This commit was manufactured by cvs2svn to create tag
[linux-2.6.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/pagemap.h>
10 #include <linux/threads.h>
11 #include <linux/smp.h>
12 #include <linux/smp_lock.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22
23 #include <asm/head.h>
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
26 #include <asm/tlbflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/cpudata.h>
29
30 #include <asm/irq.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/oplib.h>
34 #include <asm/hardirq.h>
35 #include <asm/uaccess.h>
36 #include <asm/timer.h>
37 #include <asm/starfire.h>
38
39 extern int linux_num_cpus;
40 extern void calibrate_delay(void);
41
42 /* Please don't make this stuff initdata!!!  --DaveM */
43 static unsigned char boot_cpu_id;
44
45 cpumask_t cpu_online_map = CPU_MASK_NONE;
46 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
47 static cpumask_t smp_commenced_mask;
48 static cpumask_t cpu_callout_map;
49
50 void smp_info(struct seq_file *m)
51 {
52         int i;
53         
54         seq_printf(m, "State:\n");
55         for (i = 0; i < NR_CPUS; i++) {
56                 if (cpu_online(i))
57                         seq_printf(m,
58                                    "CPU%d:\t\tonline\n", i);
59         }
60 }
61
62 void smp_bogo(struct seq_file *m)
63 {
64         int i;
65         
66         for (i = 0; i < NR_CPUS; i++)
67                 if (cpu_online(i))
68                         seq_printf(m,
69                                    "Cpu%dBogo\t: %lu.%02lu\n"
70                                    "Cpu%dClkTck\t: %016lx\n",
71                                    i, cpu_data(i).udelay_val / (500000/HZ),
72                                    (cpu_data(i).udelay_val / (5000/HZ)) % 100,
73                                    i, cpu_data(i).clock_tick);
74 }
75
76 void __init smp_store_cpu_info(int id)
77 {
78         int cpu_node;
79
80         /* multiplier and counter set by
81            smp_setup_percpu_timer()  */
82         cpu_data(id).udelay_val                 = loops_per_jiffy;
83
84         cpu_find_by_mid(id, &cpu_node);
85         cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
86                                                      "clock-frequency", 0);
87
88         cpu_data(id).pgcache_size               = 0;
89         cpu_data(id).pte_cache[0]               = NULL;
90         cpu_data(id).pte_cache[1]               = NULL;
91         cpu_data(id).pgdcache_size              = 0;
92         cpu_data(id).pgd_cache                  = NULL;
93         cpu_data(id).idle_volume                = 1;
94 }
95
96 static void smp_setup_percpu_timer(void);
97
98 static volatile unsigned long callin_flag = 0;
99
100 extern void inherit_locked_prom_mappings(int save_p);
101
102 void __init smp_callin(void)
103 {
104         int cpuid = hard_smp_processor_id();
105         extern int bigkernel;
106         extern unsigned long kern_locked_tte_data;
107
108         if (bigkernel) {
109                 prom_dtlb_load(sparc64_highest_locked_tlbent()-1, 
110                         kern_locked_tte_data + 0x400000, KERNBASE + 0x400000);
111                 prom_itlb_load(sparc64_highest_locked_tlbent()-1, 
112                         kern_locked_tte_data + 0x400000, KERNBASE + 0x400000);
113         }
114
115         inherit_locked_prom_mappings(0);
116
117         __flush_tlb_all();
118
119         smp_setup_percpu_timer();
120
121         local_irq_enable();
122
123         calibrate_delay();
124         smp_store_cpu_info(cpuid);
125         callin_flag = 1;
126         __asm__ __volatile__("membar #Sync\n\t"
127                              "flush  %%g6" : : : "memory");
128
129         /* Clear this or we will die instantly when we
130          * schedule back to this idler...
131          */
132         clear_thread_flag(TIF_NEWCHILD);
133
134         /* Attach to the address space of init_task. */
135         atomic_inc(&init_mm.mm_count);
136         current->active_mm = &init_mm;
137
138         while (!cpu_isset(cpuid, smp_commenced_mask))
139                 membar("#LoadLoad");
140
141         cpu_set(cpuid, cpu_online_map);
142 }
143
144 void cpu_panic(void)
145 {
146         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
147         panic("SMP bolixed\n");
148 }
149
150 static unsigned long current_tick_offset;
151
152 /* This tick register synchronization scheme is taken entirely from
153  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
154  *
155  * The only change I've made is to rework it so that the master
156  * initiates the synchonization instead of the slave. -DaveM
157  */
158
159 #define MASTER  0
160 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
161
162 #define NUM_ROUNDS      64      /* magic value */
163 #define NUM_ITERS       5       /* likewise */
164
165 static spinlock_t itc_sync_lock = SPIN_LOCK_UNLOCKED;
166 static unsigned long go[SLAVE + 1];
167
168 #define DEBUG_TICK_SYNC 0
169
170 static inline long get_delta (long *rt, long *master)
171 {
172         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
173         unsigned long tcenter, t0, t1, tm;
174         unsigned long i;
175
176         for (i = 0; i < NUM_ITERS; i++) {
177                 t0 = tick_ops->get_tick();
178                 go[MASTER] = 1;
179                 membar("#StoreLoad");
180                 while (!(tm = go[SLAVE]))
181                         membar("#LoadLoad");
182                 go[SLAVE] = 0;
183                 membar("#StoreStore");
184                 t1 = tick_ops->get_tick();
185
186                 if (t1 - t0 < best_t1 - best_t0)
187                         best_t0 = t0, best_t1 = t1, best_tm = tm;
188         }
