fault can cause kernel pages to become user
1628                  * accessible (the mmu gets confused and clears some of
1629                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1630                  * horrible eh?  But wait, after extensive testing it appears
1631                  * that if you use pgd_t level large kernel pte's (like the
1632                  * 4MB pages on the Pentium) the bug does not get tripped
1633                  * at all.  This avoids almost all of the major overhead.
1634                  * Welcome to a world where your vendor tells you to,
1635                  * "apply this kernel patch" instead of "sorry for the
1636                  * broken hardware, send it back and we'll give you
1637                  * properly functioning parts"
1638                  */
1639                 break;
1640         case 0x25:
1641         case 0x31:
1642                 srmmu_modtype = Swift_bad_c;
1643                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1644                 /*
1645                  * You see Sun allude to this hardware bug but never
1646                  * admit things directly, they'll say things like,
1647                  * "the Swift chip cache problems" or similar.
1648                  */
1649                 break;
1650         default:
1651                 srmmu_modtype = Swift_ok;
1652                 break;
1653         };
1654
1655         BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1656         BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1657         BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1658         BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1659
1660
1661         BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1662         BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1663         BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1664         BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1665
1666         BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1667         BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1668         BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1669
1670         BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1671
1672         flush_page_for_dma_global = 0;
1673
1674         /*
1675          * Are you now convinced that the Swift is one of the
1676          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1677          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1678          * you examined the microcode of the Swift you'd find
1679          * XXX's all over the place.
1680          */
1681         poke_srmmu = poke_swift;
1682 }
1683
1684 static void turbosparc_flush_cache_all(void)
1685 {
1686         flush_user_windows();
1687         turbosparc_idflash_clear();
1688 }
1689
1690 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1691 {
1692         FLUSH_BEGIN(mm)
1693         flush_user_windows();
1694         turbosparc_idflash_clear();
1695         FLUSH_END
1696 }
1697
1698 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1699 {
1700         struct mm_struct *mm = vma->vm_mm;
1701
1702         FLUSH_BEGIN(mm)
1703         flush_user_windows();
1704         turbosparc_idflash_clear();
1705         FLUSH_END
1706 }
1707
1708 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1709 {
1710         FLUSH_BEGIN(vma->vm_mm)
1711         flush_user_windows();
1712         if (vma->vm_flags & VM_EXEC)
1713                 turbosparc_flush_icache();
1714         turbosparc_flush_dcache();
1715         FLUSH_END
1716 }
1717
1718 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1719 static void turbosparc_flush_page_to_ram(unsigned long page)
1720 {
1721 #ifdef TURBOSPARC_WRITEBACK
1722         volatile unsigned long clear;
1723
1724         if (srmmu_hwprobe(page))
1725                 turbosparc_flush_page_cache(page);
1726         clear = srmmu_get_fstatus();
1727 #endif
1728 }
1729
1730 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1731 {
1732 }
1733
1734 static void turbosparc_flush_page_for_dma(unsigned long page)
1735 {
1736         turbosparc_flush_dcache();
1737 }
1738
1739 static void turbosparc_flush_tlb_all(void)
1740 {
1741         srmmu_flush_whole_tlb();
1742 }
1743
1744 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1745 {
1746         FLUSH_BEGIN(mm)
1747         srmmu_flush_whole_tlb();
1748         FLUSH_END
1749 }
1750
1751 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1752 {
1753         struct mm_struct *mm = vma->vm_mm;
1754
1755         FLUSH_BEGIN(mm)
1756         srmmu_flush_whole_tlb();
1757         FLUSH_END
1758 }
1759
1760 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1761 {
1762         FLUSH_BEGIN(vma->vm_mm)
1763         srmmu_flush_whole_tlb();
1764         FLUSH_END
1765 }
1766
1767
1768 static void __init poke_turbosparc(void)
1769 {
1770         unsigned long mreg = srmmu_get_mmureg();
1771         unsigned long ccreg;
1772
1773         /* Clear any crap from the cache or else... */
1774         turbosparc_flush_cache_all();
1775         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1776         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1777         srmmu_set_mmureg(mreg);
1778         
1779         ccreg = turbosparc_get_ccreg();
1780
1781 #ifdef TURBOSPARC_WRITEBACK
1782         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1783         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1784                         /* Write-back D-cache, emulate VLSI
1785                          * abortion number three, not number one */
1786 #else
1787         /* For now let's play safe, optimize later */
1788         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1789                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1790         ccreg &= ~(TURBOSPARC_uS2);
1791                         /* Emulate VLSI abortion number three, not number one */
