vserver 1.9.5.x5
[linux-2.6.git] / drivers / ide / ide-tape.c
1 /*
2  * linux/drivers/ide/ide-tape.c         Version 1.19    Nov, 2003
3  *
4  * Copyright (C) 1995 - 1999 Gadi Oxman <gadio@netvision.net.il>
5  *
6  * $Header$
7  *
8  * This driver was constructed as a student project in the software laboratory
9  * of the faculty of electrical engineering in the Technion - Israel's
10  * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
11  *
12  * It is hereby placed under the terms of the GNU general public license.
13  * (See linux/COPYING).
14  */
15  
16 /*
17  * IDE ATAPI streaming tape driver.
18  *
19  * This driver is a part of the Linux ide driver and works in co-operation
20  * with linux/drivers/block/ide.c.
21  *
22  * The driver, in co-operation with ide.c, basically traverses the 
23  * request-list for the block device interface. The character device
24  * interface, on the other hand, creates new requests, adds them
25  * to the request-list of the block device, and waits for their completion.
26  *
27  * Pipelined operation mode is now supported on both reads and writes.
28  *
29  * The block device major and minor numbers are determined from the
30  * tape's relative position in the ide interfaces, as explained in ide.c.
31  *
32  * The character device interface consists of the following devices:
33  *
34  * ht0          major 37, minor 0       first  IDE tape, rewind on close.
35  * ht1          major 37, minor 1       second IDE tape, rewind on close.
36  * ...
37  * nht0         major 37, minor 128     first  IDE tape, no rewind on close.
38  * nht1         major 37, minor 129     second IDE tape, no rewind on close.
39  * ...
40  *
41  * Run linux/scripts/MAKEDEV.ide to create the above entries.
42  *
43  * The general magnetic tape commands compatible interface, as defined by
44  * include/linux/mtio.h, is accessible through the character device.
45  *
46  * General ide driver configuration options, such as the interrupt-unmask
47  * flag, can be configured by issuing an ioctl to the block device interface,
48  * as any other ide device.
49  *
50  * Our own ide-tape ioctl's can be issued to either the block device or
51  * the character device interface.
52  *
53  * Maximal throughput with minimal bus load will usually be achieved in the
54  * following scenario:
55  *
56  *      1.      ide-tape is operating in the pipelined operation mode.
57  *      2.      No buffering is performed by the user backup program.
58  *
59  * Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
60  * 
61  * Ver 0.1   Nov  1 95   Pre-working code :-)
62  * Ver 0.2   Nov 23 95   A short backup (few megabytes) and restore procedure
63  *                        was successful ! (Using tar cvf ... on the block
64  *                        device interface).
65  *                       A longer backup resulted in major swapping, bad
66  *                        overall Linux performance and eventually failed as
67  *                        we received non serial read-ahead requests from the
68  *                        buffer cache.
69  * Ver 0.3   Nov 28 95   Long backups are now possible, thanks to the
70  *                        character device interface. Linux's responsiveness
71  *                        and performance doesn't seem to be much affected
72  *                        from the background backup procedure.
73  *                       Some general mtio.h magnetic tape operations are
74  *                        now supported by our character device. As a result,
75  *                        popular tape utilities are starting to work with
76  *                        ide tapes :-)
77  *                       The following configurations were tested:
78  *                              1. An IDE ATAPI TAPE shares the same interface
79  *                                 and irq with an IDE ATAPI CDROM.
80  *                              2. An IDE ATAPI TAPE shares the same interface
81  *                                 and irq with a normal IDE disk.
82  *                        Both configurations seemed to work just fine !
83  *                        However, to be on the safe side, it is meanwhile
84  *                        recommended to give the IDE TAPE its own interface
85  *                        and irq.
86  *                       The one thing which needs to be done here is to
87  *                        add a "request postpone" feature to ide.c,
88  *                        so that we won't have to wait for the tape to finish
89  *                        performing a long media access (DSC) request (such
90  *                        as a rewind) before we can access the other device
91  *                        on the same interface. This effect doesn't disturb
92  *                        normal operation most of the time because read/write
93  *                        requests are relatively fast, and once we are
94  *                        performing one tape r/w request, a lot of requests
95  *                        from the other device can be queued and ide.c will
96  *                        service all of them after this single tape request.
97  * Ver 1.0   Dec 11 95   Integrated into Linux 1.3.46 development tree.
98  *                       On each read / write request, we now ask the drive
99  *                        if we can transfer a constant number of bytes
100  *                        (a parameter of the drive) only to its buffers,
101  *                        without causing actual media access. If we can't,
102  *                        we just wait until we can by polling the DSC bit.
103  *                        This ensures that while we are not transferring
104  *                        more bytes than the constant referred to above, the
105  *                        interrupt latency will not become too high and
106  *                        we won't cause an interrupt timeout, as happened
107  *                        occasionally in the previous version.
108  *                       While polling for DSC, the current request is
109  *                        postponed and ide.c is free to handle requests from
110  *                        the other device. This is handled transparently to
111  *                        ide.c. The hwgroup locking method which was used
112  *                        in the previous version was removed.
113  *                       Use of new general features which are provided by
114  *                        ide.c for use with atapi devices.
115  *                        (Programming done by Mark Lord)
116  *                       Few potential bug fixes (Again, suggested by Mark)
117  *                       Single character device data transfers are now
118  *                        not limited in size, as they were before.
119  *                       We are asking the tape about its recommended
120  *                        transfer unit and send a larger data transfer
121  *                        as several transfers of the above size.
122  *                        For best results, use an integral number of this
123  *                        basic unit (which is shown during driver
124  *                        initialization). I will soon add an ioctl to get
125  *                        this important parameter.
126  *                       Our data transfer buffer is allocated on startup,
127  *                        rather than before each data transfer. This should
128  *                        ensure that we will indeed have a data buffer.
129  * Ver 1.1   Dec 14 95   Fixed random problems which occurred when the tape
130  *                        shared an interface with another device.
131  *                        (poll_for_dsc was a complete mess).
132  *                       Removed some old (non-active) code which had
133  *                        to do with supporting buffer cache originated
134  *                        requests.
135  *                       The block device interface can now be opened, so
136  *                        that general ide driver features like the unmask
137  *                        interrupts flag can be selected with an ioctl.
138  *                        This is the only use of the block device interface.
139  *                       New fast pipelined operation mode (currently only on
140  *                        writes). When using the pipelined mode, the
141  *                        throughput can potentially reach the maximum
142  *                        tape supported throughput, regardless of the
143  *                        user backup program. On my tape drive, it sometimes
144  *                        boosted performance by a factor of 2. Pipelined
145  *                        mode is enabled by default, but since it has a few
146  *                        downfalls as well, you may want to disable it.
147  *                        A short explanation of the pipelined operation mode
148  *                        is available below.
149  * Ver 1.2   Jan  1 96   Eliminated pipelined mode race condition.
150  *                       Added pipeline read mode. As a result, restores
151  *                        are now as fast as backups.
152  *                       Optimized shared interface behavior. The new behavior
153  *                        typically results in better IDE bus efficiency and
154  *                        higher tape throughput.
155  *                       Pre-calculation of the expected read/write request
156  *                        service time, based on the tape's parameters. In
157  *                        the pipelined operation mode, this allows us to
158  *                        adjust our polling frequency to a much lower value,
159  *                        and thus to dramatically reduce our load on Linux,
160  *                        without any decrease in performance.
161  *                       Implemented additional mtio.h operations.
162  *                       The recommended user block size is returned by
163  *                        the MTIOCGET ioctl.
164  *                       Additional minor changes.
165  * Ver 1.3   Feb  9 96   Fixed pipelined read mode bug which prevented the
166  *                        use of some block sizes during a restore procedure.
167  *                       The character device interface will now present a
168  *                        continuous view of the media - any mix of block sizes
169  *                        during a backup/restore procedure is supported. The
170  *                        driver will buffer the requests internally and
171  *                        convert them to the tape's recommended transfer
172  *                        unit, making performance almost independent of the
173  *                        chosen user block size.
174  *                       Some improvements in error recovery.
175  *                       By cooperating with ide-dma.c, bus mastering DMA can
176  *                        now sometimes be used with IDE tape drives as well.
177  *                        Bus mastering DMA has the potential to dramatically
178  *                        reduce the CPU's overhead when accessing the device,
179  *                        and can be enabled by using hdparm -d1 on the tape's
180  *                        block device interface. For more info, read the
181  *                        comments in ide-dma.c.
182  * Ver 1.4   Mar 13 96   Fixed serialize support.
183  * Ver 1.5   Apr 12 96   Fixed shared interface operation, broken in 1.3.85.
184  *                       Fixed pipelined read mode inefficiency.
185  *                       Fixed nasty null dereferencing bug.
186  * Ver 1.6   Aug 16 96   Fixed FPU usage in the driver.
187  *                       Fixed end of media bug.
188  * Ver 1.7   Sep 10 96   Minor changes for the CONNER CTT8000-A model.
189  * Ver 1.8   Sep 26 96   Attempt to find a better balance between good
190  *                        interactive response and high system throughput.
191  * Ver 1.9   Nov  5 96   Automatically cross encountered filemarks rather
192  *                        than requiring an explicit FSF command.
193  *                       Abort pending requests at end of media.
194  *                       MTTELL was sometimes returning incorrect results.
195  *                       Return the real block size in the MTIOCGET ioctl.
196  *                       Some error recovery bug fixes.
197  * Ver 1.10  Nov  5 96   Major reorganization.
198  *                       Reduced CPU overhead a bit by eliminating internal
199  *                        bounce buffers.
200  *                       Added module support.
201  *                       Added multiple tape drives support.
202  *                       Added partition support.
203  *                       Rewrote DSC handling.
204  *                       Some portability fixes.
205  *                       Removed ide-tape.h.
206  *                       Additional minor changes.
207  * Ver 1.11  Dec  2 96   Bug fix in previous DSC timeout handling.
208  *                       Use ide_stall_queue() for DSC overlap.
209  *                       Use the maximum speed rather than the current speed
210  *                        to compute the request service time.
211  * Ver 1.12  Dec  7 97   Fix random memory overwriting and/or last block data
212  *                        corruption, which could occur if the total number
213  *                        of bytes written to the tape was not an integral
214  *                        number of tape blocks.
215  *                       Add support for INTERRUPT DRQ devices.
216  * Ver 1.13  Jan  2 98   Add "speed == 0" work-around for HP COLORADO 5GB
217  * Ver 1.14  Dec 30 98   Partial fixes for the Sony/AIWA tape drives.
218  *                       Replace cli()/sti() with hwgroup spinlocks.
219  * Ver 1.15  Mar 25 99   Fix SMP race condition by replacing hwgroup
220  *                        spinlock with private per-tape spinlock.
221  * Ver 1.16  Sep  1 99   Add OnStream tape support.
222  *                       Abort read pipeline on EOD.
223  *                       Wait for the tape to become ready in case it returns
224  *                        "in the process of becoming ready" on open().
225  *                       Fix zero padding of the last written block in
226  *                        case the tape block size is larger than PAGE_SIZE.
227  *                       Decrease the default disconnection time to tn.
228  * Ver 1.16e Oct  3 99   Minor fixes.
229  * Ver 1.16e1 Oct 13 99  Patches by Arnold Niessen,
230  *                          niessen@iae.nl / arnold.niessen@philips.com
231  *                   GO-1)  Undefined code in idetape_read_position
232  *                              according to Gadi's email
233  *                   AJN-1) Minor fix asc == 11 should be asc == 0x11
234  *                               in idetape_issue_packet_command (did effect
235  *                               debugging output only)
236  *                   AJN-2) Added more debugging output, and
237  *                              added ide-tape: where missing. I would also
238  *                              like to add tape->name where possible
239  *                   AJN-3) Added different debug_level's 
240  *                              via /proc/ide/hdc/settings
241  *                              "debug_level" determines amount of debugging output;
242  *                              can be changed using /proc/ide/hdx/settings
243  *                              0 : almost no debugging output
244  *                              1 : 0+output errors only
245  *                              2 : 1+output all sensekey/asc
246  *                              3 : 2+follow all chrdev related procedures
247  *                              4 : 3+follow all procedures
248  *                              5 : 4+include pc_stack rq_stack info
249  *                              6 : 5+USE_COUNT updates
250  *                   AJN-4) Fixed timeout for retension in idetape_queue_pc_tail
251  *                              from 5 to 10 minutes
252  *                   AJN-5) Changed maximum number of blocks to skip when
253  *                              reading tapes with multiple consecutive write
254  *                              errors from 100 to 1000 in idetape_get_logical_blk
255  *                   Proposed changes to code:
256  *                   1) output "logical_blk_num" via /proc
257  *                   2) output "current_operation" via /proc
258  *                   3) Either solve or document the fact that `mt rewind' is
259  *                      required after reading from /dev/nhtx to be
260  *                      able to rmmod the idetape module;
261  *                      Also, sometimes an application finishes but the
262  *                      device remains `busy' for some time. Same cause ?