189
190         *rt = best_t1 - best_t0;
191         *master = best_tm - best_t0;
192
193         /* average best_t0 and best_t1 without overflow: */
194         tcenter = (best_t0/2 + best_t1/2);
195         if (best_t0 % 2 + best_t1 % 2 == 2)
196                 tcenter++;
197         return tcenter - best_tm;
198 }
199
200 void smp_synchronize_tick_client(void)
201 {
202         long i, delta, adj, adjust_latency = 0, done = 0;
203         unsigned long flags, rt, master_time_stamp, bound;
204 #if DEBUG_TICK_SYNC
205         struct {
206                 long rt;        /* roundtrip time */
207                 long master;    /* master's timestamp */
208                 long diff;      /* difference between midpoint and master's timestamp */
209                 long lat;       /* estimate of itc adjustment latency */
210         } t[NUM_ROUNDS];
211 #endif
212
213         go[MASTER] = 1;
214
215         while (go[MASTER])
216                 membar("#LoadLoad");
217
218         local_irq_save(flags);
219         {
220                 for (i = 0; i < NUM_ROUNDS; i++) {
221                         delta = get_delta(&rt, &master_time_stamp);
222                         if (delta == 0) {
223                                 done = 1;       /* let's lock on to this... */
224                                 bound = rt;
225                         }
226
227                         if (!done) {
228                                 if (i > 0) {
229                                         adjust_latency += -delta;
230                                         adj = -delta + adjust_latency/4;
231                                 } else
232                                         adj = -delta;
233
234                                 tick_ops->add_tick(adj, current_tick_offset);
235                         }
236 #if DEBUG_TICK_SYNC
237                         t[i].rt = rt;
238                         t[i].master = master_time_stamp;
239                         t[i].diff = delta;
240                         t[i].lat = adjust_latency/4;
241 #endif
242                 }
243         }
244         local_irq_restore(flags);
245
246 #if DEBUG_TICK_SYNC
247         for (i = 0; i < NUM_ROUNDS; i++)
248                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
249                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
250 #endif
251
252         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
253                "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
254 }
255
256 static void smp_start_sync_tick_client(int cpu);
257
258 static void smp_synchronize_one_tick(int cpu)
259 {
260         unsigned long flags, i;
261
262         go[MASTER] = 0;
263
264         smp_start_sync_tick_client(cpu);
265
266         /* wait for client to be ready */
267         while (!go[MASTER])
268                 membar("#LoadLoad");
269
270         /* now let the client proceed into his loop */
271         go[MASTER] = 0;
272         membar("#StoreLoad");
273
274         spin_lock_irqsave(&itc_sync_lock, flags);
275         {
276                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
277                         while (!go[MASTER])
278                                 membar("#LoadLoad");
279                         go[MASTER] = 0;
280                         membar("#StoreStore");
281                         go[SLAVE] = tick_ops->get_tick();
282                         membar("#StoreLoad");
283                 }
284         }
285         spin_unlock_irqrestore(&itc_sync_lock, flags);
286 }
287
288 extern unsigned long sparc64_cpu_startup;
289
290 /* The OBP cpu startup callback truncates the 3rd arg cookie to
291  * 32-bits (I think) so to be safe we have it read the pointer
292  * contained here so we work on >4GB machines. -DaveM
293  */
294 static struct thread_info *cpu_new_thread = NULL;
295
296 static int __devinit smp_boot_one_cpu(unsigned int cpu)
297 {
298         unsigned long entry =
299                 (unsigned long)(&sparc64_cpu_startup);
300         unsigned long cookie =
301                 (unsigned long)(&cpu_new_thread);
302         struct task_struct *p;
303         int timeout, ret, cpu_node;
304
305         kernel_thread(NULL, NULL, CLONE_IDLETASK);
306
307         p = prev_task(&init_task);
308
309         init_idle(p, cpu);
310
311         unhash_process(p);
312
313         callin_flag = 0;
314         cpu_new_thread = p->thread_info;
315         cpu_set(cpu, cpu_callout_map);
316
317         cpu_find_by_mid(cpu, &cpu_node);
318         prom_startcpu(cpu_node, entry, cookie);
319
320         for (timeout = 0; timeout < 5000000; timeout++) {
321                 if (callin_flag)
322                         break;
323                 udelay(100);
324         }
325         if (callin_flag) {
326                 ret = 0;
327         } else {
328                 printk("Processor %d is stuck.\n", cpu);
329                 cpu_clear(cpu, cpu_callout_map);
330                 ret = -ENODEV;
331         }
332         cpu_new_thread = NULL;
333
334         return ret;
335 }
336
337 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
338 {
339         u64 result, target;
340         int stuck, tmp;
341
342         if (this_is_starfire) {
343                 /* map to real upaid */
344                 cpu = (((cpu & 0x3c) << 1) |
345                         ((cpu & 0x40) >> 4) |
346                         (cpu & 0x3));
347         }
348
349         target = (cpu << 14) | 0x70;
350 again:
351         /* Ok, this is the real Spitfire Errata #54.
352          * One must read back from a UDB internal register
353          * after writes to the UDB interrupt dispatch, but
354          * before the membar Sync for that write.
