vserver 1.9.3
[linux-2.6.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/config.h>
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/string.h>
31 #include <linux/kernel.h>
32 #include <linux/timer.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/major.h>
36 #include <linux/errno.h>
37 #include <linux/genhd.h>
38 #include <linux/blkpg.h>
39 #include <linux/slab.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/ide.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50
51 #include <asm/byteorder.h>
52 #include <asm/irq.h>
53 #include <asm/uaccess.h>
54 #include <asm/io.h>
55 #include <asm/bitops.h>
56
57 static void ide_fill_flush_cmd(ide_drive_t *drive, struct request *rq)
58 {
59         char *buf = rq->cmd;
60
61         /*
62          * reuse cdb space for ata command
63          */
64         memset(buf, 0, sizeof(rq->cmd));
65
66         rq->flags |= REQ_DRIVE_TASK | REQ_STARTED;
67         rq->buffer = buf;
68         rq->buffer[0] = WIN_FLUSH_CACHE;
69
70         if (ide_id_has_flush_cache_ext(drive->id) &&
71             (drive->capacity64 >= (1UL << 28)))
72                 rq->buffer[0] = WIN_FLUSH_CACHE_EXT;
73 }
74
75 /*
76  * preempt pending requests, and store this cache flush for immediate
77  * execution
78  */
79 static struct request *ide_queue_flush_cmd(ide_drive_t *drive,
80                                            struct request *rq, int post)
81 {
82         struct request *flush_rq = &HWGROUP(drive)->wrq;
83
84         /*
85          * write cache disabled, clear the barrier bit and treat it like
86          * an ordinary write
87          */
88         if (!drive->wcache) {
89                 rq->flags |= REQ_BAR_PREFLUSH;
90                 return rq;
91         }
92
93         ide_init_drive_cmd(flush_rq);
94         ide_fill_flush_cmd(drive, flush_rq);
95
96         flush_rq->special = rq;
97         flush_rq->nr_sectors = rq->nr_sectors;
98
99         if (!post) {
100                 drive->doing_barrier = 1;
101                 flush_rq->flags |= REQ_BAR_PREFLUSH;
102                 blkdev_dequeue_request(rq);
103         } else
104                 flush_rq->flags |= REQ_BAR_POSTFLUSH;
105
106         __elv_add_request(drive->queue, flush_rq, ELEVATOR_INSERT_FRONT, 0);
107         HWGROUP(drive)->rq = NULL;
108         return flush_rq;
109 }
110
111 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
112                              int uptodate, int nr_sectors)
113 {
114         int ret = 1;
115
116         BUG_ON(!(rq->flags & REQ_STARTED));
117
118         /*
119          * if failfast is set on a request, override number of sectors and
120          * complete the whole request right now
121          */
122         if (blk_noretry_request(rq) && end_io_error(uptodate))
123                 nr_sectors = rq->hard_nr_sectors;
124
125         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
126                 rq->errors = -EIO;
127
128         /*
129          * decide whether to reenable DMA -- 3 is a random magic for now,
130          * if we DMA timeout more than 3 times, just stay in PIO
131          */
132         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
133                 drive->state = 0;
134                 HWGROUP(drive)->hwif->ide_dma_on(drive);
135         }
136
137         if (!end_that_request_first(rq, uptodate, nr_sectors)) {
138                 add_disk_randomness(rq->rq_disk);
139
140                 if (blk_rq_tagged(rq))
141                         blk_queue_end_tag(drive->queue, rq);
142
143                 blkdev_dequeue_request(rq);
144                 HWGROUP(drive)->rq = NULL;
145                 end_that_request_last(rq);
146                 ret = 0;
147         }
148         return ret;
149 }
150
151 /**
152  *      ide_end_request         -       complete an IDE I/O
153  *      @drive: IDE device for the I/O
154  *      @uptodate:
155  *      @nr_sectors: number of sectors completed
156  *
157  *      This is our end_request wrapper function. We complete the I/O
158  *      update random number input and dequeue the request, which if
159  *      it was tagged may be out of order.
160  */
161
162 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
163 {
164         struct request *rq;
165         unsigned long flags;
166         int ret = 1;
167
168         spin_lock_irqsave(&ide_lock, flags);
169         rq = HWGROUP(drive)->rq;
170
171         if (!nr_sectors)
172                 nr_sectors = rq->hard_cur_sectors;
173
174         if (!blk_barrier_rq(rq) || !drive->wcache)
175                 ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
176         else {
177                 struct request *flush_rq = &HWGROUP(drive)->wrq;
178
179                 flush_rq->nr_sectors -= nr_sectors;
180                 if (!flush_rq->nr_sectors) {
181                         ide_queue_flush_cmd(drive, rq, 1);
182                         ret = 0;
183                 }
184         }
185
186         spin_unlock_irqrestore(&ide_lock, flags);
187         return ret;
188 }
189 EXPORT_SYMBOL(ide_end_request);
190
191 /**
192  *      ide_complete_pm_request - end the current Power Management request
193  *      @drive: target drive
194  *      @rq: request
195  *
196  *      This function cleans up the current PM request and stops the queue
197  *      if necessary.
198  */
199 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
200 {
201         unsigned long flags;
202
203 #ifdef DEBUG_PM
204         printk("%s: completing PM request, %s\n", drive->name,
205                blk_pm_suspend_request(rq) ? "suspend" : "resume");
206 #endif
207         spin_lock_irqsave(&ide_lock, flags);
208         if (blk_pm_suspend_request(rq)) {
209                 blk_stop_queue(drive->queue);
210         } else {
211                 drive->blocked = 0;
212                 blk_start_queue(drive->queue);
213         }
214         blkdev_dequeue_request(rq);
215         HWGROUP(drive)->rq = NULL;
216         end_that_request_last(rq);
217         spin_unlock_irqrestore(&ide_lock, flags);
218 }
219
220 /*
221  * FIXME: probably move this somewhere else, name is bad too :)
222  */
223 u64 ide_get_error_location(ide_drive_t *drive, char *args)
224 {
225         u32 high, low;
226         u8 hcyl, lcyl, sect;
227         u64 sector;
228
229         high = 0;
230         hcyl = args[5];
231         lcyl = args[4];
232         sect = args[3];
233
234         if (ide_id_has_flush_cache_ext(drive->id)) {
235                 low = (hcyl << 16) | (lcyl << 8) | sect;
236                 HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
237                 high = ide_read_24(drive);
238         } else {
239                 u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
240                 if (cur & 0x40)
241                         low = (hcyl << 16) | (lcyl << 8) | sect;
242                 else {
243                         low = hcyl * drive->head * drive->sect;
244                         low += lcyl * drive->sect;
245                         low += sect - 1;
246                 }
247         }
248
249         sector = ((u64) high << 24) | low;
250         return sector;
251 }
252 EXPORT_SYMBOL(ide_get_error_location);
253
254 static void ide_complete_barrier(ide_drive_t *drive, struct request *rq,
255                                  int error)
256 {
257         struct request *real_rq = rq->special;
258         int good_sectors, bad_sectors;
259         sector_t sector;
260
261         if (!error) {
262                 if (blk_barrier_postflush(rq)) {
263                         /*
264                          * this completes the barrier write
265                          */
266                         __ide_end_request(drive, real_rq, 1, real_rq->hard_nr_sectors);
267                         drive->doing_barrier = 0;
268                 } else {
269                         /*
270                          * just indicate that we did the pre flush
271                          */
272                         real_rq->flags |= REQ_BAR_PREFLUSH;
273                         elv_requeue_request(drive->queue, real_rq);
274                 }
275                 /*
276                  * all is fine, return
277                  */
278                 return;
279         }
280
281         /*
282          * we need to end real_rq, but it's not on the queue currently.