263  *                   Proposed changes to release-notes:
264  *                   4) write a simple `quickstart' section in the
265  *                      release notes; I volunteer if you don't want to
266  *                   5) include a pointer to video4linux in the doc
267  *                      to stimulate video applications
268  *                   6) release notes lines 331 and 362: explain what happens
269  *                      if the application data rate is higher than 1100 KB/s; 
270  *                      similar approach to lower-than-500 kB/s ?
271  *                   7) 6.6 Comparison; wouldn't it be better to allow different 
272  *                      strategies for read and write ?
273  *                      Wouldn't it be better to control the tape buffer
274  *                      contents instead of the bandwidth ?
275  *                   8) line 536: replace will by would (if I understand
276  *                      this section correctly, a hypothetical and unwanted situation
277  *                       is being described)
278  * Ver 1.16f Dec 15 99   Change place of the secondary OnStream header frames.
279  * Ver 1.17  Nov 2000 / Jan 2001  Marcel Mol, marcel@mesa.nl
280  *                      - Add idetape_onstream_mode_sense_tape_parameter_page
281  *                        function to get tape capacity in frames: tape->capacity.
282  *                      - Add support for DI-50 drives( or any DI- drive).
283  *                      - 'workaround' for read error/blank block around block 3000.
284  *                      - Implement Early warning for end of media for Onstream.
285  *                      - Cosmetic code changes for readability.
286  *                      - Idetape_position_tape should not use SKIP bit during
287  *                        Onstream read recovery.
288  *                      - Add capacity, logical_blk_num and first/last_frame_position
289  *                        to /proc/ide/hd?/settings.
290  *                      - Module use count was gone in the Linux 2.4 driver.
291  * Ver 1.17a Apr 2001 Willem Riede osst@riede.org
292  *                      - Get drive's actual block size from mode sense block descriptor
293  *                      - Limit size of pipeline
294  * Ver 1.17b Oct 2002   Alan Stern <stern@rowland.harvard.edu>
295  *                      Changed IDETAPE_MIN_PIPELINE_STAGES to 1 and actually used
296  *                       it in the code!
297  *                      Actually removed aborted stages in idetape_abort_pipeline
298  *                       instead of just changing the command code.
299  *                      Made the transfer byte count for Request Sense equal to the
300  *                       actual length of the data transfer.
301  *                      Changed handling of partial data transfers: they do not
302  *                       cause DMA errors.
303  *                      Moved initiation of DMA transfers to the correct place.
304  *                      Removed reference to unallocated memory.
305  *                      Made __idetape_discard_read_pipeline return the number of
306  *                       sectors skipped, not the number of stages.
307  *                      Replaced errant kfree() calls with __idetape_kfree_stage().
308  *                      Fixed off-by-one error in testing the pipeline length.
309  *                      Fixed handling of filemarks in the read pipeline.
310  *                      Small code optimization for MTBSF and MTBSFM ioctls.
311  *                      Don't try to unlock the door during device close if is
312  *                       already unlocked!
313  *                      Cosmetic fixes to miscellaneous debugging output messages.
314  *                      Set the minimum /proc/ide/hd?/settings values for "pipeline",
315  *                       "pipeline_min", and "pipeline_max" to 1.
316  *
317  * Here are some words from the first releases of hd.c, which are quoted
318  * in ide.c and apply here as well:
319  *
320  * | Special care is recommended.  Have Fun!
321  *
322  */
323
324 /*
325  * An overview of the pipelined operation mode.
326  *
327  * In the pipelined write mode, we will usually just add requests to our
328  * pipeline and return immediately, before we even start to service them. The
329  * user program will then have enough time to prepare the next request while
330  * we are still busy servicing previous requests. In the pipelined read mode,
331  * the situation is similar - we add read-ahead requests into the pipeline,
332  * before the user even requested them.
333  *
334  * The pipeline can be viewed as a "safety net" which will be activated when
335  * the system load is high and prevents the user backup program from keeping up
336  * with the current tape speed. At this point, the pipeline will get
337  * shorter and shorter but the tape will still be streaming at the same speed.
338  * Assuming we have enough pipeline stages, the system load will hopefully
339  * decrease before the pipeline is completely empty, and the backup program
340  * will be able to "catch up" and refill the pipeline again.
341  * 
342  * When using the pipelined mode, it would be best to disable any type of
343  * buffering done by the user program, as ide-tape already provides all the
344  * benefits in the kernel, where it can be done in a more efficient way.
345  * As we will usually not block the user program on a request, the most
346  * efficient user code will then be a simple read-write-read-... cycle.
347  * Any additional logic will usually just slow down the backup process.
348  *
349  * Using the pipelined mode, I get a constant over 400 KBps throughput,
350  * which seems to be the maximum throughput supported by my tape.
351  *
352  * However, there are some downfalls:
353  *
354  *      1.      We use memory (for data buffers) in proportional to the number
355  *              of pipeline stages (each stage is about 26 KB with my tape).
356  *      2.      In the pipelined write mode, we cheat and postpone error codes
357  *              to the user task. In read mode, the actual tape position
358  *              will be a bit further than the last requested block.
359  *
360  * Concerning (1):
361  *
362  *      1.      We allocate stages dynamically only when we need them. When
363  *              we don't need them, we don't consume additional memory. In
364  *              case we can't allocate stages, we just manage without them
365  *              (at the expense of decreased throughput) so when Linux is
366  *              tight in memory, we will not pose additional difficulties.
367  *
368  *      2.      The maximum number of stages (which is, in fact, the maximum
369  *              amount of memory) which we allocate is limited by the compile
370  *              time parameter IDETAPE_MAX_PIPELINE_STAGES.
371  *
372  *      3.      The maximum number of stages is a controlled parameter - We
373  *              don't start from the user defined maximum number of stages
374  *              but from the lower IDETAPE_MIN_PIPELINE_STAGES (again, we
375  *              will not even allocate this amount of stages if the user
376  *              program can't handle the speed). We then implement a feedback
377  *              loop which checks if the pipeline is empty, and if it is, we
378  *              increase the maximum number of stages as necessary until we
379  *              reach the optimum value which just manages to keep the tape
380  *              busy with minimum allocated memory or until we reach
381  *              IDETAPE_MAX_PIPELINE_STAGES.
382  *
383  * Concerning (2):
384  *
385  *      In pipelined write mode, ide-tape can not return accurate error codes
386  *      to the user program since we usually just add the request to the
387  *      pipeline without waiting for it to be serviced. In case an error
388  *      occurs, I will report it on the next user request.
389  *
390  *      In the pipelined read mode, subsequent read requests or forward
391  *      filemark spacing will perform correctly, as we preserve all blocks
392  *      and filemarks which we encountered during our excess read-ahead.
393  * 
394  *      For accurate tape positioning and error reporting, disabling
395  *      pipelined mode might be the best option.
396  *
397  * You can enable/disable/tune the pipelined operation mode by adjusting
398  * the compile time parameters below.
399  */
400
401 /*
402  *      Possible improvements.
403  *
404  *      1.      Support for the ATAPI overlap protocol.
405  *
406  *              In order to maximize bus throughput, we currently use the DSC
407  *              overlap method which enables ide.c to service requests from the
408  *              other device while the tape is busy executing a command. The
409  *              DSC overlap method involves polling the tape's status register
410  *              for the DSC bit, and servicing the other device while the tape
411  *              isn't ready.
412  *
413  *              In the current QIC development standard (December 1995),
414  *              it is recommended that new tape drives will *in addition* 
415  *              implement the ATAPI overlap protocol, which is used for the
416  *              same purpose - efficient use of the IDE bus, but is interrupt
417  *              driven and thus has much less CPU overhead.
418  *
419  *              ATAPI overlap is likely to be supported in most new ATAPI
420  *              devices, including new ATAPI cdroms, and thus provides us
421  *              a method by which we can achieve higher throughput when
422  *              sharing a (fast) ATA-2 disk with any (slow) new ATAPI device.
423  */
424
425 #define IDETAPE_VERSION "1.19"
426
427 #include <linux/config.h>
428 #include <linux/module.h>
429 #include <linux/types.h>
430 #include <linux/string.h>
431 #include <linux/kernel.h>
432 #include <linux/delay.h>
433 #include <linux/timer.h>
434 #include <linux/mm.h>
435 #include <linux/interrupt.h>
436 #include <linux/major.h>
437 #include <linux/devfs_fs_kernel.h>
438 #include <linux/errno.h>
439 #include <linux/genhd.h>
440 #include <linux/slab.h>
441 #include <linux/pci.h>
442 #include <linux/ide.h>
443 #include <linux/smp_lock.h>
444 #include <linux/completion.h>
445 #include <linux/bitops.h>
446
447 #include <asm/byteorder.h>
448 #include <asm/irq.h>
449 #include <asm/uaccess.h>
450 #include <asm/io.h>
451 #include <asm/unaligned.h>
452
453 /*
454  * partition
455  */
456 typedef struct os_partition_s {
457         __u8    partition_num;
458         __u8    par_desc_ver;
459         __u16   wrt_pass_cntr;
460         __u32   first_frame_addr;
461         __u32   last_frame_addr;
462         __u32   eod_frame_addr;
463 } os_partition_t;
464
465 /*
466  * DAT entry
467  */
468 typedef struct os_dat_entry_s {
469         __u32   blk_sz;
470         __u16   blk_cnt;
471         __u8    flags;
472         __u8    reserved;
473 } os_dat_entry_t;
474
475 /*
476  * DAT
477  */
478 #define OS_DAT_FLAGS_DATA       (0xc)
479 #define OS_DAT_FLAGS_MARK       (0x1)
480
481 typedef struct os_dat_s {
482         __u8            dat_sz;
483         __u8            reserved1;
484         __u8            entry_cnt;
485         __u8            reserved3;
486         os_dat_entry_t  dat_list[16];
487 } os_dat_t;
488
489 #include <linux/mtio.h>
490
491 /**************************** Tunable parameters *****************************/
492
493
494 /*
495  *      Pipelined mode parameters.
496  *
497  *      We try to use the minimum number of stages which is enough to
498  *      keep the tape constantly streaming. To accomplish that, we implement
499  *      a feedback loop around the maximum number of stages:
500  *
501  *      We start from MIN maximum stages (we will not even use MIN stages
502  *      if we don't need them), increment it by RATE*(MAX-MIN)
503  *      whenever we sense that the pipeline is empty, until we reach
504  *      the optimum value or until we reach MAX.
505  *
506  *      Setting the following parameter to 0 is illegal: the pipelined mode
507  *      cannot be disabled (calculate_speeds() divides by tape->max_stages.)
508  */
509 #define IDETAPE_MIN_PIPELINE_STAGES       1
510 #define IDETAPE_MAX_PIPELINE_STAGES     400
511 #define IDETAPE_INCREASE_STAGES_RATE     20
512
513 /*
514  *      The following are used to debug the driver:
515  *
516  *      Setting IDETAPE_DEBUG_INFO to 1 will report device capabilities.
517  *      Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control.
518  *      Setting IDETAPE_DEBUG_BUGS to 1 will enable self-sanity checks in
519  *      some places.
520  *
521  *      Setting them to 0 will restore normal operation mode:
522  *
523  *              1.      Disable logging normal successful operations.
524  *              2.      Disable self-sanity checks.
525  *              3.      Errors will still be logged, of course.