1792 #endif
1793
1794         switch (ccreg & 7) {
1795         case 0: /* No SE cache */
1796         case 7: /* Test mode */
1797                 break;
1798         default:
1799                 ccreg |= (TURBOSPARC_SCENABLE);
1800         }
1801         turbosparc_set_ccreg (ccreg);
1802
1803         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1804         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1805         srmmu_set_mmureg(mreg);
1806 }
1807
1808 static void __init init_turbosparc(void)
1809 {
1810         srmmu_name = "Fujitsu TurboSparc";
1811         srmmu_modtype = TurboSparc;
1812
1813         BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1814         BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1815         BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1816         BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1817
1818         BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1819         BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1820         BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1821         BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1822
1823         BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1824
1825         BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1826         BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1827
1828         poke_srmmu = poke_turbosparc;
1829 }
1830
1831 static void __init poke_tsunami(void)
1832 {
1833         unsigned long mreg = srmmu_get_mmureg();
1834
1835         tsunami_flush_icache();
1836         tsunami_flush_dcache();
1837         mreg &= ~TSUNAMI_ITD;
1838         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1839         srmmu_set_mmureg(mreg);
1840 }
1841
1842 static void __init init_tsunami(void)
1843 {
1844         /*
1845          * Tsunami's pretty sane, Sun and TI actually got it
1846          * somewhat right this time.  Fujitsu should have
1847          * taken some lessons from them.
1848          */
1849
1850         srmmu_name = "TI Tsunami";
1851         srmmu_modtype = Tsunami;
1852
1853         BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1854         BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1855         BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1856         BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1857
1858
1859         BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1860         BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1861         BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1862         BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1863
1864         BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1865         BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1866         BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1867
1868         poke_srmmu = poke_tsunami;
1869
1870         tsunami_setup_blockops();
1871 }
1872
1873 static void __init poke_viking(void)
1874 {
1875         unsigned long mreg = srmmu_get_mmureg();
1876         static int smp_catch;
1877
1878         if(viking_mxcc_present) {
1879                 unsigned long mxcc_control = mxcc_get_creg();
1880
1881                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1882                 mxcc_control &= ~(MXCC_CTL_RRC);
1883                 mxcc_set_creg(mxcc_control);
1884
1885                 /*
1886                  * We don't need memory parity checks.
1887                  * XXX This is a mess, have to dig out later. ecd.
1888                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1889                  */
1890
1891                 /* We do cache ptables on MXCC. */
1892                 mreg |= VIKING_TCENABLE;
1893         } else {
1894                 unsigned long bpreg;
1895
1896                 mreg &= ~(VIKING_TCENABLE);
1897                 if(smp_catch++) {
1898                         /* Must disable mixed-cmd mode here for other cpu's. */
1899                         bpreg = viking_get_bpreg();
1900                         bpreg &= ~(VIKING_ACTION_MIX);
1901                         viking_set_bpreg(bpreg);
1902
1903                         /* Just in case PROM does something funny. */
1904                         msi_set_sync();
1905                 }
1906         }
1907
1908         mreg |= VIKING_SPENABLE;
1909         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1910         mreg |= VIKING_SBENABLE;
1911         mreg &= ~(VIKING_ACENABLE);
1912         srmmu_set_mmureg(mreg);
1913
1914 #ifdef CONFIG_SMP
1915         /* Avoid unnecessary cross calls. */
1916         BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1917         BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1918         BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1919         BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1920         BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1921         BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1922         BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1923         btfixup();
1924 #endif
1925 }
1926
1927 static void __init init_viking(void)
1928 {
1929         unsigned long mreg = srmmu_get_mmureg();
1930
1931         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1932         if(mreg & VIKING_MMODE) {
1933                 srmmu_name = "TI Viking";
1934                 viking_mxcc_present = 0;
1935                 msi_set_sync();
1936
1937                 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1938                 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1939                 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1940
1941                 /*
1942                  * We need this to make sure old viking takes no hits
1943                  * on it's cache for dma snoops to workaround the
1944                  * "load from non-cacheable memory" interrupt bug.