283          * put it back on the queue, so we don't have to special case
284          * anything else for completing it
285          */
286         if (!blk_barrier_postflush(rq))
287                 elv_requeue_request(drive->queue, real_rq);
288
289         /*
290          * drive aborted flush command, assume FLUSH_CACHE_* doesn't
291          * work and disable barrier support
292          */
293         if (error & ABRT_ERR) {
294                 printk(KERN_ERR "%s: barrier support doesn't work\n", drive->name);
295                 __ide_end_request(drive, real_rq, -EOPNOTSUPP, real_rq->hard_nr_sectors);
296                 blk_queue_ordered(drive->queue, 0);
297                 blk_queue_issue_flush_fn(drive->queue, NULL);
298         } else {
299                 /*
300                  * find out what part of the request failed
301                  */
302                 good_sectors = 0;
303                 if (blk_barrier_postflush(rq)) {
304                         sector = ide_get_error_location(drive, rq->buffer);
305
306                         if ((sector >= real_rq->hard_sector) &&
307                             (sector < real_rq->hard_sector + real_rq->hard_nr_sectors))
308                                 good_sectors = sector - real_rq->hard_sector;
309                 } else
310                         sector = real_rq->hard_sector;
311
312                 bad_sectors = real_rq->hard_nr_sectors - good_sectors;
313                 if (good_sectors)
314                         __ide_end_request(drive, real_rq, 1, good_sectors);
315                 if (bad_sectors)
316                         __ide_end_request(drive, real_rq, 0, bad_sectors);
317
318                 printk(KERN_ERR "%s: failed barrier write: "
319                                 "sector=%Lx(good=%d/bad=%d)\n",
320                                 drive->name, (unsigned long long)sector,
321                                 good_sectors, bad_sectors);
322         }
323
324         drive->doing_barrier = 0;
325 }
326
327 /**
328  *      ide_end_drive_cmd       -       end an explicit drive command
329  *      @drive: command 
330  *      @stat: status bits
331  *      @err: error bits
332  *
333  *      Clean up after success/failure of an explicit drive command.
334  *      These get thrown onto the queue so they are synchronized with
335  *      real I/O operations on the drive.
336  *
337  *      In LBA48 mode we have to read the register set twice to get
338  *      all the extra information out.
339  */
340  
341 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
342 {
343         ide_hwif_t *hwif = HWIF(drive);
344         unsigned long flags;
345         struct request *rq;
346
347         spin_lock_irqsave(&ide_lock, flags);
348         rq = HWGROUP(drive)->rq;
349         spin_unlock_irqrestore(&ide_lock, flags);
350
351         if (rq->flags & REQ_DRIVE_CMD) {
352                 u8 *args = (u8 *) rq->buffer;
353                 if (rq->errors == 0)
354                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
355
356                 if (args) {
357                         args[0] = stat;
358                         args[1] = err;
359                         args[2] = hwif->INB(IDE_NSECTOR_REG);
360                 }
361         } else if (rq->flags & REQ_DRIVE_TASK) {
362                 u8 *args = (u8 *) rq->buffer;
363                 if (rq->errors == 0)
364                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
365
366                 if (args) {
367                         args[0] = stat;
368                         args[1] = err;
369                         args[2] = hwif->INB(IDE_NSECTOR_REG);
370                         args[3] = hwif->INB(IDE_SECTOR_REG);
371                         args[4] = hwif->INB(IDE_LCYL_REG);
372                         args[5] = hwif->INB(IDE_HCYL_REG);
373                         args[6] = hwif->INB(IDE_SELECT_REG);
374                 }
375         } else if (rq->flags & REQ_DRIVE_TASKFILE) {
376                 ide_task_t *args = (ide_task_t *) rq->special;
377                 if (rq->errors == 0)
378                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
379                         
380                 if (args) {
381                         if (args->tf_in_flags.b.data) {
382                                 u16 data                                = hwif->INW(IDE_DATA_REG);
383                                 args->tfRegister[IDE_DATA_OFFSET]       = (data) & 0xFF;
384                                 args->hobRegister[IDE_DATA_OFFSET]      = (data >> 8) & 0xFF;
385                         }
386                         args->tfRegister[IDE_ERROR_OFFSET]   = err;
387                         /* be sure we're looking at the low order bits */
388                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
389                         args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
390                         args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
391                         args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
392                         args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
393                         args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
394                         args->tfRegister[IDE_STATUS_OFFSET]  = stat;
395
396                         if (drive->addressing == 1) {
397                                 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
398                                 args->hobRegister[IDE_FEATURE_OFFSET]   = hwif->INB(IDE_FEATURE_REG);
399                                 args->hobRegister[IDE_NSECTOR_OFFSET]   = hwif->INB(IDE_NSECTOR_REG);
400                                 args->hobRegister[IDE_SECTOR_OFFSET]    = hwif->INB(IDE_SECTOR_REG);
401                                 args->hobRegister[IDE_LCYL_OFFSET]      = hwif->INB(IDE_LCYL_REG);
402                                 args->hobRegister[IDE_HCYL_OFFSET]      = hwif->INB(IDE_HCYL_REG);
403                         }
404                 }
405         } else if (blk_pm_request(rq)) {
406 #ifdef DEBUG_PM
407                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
408                         drive->name, rq->pm->pm_step, stat, err);
409 #endif
410                 DRIVER(drive)->complete_power_step(drive, rq, stat, err);
411                 if (rq->pm->pm_step == ide_pm_state_completed)
412                         ide_complete_pm_request(drive, rq);
413                 return;
414         }
415
416         spin_lock_irqsave(&ide_lock, flags);
417         blkdev_dequeue_request(rq);
418
419         if (blk_barrier_preflush(rq) || blk_barrier_postflush(rq))
420                 ide_complete_barrier(drive, rq, err);
421
422         HWGROUP(drive)->rq = NULL;
423         end_that_request_last(rq);
424         spin_unlock_irqrestore(&ide_lock, flags);
425 }
426
427 EXPORT_SYMBOL(ide_end_drive_cmd);
428
429 /**
430  *      try_to_flush_leftover_data      -       flush junk
431  *      @drive: drive to flush
432  *
433  *      try_to_flush_leftover_data() is invoked in response to a drive
434  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
435  *      resetting the drive, this routine tries to clear the condition
436  *      by read a sector's worth of data from the drive.  Of course,
437  *      this may not help if the drive is *waiting* for data from *us*.
