This commit was manufactured by cvs2svn to create tag
[linux-2.6.git] / drivers / char / mem.c
1 /*
2  *  linux/drivers/char/mem.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  Added devfs support. 
7  *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
8  *  Shared /dev/zero mmaping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
9  */
10
11 #include <linux/config.h>
12 #include <linux/mm.h>
13 #include <linux/miscdevice.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/raw.h>
20 #include <linux/tty.h>
21 #include <linux/capability.h>
22 #include <linux/smp_lock.h>
23 #include <linux/devfs_fs_kernel.h>
24 #include <linux/ptrace.h>
25 #include <linux/device.h>
26
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29
30 #ifdef CONFIG_IA64
31 # include <linux/efi.h>
32 #endif
33
34 #if defined(CONFIG_S390_TAPE) && defined(CONFIG_S390_TAPE_CHAR)
35 extern void tapechar_init(void);
36 #endif
37
38 /*
39  * Architectures vary in how they handle caching for addresses
40  * outside of main memory.
41  *
42  */
43 static inline int uncached_access(struct file *file, unsigned long addr)
44 {
45 #if defined(__i386__)
46         /*
47          * On the PPro and successors, the MTRRs are used to set
48          * memory types for physical addresses outside main memory,
49          * so blindly setting PCD or PWT on those pages is wrong.
50          * For Pentiums and earlier, the surround logic should disable
51          * caching for the high addresses through the KEN pin, but
52          * we maintain the tradition of paranoia in this code.
53          */
54         if (file->f_flags & O_SYNC)
55                 return 1;
56         return !( test_bit(X86_FEATURE_MTRR, boot_cpu_data.x86_capability) ||
57                   test_bit(X86_FEATURE_K6_MTRR, boot_cpu_data.x86_capability) ||
58                   test_bit(X86_FEATURE_CYRIX_ARR, boot_cpu_data.x86_capability) ||
59                   test_bit(X86_FEATURE_CENTAUR_MCR, boot_cpu_data.x86_capability) )
60           && addr >= __pa(high_memory);
61 #elif defined(__x86_64__)
62         /* 
63          * This is broken because it can generate memory type aliases,
64          * which can cause cache corruptions
65          * But it is only available for root and we have to be bug-to-bug
66          * compatible with i386.
67          */
68         if (file->f_flags & O_SYNC)
69                 return 1;
70         /* same behaviour as i386. PAT always set to cached and MTRRs control the
71            caching behaviour. 
72            Hopefully a full PAT implementation will fix that soon. */      
73         return 0;
74 #elif defined(CONFIG_IA64)
75         /*
76          * On ia64, we ignore O_SYNC because we cannot tolerate memory attribute aliases.
77          */
78         return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
79 #elif defined(CONFIG_PPC64)
80         /* On PPC64, we always do non-cacheable access to the IO hole and
81          * cacheable elsewhere. Cache paradox can checkstop the CPU and
82          * the high_memory heuristic below is wrong on machines with memory
83          * above the IO hole... Ah, and of course, XFree86 doesn't pass
84          * O_SYNC when mapping us to tap IO space. Surprised ?
85          */
86         return !page_is_ram(addr >> PAGE_SHIFT);
87 #else
88         /*
89          * Accessing memory above the top the kernel knows about or through a file pointer
90          * that was marked O_SYNC will be done non-cached.
91          */
92         if (file->f_flags & O_SYNC)
93                 return 1;
94         return addr >= __pa(high_memory);
95 #endif
96 }
97
98 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
99 static inline int valid_phys_addr_range(unsigned long addr, size_t *count)
100 {
101         unsigned long end_mem;
102
103         end_mem = __pa(high_memory);
104         if (addr >= end_mem)
105                 return 0;
106
107         if (*count > end_mem - addr)
108                 *count = end_mem - addr;
109
110         return 1;
111 }
112 #endif
113
114 static inline int range_is_allowed(unsigned long from, unsigned long to)
115 {
116         unsigned long cursor;
117         
118         cursor = from >> PAGE_SHIFT;
119         while ((cursor << PAGE_SHIFT) < to) {
120                 if (!devmem_is_allowed(cursor))
121                         return 0;
122                 cursor++;
123         }
124         return 1;
125 }
126 static ssize_t do_write_mem(void *p, unsigned long realp,
127                             const char __user * buf, size_t count, loff_t *ppos)
128 {
129         ssize_t written;
130         unsigned long copied;
131
132         written = 0;
133 #if defined(__sparc__) || (defined(__mc68000__) && defined(CONFIG_MMU))
134         /* we don't have page 0 mapped on sparc and m68k.. */
135         if (realp < PAGE_SIZE) {
136                 unsigned long sz = PAGE_SIZE-realp;
137                 if (sz > count) sz = count; 
138                 /* Hmm. Do something? */
139                 buf+=sz;
140                 p+=sz;
141                 count-=sz;
142                 written+=sz;
143         }
144 #endif
145         if (!range_is_allowed(realp, realp+count))
146                 return -EPERM;
147         copied = copy_from_user(p, buf, count);
148         if (copied) {
149                 ssize_t ret = written + (count - copied);
150
151                 if (ret)
152                         return ret;
153                 return -EFAULT;
154         }
155         written += count;
156         *ppos += written;
157         return written;
158 }
159
160
161 /*
162  * This funcion reads the *physical* memory. The f_pos points directly to the 
163  * memory location. 