526  *
527  *      All the #if DEBUG code will be removed some day, when the driver
528  *      is verified to be stable enough. This will make it much more
529  *      esthetic.
530  */
531 #define IDETAPE_DEBUG_INFO              0
532 #define IDETAPE_DEBUG_LOG               0
533 #define IDETAPE_DEBUG_BUGS              1
534
535 /*
536  *      After each failed packet command we issue a request sense command
537  *      and retry the packet command IDETAPE_MAX_PC_RETRIES times.
538  *
539  *      Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
540  */
541 #define IDETAPE_MAX_PC_RETRIES          3
542
543 /*
544  *      With each packet command, we allocate a buffer of
545  *      IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet
546  *      commands (Not for READ/WRITE commands).
547  */
548 #define IDETAPE_PC_BUFFER_SIZE          256
549
550 /*
551  *      In various places in the driver, we need to allocate storage
552  *      for packet commands and requests, which will remain valid while
553  *      we leave the driver to wait for an interrupt or a timeout event.
554  */
555 #define IDETAPE_PC_STACK                (10 + IDETAPE_MAX_PC_RETRIES)
556
557 /*
558  * Some drives (for example, Seagate STT3401A Travan) require a very long
559  * timeout, because they don't return an interrupt or clear their busy bit
560  * until after the command completes (even retension commands).
561  */
562 #define IDETAPE_WAIT_CMD                (900*HZ)
563
564 /*
565  *      The following parameter is used to select the point in the internal
566  *      tape fifo in which we will start to refill the buffer. Decreasing
567  *      the following parameter will improve the system's latency and
568  *      interactive response, while using a high value might improve sytem
569  *      throughput.
570  */
571 #define IDETAPE_FIFO_THRESHOLD          2
572
573 /*
574  *      DSC polling parameters.
575  *
576  *      Polling for DSC (a single bit in the status register) is a very
577  *      important function in ide-tape. There are two cases in which we
578  *      poll for DSC:
579  *
580  *      1.      Before a read/write packet command, to ensure that we
581  *              can transfer data from/to the tape's data buffers, without
582  *              causing an actual media access. In case the tape is not
583  *              ready yet, we take out our request from the device
584  *              request queue, so that ide.c will service requests from
585  *              the other device on the same interface meanwhile.
586  *
587  *      2.      After the successful initialization of a "media access
588  *              packet command", which is a command which can take a long
589  *              time to complete (it can be several seconds or even an hour).
590  *
591  *              Again, we postpone our request in the middle to free the bus
592  *              for the other device. The polling frequency here should be
593  *              lower than the read/write frequency since those media access
594  *              commands are slow. We start from a "fast" frequency -
595  *              IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC
596  *              after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a
597  *              lower frequency - IDETAPE_DSC_MA_SLOW (1 minute).
598  *
599  *      We also set a timeout for the timer, in case something goes wrong.
600  *      The timeout should be longer then the maximum execution time of a
601  *      tape operation.
602  */
603  
604 /*
605  *      DSC timings.
606  */
607 #define IDETAPE_DSC_RW_MIN              5*HZ/100        /* 50 msec */
608 #define IDETAPE_DSC_RW_MAX              40*HZ/100       /* 400 msec */
609 #define IDETAPE_DSC_RW_TIMEOUT          2*60*HZ         /* 2 minutes */
610 #define IDETAPE_DSC_MA_FAST             2*HZ            /* 2 seconds */
611 #define IDETAPE_DSC_MA_THRESHOLD        5*60*HZ         /* 5 minutes */
612 #define IDETAPE_DSC_MA_SLOW             30*HZ           /* 30 seconds */
613 #define IDETAPE_DSC_MA_TIMEOUT          2*60*60*HZ      /* 2 hours */
614
615 /*************************** End of tunable parameters ***********************/
616
617 /*
618  *      Debugging/Performance analysis
619  *
620  *      I/O trace support
621  */
622 #define USE_IOTRACE     0
623 #if USE_IOTRACE
624 #include <linux/io_trace.h>
625 #define IO_IDETAPE_FIFO 500
626 #endif
627
628 /*
629  *      Read/Write error simulation
630  */
631 #define SIMULATE_ERRORS                 0
632
633 /*
634  *      For general magnetic tape device compatibility.
635  */
636 typedef enum {
637         idetape_direction_none,
638         idetape_direction_read,
639         idetape_direction_write
640 } idetape_chrdev_direction_t;
641
642 struct idetape_bh {
643         unsigned short b_size;
644         atomic_t b_count;
645         struct idetape_bh *b_reqnext;
646         char *b_data;
647 };
648
649 /*
650  *      Our view of a packet command.
651  */
652 typedef struct idetape_packet_command_s {
653         u8 c[12];                               /* Actual packet bytes */
654         int retries;                            /* On each retry, we increment retries */
655         int error;                              /* Error code */
656         int request_transfer;                   /* Bytes to transfer */
657         int actually_transferred;               /* Bytes actually transferred */
658         int buffer_size;                        /* Size of our data buffer */
659         struct idetape_bh *bh;
660         char *b_data;
661         int b_count;
662         u8 *buffer;                             /* Data buffer */
663         u8 *current_position;                   /* Pointer into the above buffer */
664         ide_startstop_t (*callback) (ide_drive_t *);    /* Called when this packet command is completed */
665         u8 pc_buffer[IDETAPE_PC_BUFFER_SIZE];   /* Temporary buffer */
666         unsigned long flags;                    /* Status/Action bit flags: long for set_bit */
667 } idetape_pc_t;
668
669 /*
670  *      Packet command flag bits.
671  */
672 /* Set when an error is considered normal - We won't retry */
673 #define PC_ABORT                        0
674 /* 1 When polling for DSC on a media access command */
675 #define PC_WAIT_FOR_DSC                 1
676 /* 1 when we prefer to use DMA if possible */
677 #define PC_DMA_RECOMMENDED              2
678 /* 1 while DMA in progress */
679 #define PC_DMA_IN_PROGRESS              3
680 /* 1 when encountered problem during DMA */
681 #define PC_DMA_ERROR                    4
682 /* Data direction */
683 #define PC_WRITING                      5
684
685 /*
686  *      Capabilities and Mechanical Status Page
687  */
688 typedef struct {
689         unsigned        page_code       :6;     /* Page code - Should be 0x2a */
690         __u8            reserved0_6     :1;
691         __u8            ps              :1;     /* parameters saveable */
692         __u8            page_length;            /* Page Length - Should be 0x12 */
693         __u8            reserved2, reserved3;
694         unsigned        ro              :1;     /* Read Only Mode */
695         unsigned        reserved4_1234  :4;
696         unsigned        sprev           :1;     /* Supports SPACE in the reverse direction */
697         unsigned        reserved4_67    :2;
698         unsigned        reserved5_012   :3;
699         unsigned        efmt            :1;     /* Supports ERASE command initiated formatting */
700         unsigned        reserved5_4     :1;
701         unsigned        qfa             :1;     /* Supports the QFA two partition formats */
702         unsigned        reserved5_67    :2;
703         unsigned        lock            :1;     /* Supports locking the volume */
704         unsigned        locked          :1;     /* The volume is locked */
705         unsigned        prevent         :1;     /* The device defaults in the prevent state after power up */   
706         unsigned        eject           :1;     /* The device can eject the volume */
707         __u8            disconnect      :1;     /* The device can break request > ctl */        
708         __u8            reserved6_5     :1;
709         unsigned        ecc             :1;     /* Supports error correction */
710         unsigned        cmprs           :1;     /* Supports data compression */
711         unsigned        reserved7_0     :1;
712         unsigned        blk512          :1;     /* Supports 512 bytes block size */
713         unsigned        blk1024         :1;     /* Supports 1024 bytes block size */
714         unsigned        reserved7_3_6   :4;
715         unsigned        blk32768        :1;     /* slowb - the device restricts the byte count for PIO */
716                                                 /* transfers for slow buffer memory ??? */
717                                                 /* Also 32768 block size in some cases */
718         __u16           max_speed;              /* Maximum speed supported in KBps */
719         __u8            reserved10, reserved11;
720         __u16           ctl;                    /* Continuous Transfer Limit in blocks */
721         __u16           speed;                  /* Current Speed, in KBps */
722         __u16           buffer_size;            /* Buffer Size, in 512 bytes */
723         __u8            reserved18, reserved19;
724 } idetape_capabilities_page_t;
725
726 /*
727  *      Block Size Page
728  */
729 typedef struct {
730         unsigned        page_code       :6;     /* Page code - Should be 0x30 */
731         unsigned        reserved1_6     :1;
732         unsigned        ps              :1;
733         __u8            page_length;            /* Page Length - Should be 2 */
734         __u8            reserved2;
735         unsigned        play32          :1;
736         unsigned        play32_5        :1;
737         unsigned        reserved2_23    :2;
738         unsigned        record32        :1;
739         unsigned        record32_5      :1;
740         unsigned        reserved2_6     :1;
741         unsigned        one             :1;
742 } idetape_block_size_page_t;
743
744 /*
745  *      A pipeline stage.
746  */
747 typedef struct idetape_stage_s {
748         struct request rq;                      /* The corresponding request */
749         struct idetape_bh *bh;                  /* The data buffers */
750         struct idetape_stage_s *next;           /* Pointer to the next stage */
751 } idetape_stage_t;
752
753 /*
754  *      REQUEST SENSE packet command result - Data Format.
755  */
756 typedef struct {
757         unsigned        error_code      :7;     /* Current of deferred errors */
758         unsigned        valid           :1;     /* The information field conforms to QIC-157C */
759         __u8            reserved1       :8;     /* Segment Number - Reserved */
760         unsigned        sense_key       :4;     /* Sense Key */
761         unsigned        reserved2_4     :1;     /* Reserved */
762         unsigned        ili             :1;     /* Incorrect Length Indicator */
763         unsigned        eom             :1;     /* End Of Medium */
764         unsigned        filemark        :1;     /* Filemark */
765         __u32           information __attribute__ ((packed));
766         __u8            asl;                    /* Additional sense length (n-7) */
767         __u32           command_specific;       /* Additional command specific information */
768         __u8            asc;                    /* Additional Sense Code */
769         __u8            ascq;                   /* Additional Sense Code Qualifier */
770         __u8            replaceable_unit_code;  /* Field Replaceable Unit Code */
771         unsigned        sk_specific1    :7;     /* Sense Key Specific */
772         unsigned        sksv            :1;     /* Sense Key Specific information is valid */
773         __u8            sk_specific2;           /* Sense Key Specific */
774         __u8            sk_specific3;           /* Sense Key Specific */
775         __u8            pad[2];                 /* Padding to 20 bytes */
776 } idetape_request_sense_result_t;
777
778
779 /*
780  *      Most of our global data which we need to save even as we leave the
781  *      driver due to an interrupt or a timer event is stored in a variable
782  *      of type idetape_tape_t, defined below.
783  */
784 typedef struct {
785         ide_drive_t *drive;
786         /*
787          *      Since a typical character device operation requires more
788          *      than one packet command, we provide here enough memory
789          *      for the maximum of interconnected packet commands.
790          *      The packet commands are stored in the circular array pc_stack.
791          *      pc_stack_index points to the last used entry, and warps around
792          *      to the start when we get to the last array entry.
793          *
794          *      pc points to the current processed packet command.
795          *
796          *      failed_pc points to the last failed packet command, or contains
797          *      NULL if we do not need to retry any packet command. This is
798          *      required since an additional packet command is needed before the
799          *      retry, to get detailed information on what went wrong.
800          */
801         /* Current packet command */
802         idetape_pc_t *pc;
803         /* Last failed packet command */
804         idetape_pc_t *failed_pc;
805         /* Packet command stack */
806         idetape_pc_t pc_stack[IDETAPE_PC_STACK];
807         /* Next free packet command storage space */
808         int pc_stack_index;
809         struct request rq_stack[IDETAPE_PC_STACK];
810         /* We implement a circular array */
811         int rq_stack_index;
812
813         /*
814          *      DSC polling variables.