438  */
439 void try_to_flush_leftover_data (ide_drive_t *drive)
440 {
441         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
442
443         if (drive->media != ide_disk)
444                 return;
445         while (i > 0) {
446                 u32 buffer[16];
447                 u32 wcount = (i > 16) ? 16 : i;
448
449                 i -= wcount;
450                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
451         }
452 }
453
454 EXPORT_SYMBOL(try_to_flush_leftover_data);
455
456 /*
457  * FIXME Add an ATAPI error
458  */
459
460 /**
461  *      ide_error       -       handle an error on the IDE
462  *      @drive: drive the error occurred on
463  *      @msg: message to report
464  *      @stat: status bits
465  *
466  *      ide_error() takes action based on the error returned by the drive.
467  *      For normal I/O that may well include retries. We deal with
468  *      both new-style (taskfile) and old style command handling here.
469  *      In the case of taskfile command handling there is work left to
470  *      do
471  */
472  
473 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
474 {
475         ide_hwif_t *hwif;
476         struct request *rq;
477         u8 err;
478
479         err = ide_dump_status(drive, msg, stat);
480         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
481                 return ide_stopped;
482
483         hwif = HWIF(drive);
484         /* retry only "normal" I/O: */
485         if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK)) {
486                 rq->errors = 1;
487                 ide_end_drive_cmd(drive, stat, err);
488                 return ide_stopped;
489         }
490         if (rq->flags & REQ_DRIVE_TASKFILE) {
491                 rq->errors = 1;
492                 ide_end_drive_cmd(drive, stat, err);
493                 return ide_stopped;
494         }
495
496         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
497                  /* other bits are useless when BUSY */
498                 rq->errors |= ERROR_RESET;
499         } else {
500                 if (drive->media != ide_disk)
501                         goto media_out;
502
503                 if (stat & ERR_STAT) {
504                         /* err has different meaning on cdrom and tape */
505                         if (err == ABRT_ERR) {
506                                 if (drive->select.b.lba &&
507                                     (hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY))
508                                         /* some newer drives don't
509                                          * support WIN_SPECIFY
510                                          */
511                                         return ide_stopped;
512                         } else if ((err & BAD_CRC) == BAD_CRC) {
513                                 drive->crc_count++;
514                                 /* UDMA crc error -- just retry the operation */
515                         } else if (err & (BBD_ERR | ECC_ERR)) {
516                                 /* retries won't help these */
517                                 rq->errors = ERROR_MAX;
518                         } else if (err & TRK0_ERR) {
519                                 /* help it find track zero */
520                                 rq->errors |= ERROR_RECAL;
521                         }
522                 }
523 media_out:
524                 if ((stat & DRQ_STAT) && rq_data_dir(rq) != WRITE)
525                         try_to_flush_leftover_data(drive);
526         }
527         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) {
528                 /* force an abort */
529                 hwif->OUTB(WIN_IDLEIMMEDIATE,IDE_COMMAND_REG);
530         }
531         if (rq->errors >= ERROR_MAX) {
532                 DRIVER(drive)->end_request(drive, 0, 0);
533         } else {
534                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
535                         ++rq->errors;
536                         return ide_do_reset(drive);
537                 }
538                 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
539                         drive->special.b.recalibrate = 1;
540                 ++rq->errors;
541         }
542         return ide_stopped;
543 }
544
545 EXPORT_SYMBOL(ide_error);
546
547 /**
548  *      ide_abort       -       abort pending IDE operatins
549  *      @drive: drive the error occurred on
550  *      @msg: message to report
551  *
552  *      ide_abort kills and cleans up when we are about to do a 
553  *      host initiated reset on active commands. Longer term we
554  *      want handlers to have sensible abort handling themselves
555  *
556  *      This differs fundamentally from ide_error because in 
557  *      this case the command is doing just fine when we
558  *      blow it away.
559  */
560  
561 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
562 {
563         ide_hwif_t *hwif;
564         struct request *rq;
565
566         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
567                 return ide_stopped;
568
569         hwif = HWIF(drive);
570         /* retry only "normal" I/O: */
571         if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK)) {
572                 rq->errors = 1;
573                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
574                 return ide_stopped;
575         }
576         if (rq->flags & REQ_DRIVE_TASKFILE) {
577                 rq->errors = 1;
578                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
579                 return ide_stopped;
580         }
581
582         rq->errors |= ERROR_RESET;
583         DRIVER(drive)->end_request(drive, 0, 0);
584         return ide_stopped;
585 }
586
587 EXPORT_SYMBOL(ide_abort);
588
589 /**
590  *      ide_cmd         -       issue a simple drive command
591  *      @drive: drive the command is for
592  *      @cmd: command byte
593  *      @nsect: sector byte
594  *      @handler: handler for the command completion
595  *
596  *      Issue a simple drive command with interrupts.
597  *      The drive must be selected beforehand.
598  */
599
600 void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect, ide_handler_t *handler)
601 {
602         ide_hwif_t *hwif = HWIF(drive);
603         if (IDE_CONTROL_REG)
604                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
605         SELECT_MASK(drive,0);
606         hwif->OUTB(nsect,IDE_NSECTOR_REG);
607         ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
608 }
609
610 EXPORT_SYMBOL(ide_cmd);
611
612 /**
613  *      drive_cmd_intr          -       drive command completion interrupt
614  *      @drive: drive the completion interrupt occurred on
615  *
616  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
617  *      We do any necessary daya reading and then wait for the drive to
618  *      go non busy. At that point we may read the error data and complete
619  *      the request
620  */
621  
622 ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
623 {
624         struct request *rq = HWGROUP(drive)->rq;
625         ide_hwif_t *hwif = HWIF(drive);
626         u8 *args = (u8 *) rq->buffer;
627         u8 stat = hwif->INB(IDE_STATUS_REG);
628         int retries = 10;
629
630         local_irq_enable();
631         if ((stat & DRQ_STAT) && args && args[3]) {
632                 u8 io_32bit = drive->io_32bit;
633                 drive->io_32bit = 0;
634                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
635                 drive->io_32bit = io_32bit;
636                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
637                         udelay(100);
638         }
639
640         if (!OK_STAT(stat, READY_STAT, BAD_STAT) && DRIVER(drive) != NULL)
641                 return DRIVER(drive)->error(drive, "drive_cmd", stat);
642                 /* calls ide_end_drive_cmd */
643         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
644         return ide_stopped;
645 }
646
647 EXPORT_SYMBOL(drive_cmd_intr);
648
649 /**
650  *      do_special              -       issue some special commands
651  *      @drive: drive the command is for
652  *
653  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
654  *      commands to a drive.  It used to do much more, but has been scaled
655  *      back.