164  */
165 static ssize_t read_mem(struct file * file, char __user * buf,
166                         size_t count, loff_t *ppos)
167 {
168         unsigned long p = *ppos;
169         ssize_t read;
170
171         if (!valid_phys_addr_range(p, &count))
172                 return -EFAULT;
173         read = 0;
174 #if defined(__sparc__) || (defined(__mc68000__) && defined(CONFIG_MMU))
175         /* we don't have page 0 mapped on sparc and m68k.. */
176         if (p < PAGE_SIZE) {
177                 unsigned long sz = PAGE_SIZE-p;
178                 if (sz > count) 
179                         sz = count; 
180                 if (sz > 0) {
181                         if (clear_user(buf, sz))
182                                 return -EFAULT;
183                         buf += sz; 
184                         p += sz; 
185                         count -= sz; 
186                         read += sz; 
187                 }
188         }
189 #endif
190         if (!range_is_allowed(p, p+count))
191                 return -EPERM;
192         if (copy_to_user(buf, __va(p), count))
193                 return -EFAULT;
194         read += count;
195         *ppos += read;
196         return read;
197 }
198
199 static ssize_t write_mem(struct file * file, const char __user * buf, 
200                          size_t count, loff_t *ppos)
201 {
202         unsigned long p = *ppos;
203
204         if (!valid_phys_addr_range(p, &count))
205                 return -EFAULT;
206         return do_write_mem(__va(p), p, buf, count, ppos);
207 }
208
209 static int mmap_mem(struct file * file, struct vm_area_struct * vma)
210 {
211 #ifdef pgprot_noncached
212         unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
213         int uncached;
214
215         uncached = uncached_access(file, offset);
216         if (uncached)
217                 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
218 #endif
219
220         /* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */
221         if (remap_pfn_range(vma,
222                             vma->vm_start,
223                             vma->vm_pgoff,
224                             vma->vm_end-vma->vm_start,
225                             vma->vm_page_prot))
226                 return -EAGAIN;
227         return 0;
228 }
229
230 extern long vread(char *buf, char *addr, unsigned long count);
231 extern long vwrite(char *buf, char *addr, unsigned long count);
232
233 /*
234  * This function reads the *virtual* memory as seen by the kernel.