355          * So we use the high UDB control register (ASI 0x7f,
356          * ADDR 0x20) for the dummy read. -DaveM
357          */
358         tmp = 0x40;
359         __asm__ __volatile__(
360         "wrpr   %1, %2, %%pstate\n\t"
361         "stxa   %4, [%0] %3\n\t"
362         "stxa   %5, [%0+%8] %3\n\t"
363         "add    %0, %8, %0\n\t"
364         "stxa   %6, [%0+%8] %3\n\t"
365         "membar #Sync\n\t"
366         "stxa   %%g0, [%7] %3\n\t"
367         "membar #Sync\n\t"
368         "mov    0x20, %%g1\n\t"
369         "ldxa   [%%g1] 0x7f, %%g0\n\t"
370         "membar #Sync"
371         : "=r" (tmp)
372         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
373           "r" (data0), "r" (data1), "r" (data2), "r" (target),
374           "r" (0x10), "0" (tmp)
375         : "g1");
376
377         /* NOTE: PSTATE_IE is still clear. */
378         stuck = 100000;
379         do {
380                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
381                         : "=r" (result)
382                         : "i" (ASI_INTR_DISPATCH_STAT));
383                 if (result == 0) {
384                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
385                                              : : "r" (pstate));
386                         return;
387                 }
388                 stuck -= 1;
389                 if (stuck == 0)
390                         break;
391         } while (result & 0x1);
392         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
393                              : : "r" (pstate));
394         if (stuck == 0) {
395                 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
396                        smp_processor_id(), result);
397         } else {
398                 udelay(2);
399                 goto again;
400         }
401 }
402
403 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
404 {
405         u64 pstate;
406         int i;
407
408         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
409         for (i = 0; i < NR_CPUS; i++) {
410                 if (cpu_isset(i, mask)) {
411                         spitfire_xcall_helper(data0, data1, data2, pstate, i);
412                         cpu_clear(i, mask);
413                         if (cpus_empty(mask))
414                                 break;
415                 }
416         }
417 }
418
419 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
420  * packet, but we have no use for that.  However we do take advantage of
421  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
422  */
423 #if NR_CPUS > 32
424 #error Fixup cheetah_xcall_deliver Dave...
425 #endif
426 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
427 {
428         u64 pstate, ver;
429         int nack_busy_id, is_jalapeno;
430
431         if (cpus_empty(mask))
432                 return;
433
434         /* Unfortunately, someone at Sun had the brilliant idea to make the
435          * busy/nack fields hard-coded by ITID number for this Ultra-III
436          * derivative processor.
437          */
438         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
439         is_jalapeno = ((ver >> 32) == 0x003e0016);
440
441         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
442
443 retry:
444         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
445                              : : "r" (pstate), "i" (PSTATE_IE));
446
447         /* Setup the dispatch data registers. */
448         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
449                              "stxa      %1, [%4] %6\n\t"
450                              "stxa      %2, [%5] %6\n\t"
451                              "membar    #Sync\n\t"
452                              : /* no outputs */
453                              : "r" (data0), "r" (data1), "r" (data2),
454                                "r" (0x40), "r" (0x50), "r" (0x60),
455                                "i" (ASI_INTR_W));
456
457         nack_busy_id = 0;
458         {
459                 cpumask_t work_mask = mask;
460                 int i;
461
462                 for (i = 0; i < NR_CPUS; i++) {
463                         if (cpu_isset(i, work_mask)) {
464                                 u64 target = (i << 14) | 0x70;
465
466                                 if (!is_jalapeno)
467                                         target |= (nack_busy_id << 24);
468                                 __asm__ __volatile__(
469                                         "stxa   %%g0, [%0] %1\n\t"
470                                         "membar #Sync\n\t"
471                                         : /* no outputs */
472                                         : "r" (target), "i" (ASI_INTR_W));
473                                 nack_busy_id++;
474                                 cpu_clear(i, work_mask);
475                                 if (cpus_empty(work_mask))
476                                         break;
477                         }
478                 }
479         }
480
481         /* Now, poll for completion. */
482         {
483                 u64 dispatch_stat;
484                 long stuck;
485
486                 stuck = 100000 * nack_busy_id;
487                 do {
488                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
489                                              : "=r" (dispatch_stat)
490                                              : "i" (ASI_INTR_DISPATCH_STAT));
491                         if (dispatch_stat == 0UL) {
492                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
493                                                      : : "r" (pstate));
494                                 return;
495                         }
496                         if (!--stuck)
497                                 break;
498                 } while (dispatch_stat & 0x5555555555555555UL);
499
500                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
501                                      : : "r" (pstate));
502
503                 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
504                         /* Busy bits will not clear, continue instead
505                          * of freezing up on this cpu.
506                          */
507                         printk("CPU[%d]: mondo stuckage result[%016lx]\n",
508                                smp_processor_id(), dispatch_stat);
509                 } else {
510                         cpumask_t work_mask = mask;
511                         int i, this_busy_nack = 0;
512
513                         /* Delay some random time with interrupts enabled
514                          * to prevent deadlock.
515                          */
516                         udelay(2 * nack_busy_id);
517
518                         /* Clear out the mask bits for cpus which did not
519                          * NACK us.
520                          */
521                         for (i = 0; i < NR_CPUS; i++) {
522                                 if (cpu_isset(i, work_mask)) {
523                                         u64 check_mask;
524
525                                         if (is_jalapeno)
526                                                 check_mask = (0x2UL << (2*i));
527                                         else
528                                                 check_mask = (0x2UL <<
529                                                               this_busy_nack);
530                                         if ((dispatch_stat & check_mask) == 0)
531                                                 cpu_clear(i, mask);
532                                         this_busy_nack += 2;
533                                         cpu_clear(i, work_mask);
534                                         if (cpus_empty(work_mask))
535                                                 break;
536                                 }
537                         }
538
539                         goto retry;
540                 }
541         }
542 }
543
544 /* Send cross call to all processors mentioned in MASK
545  * except self.