656  */
657
658 ide_startstop_t do_special (ide_drive_t *drive)
659 {
660         special_t *s = &drive->special;
661
662 #ifdef DEBUG
663         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
664 #endif
665         if (s->b.set_tune) {
666                 s->b.set_tune = 0;
667                 if (HWIF(drive)->tuneproc != NULL)
668                         HWIF(drive)->tuneproc(drive, drive->tune_req);
669                 return ide_stopped;
670         }
671         else
672                 return DRIVER(drive)->special(drive);
673 }
674
675 EXPORT_SYMBOL(do_special);
676
677 /**
678  *      execute_drive_command   -       issue special drive command
679  *      @drive: the drive to issue th command on
680  *      @rq: the request structure holding the command
681  *
682  *      execute_drive_cmd() issues a special drive command,  usually 
683  *      initiated by ioctl() from the external hdparm program. The
684  *      command can be a drive command, drive task or taskfile 
685  *      operation. Weirdly you can call it with NULL to wait for
686  *      all commands to finish. Don't do this as that is due to change
687  */
688
689 ide_startstop_t execute_drive_cmd (ide_drive_t *drive, struct request *rq)
690 {
691         ide_hwif_t *hwif = HWIF(drive);
692         if (rq->flags & REQ_DRIVE_TASKFILE) {
693                 ide_task_t *args = rq->special;
694  
695                 if (!args)
696                         goto done;
697
698                 hwif->data_phase = args->data_phase;
699
700                 if (args->tf_out_flags.all != 0) 
701                         return flagged_taskfile(drive, args);
702                 return do_rw_taskfile(drive, args);
703         } else if (rq->flags & REQ_DRIVE_TASK) {
704                 u8 *args = rq->buffer;
705                 u8 sel;
706  
707                 if (!args)
708                         goto done;
709 #ifdef DEBUG
710                 printk("%s: DRIVE_TASK_CMD ", drive->name);
711                 printk("cmd=0x%02x ", args[0]);
712                 printk("fr=0x%02x ", args[1]);
713                 printk("ns=0x%02x ", args[2]);
714                 printk("sc=0x%02x ", args[3]);
715                 printk("lcyl=0x%02x ", args[4]);
716                 printk("hcyl=0x%02x ", args[5]);
717                 printk("sel=0x%02x\n", args[6]);
718 #endif
719                 hwif->OUTB(args[1], IDE_FEATURE_REG);
720                 hwif->OUTB(args[3], IDE_SECTOR_REG);
721                 hwif->OUTB(args[4], IDE_LCYL_REG);
722                 hwif->OUTB(args[5], IDE_HCYL_REG);
723                 sel = (args[6] & ~0x10);
724                 if (drive->select.b.unit)
725                         sel |= 0x10;
726                 hwif->OUTB(sel, IDE_SELECT_REG);
727                 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
728                 return ide_started;
729         } else if (rq->flags & REQ_DRIVE_CMD) {
730                 u8 *args = rq->buffer;
731
732                 if (!args)
733                         goto done;
734 #ifdef DEBUG
735                 printk("%s: DRIVE_CMD ", drive->name);
736                 printk("cmd=0x%02x ", args[0]);
737                 printk("sc=0x%02x ", args[1]);
738                 printk("fr=0x%02x ", args[2]);
739                 printk("xx=0x%02x\n", args[3]);
740 #endif
741                 if (args[0] == WIN_SMART) {
742                         hwif->OUTB(0x4f, IDE_LCYL_REG);
743                         hwif->OUTB(0xc2, IDE_HCYL_REG);
744                         hwif->OUTB(args[2],IDE_FEATURE_REG);
745                         hwif->OUTB(args[1],IDE_SECTOR_REG);
746                         ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
747                         return ide_started;
748                 }
749                 hwif->OUTB(args[2],IDE_FEATURE_REG);
750                 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
751                 return ide_started;
752         }
753
754 done:
755         /*
756          * NULL is actually a valid way of waiting for
757          * all current requests to be flushed from the queue.
758          */
759 #ifdef DEBUG
760         printk("%s: DRIVE_CMD (null)\n", drive->name);
761 #endif
762         ide_end_drive_cmd(drive,
763                         hwif->INB(IDE_STATUS_REG),
764                         hwif->INB(IDE_ERROR_REG));
765         return ide_stopped;
766 }
767
768 EXPORT_SYMBOL(execute_drive_cmd);
769
770 /**
771  *      start_request   -       start of I/O and command issuing for IDE
772  *
773  *      start_request() initiates handling of a new I/O request. It
774  *      accepts commands and I/O (read/write) requests. It also does
775  *      the final remapping for weird stuff like EZDrive. Once 
776  *      device mapper can work sector level the EZDrive stuff can go away
777  *
778  *      FIXME: this function needs a rename
779  */
780  
781 ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
782 {
783         ide_startstop_t startstop;
784         sector_t block;
785
786         BUG_ON(!(rq->flags & REQ_STARTED));
787
788 #ifdef DEBUG
789         printk("%s: start_request: current=0x%08lx\n",
790                 HWIF(drive)->name, (unsigned long) rq);
791 #endif
792
793         /* bail early if we've exceeded max_failures */
794         if (drive->max_failures && (drive->failures > drive->max_failures)) {
795                 goto kill_rq;
796         }
797
798         /*
799          * bail early if we've sent a device to sleep, however how to wake
800          * this needs to be a masked flag.  FIXME for proper operations.
801          */
802         if (drive->suspend_reset)
803                 goto kill_rq;
804
805         block    = rq->sector;
806         if (blk_fs_request(rq) &&
807             (drive->media == ide_disk || drive->media == ide_floppy)) {
808                 block += drive->sect0;
809         }
810         /* Yecch - this will shift the entire interval,
811            possibly killing some innocent following sector */
812         if (block == 0 && drive->remap_0_to_1 == 1)
813                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
814
815         if (blk_pm_suspend_request(rq) &&
816             rq->pm->pm_step == ide_pm_state_start_suspend)
817                 /* Mark drive blocked when starting the suspend sequence. */
818                 drive->blocked = 1;
819         else if (blk_pm_resume_request(rq) &&
820                  rq->pm->pm_step == ide_pm_state_start_resume) {
821                 /* 
822                  * The first thing we do on wakeup is to wait for BSY bit to
823                  * go away (with a looong timeout) as a drive on this hwif may
824                  * just be POSTing itself.
825                  * We do that before even selecting as the "other" device on
826                  * the bus may be broken enough to walk on our toes at this
827                  * point.