235  */
236 static ssize_t read_kmem(struct file *file, char __user *buf, 
237                          size_t count, loff_t *ppos)
238 {
239         unsigned long p = *ppos;
240         ssize_t read = 0;
241         ssize_t virtr = 0;
242         char * kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
243         
244         return -EPERM;
245                 
246         if (p < (unsigned long) high_memory) {
247                 read = count;
248                 if (count > (unsigned long) high_memory - p)
249                         read = (unsigned long) high_memory - p;
250
251 #if defined(__sparc__) || (defined(__mc68000__) && defined(CONFIG_MMU))
252                 /* we don't have page 0 mapped on sparc and m68k.. */
253                 if (p < PAGE_SIZE && read > 0) {
254                         size_t tmp = PAGE_SIZE - p;
255                         if (tmp > read) tmp = read;
256                         if (clear_user(buf, tmp))
257                                 return -EFAULT;
258                         buf += tmp;
259                         p += tmp;
260                         read -= tmp;
261                         count -= tmp;
262                 }
263 #endif
264                 if (copy_to_user(buf, (char *)p, read))
265                         return -EFAULT;
266                 p += read;
267                 buf += read;
268                 count -= read;
269         }
270
271         if (count > 0) {
272                 kbuf = (char *)__get_free_page(GFP_KERNEL);
273                 if (!kbuf)
274                         return -ENOMEM;
275                 while (count > 0) {
276                         int len = count;
277
278                         if (len > PAGE_SIZE)
279                                 len = PAGE_SIZE;
280                         len = vread(kbuf, (char *)p, len);
281                         if (!len)
282                                 break;
283                         if (copy_to_user(buf, kbuf, len)) {
284                                 free_page((unsigned long)kbuf);
285                                 return -EFAULT;
286                         }
287                         count -= len;
288                         buf += len;
289                         virtr += len;
290                         p += len;
291                 }
292                 free_page((unsigned long)kbuf);
293         }
294         *ppos = p;
295         return virtr + read;
296 }
297
298 #if defined(CONFIG_ISA) || !defined(__mc68000__)
299 static ssize_t read_port(struct file * file, char __user * buf,
300                          size_t count, loff_t *ppos)
301 {
302         unsigned long i = *ppos;
303         char __user *tmp = buf;
304
305         if (verify_area(VERIFY_WRITE,buf,count))
306                 return -EFAULT; 
307         while (count-- > 0 && i < 65536) {
308                 if (__put_user(inb(i),tmp) < 0) 
309                         return -EFAULT;  
310                 i++;
311                 tmp++;
312         }
313         *ppos = i;
314         return tmp-buf;
315 }
316
317 static ssize_t write_port(struct file * file, const char __user * buf,
318                           size_t count, loff_t *ppos)
319 {
320         unsigned long i = *ppos;
321         const char __user * tmp = buf;
322
323         if (verify_area(VERIFY_READ,buf,count))
324                 return -EFAULT;
325         while (count-- > 0 && i < 65536) {
326                 char c;
327                 if (__get_user(c, tmp)) 
328                         return -EFAULT; 
329                 outb(c,i);
330                 i++;
331                 tmp++;
332         }
333         *ppos = i;
334         return tmp-buf;
335 }
336 #endif
337
338 static ssize_t read_null(struct file * file, char __user * buf,
339                          size_t count, loff_t *ppos)
340 {
341         return 0;
342 }
343
344 static ssize_t write_null(struct file * file, const char __user * buf,
345                           size_t count, loff_t *ppos)
346 {
347         return count;
348 }
349
350 #ifdef CONFIG_MMU
351 /*
352  * For fun, we are using the MMU for this.
353  */
354 static inline size_t read_zero_pagealigned(char __user * buf, size_t size)
355 {
356         struct mm_struct *mm;
357         struct vm_area_struct * vma;
358         unsigned long addr=(unsigned long)buf;
359
360         mm = current->mm;
361         /* Oops, this was forgotten before. -ben */
362         down_read(&mm->mmap_sem);
363
364         /* For private mappings, just map in zero pages. */
365         for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
366                 unsigned long count;
367
368                 if (vma->vm_start > addr || (vma->vm_flags & VM_WRITE) == 0)
369                         goto out_up;
370                 if (vma->vm_flags & (VM_SHARED | VM_HUGETLB))
371                         break;
372                 count = vma->vm_end - addr;
373                 if (count > size)
374                         count = size;
375
376                 zap_page_range(vma, addr, count, NULL);
377                 zeromap_page_range(vma, addr, count, PAGE_COPY);
378
379                 size -= count;
380                 buf += count;
381                 addr += count;