546  */
547 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
548 {
549         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
550
551         cpus_and(mask, mask, cpu_online_map);
552         cpu_clear(smp_processor_id(), mask);
553
554         if (tlb_type == spitfire)
555                 spitfire_xcall_deliver(data0, data1, data2, mask);
556         else
557                 cheetah_xcall_deliver(data0, data1, data2, mask);
558         /* NOTE: Caller runs local copy on master. */
559 }
560
561 extern unsigned long xcall_sync_tick;
562
563 static void smp_start_sync_tick_client(int cpu)
564 {
565         cpumask_t mask = cpumask_of_cpu(cpu);
566
567         smp_cross_call_masked(&xcall_sync_tick,
568                               0, 0, 0, mask);
569 }
570
571 /* Send cross call to all processors except self. */
572 #define smp_cross_call(func, ctx, data1, data2) \
573         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
574
575 struct call_data_struct {
576         void (*func) (void *info);
577         void *info;
578         atomic_t finished;
579         int wait;
580 };
581
582 static spinlock_t call_lock = SPIN_LOCK_UNLOCKED;
583 static struct call_data_struct *call_data;
584
585 extern unsigned long xcall_call_function;
586
587 /*
588  * You must not call this function with disabled interrupts or from a
589  * hardware interrupt handler or from a bottom half handler.
590  */
591 int smp_call_function(void (*func)(void *info), void *info,
592                       int nonatomic, int wait)
593 {
594         struct call_data_struct data;
595         int cpus = num_online_cpus() - 1;
596         long timeout;
597
598         if (!cpus)
599                 return 0;
600
601         /* Can deadlock when called with interrupts disabled */
602         WARN_ON(irqs_disabled());
603
604         data.func = func;
605         data.info = info;
606         atomic_set(&data.finished, 0);
607         data.wait = wait;
608
609         spin_lock(&call_lock);
610
611         call_data = &data;
612
613         smp_cross_call(&xcall_call_function, 0, 0, 0);
614
615         /* 
616          * Wait for other cpus to complete function or at
617          * least snap the call data.
618          */
619         timeout = 1000000;
620         while (atomic_read(&data.finished) != cpus) {
621                 if (--timeout <= 0)
622                         goto out_timeout;
623                 barrier();
624                 udelay(1);
625         }
626
627         spin_unlock(&call_lock);
628
629         return 0;
630
631 out_timeout:
632         spin_unlock(&call_lock);
633         printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
634                (long) num_online_cpus() - 1L,
635                (long) atomic_read(&data.finished));
636         return 0;
637 }
638
639 void smp_call_function_client(int irq, struct pt_regs *regs)
640 {
641         void (*func) (void *info) = call_data->func;
642         void *info = call_data->info;
643
644         clear_softint(1 << irq);
645         if (call_data->wait) {
646                 /* let initiator proceed only after completion */
647                 func(info);
648                 atomic_inc(&call_data->finished);
649         } else {
650                 /* let initiator proceed after getting data */
651                 atomic_inc(&call_data->finished);
652                 func(info);
653         }
654 }
655
656 extern unsigned long xcall_flush_tlb_page;
657 extern unsigned long xcall_flush_tlb_mm;
658 extern unsigned long xcall_flush_tlb_range;
659 extern unsigned long xcall_flush_tlb_kernel_range;
660 extern unsigned long xcall_flush_tlb_all_spitfire;
661 extern unsigned long xcall_flush_tlb_all_cheetah;
662 extern unsigned long xcall_report_regs;
663 extern unsigned long xcall_receive_signal;
664 extern unsigned long xcall_flush_dcache_page_cheetah;
665 extern unsigned long xcall_flush_dcache_page_spitfire;
666
667 #ifdef CONFIG_DEBUG_DCFLUSH
668 extern atomic_t dcpage_flushes;
669 extern atomic_t dcpage_flushes_xcall;
670 #endif
671
672 static __inline__ void __local_flush_dcache_page(struct page *page)
673 {
674 #if (L1DCACHE_SIZE > PAGE_SIZE)
675         __flush_dcache_page(page->virtual,
676                             ((tlb_type == spitfire) &&
677                              page_mapping(page) != NULL));
678 #else
679         if (page_mapping(page) != NULL &&
680             tlb_type == spitfire)
681                 __flush_icache_page(__pa(page->virtual));
682 #endif
683 }
684
685 void smp_flush_dcache_page_impl(struct page *page, int cpu)
686 {
687         cpumask_t mask = cpumask_of_cpu(cpu);
688
689 #ifdef CONFIG_DEBUG_DCFLUSH
690         atomic_inc(&dcpage_flushes);
691 #endif
692         if (cpu == smp_processor_id()) {
693                 __local_flush_dcache_page(page);
694         } else if (cpu_online(cpu)) {
695                 u64 data0;
696
697                 if (tlb_type == spitfire) {
698                         data0 =
699                                 ((u64)&xcall_flush_dcache_page_spitfire);
700                         if (page_mapping(page) != NULL)
701                                 data0 |= ((u64)1 << 32);
702                         spitfire_xcall_deliver(data0,
703                                                __pa(page->virtual),
704                                                (u64) page->virtual,
705                                                mask);
706                 } else {
707                         data0 =