828                  */
829                 int rc;
830 #ifdef DEBUG_PM
831                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
832 #endif
833                 rc = ide_wait_not_busy(HWIF(drive), 35000);
834                 if (rc)
835                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
836                 SELECT_DRIVE(drive);
837                 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
838                 rc = ide_wait_not_busy(HWIF(drive), 10000);
839                 if (rc)
840                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
841         }
842
843         SELECT_DRIVE(drive);
844         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
845                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
846                 return startstop;
847         }
848         if (!drive->special.all) {
849                 if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK))
850                         return execute_drive_cmd(drive, rq);
851                 else if (rq->flags & REQ_DRIVE_TASKFILE)
852                         return execute_drive_cmd(drive, rq);
853                 else if (blk_pm_request(rq)) {
854 #ifdef DEBUG_PM
855                         printk("%s: start_power_step(step: %d)\n",
856                                 drive->name, rq->pm->pm_step);
857 #endif
858                         startstop = DRIVER(drive)->start_power_step(drive, rq);
859                         if (startstop == ide_stopped &&
860                             rq->pm->pm_step == ide_pm_state_completed)
861                                 ide_complete_pm_request(drive, rq);
862                         return startstop;
863                 }
864                 return (DRIVER(drive)->do_request(drive, rq, block));
865         }
866         return do_special(drive);
867 kill_rq:
868         DRIVER(drive)->end_request(drive, 0, 0);
869         return ide_stopped;
870 }
871
872 EXPORT_SYMBOL(start_request);
873
874 /**
875  *      ide_stall_queue         -       pause an IDE device
876  *      @drive: drive to stall
877  *      @timeout: time to stall for (jiffies)
878  *
879  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
880  *      to the hwgroup by sleeping for timeout jiffies.
881  */
882  
883 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
884 {
885         if (timeout > WAIT_WORSTCASE)
886                 timeout = WAIT_WORSTCASE;
887         drive->sleep = timeout + jiffies;
888 }
889
890 EXPORT_SYMBOL(ide_stall_queue);
891
892 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
893
894 /**
895  *      choose_drive            -       select a drive to service
896  *      @hwgroup: hardware group to select on
897  *
898  *      choose_drive() selects the next drive which will be serviced.
899  *      This is necessary because the IDE layer can't issue commands
900  *      to both drives on the same cable, unlike SCSI.
901  */
902  
903 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
904 {
905         ide_drive_t *drive, *best;
906
907 repeat: 
908         best = NULL;
909         drive = hwgroup->drive;
910
911         /*
912          * drive is doing pre-flush, ordered write, post-flush sequence. even
913          * though that is 3 requests, it must be seen as a single transaction.
914          * we must not preempt this drive until that is complete
915          */
916         if (drive->doing_barrier) {
917                 /*
918                  * small race where queue could get replugged during
919                  * the 3-request flush cycle, just yank the plug since
920                  * we want it to finish asap
921                  */
922                 blk_remove_plug(drive->queue);
923                 return drive;
924         }
925
926         do {
927                 if ((!drive->sleep || time_after_eq(jiffies, drive->sleep))
928                     && !elv_queue_empty(drive->queue)) {
929                         if (!best
930                          || (drive->sleep && (!best->sleep || 0 < (signed long)(best->sleep - drive->sleep)))
931                          || (!best->sleep && 0 < (signed long)(WAKEUP(best) - WAKEUP(drive))))
932                         {
933                                 if (!blk_queue_plugged(drive->queue))
934                                         best = drive;
935                         }
936                 }
937         } while ((drive = drive->next) != hwgroup->drive);
938         if (best && best->nice1 && !best->sleep && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
939                 long t = (signed long)(WAKEUP(best) - jiffies);
940                 if (t >= WAIT_MIN_SLEEP) {
941                 /*
942                  * We *may* have some time to spare, but first let's see if
943                  * someone can potentially benefit from our nice mood today..
944                  */
945                         drive = best->next;
946                         do {
947                                 if (!drive->sleep
948                                 /* FIXME: use time_before */
949                                  && 0 < (signed long)(WAKEUP(drive) - (jiffies - best->service_time))
950                                  && 0 < (signed long)((jiffies + t) - WAKEUP(drive)))
951                                 {
952                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
953                                         goto repeat;
954                                 }
955                         } while ((drive = drive->next) != best);
956                 }
957         }
958         return best;
959 }
960
961 /*
962  * Issue a new request to a drive from hwgroup
963  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
964  *
965  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
966  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
967  * may have both interfaces in a single hwgroup to "serialize" access.
968  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
969  * together into one hwgroup for serialized access.
970  *
971  * Note also that several hwgroups can end up sharing a single IRQ,
972  * possibly along with many other devices.  This is especially common in
973  * PCI-based systems with off-board IDE controller cards.
974  *
975  * The IDE driver uses the single global ide_lock spinlock to protect
976  * access to the request queues, and to protect the hwgroup->busy flag.
977  *
978  * The first thread into the driver for a particular hwgroup sets the
979  * hwgroup->busy flag to indicate that this hwgroup is now active,
980  * and then initiates processing of the top request from the request queue.
981  *
982  * Other threads attempting entry notice the busy setting, and will simply
983  * queue their new requests and exit immediately.  Note that hwgroup->busy
984  * remains set even when the driver is merely awaiting the next interrupt.
985  * Thus, the meaning is "this hwgroup is busy processing a request".
986  *
987  * When processing of a request completes, the completing thread or IRQ-handler
988  * will start the next request from the queue.  If no more work remains,
989  * the driver will clear the hwgroup->busy flag and exit.
990  *
991  * The ide_lock (spinlock) is used to protect all access to the
992  * hwgroup->busy flag, but is otherwise not needed for most processing in
993  * the driver.  This makes the driver much more friendlier to shared IRQs
994  * than previous designs, while remaining 100% (?) SMP safe and capable.
995  */
996 /* --BenH: made non-static as ide-pmac.c uses it to kick the hwgroup back
997  *         into life on wakeup from machine sleep.
998  */ 
999 void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1000 {
1001         ide_drive_t     *drive;
1002         ide_hwif_t      *hwif;
1003         struct request  *rq;
1004         ide_startstop_t startstop;
1005
1006         /* for atari only: POSSIBLY BROKEN HERE(?) */
1007         ide_get_lock(ide_intr, hwgroup);
1008
1009         /* caller must own ide_lock */
1010         BUG_ON(!irqs_disabled());
1011
1012         while (!hwgroup->busy) {
1013                 hwgroup->busy = 1;
1014                 drive = choose_drive(hwgroup);
1015                 if (drive == NULL) {
1016                         unsigned long sleep = 0;
1017                         hwgroup->rq = NULL;
1018                         drive = hwgroup->drive;
1019                         do {
1020                                 if (drive->sleep && (!sleep || 0 < (signed long)(sleep - drive->sleep)))
1021                                         sleep = drive->sleep;
1022                         } while ((drive = drive->next) != hwgroup->drive);
1023                         if (sleep) {
1024                 /*
1025                  * Take a short snooze, and then wake up this hwgroup again.
1026                  * This gives other hwgroups on the same a chance to
1027                  * play fairly with us, just in case there are big differences
1028                  * in relative throughputs.. don't want to hog the cpu too much.