1945                  * This is only necessary because of the new way in
1946                  * which we use the IOMMU.
1947                  */
1948                 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1949
1950                 flush_page_for_dma_global = 0;
1951         } else {
1952                 srmmu_name = "TI Viking/MXCC";
1953                 viking_mxcc_present = 1;
1954
1955                 srmmu_cache_pagetables = 1;
1956
1957                 /* MXCC vikings lack the DMA snooping bug. */
1958                 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1959         }
1960
1961         BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1962         BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1963         BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1964         BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1965
1966 #ifdef CONFIG_SMP
1967         if (sparc_cpu_model == sun4d) {
1968                 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1969                 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1970                 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1971                 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1972         } else
1973 #endif
1974         {
1975                 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1976                 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1977                 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1978                 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1979         }
1980
1981         BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1982         BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1983
1984         poke_srmmu = poke_viking;
1985 }
1986
1987 /* Probe for the srmmu chip version. */
1988 static void __init get_srmmu_type(void)
1989 {
1990         unsigned long mreg, psr;
1991         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1992
1993         srmmu_modtype = SRMMU_INVAL_MOD;
1994         hwbug_bitmask = 0;
1995
1996         mreg = srmmu_get_mmureg(); psr = get_psr();
1997         mod_typ = (mreg & 0xf0000000) >> 28;
1998         mod_rev = (mreg & 0x0f000000) >> 24;
1999         psr_typ = (psr >> 28) & 0xf;
2000         psr_vers = (psr >> 24) & 0xf;
2001
2002         /* First, check for HyperSparc or Cypress. */
2003         if(mod_typ == 1) {
2004                 switch(mod_rev) {
2005                 case 7:
2006                         /* UP or MP Hypersparc */
2007                         init_hypersparc();
2008                         break;
2009                 case 0:
2010                 case 2:
2011                         /* Uniprocessor Cypress */
2012                         init_cypress_604();
2013                         break;
2014                 case 10:
2015                 case 11:
2016                 case 12:
2017                         /* _REALLY OLD_ Cypress MP chips... */
2018                 case 13:
2019                 case 14:
2020                 case 15:
2021                         /* MP Cypress mmu/cache-controller */
2022                         init_cypress_605(mod_rev);
2023                         break;
2024                 default:
2025                         /* Some other Cypress revision, assume a 605. */
2026                         init_cypress_605(mod_rev);
2027                         break;
2028                 };
2029                 return;
2030         }
2031         
2032         /*
2033          * Now Fujitsu TurboSparc. It might happen that it is
2034          * in Swift emulation mode, so we will check later...