815          *
816          *      While polling for DSC we use postponed_rq to postpone the
817          *      current request so that ide.c will be able to service
818          *      pending requests on the other device. Note that at most
819          *      we will have only one DSC (usually data transfer) request
820          *      in the device request queue. Additional requests can be
821          *      queued in our internal pipeline, but they will be visible
822          *      to ide.c only one at a time.
823          */
824         struct request *postponed_rq;
825         /* The time in which we started polling for DSC */
826         unsigned long dsc_polling_start;
827         /* Timer used to poll for dsc */
828         struct timer_list dsc_timer;
829         /* Read/Write dsc polling frequency */
830         unsigned long best_dsc_rw_frequency;
831         /* The current polling frequency */
832         unsigned long dsc_polling_frequency;
833         /* Maximum waiting time */
834         unsigned long dsc_timeout;
835
836         /*
837          *      Read position information
838          */
839         u8 partition;
840         /* Current block */
841         unsigned int first_frame_position;
842         unsigned int last_frame_position;
843         unsigned int blocks_in_buffer;
844
845         /*
846          *      Last error information
847          */
848         u8 sense_key, asc, ascq;
849
850         /*
851          *      Character device operation
852          */
853         unsigned int minor;
854         /* device name */
855         char name[4];
856         /* Current character device data transfer direction */
857         idetape_chrdev_direction_t chrdev_direction;
858
859         /*
860          *      Device information
861          */
862         /* Usually 512 or 1024 bytes */
863         unsigned short tape_block_size;
864         int user_bs_factor;
865         /* Copy of the tape's Capabilities and Mechanical Page */
866         idetape_capabilities_page_t capabilities;
867
868         /*
869          *      Active data transfer request parameters.
870          *
871          *      At most, there is only one ide-tape originated data transfer
872          *      request in the device request queue. This allows ide.c to
873          *      easily service requests from the other device when we
874          *      postpone our active request. In the pipelined operation
875          *      mode, we use our internal pipeline structure to hold
876          *      more data requests.
877          *
878          *      The data buffer size is chosen based on the tape's
879          *      recommendation.
880          */
881         /* Pointer to the request which is waiting in the device request queue */
882         struct request *active_data_request;
883         /* Data buffer size (chosen based on the tape's recommendation */
884         int stage_size;
885         idetape_stage_t *merge_stage;
886         int merge_stage_size;
887         struct idetape_bh *bh;
888         char *b_data;
889         int b_count;
890         
891         /*
892          *      Pipeline parameters.
893          *
894          *      To accomplish non-pipelined mode, we simply set the following
895          *      variables to zero (or NULL, where appropriate).
896          */
897         /* Number of currently used stages */
898         int nr_stages;
899         /* Number of pending stages */
900         int nr_pending_stages;
901         /* We will not allocate more than this number of stages */
902         int max_stages, min_pipeline, max_pipeline;
903         /* The first stage which will be removed from the pipeline */
904         idetape_stage_t *first_stage;
905         /* The currently active stage */
906         idetape_stage_t *active_stage;
907         /* Will be serviced after the currently active request */
908         idetape_stage_t *next_stage;
909         /* New requests will be added to the pipeline here */
910         idetape_stage_t *last_stage;
911         /* Optional free stage which we can use */
912         idetape_stage_t *cache_stage;
913         int pages_per_stage;
914         /* Wasted space in each stage */
915         int excess_bh_size;
916
917         /* Status/Action flags: long for set_bit */
918         unsigned long flags;
919         /* protects the ide-tape queue */
920         spinlock_t spinlock;
921
922         /*
923          * Measures average tape speed
924          */
925         unsigned long avg_time;
926         int avg_size;
927         int avg_speed;
928
929         /* last sense information */
930         idetape_request_sense_result_t sense;
931
932         char vendor_id[10];
933         char product_id[18];
934         char firmware_revision[6];
935         int firmware_revision_num;
936
937         /* the door is currently locked */
938         int door_locked;
939         /* the tape hardware is write protected */
940         char drv_write_prot;
941         /* the tape is write protected (hardware or opened as read-only) */
942         char write_prot;
943
944         /*
945          * Limit the number of times a request can
946          * be postponed, to avoid an infinite postpone
947          * deadlock.
948          */
949         /* request postpone count limit */
950         int postpone_cnt;
951
952         /*
953          * Measures number of frames:
954          *
955          * 1. written/read to/from the driver pipeline (pipeline_head).
956          * 2. written/read to/from the tape buffers (idetape_bh).
957          * 3. written/read by the tape to/from the media (tape_head).
958          */
959         int pipeline_head;
960         int buffer_head;
961         int tape_head;
962         int last_tape_head;
963
964         /*
965          * Speed control at the tape buffers input/output
966          */
967         unsigned long insert_time;
968         int insert_size;
969         int insert_speed;
970         int max_insert_speed;
971         int measure_insert_time;
972
973         /*
974          * Measure tape still time, in milliseconds
975          */
976         unsigned long tape_still_time_begin;
977         int tape_still_time;
978
979         /*
980          * Speed regulation negative feedback loop
981          */
982         int speed_control;
983         int pipeline_head_speed;
984         int controlled_pipeline_head_speed;
985         int uncontrolled_pipeline_head_speed;
986         int controlled_last_pipeline_head;
987         int uncontrolled_last_pipeline_head;
988         unsigned long uncontrolled_pipeline_head_time;
989         unsigned long controlled_pipeline_head_time;
990         int controlled_previous_pipeline_head;
991         int uncontrolled_previous_pipeline_head;
992         unsigned long controlled_previous_head_time;
993         unsigned long uncontrolled_previous_head_time;
994         int restart_speed_control_req;
995
996         /*
997          * Debug_level determines amount of debugging output;
998          * can be changed using /proc/ide/hdx/settings
999          * 0 : almost no debugging output
1000          * 1 : 0+output errors only
1001          * 2 : 1+output all sensekey/asc
1002          * 3 : 2+follow all chrdev related procedures
1003          * 4 : 3+follow all procedures
1004          * 5 : 4+include pc_stack rq_stack info
1005          * 6 : 5+USE_COUNT updates
1006          */
1007          int debug_level; 
1008 } idetape_tape_t;
1009
1010 /*
1011  *      Tape door status
1012  */
1013 #define DOOR_UNLOCKED                   0
1014 #define DOOR_LOCKED                     1
1015 #define DOOR_EXPLICITLY_LOCKED          2
1016
1017 /*
1018  *      Tape flag bits values.
1019  */
1020 #define IDETAPE_IGNORE_DSC              0
1021 #define IDETAPE_ADDRESS_VALID           1       /* 0 When the tape position is unknown */
1022 #define IDETAPE_BUSY                    2       /* Device already opened */
1023 #define IDETAPE_PIPELINE_ERROR          3       /* Error detected in a pipeline stage */
1024 #define IDETAPE_DETECT_BS               4       /* Attempt to auto-detect the current user block size */
1025 #define IDETAPE_FILEMARK                5       /* Currently on a filemark */
1026 #define IDETAPE_DRQ_INTERRUPT           6       /* DRQ interrupt device */
1027 #define IDETAPE_READ_ERROR              7
1028 #define IDETAPE_PIPELINE_ACTIVE         8       /* pipeline active */
1029 /* 0 = no tape is loaded, so we don't rewind after ejecting */
1030 #define IDETAPE_MEDIUM_PRESENT          9
1031
1032 /*
1033  *      Supported ATAPI tape drives packet commands
1034  */
1035 #define IDETAPE_TEST_UNIT_READY_CMD     0x00
1036 #define IDETAPE_REWIND_CMD              0x01
1037 #define IDETAPE_REQUEST_SENSE_CMD       0x03
1038 #define IDETAPE_READ_CMD                0x08
1039 #define IDETAPE_WRITE_CMD               0x0a
1040 #define IDETAPE_WRITE_FILEMARK_CMD      0x10
1041 #define IDETAPE_SPACE_CMD               0x11
1042 #define IDETAPE_INQUIRY_CMD             0x12
1043 #define IDETAPE_ERASE_CMD               0x19
1044 #define IDETAPE_MODE_SENSE_CMD          0x1a
1045 #define IDETAPE_MODE_SELECT_CMD         0x15
1046 #define IDETAPE_LOAD_UNLOAD_CMD         0x1b
1047 #define IDETAPE_PREVENT_CMD             0x1e
1048 #define IDETAPE_LOCATE_CMD              0x2b
1049 #define IDETAPE_READ_POSITION_CMD       0x34
1050 #define IDETAPE_READ_BUFFER_CMD         0x3c
1051 #define IDETAPE_SET_SPEED_CMD           0xbb
1052
1053 /*
1054  *      Some defines for the READ BUFFER command
1055  */
1056 #define IDETAPE_RETRIEVE_FAULTY_BLOCK   6
1057
1058 /*
1059  *      Some defines for the SPACE command
1060  */
1061 #define IDETAPE_SPACE_OVER_FILEMARK     1
1062 #define IDETAPE_SPACE_TO_EOD            3
1063
1064 /*
1065  *      Some defines for the LOAD UNLOAD command
1066  */
1067 #define IDETAPE_LU_LOAD_MASK            1
1068 #define IDETAPE_LU_RETENSION_MASK       2
1069 #define IDETAPE_LU_EOT_MASK             4
1070
1071 /*
1072  *      Special requests for our block device strategy routine.
1073  *
1074  *      In order to service a character device command, we add special
1075  *      requests to the tail of our block device request queue and wait
1076  *      for their completion.
1077  */
1078
1079 enum {
1080         REQ_IDETAPE_PC1         = (1 << 0), /* packet command (first stage) */
1081         REQ_IDETAPE_PC2         = (1 << 1), /* packet command (second stage) */
1082         REQ_IDETAPE_READ        = (1 << 2),
1083         REQ_IDETAPE_WRITE       = (1 << 3),
1084         REQ_IDETAPE_READ_BUFFER = (1 << 4),
1085 };
1086
1087 /*
1088  *      Error codes which are returned in rq->errors to the higher part
1089  *      of the driver.
1090  */
1091 #define IDETAPE_ERROR_GENERAL           101
1092 #define IDETAPE_ERROR_FILEMARK          102
1093 #define IDETAPE_ERROR_EOD               103
1094
1095 /*
1096  *      idetape_chrdev_t provides the link between out character device
1097  *      interface and our block device interface and the corresponding
1098  *      ide_drive_t structure.
1099  */
1100 typedef struct {
1101         ide_drive_t *drive;
1102 } idetape_chrdev_t;
1103
1104 /*
1105  *      The following is used to format the general configuration word of
1106  *      the ATAPI IDENTIFY DEVICE command.
1107  */
1108 struct idetape_id_gcw { 
1109         unsigned packet_size            :2;     /* Packet Size */
1110         unsigned reserved234            :3;     /* Reserved */
1111         unsigned drq_type               :2;     /* Command packet DRQ type */
1112         unsigned removable              :1;     /* Removable media */
1113         unsigned device_type            :5;     /* Device type */
1114         unsigned reserved13             :1;     /* Reserved */
1115         unsigned protocol               :2;     /* Protocol type */
1116 };
1117
1118 /*
1119  *      INQUIRY packet command - Data Format (From Table 6-8 of QIC-157C)
1120  */
1121 typedef struct {
1122         unsigned        device_type     :5;     /* Peripheral Device Type */
1123         unsigned        reserved0_765   :3;     /* Peripheral Qualifier - Reserved */
1124         unsigned        reserved1_6t0   :7;     /* Reserved */
1125         unsigned        rmb             :1;     /* Removable Medium Bit */
1126         unsigned        ansi_version    :3;     /* ANSI Version */
1127         unsigned        ecma_version    :3;     /* ECMA Version */
1128         unsigned        iso_version     :2;     /* ISO Version */
1129         unsigned        response_format :4;     /* Response Data Format */
1130         unsigned        reserved3_45    :2;     /* Reserved */
1131         unsigned        reserved3_6     :1;     /* TrmIOP - Reserved */
1132         unsigned        reserved3_7     :1;     /* AENC - Reserved */
1133         __u8            additional_length;      /* Additional Length (total_length-4) */
1134         __u8            rsv5, rsv6, rsv7;       /* Reserved */
1135         __u8            vendor_id[8];           /* Vendor Identification */
1136         __u8            product_id[16];         /* Product Identification */
1137         __u8            revision_level[4];      /* Revision Level */
1138         __u8            vendor_specific[20];    /* Vendor Specific - Optional */
1139         __u8            reserved56t95[40];      /* Reserved - Optional */
1140                                                 /* Additional information may be returned */
1141 } idetape_inquiry_result_t;
1142
1143 /*
1144  *      READ POSITION packet command - Data Format (From Table 6-57)
1145  */
1146 typedef struct {
1147         unsigned        reserved0_10    :2;     /* Reserved */
1148         unsigned        bpu             :1;     /* Block Position Unknown */    
1149         unsigned        reserved0_543   :3;     /* Reserved */
1150         unsigned        eop             :1;     /* End Of Partition */
1151         unsigned        bop             :1;     /* Beginning Of Partition */
1152         u8              partition;              /* Partition Number */
1153         u8              reserved2, reserved3;   /* Reserved */
1154         u32             first_block;            /* First Block Location */
1155         u32             last_block;             /* Last Block Location (Optional) */
1156         u8              reserved12;             /* Reserved */
1157         u8              blocks_in_buffer[3];    /* Blocks In Buffer - (Optional) */
1158         u32             bytes_in_buffer;        /* Bytes In Buffer (Optional) */
1159 } idetape_read_position_result_t;
1160
1161 /*
1162  *      Follows structures which are related to the SELECT SENSE / MODE SENSE
1163  *      packet commands. Those packet commands are still not supported
1164  *      by ide-tape.