1029                  */
1030                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1031                                         sleep = jiffies + WAIT_MIN_SLEEP;
1032 #if 1
1033                                 if (timer_pending(&hwgroup->timer))
1034                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1035 #endif
1036                                 /* so that ide_timer_expiry knows what to do */
1037                                 hwgroup->sleeping = 1;
1038                                 mod_timer(&hwgroup->timer, sleep);
1039                                 /* we purposely leave hwgroup->busy==1
1040                                  * while sleeping */
1041                         } else {
1042                                 /* Ugly, but how can we sleep for the lock
1043                                  * otherwise? perhaps from tq_disk?
1044                                  */
1045
1046                                 /* for atari only */
1047                                 ide_release_lock();
1048                                 hwgroup->busy = 0;
1049                         }
1050
1051                         /* no more work for this hwgroup (for now) */
1052                         return;
1053                 }
1054                 hwif = HWIF(drive);
1055                 if (hwgroup->hwif->sharing_irq &&
1056                     hwif != hwgroup->hwif &&
1057                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
1058                         /* set nIEN for previous hwif */
1059                         SELECT_INTERRUPT(drive);
1060                 }
1061                 hwgroup->hwif = hwif;
1062                 hwgroup->drive = drive;
1063                 drive->sleep = 0;
1064                 drive->service_start = jiffies;
1065
1066                 if (blk_queue_plugged(drive->queue)) {
1067                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1068                         break;
1069                 }
1070
1071                 /*
1072                  * we know that the queue isn't empty, but this can happen
1073                  * if the q->prep_rq_fn() decides to kill a request
1074                  */
1075                 rq = elv_next_request(drive->queue);
1076                 if (!rq) {
1077                         hwgroup->busy = 0;
1078                         break;
1079                 }
1080
1081                 /*
1082                  * if rq is a barrier write, issue pre cache flush if not
1083                  * already done
1084                  */
1085                 if (blk_barrier_rq(rq) && !blk_barrier_preflush(rq))
1086                         rq = ide_queue_flush_cmd(drive, rq, 0);
1087
1088                 /*
1089                  * Sanity: don't accept a request that isn't a PM request
1090                  * if we are currently power managed. This is very important as
1091                  * blk_stop_queue() doesn't prevent the elv_next_request()
1092                  * above to return us whatever is in the queue. Since we call
1093                  * ide_do_request() ourselves, we end up taking requests while
1094                  * the queue is blocked...
1095                  * 
1096                  * We let requests forced at head of queue with ide-preempt
1097                  * though. I hope that doesn't happen too much, hopefully not
1098                  * unless the subdriver triggers such a thing in its own PM
1099                  * state machine.
1100                  */
1101                 if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) {
1102                         /* We clear busy, there should be no pending ATA command at this point. */
1103                         hwgroup->busy = 0;
1104                         break;
1105                 }
1106
1107                 hwgroup->rq = rq;
1108
1109                 /*
1110                  * Some systems have trouble with IDE IRQs arriving while
1111                  * the driver is still setting things up.  So, here we disable
1112                  * the IRQ used by this interface while the request is being started.
1113                  * This may look bad at first, but pretty much the same thing
1114                  * happens anyway when any interrupt comes in, IDE or otherwise
1115                  *  -- the kernel masks the IRQ while it is being handled.
1116                  */
1117                 if (hwif->irq != masked_irq)
1118                         disable_irq_nosync(hwif->irq);
1119                 spin_unlock(&ide_lock);
1120                 local_irq_enable();
1121                         /* allow other IRQs while we start this request */
1122                 startstop = start_request(drive, rq);
1123                 spin_lock_irq(&ide_lock);
1124                 if (hwif->irq != masked_irq)
1125                         enable_irq(hwif->irq);
1126                 if (startstop == ide_stopped)
1127                         hwgroup->busy = 0;
1128         }
1129 }
1130
1131 EXPORT_SYMBOL(ide_do_request);
1132
1133 /*
1134  * Passes the stuff to ide_do_request
1135  */
1136 void do_ide_request(request_queue_t *q)
1137 {
1138         ide_drive_t *drive = q->queuedata;
1139
1140         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1141 }
1142
1143 /*
1144  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1145  * retry the current request in pio mode instead of risking tossing it
1146  * all away
1147  */
1148 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1149 {
1150         ide_hwif_t *hwif = HWIF(drive);
1151         struct request *rq;
1152         ide_startstop_t ret = ide_stopped;
1153
1154         /*
1155          * end current dma transaction
1156          */
1157
1158         if (error < 0) {
1159                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1160                 (void)HWIF(drive)->ide_dma_end(drive);
1161                 ret = DRIVER(drive)->error(drive, "dma timeout error",
1162                                                 hwif->INB(IDE_STATUS_REG));
1163         } else {
1164                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1165                 (void) hwif->ide_dma_timeout(drive);
1166         }
1167
1168         /*
1169          * disable dma for now, but remember that we did so because of
1170          * a timeout -- we'll reenable after we finish this next request
1171          * (or rather the first chunk of it) in pio.
1172          */
1173         drive->retry_pio++;
1174         drive->state = DMA_PIO_RETRY;
1175         (void) hwif->ide_dma_off_quietly(drive);
1176
1177         /*
1178          * un-busy drive etc (hwgroup->busy is cleared on return) and
1179          * make sure request is sane
1180          */
1181         rq = HWGROUP(drive)->rq;
1182         HWGROUP(drive)->rq = NULL;
1183
1184         rq->errors = 0;
1185         rq->sector = rq->bio->bi_sector;
1186         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1187         rq->hard_cur_sectors = rq->current_nr_sectors;
1188         if (rq->bio)
1189                 rq->buffer = NULL;
1190
1191         return ret;
1192 }
1193
1194 /**
1195  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1196  *      @data: timer callback magic (hwgroup)
1197  *
1198  *      An IDE command has timed out before the expected drive return
1199  *      occurred. At this point we attempt to clean up the current
1200  *      mess. If the current handler includes an expiry handler then
1201  *      we invoke the expiry handler, and providing it is happy the
1202  *      work is done. If that fails we apply generic recovery rules
1203  *      invoking the handler and checking the drive DMA status. We
1204  *      have an excessively incestuous relationship with the DMA
1205  *      logic that wants cleaning up.
1206  */
1207  
1208 void ide_timer_expiry (unsigned long data)
1209 {
1210         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1211         ide_handler_t   *handler;
1212         ide_expiry_t    *expiry;
1213         unsigned long   flags;
1214         unsigned long   wait = -1;
1215
1216         spin_lock_irqsave(&ide_lock, flags);
1217
1218         if ((handler = hwgroup->handler) == NULL) {
1219                 /*
1220                  * Either a marginal timeout occurred
1221                  * (got the interrupt just as timer expired),
1222                  * or we were "sleeping" to give other devices a chance.
1223                  * Either way, we don't really want to complain about anything.