708                                 ((u64)&xcall_flush_dcache_page_cheetah);
709                         cheetah_xcall_deliver(data0,
710                                               __pa(page->virtual),
711                                               0, mask);
712                 }
713 #ifdef CONFIG_DEBUG_DCFLUSH
714                 atomic_inc(&dcpage_flushes_xcall);
715 #endif
716         }
717 }
718
719 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
720 {
721         cpumask_t mask = cpu_online_map;
722         u64 data0;
723
724         cpu_clear(smp_processor_id(), mask);
725
726 #ifdef CONFIG_DEBUG_DCFLUSH
727         atomic_inc(&dcpage_flushes);
728 #endif
729         if (cpus_empty(mask))
730                 goto flush_self;
731         if (tlb_type == spitfire) {
732                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
733                 if (page_mapping(page) != NULL)
734                         data0 |= ((u64)1 << 32);
735                 spitfire_xcall_deliver(data0,
736                                        __pa(page->virtual),
737                                        (u64) page->virtual,
738                                        mask);
739         } else {
740                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
741                 cheetah_xcall_deliver(data0,
742                                       __pa(page->virtual),
743                                       0, mask);
744         }
745 #ifdef CONFIG_DEBUG_DCFLUSH
746         atomic_inc(&dcpage_flushes_xcall);
747 #endif
748  flush_self:
749         __local_flush_dcache_page(page);
750 }
751
752 void smp_receive_signal(int cpu)
753 {
754         cpumask_t mask = cpumask_of_cpu(cpu);
755
756         if (cpu_online(cpu)) {
757                 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
758
759                 if (tlb_type == spitfire)
760                         spitfire_xcall_deliver(data0, 0, 0, mask);
761                 else
762                         cheetah_xcall_deliver(data0, 0, 0, mask);
763         }
764 }
765
766 void smp_receive_signal_client(int irq, struct pt_regs *regs)
767 {
768         /* Just return, rtrap takes care of the rest. */
769         clear_softint(1 << irq);
770 }
771
772 void smp_report_regs(void)
773 {
774         smp_cross_call(&xcall_report_regs, 0, 0, 0);
775 }
776
777 void smp_flush_tlb_all(void)
778 {
779         if (tlb_type == spitfire)
780                 smp_cross_call(&xcall_flush_tlb_all_spitfire, 0, 0, 0);
781         else
782                 smp_cross_call(&xcall_flush_tlb_all_cheetah, 0, 0, 0);
783         __flush_tlb_all();
784 }
785
786 /* We know that the window frames of the user have been flushed
787  * to the stack before we get here because all callers of us
788  * are flush_tlb_*() routines, and these run after flush_cache_*()
789  * which performs the flushw.
790  *
791  * The SMP TLB coherency scheme we use works as follows:
792  *
793  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
794  *    space has (potentially) executed on, this is the heuristic
795  *    we use to avoid doing cross calls.
796  *
797  *    Also, for flushing from kswapd and also for clones, we
798  *    use cpu_vm_mask as the list of cpus to make run the TLB.
799  *
800  * 2) TLB context numbers are shared globally across all processors
801  *    in the system, this allows us to play several games to avoid
802  *    cross calls.
803  *
804  *    One invariant is that when a cpu switches to a process, and
805  *    that processes tsk->active_mm->cpu_vm_mask does not have the
806  *    current cpu's bit set, that tlb context is flushed locally.
807  *
808  *    If the address space is non-shared (ie. mm->count == 1) we avoid
809  *    cross calls when we want to flush the currently running process's
810  *    tlb state.  This is done by clearing all cpu bits except the current
811  *    processor's in current->active_mm->cpu_vm_mask and performing the
812  *    flush locally only.  This will force any subsequent cpus which run
813  *    this task to flush the context from the local tlb if the process
814  *    migrates to another cpu (again).
815  *
816  * 3) For shared address spaces (threads) and swapping we bite the
817  *    bullet for most cases and perform the cross call (but only to
818  *    the cpus listed in cpu_vm_mask).
819  *
820  *    The performance gain from "optimizing" away the cross call for threads is
821  *    questionable (in theory the big win for threads is the massive sharing of
822  *    address space state across processors).
823  */
824 void smp_flush_tlb_mm(struct mm_struct *mm)
825 {
826         /*
827          * This code is called from two places, dup_mmap and exit_mmap. In the
828          * former case, we really need a flush. In the later case, the callers
829          * are single threaded exec_mmap (really need a flush), multithreaded
830          * exec_mmap case (do not need to flush, since the caller gets a new
831          * context via activate_mm), and all other callers of mmput() whence
832          * the flush can be optimized since the associated threads are dead and
833          * the mm is being torn down (__exit_mm and other mmput callers) or the
834          * owning thread is dissociating itself from the mm. The
835          * (atomic_read(&mm->mm_users) == 0) check ensures real work is done
836          * for single thread exec and dup_mmap cases. An alternate check might
837          * have been (current->mm != mm).