1165  */
1166 #define IDETAPE_BLOCK_DESCRIPTOR        0
1167 #define IDETAPE_CAPABILITIES_PAGE       0x2a
1168 #define IDETAPE_PARAMTR_PAGE            0x2b   /* Onstream DI-x0 only */
1169 #define IDETAPE_BLOCK_SIZE_PAGE         0x30
1170 #define IDETAPE_BUFFER_FILLING_PAGE     0x33
1171
1172 /*
1173  *      Mode Parameter Header for the MODE SENSE packet command
1174  */
1175 typedef struct {
1176         __u8    mode_data_length;       /* Length of the following data transfer */
1177         __u8    medium_type;            /* Medium Type */
1178         __u8    dsp;                    /* Device Specific Parameter */
1179         __u8    bdl;                    /* Block Descriptor Length */
1180 #if 0
1181         /* data transfer page */
1182         __u8    page_code       :6;
1183         __u8    reserved0_6     :1;
1184         __u8    ps              :1;     /* parameters saveable */
1185         __u8    page_length;            /* page Length == 0x02 */
1186         __u8    reserved2;
1187         __u8    read32k         :1;     /* 32k blk size (data only) */
1188         __u8    read32k5        :1;     /* 32.5k blk size (data&AUX) */
1189         __u8    reserved3_23    :2;
1190         __u8    write32k        :1;     /* 32k blk size (data only) */
1191         __u8    write32k5       :1;     /* 32.5k blk size (data&AUX) */
1192         __u8    reserved3_6     :1;
1193         __u8    streaming       :1;     /* streaming mode enable */
1194 #endif
1195 } idetape_mode_parameter_header_t;
1196
1197 /*
1198  *      Mode Parameter Block Descriptor the MODE SENSE packet command
1199  *
1200  *      Support for block descriptors is optional.
1201  */
1202 typedef struct {
1203         __u8            density_code;           /* Medium density code */
1204         __u8            blocks[3];              /* Number of blocks */
1205         __u8            reserved4;              /* Reserved */
1206         __u8            length[3];              /* Block Length */
1207 } idetape_parameter_block_descriptor_t;
1208
1209 /*
1210  *      The Data Compression Page, as returned by the MODE SENSE packet command.
1211  */
1212 typedef struct {
1213         unsigned        page_code       :6;     /* Page Code - Should be 0xf */
1214         unsigned        reserved0       :1;     /* Reserved */
1215         unsigned        ps              :1;
1216         __u8            page_length;            /* Page Length - Should be 14 */
1217         unsigned        reserved2       :6;     /* Reserved */
1218         unsigned        dcc             :1;     /* Data Compression Capable */
1219         unsigned        dce             :1;     /* Data Compression Enable */
1220         unsigned        reserved3       :5;     /* Reserved */
1221         unsigned        red             :2;     /* Report Exception on Decompression */
1222         unsigned        dde             :1;     /* Data Decompression Enable */
1223         __u32           ca;                     /* Compression Algorithm */
1224         __u32           da;                     /* Decompression Algorithm */
1225         __u8            reserved[4];            /* Reserved */
1226 } idetape_data_compression_page_t;
1227
1228 /*
1229  *      The Medium Partition Page, as returned by the MODE SENSE packet command.
1230  */
1231 typedef struct {
1232         unsigned        page_code       :6;     /* Page Code - Should be 0x11 */
1233         unsigned        reserved1_6     :1;     /* Reserved */
1234         unsigned        ps              :1;
1235         __u8            page_length;            /* Page Length - Should be 6 */
1236         __u8            map;                    /* Maximum Additional Partitions - Should be 0 */
1237         __u8            apd;                    /* Additional Partitions Defined - Should be 0 */
1238         unsigned        reserved4_012   :3;     /* Reserved */
1239         unsigned        psum            :2;     /* Should be 0 */
1240         unsigned        idp             :1;     /* Should be 0 */
1241         unsigned        sdp             :1;     /* Should be 0 */
1242         unsigned        fdp             :1;     /* Fixed Data Partitions */
1243         __u8            mfr;                    /* Medium Format Recognition */
1244         __u8            reserved[2];            /* Reserved */
1245 } idetape_medium_partition_page_t;
1246
1247 /*
1248  *      Run time configurable parameters.
1249  */
1250 typedef struct {
1251         int     dsc_rw_frequency;
1252         int     dsc_media_access_frequency;
1253         int     nr_stages;
1254 } idetape_config_t;
1255
1256 /*
1257  *      The variables below are used for the character device interface.
1258  *      Additional state variables are defined in our ide_drive_t structure.
1259  */
1260 static idetape_chrdev_t idetape_chrdevs[MAX_HWIFS * MAX_DRIVES];
1261
1262 /*
1263  *      Function declarations
1264  *
1265  */
1266 static int idetape_chrdev_release (struct inode *inode, struct file *filp);
1267 static void idetape_write_release (ide_drive_t *drive, unsigned int minor);
1268
1269 /*
1270  * Too bad. The drive wants to send us data which we are not ready to accept.
1271  * Just throw it away.
1272  */
1273 static void idetape_discard_data (ide_drive_t *drive, unsigned int bcount)
1274 {
1275         while (bcount--)
1276                 (void) HWIF(drive)->INB(IDE_DATA_REG);
1277 }
1278
1279 static void idetape_input_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1280 {
1281         struct idetape_bh *bh = pc->bh;
1282         int count;
1283
1284         while (bcount) {
1285 #if IDETAPE_DEBUG_BUGS
1286                 if (bh == NULL) {
1287                         printk(KERN_ERR "ide-tape: bh == NULL in "
1288                                 "idetape_input_buffers\n");
1289                         idetape_discard_data(drive, bcount);
1290                         return;
1291                 }
1292 #endif /* IDETAPE_DEBUG_BUGS */
1293                 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), bcount);
1294                 HWIF(drive)->atapi_input_bytes(drive, bh->b_data + atomic_read(&bh->b_count), count);
1295                 bcount -= count;
1296                 atomic_add(count, &bh->b_count);
1297                 if (atomic_read(&bh->b_count) == bh->b_size) {
1298                         bh = bh->b_reqnext;
1299                         if (bh)
1300                                 atomic_set(&bh->b_count, 0);
1301                 }
1302         }
1303         pc->bh = bh;
1304 }
1305
1306 static void idetape_output_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1307 {
1308         struct idetape_bh *bh = pc->bh;
1309         int count;
1310
1311         while (bcount) {
1312 #if IDETAPE_DEBUG_BUGS
1313                 if (bh == NULL) {
1314                         printk(KERN_ERR "ide-tape: bh == NULL in "
1315                                 "idetape_output_buffers\n");
1316                         return;
1317                 }
1318 #endif /* IDETAPE_DEBUG_BUGS */
1319                 count = min((unsigned int)pc->b_count, (unsigned int)bcount);
1320                 HWIF(drive)->atapi_output_bytes(drive, pc->b_data, count);
1321                 bcount -= count;
1322                 pc->b_data += count;
1323                 pc->b_count -= count;
1324                 if (!pc->b_count) {
1325                         pc->bh = bh = bh->b_reqnext;
1326                         if (bh) {
1327                                 pc->b_data = bh->b_data;
1328                                 pc->b_count = atomic_read(&bh->b_count);
1329                         }
1330                 }
1331         }
1332 }
1333
1334 static void idetape_update_buffers (idetape_pc_t *pc)
1335 {
1336         struct idetape_bh *bh = pc->bh;
1337         int count;
1338         unsigned int bcount = pc->actually_transferred;
1339
1340         if (test_bit(PC_WRITING, &pc->flags))
1341                 return;
1342         while (bcount) {
1343 #if IDETAPE_DEBUG_BUGS
1344                 if (bh == NULL) {
1345                         printk(KERN_ERR "ide-tape: bh == NULL in "
1346                                 "idetape_update_buffers\n");
1347                         return;
1348                 }
1349 #endif /* IDETAPE_DEBUG_BUGS */
1350                 count = min((unsigned int)bh->b_size, (unsigned int)bcount);
1351                 atomic_set(&bh->b_count, count);
1352                 if (atomic_read(&bh->b_count) == bh->b_size)
1353                         bh = bh->b_reqnext;
1354                 bcount -= count;
1355         }
1356         pc->bh = bh;
1357 }
1358
1359 /*
1360  *      idetape_next_pc_storage returns a pointer to a place in which we can
1361  *      safely store a packet command, even though we intend to leave the
1362  *      driver. A storage space for a maximum of IDETAPE_PC_STACK packet
1363  *      commands is allocated at initialization time.
1364  */
1365 static idetape_pc_t *idetape_next_pc_storage (ide_drive_t *drive)
1366 {
1367         idetape_tape_t *tape = drive->driver_data;
1368
1369 #if IDETAPE_DEBUG_LOG
1370         if (tape->debug_level >= 5)
1371                 printk(KERN_INFO "ide-tape: pc_stack_index=%d\n",
1372                         tape->pc_stack_index);
1373 #endif /* IDETAPE_DEBUG_LOG */
1374         if (tape->pc_stack_index == IDETAPE_PC_STACK)
1375                 tape->pc_stack_index=0;
1376         return (&tape->pc_stack[tape->pc_stack_index++]);
1377 }
1378
1379 /*
1380  *      idetape_next_rq_storage is used along with idetape_next_pc_storage.
1381  *      Since we queue packet commands in the request queue, we need to
1382  *      allocate a request, along with the allocation of a packet command.
1383  */
1384  
1385 /**************************************************************
1386  *                                                            *
1387  *  This should get fixed to use kmalloc(.., GFP_ATOMIC)      *
1388  *  followed later on by kfree().   -ml                       *
1389  *                                                            *
1390  **************************************************************/
1391  
1392 static struct request *idetape_next_rq_storage (ide_drive_t *drive)
1393 {
1394         idetape_tape_t *tape = drive->driver_data;
1395
1396 #if IDETAPE_DEBUG_LOG
1397         if (tape->debug_level >= 5)
1398                 printk(KERN_INFO "ide-tape: rq_stack_index=%d\n",
1399                         tape->rq_stack_index);
1400 #endif /* IDETAPE_DEBUG_LOG */
1401         if (tape->rq_stack_index == IDETAPE_PC_STACK)
1402                 tape->rq_stack_index=0;
1403         return (&tape->rq_stack[tape->rq_stack_index++]);
1404 }
1405
1406 /*
1407  *      idetape_init_pc initializes a packet command.