382                 if (size == 0)
383                         goto out_up;
384         }
385
386         up_read(&mm->mmap_sem);
387         
388         /* The shared case is hard. Let's do the conventional zeroing. */ 
389         do {
390                 unsigned long unwritten = clear_user(buf, PAGE_SIZE);
391                 if (unwritten)
392                         return size + unwritten - PAGE_SIZE;
393                 cond_resched();
394                 buf += PAGE_SIZE;
395                 size -= PAGE_SIZE;
396         } while (size);
397
398         return size;
399 out_up:
400         up_read(&mm->mmap_sem);
401         return size;
402 }
403
404 static ssize_t read_zero(struct file * file, char __user * buf, 
405                          size_t count, loff_t *ppos)
406 {
407         unsigned long left, unwritten, written = 0;
408
409         if (!count)
410                 return 0;
411
412         if (!access_ok(VERIFY_WRITE, buf, count))
413                 return -EFAULT;
414
415         left = count;
416
417         /* do we want to be clever? Arbitrary cut-off */
418         if (count >= PAGE_SIZE*4) {
419                 unsigned long partial;
420
421                 /* How much left of the page? */
422                 partial = (PAGE_SIZE-1) & -(unsigned long) buf;
423                 unwritten = clear_user(buf, partial);
424                 written = partial - unwritten;
425                 if (unwritten)
426                         goto out;
427                 left -= partial;
428                 buf += partial;
429                 unwritten = read_zero_pagealigned(buf, left & PAGE_MASK);
430                 written += (left & PAGE_MASK) - unwritten;
431                 if (unwritten)
432                         goto out;
433                 buf += left & PAGE_MASK;
434                 left &= ~PAGE_MASK;
435         }
436         unwritten = clear_user(buf, left);
437         written += left - unwritten;
438 out:
439         return written ? written : -EFAULT;
440 }
441
442 static int mmap_zero(struct file * file, struct vm_area_struct * vma)
443 {
444         if (vma->vm_flags & VM_SHARED)
445                 return shmem_zero_setup(vma);
446         if (zeromap_page_range(vma, vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot))
447                 return -EAGAIN;
448         return 0;
449 }
450 #else /* CONFIG_MMU */
451 static ssize_t read_zero(struct file * file, char * buf, 
452                          size_t count, loff_t *ppos)
453 {
454         size_t todo = count;
455
456         while (todo) {
457                 size_t chunk = todo;
458
459                 if (chunk > 4096)
460                         chunk = 4096;   /* Just for latency reasons */
461                 if (clear_user(buf, chunk))
462                         return -EFAULT;
463                 buf += chunk;
464                 todo -= chunk;
465                 cond_resched();
466         }
467         return count;
468 }
469
470 static int mmap_zero(struct file * file, struct vm_area_struct * vma)
471 {
472         return -ENOSYS;
473 }
474 #endif /* CONFIG_MMU */
475
476 static ssize_t write_full(struct file * file, const char __user * buf,
477                           size_t count, loff_t *ppos)
478 {
479         return -ENOSPC;
480 }
481
482 /*
483  * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
484  * can fopen() both devices with "a" now.  This was previously impossible.
485  * -- SRB.
486  */
487
488 static loff_t null_lseek(struct file * file, loff_t offset, int orig)
489 {
490         return file->f_pos = 0;
491 }
492
493 /*
494  * The memory devices use the full 32/64 bits of the offset, and so we cannot
495  * check against negative addresses: they are ok. The return value is weird,
496  * though, in that case (0).
497  *
498  * also note that seeking relative to the "end of file" isn't supported:
499  * it has no meaning, so it returns -EINVAL.
500  */
501 static loff_t memory_lseek(struct file * file, loff_t offset, int orig)
502 {
503         loff_t ret;
504
505         down(&file->f_dentry->d_inode->i_sem);
506         switch (orig) {
507                 case 0:
508                         file->f_pos = offset;
509                         ret = file->f_pos;
510                         force_successful_syscall_return();
511                         break;
512                 case 1:
513                         file->f_pos += offset;
514                         ret = file->f_pos;
515                         force_successful_syscall_return();
516                         break;
517                 default:
518                         ret = -EINVAL;
519         }
520         up(&file->f_dentry->d_inode->i_sem);
521         return ret;
522 }
523
524 static int open_port(struct inode * inode, struct file * filp)
525 {
526         return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
527 }
528
529 #define mmap_kmem       mmap_mem
530 #define zero_lseek      null_lseek
531 #define full_lseek      null_lseek
532 #define write_zero      write_null
533 #define read_full       read_zero
534 #define open_mem        open_port
535 #define open_kmem       open_mem
536
537 static struct file_operations mem_fops = {