838          *                                              Kanoj Sarcar
839          */
840         if (atomic_read(&mm->mm_users) == 0)
841                 return;
842
843         {
844                 u32 ctx = CTX_HWBITS(mm->context);
845                 int cpu = smp_processor_id();
846
847                 if (atomic_read(&mm->mm_users) == 1) {
848                         /* See smp_flush_tlb_page for info about this. */
849                         mm->cpu_vm_mask = cpumask_of_cpu(cpu);
850                         goto local_flush_and_out;
851                 }
852
853                 smp_cross_call_masked(&xcall_flush_tlb_mm,
854                                       ctx, 0, 0,
855                                       mm->cpu_vm_mask);
856
857         local_flush_and_out:
858                 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
859         }
860 }
861
862 void smp_flush_tlb_range(struct mm_struct *mm, unsigned long start,
863                          unsigned long end)
864 {
865         u32 ctx = CTX_HWBITS(mm->context);
866         int cpu = smp_processor_id();
867
868         start &= PAGE_MASK;
869         end    = PAGE_ALIGN(end);
870
871         if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) {
872                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
873                 goto local_flush_and_out;
874         }
875
876         smp_cross_call_masked(&xcall_flush_tlb_range,
877                               ctx, start, end,
878                               mm->cpu_vm_mask);
879
880  local_flush_and_out:
881         __flush_tlb_range(ctx, start, SECONDARY_CONTEXT,
882                           end, PAGE_SIZE, (end-start));
883 }
884
885 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
886 {
887         start &= PAGE_MASK;
888         end    = PAGE_ALIGN(end);
889         if (start != end) {
890                 smp_cross_call(&xcall_flush_tlb_kernel_range,
891                                0, start, end);
892
893                 __flush_tlb_kernel_range(start, end);
894         }
895 }
896
897 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long page)
898 {
899         {
900                 u32 ctx = CTX_HWBITS(mm->context);
901                 int cpu = smp_processor_id();
902
903                 page &= PAGE_MASK;
904                 if (mm == current->active_mm &&
905                     atomic_read(&mm->mm_users) == 1) {
906                         /* By virtue of being the current address space, and
907                          * having the only reference to it, the following
908                          * operation is safe.
909                          *
910                          * It would not be a win to perform the xcall tlb
911                          * flush in this case, because even if we switch back
912                          * to one of the other processors in cpu_vm_mask it
913                          * is almost certain that all TLB entries for this
914                          * context will be replaced by the time that happens.
915                          */
916                         mm->cpu_vm_mask = cpumask_of_cpu(cpu);
917                         goto local_flush_and_out;
918                 } else {
919                         cpumask_t this_cpu_mask = cpumask_of_cpu(cpu);
920
921                         /* By virtue of running under the mm->page_table_lock,
922                          * and mmu_context.h:switch_mm doing the same, the
923                          * following operation is safe.
924                          */
925                         if (cpus_equal(mm->cpu_vm_mask, this_cpu_mask))
926                                 goto local_flush_and_out;
927                 }
928
929                 /* OK, we have to actually perform the cross call.  Most
930                  * likely this is a cloned mm or kswapd is kicking out pages
931                  * for a task which has run recently on another cpu.
932                  */
933                 smp_cross_call_masked(&xcall_flush_tlb_page,
934                                       ctx, page, 0,
935                                       mm->cpu_vm_mask);
936                 if (!cpu_isset(cpu, mm->cpu_vm_mask))
937                         return;
938
939         local_flush_and_out:
940                 __flush_tlb_page(ctx, page, SECONDARY_CONTEXT);
941         }
942 }
943
944 /* CPU capture. */
945 /* #define CAPTURE_DEBUG */
946 extern unsigned long xcall_capture;
947
948 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
949 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
950 static unsigned long penguins_are_doing_time;
951
952 void smp_capture(void)
953 {
954         int result = __atomic_add(1, &smp_capture_depth);
955
956         membar("#StoreStore | #LoadStore");
957         if (result == 1) {
958                 int ncpus = num_online_cpus();
959
960 #ifdef CAPTURE_DEBUG
961                 printk("CPU[%d]: Sending penguins to jail...",
962                        smp_processor_id());
963 #endif
964                 penguins_are_doing_time = 1;
965                 membar("#StoreStore | #LoadStore");
966                 atomic_inc(&smp_capture_registry);
967                 smp_cross_call(&xcall_capture, 0, 0, 0);
968                 while (atomic_read(&smp_capture_registry) != ncpus)
969                         membar("#LoadLoad");
970 #ifdef CAPTURE_DEBUG
971                 printk("done\n");
972 #endif
973         }
974 }
975
976 void smp_release(void)
977 {
978         if (atomic_dec_and_test(&smp_capture_depth)) {
979 #ifdef CAPTURE_DEBUG
980                 printk("CPU[%d]: Giving pardon to "
981                        "imprisoned penguins\n",
982                        smp_processor_id());
983 #endif
984                 penguins_are_doing_time = 0;
985                 membar("#StoreStore | #StoreLoad");
986                 atomic_dec(&smp_capture_registry);
987         }
988 }
989
990 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
991  * can service tlb flush xcalls...
992  */
993 extern void prom_world(int);
994 extern void save_alternate_globals(unsigned long *);
995 extern void restore_alternate_globals(unsigned long *);
996 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
997 {
998         unsigned long global_save[24];
999
1000         clear_softint(1 << irq);
1001
1002         preempt_disable();
1003
1004         __asm__ __volatile__("flushw");
1005         save_alternate_globals(global_save);
1006         prom_world(1);
1007         atomic_inc(&smp_capture_registry);
1008         membar("#StoreLoad | #StoreStore");
1009         while (penguins_are_doing_time)
1010                 membar("#LoadLoad");
1011         restore_alternate_globals(global_save);
1012         atomic_dec(&smp_capture_registry);
1013         prom_world(0);
1014
1015         preempt_enable();
1016 }
1017
1018 extern unsigned long xcall_promstop;
1019
1020 void smp_promstop_others(void)
1021 {
1022         smp_cross_call(&xcall_promstop, 0, 0, 0);
1023 }
1024
1025 extern void sparc64_do_profile(struct pt_regs *regs);
1026
1027 #define prof_multiplier(__cpu)          cpu_data(__cpu).multiplier
1028 #define prof_counter(__cpu)             cpu_data(__cpu).counter
1029
1030 void smp_percpu_timer_interrupt(struct pt_regs *regs)
1031 {
1032         unsigned long compare, tick, pstate;
1033         int cpu = smp_processor_id();
1034         int user = user_mode(regs);
1035
1036         /*
1037          * Check for level 14 softint.