1408  */
1409 static void idetape_init_pc (idetape_pc_t *pc)
1410 {
1411         memset(pc->c, 0, 12);
1412         pc->retries = 0;
1413         pc->flags = 0;
1414         pc->request_transfer = 0;
1415         pc->buffer = pc->pc_buffer;
1416         pc->buffer_size = IDETAPE_PC_BUFFER_SIZE;
1417         pc->bh = NULL;
1418         pc->b_data = NULL;
1419 }
1420
1421 /*
1422  *      idetape_analyze_error is called on each failed packet command retry
1423  *      to analyze the request sense. We currently do not utilize this
1424  *      information.
1425  */
1426 static void idetape_analyze_error (ide_drive_t *drive, idetape_request_sense_result_t *result)
1427 {
1428         idetape_tape_t *tape = drive->driver_data;
1429         idetape_pc_t *pc = tape->failed_pc;
1430
1431         tape->sense     = *result;
1432         tape->sense_key = result->sense_key;
1433         tape->asc       = result->asc;
1434         tape->ascq      = result->ascq;
1435 #if IDETAPE_DEBUG_LOG
1436         /*
1437          *      Without debugging, we only log an error if we decided to
1438          *      give up retrying.
1439          */
1440         if (tape->debug_level >= 1)
1441                 printk(KERN_INFO "ide-tape: pc = %x, sense key = %x, "
1442                         "asc = %x, ascq = %x\n",
1443                         pc->c[0], result->sense_key,
1444                         result->asc, result->ascq);
1445 #endif /* IDETAPE_DEBUG_LOG */
1446
1447         /*
1448          *      Correct pc->actually_transferred by asking the tape.
1449          */
1450         if (test_bit(PC_DMA_ERROR, &pc->flags)) {
1451                 pc->actually_transferred = pc->request_transfer - tape->tape_block_size * ntohl(get_unaligned(&result->information));
1452                 idetape_update_buffers(pc);
1453         }
1454
1455         /*
1456          * If error was the result of a zero-length read or write command,
1457          * with sense key=5, asc=0x22, ascq=0, let it slide.  Some drives
1458          * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
1459          */
1460         if ((pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD)
1461             && pc->c[4] == 0 && pc->c[3] == 0 && pc->c[2] == 0) { /* length==0 */
1462                 if (result->sense_key == 5) {
1463                         /* don't report an error, everything's ok */
1464                         pc->error = 0;
1465                         /* don't retry read/write */
1466                         set_bit(PC_ABORT, &pc->flags);
1467                 }
1468         }
1469         if (pc->c[0] == IDETAPE_READ_CMD && result->filemark) {
1470                 pc->error = IDETAPE_ERROR_FILEMARK;
1471                 set_bit(PC_ABORT, &pc->flags);
1472         }
1473         if (pc->c[0] == IDETAPE_WRITE_CMD) {
1474                 if (result->eom ||
1475                     (result->sense_key == 0xd && result->asc == 0x0 &&
1476                      result->ascq == 0x2)) {
1477                         pc->error = IDETAPE_ERROR_EOD;
1478                         set_bit(PC_ABORT, &pc->flags);
1479                 }
1480         }
1481         if (pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD) {
1482                 if (result->sense_key == 8) {
1483                         pc->error = IDETAPE_ERROR_EOD;
1484                         set_bit(PC_ABORT, &pc->flags);
1485                 }
1486                 if (!test_bit(PC_ABORT, &pc->flags) &&
1487                     pc->actually_transferred)
1488                         pc->retries = IDETAPE_MAX_PC_RETRIES + 1;
1489         }
1490 }
1491
1492 /*
1493  * idetape_active_next_stage will declare the next stage as "active".
1494  */
1495 static void idetape_active_next_stage (ide_drive_t *drive)
1496 {
1497         idetape_tape_t *tape = drive->driver_data;
1498         idetape_stage_t *stage = tape->next_stage;
1499         struct request *rq = &stage->rq;
1500
1501 #if IDETAPE_DEBUG_LOG
1502         if (tape->debug_level >= 4)
1503                 printk(KERN_INFO "ide-tape: Reached idetape_active_next_stage\n");
1504 #endif /* IDETAPE_DEBUG_LOG */
1505 #if IDETAPE_DEBUG_BUGS
1506         if (stage == NULL) {
1507                 printk(KERN_ERR "ide-tape: bug: Trying to activate a non existing stage\n");
1508                 return;
1509         }
1510 #endif /* IDETAPE_DEBUG_BUGS */ 
1511
1512         rq->buffer = NULL;
1513         rq->special = (void *)stage->bh;
1514         tape->active_data_request = rq;
1515         tape->active_stage = stage;
1516         tape->next_stage = stage->next;
1517 }
1518
1519 /*
1520  *      idetape_increase_max_pipeline_stages is a part of the feedback
1521  *      loop which tries to find the optimum number of stages. In the
1522  *      feedback loop, we are starting from a minimum maximum number of
1523  *      stages, and if we sense that the pipeline is empty, we try to
1524  *      increase it, until we reach the user compile time memory limit.
1525  */
1526 static void idetape_increase_max_pipeline_stages (ide_drive_t *drive)
1527 {
1528         idetape_tape_t *tape = drive->driver_data;
1529         int increase = (tape->max_pipeline - tape->min_pipeline) / 10;
1530         
1531 #if IDETAPE_DEBUG_LOG
1532         if (tape->debug_level >= 4)
1533                 printk (KERN_INFO "ide-tape: Reached idetape_increase_max_pipeline_stages\n");
1534 #endif /* IDETAPE_DEBUG_LOG */
1535
1536         tape->max_stages += max(increase, 1);
1537         tape->max_stages = max(tape->max_stages, tape->min_pipeline);
1538         tape->max_stages = min(tape->max_stages, tape->max_pipeline);
1539 }
1540
1541 /*
1542  *      idetape_kfree_stage calls kfree to completely free a stage, along with
1543  *      its related buffers.
1544  */
1545 static void __idetape_kfree_stage (idetape_stage_t *stage)
1546 {
1547         struct idetape_bh *prev_bh, *bh = stage->bh;
1548         int size;
1549
1550         while (bh != NULL) {
1551                 if (bh->b_data != NULL) {
1552                         size = (int) bh->b_size;
1553                         while (size > 0) {
1554                                 free_page((unsigned long) bh->b_data);
1555                                 size -= PAGE_SIZE;
1556                                 bh->b_data += PAGE_SIZE;
1557                         }
1558                 }
1559                 prev_bh = bh;
1560                 bh = bh->b_reqnext;
1561                 kfree(prev_bh);
1562         }
1563         kfree(stage);
1564 }
1565
1566 static void idetape_kfree_stage (idetape_tape_t *tape, idetape_stage_t *stage)
1567 {
1568         __idetape_kfree_stage(stage);
1569 }
1570
1571 /*
1572  *      idetape_remove_stage_head removes tape->first_stage from the pipeline.
1573  *      The caller should avoid race conditions.
1574  */
1575 static void idetape_remove_stage_head (ide_drive_t *drive)
1576 {
1577         idetape_tape_t *tape = drive->driver_data;
1578         idetape_stage_t *stage;
1579         
1580 #if IDETAPE_DEBUG_LOG
1581         if (tape->debug_level >= 4)
1582                 printk(KERN_INFO "ide-tape: Reached idetape_remove_stage_head\n");
1583 #endif /* IDETAPE_DEBUG_LOG */
1584 #if IDETAPE_DEBUG_BUGS
1585         if (tape->first_stage == NULL) {
1586                 printk(KERN_ERR "ide-tape: bug: tape->first_stage is NULL\n");
1587                 return;         
1588         }
1589         if (tape->active_stage == tape->first_stage) {
1590                 printk(KERN_ERR "ide-tape: bug: Trying to free our active pipeline stage\n");
1591                 return;
1592         }
1593 #endif /* IDETAPE_DEBUG_BUGS */
1594         stage = tape->first_stage;
1595         tape->first_stage = stage->next;
1596         idetape_kfree_stage(tape, stage);
1597         tape->nr_stages--;
1598         if (tape->first_stage == NULL) {
1599                 tape->last_stage = NULL;
1600 #if IDETAPE_DEBUG_BUGS
1601                 if (tape->next_stage != NULL)
1602                         printk(KERN_ERR "ide-tape: bug: tape->next_stage != NULL\n");
1603                 if (tape->nr_stages)
1604                         printk(KERN_ERR "ide-tape: bug: nr_stages should be 0 now\n");
1605 #endif /* IDETAPE_DEBUG_BUGS */
1606         }
1607 }
1608
1609 /*
1610  * This will free all the pipeline stages starting from new_last_stage->next
1611  * to the end of the list, and point tape->last_stage to new_last_stage.
1612  */
1613 static void idetape_abort_pipeline(ide_drive_t *drive,
1614                                    idetape_stage_t *new_last_stage)
1615 {
1616         idetape_tape_t *tape = drive->driver_data;
1617         idetape_stage_t *stage = new_last_stage->next;
1618         idetape_stage_t *nstage;
1619
1620 #if IDETAPE_DEBUG_LOG
1621         if (tape->debug_level >= 4)
1622                 printk(KERN_INFO "ide-tape: %s: idetape_abort_pipeline called\n", tape->name);
1623 #endif
1624         while (stage) {
1625                 nstage = stage->next;
1626                 idetape_kfree_stage(tape, stage);
1627                 --tape->nr_stages;
1628                 --tape->nr_pending_stages;
1629                 stage = nstage;
1630         }
1631         if (new_last_stage)
1632                 new_last_stage->next = NULL;
1633         tape->last_stage = new_last_stage;
1634         tape->next_stage = NULL;
1635 }
1636
1637 /*
1638  *      idetape_end_request is used to finish servicing a request, and to
1639  *      insert a pending pipeline request into the main device queue.
1640  */
1641 static int idetape_end_request(ide_drive_t *drive, int uptodate, int nr_sects)
1642 {
1643         struct request *rq = HWGROUP(drive)->rq;
1644         idetape_tape_t *tape = drive->driver_data;
1645         unsigned long flags;
1646         int error;
1647         int remove_stage = 0;
1648         idetape_stage_t *active_stage;
1649
1650 #if IDETAPE_DEBUG_LOG
1651         if (tape->debug_level >= 4)
1652         printk(KERN_INFO "ide-tape: Reached idetape_end_request\n");
1653 #endif /* IDETAPE_DEBUG_LOG */
1654
1655         switch (uptodate) {
1656                 case 0: error = IDETAPE_ERROR_GENERAL; break;
1657                 case 1: error = 0; break;
1658                 default: error = uptodate;
1659         }
1660         rq->errors = error;
1661         if (error)
1662                 tape->failed_pc = NULL;
1663
1664         spin_lock_irqsave(&tape->spinlock, flags);
1665
1666         /* The request was a pipelined data transfer request */
1667         if (tape->active_data_request == rq) {
1668                 active_stage = tape->active_stage;
1669                 tape->active_stage = NULL;
1670                 tape->active_data_request = NULL;
1671                 tape->nr_pending_stages--;
1672                 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
1673                         remove_stage = 1;
1674                         if (error) {
1675                                 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1676                                 if (error == IDETAPE_ERROR_EOD)
1677                                         idetape_abort_pipeline(drive, active_stage);
1678                         }
1679                 } else if (rq->cmd[0] & REQ_IDETAPE_READ) {
1680                         if (error == IDETAPE_ERROR_EOD) {
1681                                 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1682                                 idetape_abort_pipeline(drive, active_stage);
1683                         }
1684                 }
1685                 if (tape->next_stage != NULL) {
1686                         idetape_active_next_stage(drive);
1687
1688                         /*
1689                          * Insert the next request into the request queue.