538         .llseek         = memory_lseek,
539         .read           = read_mem,
540         .write          = write_mem,
541         .mmap           = mmap_mem,
542         .open           = open_mem,
543 };
544
545 static struct file_operations kmem_fops = {
546         .llseek         = memory_lseek,
547         .read           = read_kmem,
548         .mmap           = mmap_kmem,
549         .open           = open_kmem,
550 };
551
552 static struct file_operations null_fops = {
553         .llseek         = null_lseek,
554         .read           = read_null,
555         .write          = write_null,
556 };
557
558 #if defined(CONFIG_ISA) || !defined(__mc68000__)
559 static struct file_operations port_fops = {
560         .llseek         = memory_lseek,
561         .read           = read_port,
562         .write          = write_port,
563         .open           = open_port,
564 };
565 #endif
566
567 static struct file_operations zero_fops = {
568         .llseek         = zero_lseek,
569         .read           = read_zero,
570         .write          = write_zero,
571         .mmap           = mmap_zero,
572 };
573
574 static struct file_operations full_fops = {
575         .llseek         = full_lseek,
576         .read           = read_full,
577         .write          = write_full,
578 };
579
580 static ssize_t kmsg_write(struct file * file, const char __user * buf,
581                           size_t count, loff_t *ppos)
582 {
583         char *tmp;
584         int ret;
585
586         tmp = kmalloc(count + 1, GFP_KERNEL);
587         if (tmp == NULL)
588                 return -ENOMEM;
589         ret = -EFAULT;
590         if (!copy_from_user(tmp, buf, count)) {
591                 tmp[count] = 0;
592                 ret = printk("%s", tmp);
593         }
594         kfree(tmp);
595         return ret;
596 }
597
598 static struct file_operations kmsg_fops = {
599         .write =        kmsg_write,
600 };
601
602 static int memory_open(struct inode * inode, struct file * filp)
603 {
604         switch (iminor(inode)) {
605                 case 1:
606                         filp->f_op = &mem_fops;
607                         break;
608                 case 2:
609                         filp->f_op = &kmem_fops;
610                         break;
611                 case 3:
612                         filp->f_op = &null_fops;
613                         break;
614 #if defined(CONFIG_ISA) || !defined(__mc68000__)
615                 case 4:
616                         filp->f_op = &port_fops;
617                         break;
618 #endif
619                 case 5:
620                         filp->f_op = &zero_fops;
621                         break;
622                 case 7:
623                         filp->f_op = &full_fops;
624                         break;
625                 case 8:
626                         filp->f_op = &random_fops;
627                         break;
628                 case 9:
629                         filp->f_op = &urandom_fops;
630                         break;
631                 case 11:
632                         filp->f_op = &kmsg_fops;
633                         break;
634                 default:
635                         return -ENXIO;
636         }
637         if (filp->f_op && filp->f_op->open)
638                 return filp->f_op->open(inode,filp);
639         return 0;
640 }
641
642 static struct file_operations memory_fops = {
643         .open           = memory_open,  /* just a selector for the real open */
644 };
645
646 static const struct {
647         unsigned int            minor;
648         char                    *name;
649         umode_t                 mode;
650         struct file_operations  *fops;
651 } devlist[] = { /* list of minor devices */
652         {1, "mem",     S_IRUSR | S_IWUSR | S_IRGRP, &mem_fops},
653         {3, "null",    S_IRUGO | S_IWUGO,           &null_fops},
654 #if defined(CONFIG_ISA) || !defined(__mc68000__)
655         {4, "port",    S_IRUSR | S_IWUSR | S_IRGRP, &port_fops},
656 #endif
657         {5, "zero",    S_IRUGO | S_IWUGO,           &zero_fops},
658         {7, "full",    S_IRUGO | S_IWUGO,           &full_fops},
659         {8, "random",  S_IRUGO | S_IWUSR,           &random_fops},
660         {9, "urandom", S_IRUGO | S_IWUSR,           &urandom_fops},
661         {11,"kmsg",    S_IRUGO | S_IWUSR,           &kmsg_fops},
662 };
663
664 static struct class_simple *mem_class;
665
666 static int __init chr_dev_init(void)
667 {
668         int i;
669
670         if (register_chrdev(MEM_MAJOR,"mem",&memory_fops))
671                 printk("unable to get major %d for memory devs\n", MEM_MAJOR);
672
673         mem_class = class_simple_create(THIS_MODULE, "mem");
674         for (i = 0; i < ARRAY_SIZE(devlist); i++) {
675                 class_simple_device_add(mem_class,
676                                         MKDEV(MEM_MAJOR, devlist[i].minor),
677                                         NULL, devlist[i].name);
678                 devfs_mk_cdev(MKDEV(MEM_MAJOR, devlist[i].minor),
679                                 S_IFCHR | devlist[i].mode, devlist[i].name);
680         }
681         
682         return 0;
683 }
684
685 fs_initcall(chr_dev_init);