2035          */
2036         if (psr_typ == 0 && psr_vers == 5) {
2037                 init_turbosparc();
2038                 return;
2039         }
2040
2041         /* Next check for Fujitsu Swift. */
2042         if(psr_typ == 0 && psr_vers == 4) {
2043                 int cpunode;
2044                 char node_str[128];
2045
2046                 /* Look if it is not a TurboSparc emulating Swift... */
2047                 cpunode = prom_getchild(prom_root_node);
2048                 while((cpunode = prom_getsibling(cpunode)) != 0) {
2049                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2050                         if(!strcmp(node_str, "cpu")) {
2051                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2052                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2053                                         init_turbosparc();
2054                                         return;
2055                                 }
2056                                 break;
2057                         }
2058                 }
2059                 
2060                 init_swift();
2061                 return;
2062         }
2063
2064         /* Now the Viking family of srmmu. */
2065         if(psr_typ == 4 &&
2066            ((psr_vers == 0) ||
2067             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2068                 init_viking();
2069                 return;
2070         }
2071
2072         /* Finally the Tsunami. */
2073         if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2074                 init_tsunami();
2075                 return;
2076         }
2077
2078         /* Oh well */
2079         srmmu_is_bad();
2080 }
2081
2082 /* don't laugh, static pagetables */
2083 static void srmmu_check_pgt_cache(int low, int high)
2084 {
2085 }
2086
2087 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2088         tsetup_mmu_patchme, rtrap_mmu_patchme;
2089
2090 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2091         tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2092
2093 extern unsigned long srmmu_fault;
2094
2095 #define PATCH_BRANCH(insn, dest) do { \
2096                 iaddr = &(insn); \
2097                 daddr = &(dest); \
2098                 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2099         } while(0)
2100
2101 static void __init patch_window_trap_handlers(void)
2102 {
2103         unsigned long *iaddr, *daddr;
2104         
2105         PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2106         PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2107         PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2108         PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2109         PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2110         PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2111         PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2112 }
2113
2114 #ifdef CONFIG_SMP
2115 /* Local cross-calls. */
2116 static void smp_flush_page_for_dma(unsigned long page)
2117 {
2118         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2119         local_flush_page_for_dma(page);
2120 }
2121
2122 #endif
2123
2124 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2125 {
2126         return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2127 }
2128
2129 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2130 {
2131         return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2132 }
2133
2134 /* Load up routines and constants for sun4m and sun4d mmu */
2135 void __init ld_mmu_srmmu(void)
2136 {
2137         extern void ld_mmu_iommu(void);
2138         extern void ld_mmu_iounit(void);
2139         extern void ___xchg32_sun4md(void);
2140
2141         BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2142         BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2143         BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2144
2145         BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2146         BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2147
2148         BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2149         BTFIXUPSET_INT(page_shared, pgprot_val(SRMMU_PAGE_SHARED));
2150         BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2151         BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2152         BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2153         page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2154         pg_iobits = SRMMU_VALID | SRMMU_WRITE | SRMMU_REF;
2155
2156         /* Functions */
2157 #ifndef CONFIG_SMP      
2158         BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2159 #endif
2160         BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2161
2162         BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2163         BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2164
2165         BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2166         BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2167         BTFIXUPSET_CALL(pgd_page, srmmu_pgd_page, BTFIXUPCALL_NORM);
2168
2169         BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2170
2171         BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2172         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2173
2174         BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2175         BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2176         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2177
2178         BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2179         BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2180         BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2181         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2182
2183         BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2184         BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2185         BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2186         BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2187         BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2188         BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2189         
2190         BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2191         BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2192         BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2193
2194         BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2195         BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2196         BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2197         BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2198         BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2199         BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2200         BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2201         BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2202
2203         BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2204         BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2205         BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2206         BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2207         BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2208         BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2209         BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2210         BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2211         BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2212         BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2213         BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2214         BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2215
2216         BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2217         BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2218
2219         BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2220         BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2221         BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2222
2223         BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2224
2225         BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2226         BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2227
2228         BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2229         BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2230
2231         get_srmmu_type();
2232         patch_window_trap_handlers();
2233
2234 #ifdef CONFIG_SMP
2235         /* El switcheroo... */
2236
2237         BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2238         BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2239         BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2240         BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2241         BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2242         BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2243         BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2244         BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2245         BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2246         BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2247         BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2248
2249         BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2250         BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2251         BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2252         BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2253         if (sparc_cpu_model != sun4d) {
2254                 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2255                 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2256                 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2257                 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2258         }
2259         BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2260         BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2261         BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2262 #endif
2263
2264         if (sparc_cpu_model == sun4d)
2265                 ld_mmu_iounit();
2266         else
2267                 ld_mmu_iommu();
2268 #ifdef CONFIG_SMP
2269         if (sparc_cpu_model == sun4d)
2270                 sun4d_init_smp();
2271         else
2272                 sun4m_init_smp();
2273 #endif
2274 }