1690                          */
1691                         (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
1692                 } else if (!error) {
1693                                 idetape_increase_max_pipeline_stages(drive);
1694                 }
1695         }
1696         ide_end_drive_cmd(drive, 0, 0);
1697 //      blkdev_dequeue_request(rq);
1698 //      drive->rq = NULL;
1699 //      end_that_request_last(rq);
1700
1701         if (remove_stage)
1702                 idetape_remove_stage_head(drive);
1703         if (tape->active_data_request == NULL)
1704                 clear_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
1705         spin_unlock_irqrestore(&tape->spinlock, flags);
1706         return 0;
1707 }
1708
1709 static ide_startstop_t idetape_request_sense_callback (ide_drive_t *drive)
1710 {
1711         idetape_tape_t *tape = drive->driver_data;
1712
1713 #if IDETAPE_DEBUG_LOG
1714         if (tape->debug_level >= 4)
1715                 printk(KERN_INFO "ide-tape: Reached idetape_request_sense_callback\n");
1716 #endif /* IDETAPE_DEBUG_LOG */
1717         if (!tape->pc->error) {
1718                 idetape_analyze_error(drive, (idetape_request_sense_result_t *) tape->pc->buffer);
1719                 idetape_end_request(drive, 1, 0);
1720         } else {
1721                 printk(KERN_ERR "ide-tape: Error in REQUEST SENSE itself - Aborting request!\n");
1722                 idetape_end_request(drive, 0, 0);
1723         }
1724         return ide_stopped;
1725 }
1726
1727 static void idetape_create_request_sense_cmd (idetape_pc_t *pc)
1728 {
1729         idetape_init_pc(pc);    
1730         pc->c[0] = IDETAPE_REQUEST_SENSE_CMD;
1731         pc->c[4] = 20;
1732         pc->request_transfer = 20;
1733         pc->callback = &idetape_request_sense_callback;
1734 }
1735
1736 static void idetape_init_rq(struct request *rq, u8 cmd)
1737 {
1738         memset(rq, 0, sizeof(*rq));
1739         rq->flags = REQ_SPECIAL;
1740         rq->cmd[0] = cmd;
1741 }
1742
1743 /*
1744  *      idetape_queue_pc_head generates a new packet command request in front
1745  *      of the request queue, before the current request, so that it will be
1746  *      processed immediately, on the next pass through the driver.
1747  *
1748  *      idetape_queue_pc_head is called from the request handling part of
1749  *      the driver (the "bottom" part). Safe storage for the request should
1750  *      be allocated with idetape_next_pc_storage and idetape_next_rq_storage
1751  *      before calling idetape_queue_pc_head.
1752  *
1753  *      Memory for those requests is pre-allocated at initialization time, and
1754  *      is limited to IDETAPE_PC_STACK requests. We assume that we have enough
1755  *      space for the maximum possible number of inter-dependent packet commands.
1756  *
1757  *      The higher level of the driver - The ioctl handler and the character
1758  *      device handling functions should queue request to the lower level part
1759  *      and wait for their completion using idetape_queue_pc_tail or
1760  *      idetape_queue_rw_tail.
1761  */
1762 static void idetape_queue_pc_head (ide_drive_t *drive, idetape_pc_t *pc,struct request *rq)
1763 {
1764         idetape_init_rq(rq, REQ_IDETAPE_PC1);
1765         rq->buffer = (char *) pc;
1766         (void) ide_do_drive_cmd(drive, rq, ide_preempt);
1767 }
1768
1769 /*
1770  *      idetape_retry_pc is called when an error was detected during the
1771  *      last packet command. We queue a request sense packet command in
1772  *      the head of the request list.
1773  */
1774 static ide_startstop_t idetape_retry_pc (ide_drive_t *drive)
1775 {
1776         idetape_tape_t *tape = drive->driver_data;
1777         idetape_pc_t *pc;
1778         struct request *rq;
1779         atapi_error_t error;
1780
1781         error.all = HWIF(drive)->INB(IDE_ERROR_REG);
1782         pc = idetape_next_pc_storage(drive);
1783         rq = idetape_next_rq_storage(drive);
1784         idetape_create_request_sense_cmd(pc);
1785         set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
1786         idetape_queue_pc_head(drive, pc, rq);
1787         return ide_stopped;
1788 }
1789
1790 /*
1791  *      idetape_postpone_request postpones the current request so that
1792  *      ide.c will be able to service requests from another device on
1793  *      the same hwgroup while we are polling for DSC.
1794  */
1795 static void idetape_postpone_request (ide_drive_t *drive)
1796 {
1797         idetape_tape_t *tape = drive->driver_data;
1798
1799 #if IDETAPE_DEBUG_LOG
1800         if (tape->debug_level >= 4)
1801                 printk(KERN_INFO "ide-tape: idetape_postpone_request\n");
1802 #endif
1803         tape->postponed_rq = HWGROUP(drive)->rq;
1804         ide_stall_queue(drive, tape->dsc_polling_frequency);
1805 }
1806
1807 /*
1808  *      idetape_pc_intr is the usual interrupt handler which will be called
1809  *      during a packet command. We will transfer some of the data (as
1810  *      requested by the drive) and will re-point interrupt handler to us.
1811  *      When data transfer is finished, we will act according to the
1812  *      algorithm described before idetape_issue_packet_command.
1813  *
1814  */
1815 static ide_startstop_t idetape_pc_intr (ide_drive_t *drive)
1816 {
1817         ide_hwif_t *hwif = drive->hwif;
1818         idetape_tape_t *tape = drive->driver_data;
1819         atapi_status_t status;
1820         atapi_bcount_t bcount;
1821         atapi_ireason_t ireason;
1822         idetape_pc_t *pc = tape->pc;
1823
1824         unsigned int temp;
1825 #if SIMULATE_ERRORS
1826         static int error_sim_count = 0;
1827 #endif
1828
1829 #if IDETAPE_DEBUG_LOG
1830         if (tape->debug_level >= 4)
1831                 printk(KERN_INFO "ide-tape: Reached idetape_pc_intr "
1832                                 "interrupt handler\n");
1833 #endif /* IDETAPE_DEBUG_LOG */  
1834
1835         /* Clear the interrupt */
1836         status.all = HWIF(drive)->INB(IDE_STATUS_REG);
1837
1838         if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1839                 if (HWIF(drive)->ide_dma_end(drive) || status.b.check) {
1840                         /*
1841                          * A DMA error is sometimes expected. For example,
1842                          * if the tape is crossing a filemark during a
1843                          * READ command, it will issue an irq and position
1844                          * itself before the filemark, so that only a partial
1845                          * data transfer will occur (which causes the DMA
1846                          * error). In that case, we will later ask the tape
1847                          * how much bytes of the original request were
1848                          * actually transferred (we can't receive that
1849                          * information from the DMA engine on most chipsets).
1850                          */
1851
1852                         /*
1853                          * On the contrary, a DMA error is never expected;
1854                          * it usually indicates a hardware error or abort.
1855                          * If the tape crosses a filemark during a READ
1856                          * command, it will issue an irq and position itself
1857                          * after the filemark (not before). Only a partial
1858                          * data transfer will occur, but no DMA error.
1859                          * (AS, 19 Apr 2001)
1860                          */
1861                         set_bit(PC_DMA_ERROR, &pc->flags);
1862                 } else {
1863                         pc->actually_transferred = pc->request_transfer;
1864                         idetape_update_buffers(pc);
1865                 }
1866 #if IDETAPE_DEBUG_LOG
1867                 if (tape->debug_level >= 4)
1868                         printk(KERN_INFO "ide-tape: DMA finished\n");
1869 #endif /* IDETAPE_DEBUG_LOG */
1870         }
1871
1872         /* No more interrupts */
1873         if (!status.b.drq) {
1874 #if IDETAPE_DEBUG_LOG
1875                 if (tape->debug_level >= 2)
1876                         printk(KERN_INFO "ide-tape: Packet command completed, %d bytes transferred\n", pc->actually_transferred);
1877 #endif /* IDETAPE_DEBUG_LOG */
1878                 clear_bit(PC_DMA_IN_PROGRESS, &pc->flags);
1879
1880                 local_irq_enable();
1881
1882 #if SIMULATE_ERRORS
1883                 if ((pc->c[0] == IDETAPE_WRITE_CMD ||
1884                      pc->c[0] == IDETAPE_READ_CMD) &&
1885                     (++error_sim_count % 100) == 0) {
1886                         printk(KERN_INFO "ide-tape: %s: simulating error\n",
1887                                 tape->name);
1888                         status.b.check = 1;
1889                 }
1890 #endif
1891                 if (status.b.check && pc->c[0] == IDETAPE_REQUEST_SENSE_CMD)
1892                         status.b.check = 0;
1893                 if (status.b.check || test_bit(PC_DMA_ERROR, &pc->flags)) {     /* Error detected */
1894 #if IDETAPE_DEBUG_LOG
1895                         if (tape->debug_level >= 1)
1896                                 printk(KERN_INFO "ide-tape: %s: I/O error\n",
1897                                         tape->name);
1898 #endif /* IDETAPE_DEBUG_LOG */
1899                         if (pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
1900                                 printk(KERN_ERR "ide-tape: I/O error in request sense command\n");
1901                                 return ide_do_reset(drive);
1902                         }
1903 #if IDETAPE_DEBUG_LOG
1904                         if (tape->debug_level >= 1)
1905                                 printk(KERN_INFO "ide-tape: [cmd %x]: check condition\n", pc->c[0]);
1906 #endif
1907                         /* Retry operation */
1908                         return idetape_retry_pc(drive);
1909                 }
1910                 pc->error = 0;
1911                 if (test_bit(PC_WAIT_FOR_DSC, &pc->flags) &&
1912                     !status.b.dsc) {
1913                         /* Media access command */
1914                         tape->dsc_polling_start = jiffies;
1915                         tape->dsc_polling_frequency = IDETAPE_DSC_MA_FAST;
1916                         tape->dsc_timeout = jiffies + IDETAPE_DSC_MA_TIMEOUT;
1917                         /* Allow ide.c to handle other requests */
1918                         idetape_postpone_request(drive);
1919                         return ide_stopped;
1920                 }
1921                 if (tape->failed_pc == pc)
1922                         tape->failed_pc = NULL;
1923                 /* Command finished - Call the callback function */
1924                 return pc->callback(drive);
1925         }
1926         if (test_and_clear_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1927                 printk(KERN_ERR "ide-tape: The tape wants to issue more "
1928                                 "interrupts in DMA mode\n");
1929                 printk(KERN_ERR "ide-tape: DMA disabled, reverting to PIO\n");
1930                 (void)__ide_dma_off(drive);
1931                 return ide_do_reset(drive);
1932         }
1933         /* Get the number of bytes to transfer on this interrupt. */
1934         bcount.b.high = hwif->INB(IDE_BCOUNTH_REG);
1935         bcount.b.low = hwif->INB(IDE_BCOUNTL_REG);
1936
1937         ireason.all = hwif->INB(IDE_IREASON_REG);
1938
1939         if (ireason.b.cod) {
1940                 printk(KERN_ERR "ide-tape: CoD != 0 in idetape_pc_intr\n");
1941                 return ide_do_reset(drive);
1942         }
1943         if (ireason.b.io == test_bit(PC_WRITING, &pc->flags)) {
1944                 /* Hopefully, we will never get here */
1945                 printk(KERN_ERR "ide-tape: We wanted to %s, ",
1946                         ireason.b.io ? "Write":"Read");
1947                 printk(KERN_ERR "ide-tape: but the tape wants us to %s !\n",
1948                         ireason.b.io ? "Read":"Write");
1949                 return ide_do_reset(drive);
1950         }
1951         if (!test_bit(PC_WRITING, &pc->flags)) {
1952                 /* Reading - Check that we have enough space */
1953                 temp = pc->actually_transferred + bcount.all;
1954                 if (temp > pc->request_transfer) {
1955                         if (temp > pc->buffer_size) {
1956                                 printk(KERN_ERR "ide-tape: The tape wants to send us more data than expected - discarding data\n");
1957                                 idetape_discard_data(drive, bcount.all);
1958                                 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
1959                                 return ide_started;
1960                         }
1961 #if IDETAPE_DEBUG_LOG
1962                         if (tape->debug_level >= 2)
1963                                 printk(KERN_NOTICE "ide-tape: The tape wants to send us more data than expected - allowing transfer\n");
1964 #endif /* IDETAPE_DEBUG_LOG */
1965                 }
1966         }
1967         if (test_bit(PC_WRITING, &pc->flags)) {
1968                 if (pc->bh != NULL)
1969                         idetape_output_buffers(drive, pc, bcount.all);
1970                 else
1971                         /* Write the current buffer */
1972                         HWIF(drive)->atapi_output_bytes(drive, pc->current_position, bcount.all);
1973         } else {
1974                 if (pc->bh != NULL)
1975                         idetape_input_buffers(drive, pc, bcount.all);
1976                 else
1977                         /* Read the current buffer */
1978                         HWIF(drive)->atapi_input_bytes(drive, pc->current_position, bcount.all);
1979         }
1980         /* Update the current position */
1981         pc->actually_transferred += bcount.all;
1982         pc->current_position += bcount.all;
1983 #if IDETAPE_DEBUG_LOG
1984         if (tape->debug_level >= 2)
1985                 printk(KERN_INFO "ide-tape: [cmd %x] transferred %d bytes on that interrupt\n", pc->c[0], bcount.all);
1986 #endif
1987         /* And set the interrupt handler again */
1988         ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
1989         return ide_started;
1990 }
1991
1992 /*
1993  *      Packet Command Interface
1994  *
1995  *      The current Packet Command is available in tape->pc, and will not
1996  *      change until we finish handling it. Each packet command is associated
1997  *      with a callback function that will be called when the command is
1998  *      finished.