1038          */
1039         {
1040                 unsigned long tick_mask = tick_ops->softint_mask;
1041
1042                 if (!(get_softint() & tick_mask)) {
1043                         extern void handler_irq(int, struct pt_regs *);
1044
1045                         handler_irq(14, regs);
1046                         return;
1047                 }
1048                 clear_softint(tick_mask);
1049         }
1050
1051         do {
1052                 sparc64_do_profile(regs);
1053                 if (!--prof_counter(cpu)) {
1054                         irq_enter();
1055
1056                         if (cpu == boot_cpu_id) {
1057                                 kstat_this_cpu.irqs[0]++;
1058                                 timer_tick_interrupt(regs);
1059                         }
1060
1061                         update_process_times(user);
1062
1063                         irq_exit();
1064
1065                         prof_counter(cpu) = prof_multiplier(cpu);
1066                 }
1067
1068                 /* Guarantee that the following sequences execute
1069                  * uninterrupted.
1070                  */
1071                 __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1072                                      "wrpr      %0, %1, %%pstate"
1073                                      : "=r" (pstate)
1074                                      : "i" (PSTATE_IE));
1075
1076                 compare = tick_ops->add_compare(current_tick_offset);
1077                 tick = tick_ops->get_tick();
1078
1079                 /* Restore PSTATE_IE. */
1080                 __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1081                                      : /* no outputs */
1082                                      : "r" (pstate));
1083         } while (time_after_eq(tick, compare));
1084 }
1085
1086 static void __init smp_setup_percpu_timer(void)
1087 {
1088         int cpu = smp_processor_id();
1089         unsigned long pstate;
1090
1091         prof_counter(cpu) = prof_multiplier(cpu) = 1;
1092
1093         /* Guarantee that the following sequences execute
1094          * uninterrupted.
1095          */
1096         __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1097                              "wrpr      %0, %1, %%pstate"
1098                              : "=r" (pstate)
1099                              : "i" (PSTATE_IE));
1100
1101         tick_ops->init_tick(current_tick_offset);
1102
1103         /* Restore PSTATE_IE. */
1104         __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1105                              : /* no outputs */
1106                              : "r" (pstate));
1107 }
1108
1109 void __init smp_tick_init(void)
1110 {
1111         boot_cpu_id = hard_smp_processor_id();
1112         current_tick_offset = timer_tick_offset;
1113
1114         cpu_set(boot_cpu_id, cpu_online_map);
1115         prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1116 }
1117
1118 cycles_t cacheflush_time;
1119 unsigned long cache_decay_ticks;
1120
1121 extern unsigned long cheetah_tune_scheduling(void);
1122
1123 static void __init smp_tune_scheduling(void)
1124 {
1125         unsigned long orig_flush_base, flush_base, flags, *p;
1126         unsigned int ecache_size, order;
1127         cycles_t tick1, tick2, raw;
1128         int cpu_node;
1129
1130         /* Approximate heuristic for SMP scheduling.  It is an
1131          * estimation of the time it takes to flush the L2 cache
1132          * on the local processor.
1133          *
1134          * The ia32 chooses to use the L1 cache flush time instead,
1135          * and I consider this complete nonsense.  The Ultra can service
1136          * a miss to the L1 with a hit to the L2 in 7 or 8 cycles, and
1137          * L2 misses are what create extra bus traffic (ie. the "cost"
1138          * of moving a process from one cpu to another).
1139          */
1140         printk("SMP: Calibrating ecache flush... ");
1141         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1142                 cacheflush_time = cheetah_tune_scheduling();
1143                 goto report;
1144         }
1145
1146         cpu_find_by_instance(0, &cpu_node, NULL);
1147         ecache_size = prom_getintdefault(cpu_node,
1148                                          "ecache-size", (512 * 1024));
1149         if (ecache_size > (4 * 1024 * 1024))
1150                 ecache_size = (4 * 1024 * 1024);
1151         orig_flush_base = flush_base =
1152                 __get_free_pages(GFP_KERNEL, order = get_order(ecache_size));
1153
1154         if (flush_base != 0UL) {
1155                 local_irq_save(flags);
1156
1157                 /* Scan twice the size once just to get the TLB entries
1158                  * loaded and make sure the second scan measures pure misses.