1224                  */
1225                 if (hwgroup->sleeping) {
1226                         hwgroup->sleeping = 0;
1227                         hwgroup->busy = 0;
1228                 }
1229         } else {
1230                 ide_drive_t *drive = hwgroup->drive;
1231                 if (!drive) {
1232                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1233                         hwgroup->handler = NULL;
1234                 } else {
1235                         ide_hwif_t *hwif;
1236                         ide_startstop_t startstop = ide_stopped;
1237                         if (!hwgroup->busy) {
1238                                 hwgroup->busy = 1;      /* paranoia */
1239                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1240                         }
1241                         if ((expiry = hwgroup->expiry) != NULL) {
1242                                 /* continue */
1243                                 if ((wait = expiry(drive)) > 0) {
1244                                         /* reset timer */
1245                                         hwgroup->timer.expires  = jiffies + wait;
1246                                         add_timer(&hwgroup->timer);
1247                                         spin_unlock_irqrestore(&ide_lock, flags);
1248                                         return;
1249                                 }
1250                         }
1251                         hwgroup->handler = NULL;
1252                         /*
1253                          * We need to simulate a real interrupt when invoking
1254                          * the handler() function, which means we need to
1255                          * globally mask the specific IRQ:
1256                          */
1257                         spin_unlock(&ide_lock);
1258                         hwif  = HWIF(drive);
1259 #if DISABLE_IRQ_NOSYNC
1260                         disable_irq_nosync(hwif->irq);
1261 #else
1262                         /* disable_irq_nosync ?? */
1263                         disable_irq(hwif->irq);
1264 #endif /* DISABLE_IRQ_NOSYNC */
1265                         /* local CPU only,
1266                          * as if we were handling an interrupt */
1267                         local_irq_disable();
1268                         if (hwgroup->poll_timeout != 0) {
1269                                 startstop = handler(drive);
1270                         } else if (drive_is_ready(drive)) {
1271                                 if (drive->waiting_for_dma)
1272                                         (void) hwgroup->hwif->ide_dma_lostirq(drive);
1273                                 (void)ide_ack_intr(hwif);
1274                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1275                                 startstop = handler(drive);
1276                         } else {
1277                                 if (drive->waiting_for_dma) {
1278                                         startstop = ide_dma_timeout_retry(drive, wait);
1279                                 } else
1280                                         startstop =
1281                                         DRIVER(drive)->error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1282                         }
1283                         drive->service_time = jiffies - drive->service_start;
1284                         spin_lock_irq(&ide_lock);
1285                         enable_irq(hwif->irq);
1286                         if (startstop == ide_stopped)
1287                                 hwgroup->busy = 0;
1288                 }
1289         }
1290         ide_do_request(hwgroup, IDE_NO_IRQ);
1291         spin_unlock_irqrestore(&ide_lock, flags);
1292 }
1293
1294 EXPORT_SYMBOL(ide_timer_expiry);
1295
1296 /**
1297  *      unexpected_intr         -       handle an unexpected IDE interrupt
1298  *      @irq: interrupt line
1299  *      @hwgroup: hwgroup being processed
1300  *
1301  *      There's nothing really useful we can do with an unexpected interrupt,
1302  *      other than reading the status register (to clear it), and logging it.
1303  *      There should be no way that an irq can happen before we're ready for it,
1304  *      so we needn't worry much about losing an "important" interrupt here.
1305  *
1306  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1307  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1308  *      looks "good", we just ignore the interrupt completely.
1309  *
1310  *      This routine assumes __cli() is in effect when called.
1311  *
1312  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1313  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1314  *      we could screw up by interfering with a new request being set up for 
1315  *      irq15.
1316  *
1317  *      In reality, this is a non-issue.  The new command is not sent unless 
1318  *      the drive is ready to accept one, in which case we know the drive is
1319  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1320  *      before completing the issuance of any new drive command, so we will not
1321  *      be accidentally invoked as a result of any valid command completion
1322  *      interrupt.
1323  *
1324  *      Note that we must walk the entire hwgroup here. We know which hwif
1325  *      is doing the current command, but we don't know which hwif burped
1326  *      mysteriously.
1327  */
1328  
1329 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1330 {
1331         u8 stat;
1332         ide_hwif_t *hwif = hwgroup->hwif;
1333
1334         /*
1335          * handle the unexpected interrupt
1336          */
1337         do {
1338                 if (hwif->irq == irq) {
1339                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1340                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1341                                 /* Try to not flood the console with msgs */
1342                                 static unsigned long last_msgtime, count;
1343                                 ++count;
1344                                 if (time_after(jiffies, last_msgtime + HZ)) {
1345                                         last_msgtime = jiffies;
1346                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1347                                                 "status=0x%02x, count=%ld\n",
1348                                                 hwif->name,
1349                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1350                                 }
1351                         }
1352                 }
1353         } while ((hwif = hwif->next) != hwgroup->hwif);
1354 }
1355
1356 /**
1357  *      ide_intr        -       default IDE interrupt handler
1358  *      @irq: interrupt number
1359  *      @dev_id: hwif group
1360  *      @regs: unused weirdness from the kernel irq layer
1361  *
1362  *      This is the default IRQ handler for the IDE layer. You should
1363  *      not need to override it. If you do be aware it is subtle in
1364  *      places
1365  *
1366  *      hwgroup->hwif is the interface in the group currently performing
1367  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1368  *      the IRQ handler to call. As we issue a command the handlers
1369  *      step through multiple states, reassigning the handler to the
1370  *      next step in the process. Unlike a smart SCSI controller IDE
1371  *      expects the main processor to sequence the various transfer
1372  *      stages. We also manage a poll timer to catch up with most
1373  *      timeout situations. There are still a few where the handlers
1374  *      don't ever decide to give up.
1375  *
1376  *      The handler eventually returns ide_stopped to indicate the
1377  *      request completed. At this point we issue the next request
1378  *      on the hwgroup and the process begins again.
1379  */
1380  
1381 irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs)
1382 {
1383         unsigned long flags;
1384         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1385         ide_hwif_t *hwif;
1386         ide_drive_t *drive;
1387         ide_handler_t *handler;
1388         ide_startstop_t startstop;
1389
1390         spin_lock_irqsave(&ide_lock, flags);
1391         hwif = hwgroup->hwif;
1392
1393         if (!ide_ack_intr(hwif)) {
1394                 spin_unlock_irqrestore(&ide_lock, flags);
1395                 return IRQ_NONE;
1396         }
1397
1398         if ((handler = hwgroup->handler) == NULL ||
1399             hwgroup->poll_timeout != 0) {
1400                 /*
1401                  * Not expecting an interrupt from this drive.
1402                  * That means this could be:
1403                  *      (1) an interrupt from another PCI device
1404                  *      sharing the same PCI INT# as us.
1405                  * or   (2) a drive just entered sleep or standby mode,
1406                  *      and is interrupting to let us know.
1407                  * or   (3) a spurious interrupt of unknown origin.
1408                  *
1409                  * For PCI, we cannot tell the difference,
1410                  * so in that case we just ignore it and hope it goes away.