1159                  */
1160                 for (p = (unsigned long *)flush_base;
1161                      ((unsigned long)p) < (flush_base + (ecache_size<<1));
1162                      p += (64 / sizeof(unsigned long)))
1163                         *((volatile unsigned long *)p);
1164
1165                 tick1 = tick_ops->get_tick();
1166
1167                 __asm__ __volatile__("1:\n\t"
1168                                      "ldx       [%0 + 0x000], %%g1\n\t"
1169                                      "ldx       [%0 + 0x040], %%g2\n\t"
1170                                      "ldx       [%0 + 0x080], %%g3\n\t"
1171                                      "ldx       [%0 + 0x0c0], %%g5\n\t"
1172                                      "add       %0, 0x100, %0\n\t"
1173                                      "cmp       %0, %2\n\t"
1174                                      "bne,pt    %%xcc, 1b\n\t"
1175                                      " nop"
1176                                      : "=&r" (flush_base)
1177                                      : "0" (flush_base),
1178                                        "r" (flush_base + ecache_size)
1179                                      : "g1", "g2", "g3", "g5");
1180
1181                 tick2 = tick_ops->get_tick();
1182
1183                 local_irq_restore(flags);
1184
1185                 raw = (tick2 - tick1);
1186
1187                 /* Dampen it a little, considering two processes
1188                  * sharing the cache and fitting.
1189                  */
1190                 cacheflush_time = (raw - (raw >> 2));
1191
1192                 free_pages(orig_flush_base, order);
1193         } else {
1194                 cacheflush_time = ((ecache_size << 2) +
1195                                    (ecache_size << 1));
1196         }
1197 report:
1198         /* Convert ticks/sticks to jiffies. */
1199         cache_decay_ticks = cacheflush_time / timer_tick_offset;
1200         if (cache_decay_ticks < 1)
1201                 cache_decay_ticks = 1;
1202
1203         printk("Using heuristic of %ld cycles, %ld ticks.\n",
1204                cacheflush_time, cache_decay_ticks);
1205 }
1206
1207 /* /proc/profile writes can call this, don't __init it please. */
1208 static spinlock_t prof_setup_lock = SPIN_LOCK_UNLOCKED;
1209
1210 int setup_profiling_timer(unsigned int multiplier)
1211 {
1212         unsigned long flags;
1213         int i;
1214
1215         if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1216                 return -EINVAL;
1217
1218         spin_lock_irqsave(&prof_setup_lock, flags);
1219         for (i = 0; i < NR_CPUS; i++)
1220                 prof_multiplier(i) = multiplier;
1221         current_tick_offset = (timer_tick_offset / multiplier);
1222         spin_unlock_irqrestore(&prof_setup_lock, flags);
1223
1224         return 0;
1225 }
1226
1227 void __init smp_prepare_cpus(unsigned int max_cpus)
1228 {
1229         int instance, mid;
1230
1231         instance = 0;
1232         while (!cpu_find_by_instance(instance, NULL, &mid)) {
1233                 if (mid < max_cpus)
1234                         cpu_set(mid, phys_cpu_present_map);
1235                 instance++;
1236         }
1237
1238         if (num_possible_cpus() > max_cpus) {
1239                 instance = 0;
1240                 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1241                         if (mid != boot_cpu_id) {
1242                                 cpu_clear(mid, phys_cpu_present_map);
1243                                 if (num_possible_cpus() <= max_cpus)
1244                                         break;
1245                         }
1246                         instance++;
1247                 }
1248         }
1249
1250         smp_store_cpu_info(boot_cpu_id);
1251 }
1252
1253 void __devinit smp_prepare_boot_cpu(void)
1254 {
1255         if (hard_smp_processor_id() >= NR_CPUS) {
1256                 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1257                 prom_halt();
1258         }
1259
1260         current_thread_info()->cpu = hard_smp_processor_id();
1261         cpu_set(smp_processor_id(), cpu_online_map);
1262         cpu_set(smp_processor_id(), phys_cpu_present_map);
1263 }
1264
1265 int __devinit __cpu_up(unsigned int cpu)
1266 {
1267         int ret = smp_boot_one_cpu(cpu);
1268
1269         if (!ret) {
1270                 cpu_set(cpu, smp_commenced_mask);
1271                 while (!cpu_isset(cpu, cpu_online_map))
1272                         mb();
1273                 if (!cpu_isset(cpu, cpu_online_map)) {
1274                         ret = -ENODEV;
1275                 } else {
1276                         smp_synchronize_one_tick(cpu);
1277                 }
1278         }
1279         return ret;
1280 }
1281
1282 void __init smp_cpus_done(unsigned int max_cpus)
1283 {
1284         unsigned long bogosum = 0;
1285         int i;
1286
1287         for (i = 0; i < NR_CPUS; i++) {
1288                 if (cpu_online(i))
1289                         bogosum += cpu_data(i).udelay_val;
1290         }
1291         printk("Total of %ld processors activated "
1292                "(%lu.%02lu BogoMIPS).\n",
1293                (long) num_online_cpus(),
1294                bogosum/(500000/HZ),
1295                (bogosum/(5000/HZ))%100);
1296
1297         /* We want to run this with all the other cpus spinning
1298          * in the kernel.
1299          */
1300         smp_tune_scheduling();
1301 }
1302
1303 /* This needn't do anything as we do not sleep the cpu
1304  * inside of the idler task, so an interrupt is not needed
1305  * to get a clean fast response.
1306  *
1307  * XXX Reverify this assumption... -DaveM
1308  *
1309  * Addendum: We do want it to do something for the signal
1310  *           delivery case, we detect that by just seeing
1311  *           if we are trying to send this to an idler or not.
1312  */
1313 void smp_send_reschedule(int cpu)
1314 {
1315         if (cpu_data(cpu).idle_volume == 0)
1316                 smp_receive_signal(cpu);
1317 }
1318
1319 /* This is a nop because we capture all other cpus
1320  * anyways when making the PROM active.
1321  */
1322 void smp_send_stop(void)
1323 {
1324 }
1325