1411                  *
1412                  * FIXME: unexpected_intr should be hwif-> then we can
1413                  * remove all the ifdef PCI crap
1414                  */
1415 #ifdef CONFIG_BLK_DEV_IDEPCI
1416                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1417 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1418                 {
1419                         /*
1420                          * Probably not a shared PCI interrupt,
1421                          * so we can safely try to do something about it:
1422                          */
1423                         unexpected_intr(irq, hwgroup);
1424 #ifdef CONFIG_BLK_DEV_IDEPCI
1425                 } else {
1426                         /*
1427                          * Whack the status register, just in case
1428                          * we have a leftover pending IRQ.
1429                          */
1430                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1431 #endif /* CONFIG_BLK_DEV_IDEPCI */
1432                 }
1433                 spin_unlock_irqrestore(&ide_lock, flags);
1434                 return IRQ_NONE;
1435         }
1436         drive = hwgroup->drive;
1437         if (!drive) {
1438                 /*
1439                  * This should NEVER happen, and there isn't much
1440                  * we could do about it here.
1441                  *
1442                  * [Note - this can occur if the drive is hot unplugged]
1443                  */
1444                 spin_unlock_irqrestore(&ide_lock, flags);
1445                 return IRQ_HANDLED;
1446         }
1447         if (!drive_is_ready(drive)) {
1448                 /*
1449                  * This happens regularly when we share a PCI IRQ with
1450                  * another device.  Unfortunately, it can also happen
1451                  * with some buggy drives that trigger the IRQ before
1452                  * their status register is up to date.  Hopefully we have
1453                  * enough advance overhead that the latter isn't a problem.
1454                  */
1455                 spin_unlock_irqrestore(&ide_lock, flags);
1456                 return IRQ_NONE;
1457         }
1458         if (!hwgroup->busy) {
1459                 hwgroup->busy = 1;      /* paranoia */
1460                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1461         }
1462         hwgroup->handler = NULL;
1463         del_timer(&hwgroup->timer);
1464         spin_unlock(&ide_lock);
1465
1466         if (drive->unmask)
1467                 local_irq_enable();
1468         /* service this interrupt, may set handler for next interrupt */
1469         startstop = handler(drive);
1470         spin_lock_irq(&ide_lock);
1471
1472         /*
1473          * Note that handler() may have set things up for another
1474          * interrupt to occur soon, but it cannot happen until
1475          * we exit from this routine, because it will be the
1476          * same irq as is currently being serviced here, and Linux
1477          * won't allow another of the same (on any CPU) until we return.
1478          */
1479         drive->service_time = jiffies - drive->service_start;
1480         if (startstop == ide_stopped) {
1481                 if (hwgroup->handler == NULL) { /* paranoia */
1482                         hwgroup->busy = 0;
1483                         ide_do_request(hwgroup, hwif->irq);
1484                 } else {
1485                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1486                                 "on exit\n", drive->name);
1487                 }
1488         }
1489         spin_unlock_irqrestore(&ide_lock, flags);
1490         return IRQ_HANDLED;
1491 }
1492
1493 EXPORT_SYMBOL(ide_intr);
1494
1495 /**
1496  *      ide_init_drive_cmd      -       initialize a drive command request
1497  *      @rq: request object
1498  *
1499  *      Initialize a request before we fill it in and send it down to
1500  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1501  *      now it doesn't do a lot, but if that changes abusers will have a
1502  *      nasty suprise.
1503  */
1504
1505 void ide_init_drive_cmd (struct request *rq)
1506 {
1507         memset(rq, 0, sizeof(*rq));
1508         rq->flags = REQ_DRIVE_CMD;
1509         rq->ref_count = 1;
1510 }
1511
1512 EXPORT_SYMBOL(ide_init_drive_cmd);
1513
1514 /**
1515  *      ide_do_drive_cmd        -       issue IDE special command
1516  *      @drive: device to issue command
1517  *      @rq: request to issue
1518  *      @action: action for processing
1519  *
1520  *      This function issues a special IDE device request
1521  *      onto the request queue.
1522  *
1523  *      If action is ide_wait, then the rq is queued at the end of the
1524  *      request queue, and the function sleeps until it has been processed.
1525  *      This is for use when invoked from an ioctl handler.
1526  *
1527  *      If action is ide_preempt, then the rq is queued at the head of
1528  *      the request queue, displacing the currently-being-processed
1529  *      request and this function returns immediately without waiting
1530  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1531  *      intended for careful use by the ATAPI tape/cdrom driver code.
1532  *
1533  *      If action is ide_next, then the rq is queued immediately after
1534  *      the currently-being-processed-request (if any), and the function
1535  *      returns without waiting for the new rq to be completed.  As above,
1536  *      This is VERY DANGEROUS, and is intended for careful use by the
1537  *      ATAPI tape/cdrom driver code.
1538  *
1539  *      If action is ide_end, then the rq is queued at the end of the
1540  *      request queue, and the function returns immediately without waiting
1541  *      for the new rq to be completed. This is again intended for careful
1542  *      use by the ATAPI tape/cdrom driver code.
1543  */
1544  
1545 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1546 {
1547         unsigned long flags;
1548         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1549         DECLARE_COMPLETION(wait);
1550         int where = ELEVATOR_INSERT_BACK, err;
1551         int must_wait = (action == ide_wait || action == ide_head_wait);
1552
1553 #ifdef CONFIG_BLK_DEV_PDC4030
1554         /*
1555          *      FIXME: there should be a drive or hwif->special
1556          *      handler that points here by default, not hacks
1557          *      in the ide-io.c code
1558          *
1559          *      FIXME2: That code breaks power management if used with
1560          *      this chipset, that really doesn't belong here !
1561          */
1562         if (HWIF(drive)->chipset == ide_pdc4030 && rq->buffer != NULL)
1563                 return -ENOSYS;  /* special drive cmds not supported */
1564 #endif
1565         rq->errors = 0;
1566         rq->rq_status = RQ_ACTIVE;
1567
1568         rq->rq_disk = drive->disk;
1569
1570         /*
1571          * we need to hold an extra reference to request for safe inspection
1572          * after completion
1573          */
1574         if (must_wait) {
1575                 rq->ref_count++;
1576                 rq->waiting = &wait;
1577         }
1578
1579         spin_lock_irqsave(&ide_lock, flags);
1580         if (action == ide_preempt)
1581                 hwgroup->rq = NULL;
1582         if (action == ide_preempt || action == ide_head_wait) {
1583                 where = ELEVATOR_INSERT_FRONT;
1584                 rq->flags |= REQ_PREEMPT;
1585         }
1586         __elv_add_request(drive->queue, rq, where, 0);
1587         ide_do_request(hwgroup, IDE_NO_IRQ);
1588         spin_unlock_irqrestore(&ide_lock, flags);
1589
1590         err = 0;
1591         if (must_wait) {
1592                 wait_for_completion(&wait);
1593                 rq->waiting = NULL;
1594                 if (rq->errors)
1595                         err = -EIO;
1596
1597                 blk_put_request(rq);
1598         }
1599
1600         return err;
1601 }
1602
1603 EXPORT_SYMBOL(ide_do_drive_cmd);