1999  *
2000  *      The handling will be done in three stages:
2001  *
2002  *      1.      idetape_issue_packet_command will send the packet command to the
2003  *              drive, and will set the interrupt handler to idetape_pc_intr.
2004  *
2005  *      2.      On each interrupt, idetape_pc_intr will be called. This step
2006  *              will be repeated until the device signals us that no more
2007  *              interrupts will be issued.
2008  *
2009  *      3.      ATAPI Tape media access commands have immediate status with a
2010  *              delayed process. In case of a successful initiation of a
2011  *              media access packet command, the DSC bit will be set when the
2012  *              actual execution of the command is finished. 
2013  *              Since the tape drive will not issue an interrupt, we have to
2014  *              poll for this event. In this case, we define the request as
2015  *              "low priority request" by setting rq_status to
2016  *              IDETAPE_RQ_POSTPONED,   set a timer to poll for DSC and exit
2017  *              the driver.
2018  *
2019  *              ide.c will then give higher priority to requests which
2020  *              originate from the other device, until will change rq_status
2021  *              to RQ_ACTIVE.
2022  *
2023  *      4.      When the packet command is finished, it will be checked for errors.
2024  *
2025  *      5.      In case an error was found, we queue a request sense packet
2026  *              command in front of the request queue and retry the operation
2027  *              up to IDETAPE_MAX_PC_RETRIES times.
2028  *
2029  *      6.      In case no error was found, or we decided to give up and not
2030  *              to retry again, the callback function will be called and then
2031  *              we will handle the next request.
2032  *
2033  */
2034 static ide_startstop_t idetape_transfer_pc(ide_drive_t *drive)
2035 {
2036         ide_hwif_t *hwif = drive->hwif;
2037         idetape_tape_t *tape = drive->driver_data;
2038         idetape_pc_t *pc = tape->pc;
2039         atapi_ireason_t ireason;
2040         int retries = 100;
2041         ide_startstop_t startstop;
2042
2043         if (ide_wait_stat(&startstop,drive,DRQ_STAT,BUSY_STAT,WAIT_READY)) {
2044                 printk(KERN_ERR "ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n");
2045                 return startstop;
2046         }
2047         ireason.all = hwif->INB(IDE_IREASON_REG);
2048         while (retries-- && (!ireason.b.cod || ireason.b.io)) {
2049                 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while issuing "
2050                                 "a packet command, retrying\n");
2051                 udelay(100);
2052                 ireason.all = hwif->INB(IDE_IREASON_REG);
2053                 if (retries == 0) {
2054                         printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while "
2055                                         "issuing a packet command, ignoring\n");
2056                         ireason.b.cod = 1;
2057                         ireason.b.io = 0;
2058                 }
2059         }
2060         if (!ireason.b.cod || ireason.b.io) {
2061                 printk(KERN_ERR "ide-tape: (IO,CoD) != (0,1) while issuing "
2062                                 "a packet command\n");
2063                 return ide_do_reset(drive);
2064         }
2065         /* Set the interrupt routine */
2066         ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2067 #ifdef CONFIG_BLK_DEV_IDEDMA
2068         /* Begin DMA, if necessary */
2069         if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags))
2070                 hwif->dma_start(drive);
2071 #endif
2072         /* Send the actual packet */
2073         HWIF(drive)->atapi_output_bytes(drive, pc->c, 12);
2074         return ide_started;
2075 }
2076
2077 static ide_startstop_t idetape_issue_packet_command (ide_drive_t *drive, idetape_pc_t *pc)
2078 {
2079         ide_hwif_t *hwif = drive->hwif;
2080         idetape_tape_t *tape = drive->driver_data;
2081         atapi_bcount_t bcount;
2082         int dma_ok = 0;
2083
2084 #if IDETAPE_DEBUG_BUGS
2085         if (tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD &&
2086             pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2087                 printk(KERN_ERR "ide-tape: possible ide-tape.c bug - "
2088                         "Two request sense in serial were issued\n");
2089         }
2090 #endif /* IDETAPE_DEBUG_BUGS */
2091
2092         if (tape->failed_pc == NULL && pc->c[0] != IDETAPE_REQUEST_SENSE_CMD)
2093                 tape->failed_pc = pc;
2094         /* Set the current packet command */
2095         tape->pc = pc;
2096
2097         if (pc->retries > IDETAPE_MAX_PC_RETRIES ||
2098             test_bit(PC_ABORT, &pc->flags)) {
2099                 /*
2100                  *      We will "abort" retrying a packet command in case
2101                  *      a legitimate error code was received (crossing a
2102                  *      filemark, or end of the media, for example).
2103                  */
2104                 if (!test_bit(PC_ABORT, &pc->flags)) {
2105                         if (!(pc->c[0] == IDETAPE_TEST_UNIT_READY_CMD &&
2106                               tape->sense_key == 2 && tape->asc == 4 &&
2107                              (tape->ascq == 1 || tape->ascq == 8))) {
2108                                 printk(KERN_ERR "ide-tape: %s: I/O error, "
2109                                                 "pc = %2x, key = %2x, "
2110                                                 "asc = %2x, ascq = %2x\n",
2111                                                 tape->name, pc->c[0],
2112                                                 tape->sense_key, tape->asc,
2113                                                 tape->ascq);
2114                         }
2115                         /* Giving up */
2116                         pc->error = IDETAPE_ERROR_GENERAL;
2117                 }
2118                 tape->failed_pc = NULL;
2119                 return pc->callback(drive);
2120         }
2121 #if IDETAPE_DEBUG_LOG
2122         if (tape->debug_level >= 2)
2123                 printk(KERN_INFO "ide-tape: Retry number - %d, cmd = %02X\n", pc->retries, pc->c[0]);
2124 #endif /* IDETAPE_DEBUG_LOG */
2125
2126         pc->retries++;
2127         /* We haven't transferred any data yet */
2128         pc->actually_transferred = 0;
2129         pc->current_position = pc->buffer;
2130         /* Request to transfer the entire buffer at once */
2131         bcount.all = pc->request_transfer;
2132
2133         if (test_and_clear_bit(PC_DMA_ERROR, &pc->flags)) {
2134                 printk(KERN_WARNING "ide-tape: DMA disabled, "
2135                                 "reverting to PIO\n");
2136                 (void)__ide_dma_off(drive);
2137         }
2138         if (test_bit(PC_DMA_RECOMMENDED, &pc->flags) && drive->using_dma)
2139                 dma_ok = !hwif->dma_setup(drive);
2140
2141         if (IDE_CONTROL_REG)
2142                 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
2143         hwif->OUTB(dma_ok ? 1 : 0, IDE_FEATURE_REG);    /* Use PIO/DMA */
2144         hwif->OUTB(bcount.b.high, IDE_BCOUNTH_REG);
2145         hwif->OUTB(bcount.b.low, IDE_BCOUNTL_REG);
2146         hwif->OUTB(drive->select.all, IDE_SELECT_REG);
2147         if (dma_ok)                     /* Will begin DMA later */
2148                 set_bit(PC_DMA_IN_PROGRESS, &pc->flags);
2149         if (test_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags)) {
2150                 ide_set_handler(drive, &idetape_transfer_pc, IDETAPE_WAIT_CMD, NULL);
2151                 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2152                 return ide_started;
2153         } else {
2154                 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2155                 return idetape_transfer_pc(drive);
2156         }
2157 }
2158
2159 /*
2160  *      General packet command callback function.
2161  */
2162 static ide_startstop_t idetape_pc_callback (ide_drive_t *drive)
2163 {
2164         idetape_tape_t *tape = drive->driver_data;
2165         
2166 #if IDETAPE_DEBUG_LOG
2167         if (tape->debug_level >= 4)
2168                 printk(KERN_INFO "ide-tape: Reached idetape_pc_callback\n");
2169 #endif /* IDETAPE_DEBUG_LOG */
2170
2171         idetape_end_request(drive, tape->pc->error ? 0 : 1, 0);
2172         return ide_stopped;
2173 }
2174
2175 /*
2176  *      A mode sense command is used to "sense" tape parameters.
2177  */
2178 static void idetape_create_mode_sense_cmd (idetape_pc_t *pc, u8 page_code)
2179 {
2180         idetape_init_pc(pc);
2181         pc->c[0] = IDETAPE_MODE_SENSE_CMD;
2182         if (page_code != IDETAPE_BLOCK_DESCRIPTOR)
2183                 pc->c[1] = 8;   /* DBD = 1 - Don't return block descriptors */
2184         pc->c[2] = page_code;
2185         /*
2186          * Changed pc->c[3] to 0 (255 will at best return unused info).
2187          *
2188          * For SCSI this byte is defined as subpage instead of high byte
2189          * of length and some IDE drives seem to interpret it this way
2190          * and return an error when 255 is used.
2191          */
2192         pc->c[3] = 0;
2193         pc->c[4] = 255;         /* (We will just discard data in that case) */
2194         if (page_code == IDETAPE_BLOCK_DESCRIPTOR)
2195                 pc->request_transfer = 12;
2196         else if (page_code == IDETAPE_CAPABILITIES_PAGE)
2197                 pc->request_transfer = 24;
2198         else
2199                 pc->request_transfer = 50;
2200         pc->callback = &idetape_pc_callback;
2201 }
2202
2203 static void calculate_speeds(ide_drive_t *drive)
2204 {
2205         idetape_tape_t *tape = drive->driver_data;
2206         int full = 125, empty = 75;
2207
2208         if (time_after(jiffies, tape->controlled_pipeline_head_time + 120 * HZ)) {
2209                 tape->controlled_previous_pipeline_head = tape->controlled_last_pipeline_head;
2210                 tape->controlled_previous_head_time = tape->controlled_pipeline_head_time;
2211                 tape->controlled_last_pipeline_head = tape->pipeline_head;
2212                 tape->controlled_pipeline_head_time = jiffies;
2213         }
2214         if (time_after(jiffies, tape->controlled_pipeline_head_time + 60 * HZ))
2215                 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_last_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_pipeline_head_time);
2216         else if (time_after(jiffies, tape->controlled_previous_head_time))
2217                 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_previous_head_time);
2218
2219         if (tape->nr_pending_stages < tape->max_stages /*- 1 */) {
2220                 /* -1 for read mode error recovery */
2221                 if (time_after(jiffies, tape->uncontrolled_previous_head_time + 10 * HZ)) {
2222                         tape->uncontrolled_pipeline_head_time = jiffies;
2223                         tape->uncontrolled_pipeline_head_speed = (tape->pipeline_head - tape->uncontrolled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->uncontrolled_previous_head_time);
2224                 }
2225         } else {
2226                 tape->uncontrolled_previous_head_time = jiffies;
2227                 tape->uncontrolled_previous_pipeline_head = tape->pipeline_head;
2228                 if (time_after(jiffies, tape->uncontrolled_pipeline_head_time + 30 * HZ)) {
2229                         tape->uncontrolled_pipeline_head_time = jiffies;
2230                 }
2231         }
2232         tape->pipeline_head_speed = max(tape->uncontrolled_pipeline_head_speed, tape->controlled_pipeline_head_speed);
2233         if (tape->speed_control == 0) {
2234                 tape->max_insert_speed = 5000;
2235         } else if (tape->speed_control == 1) {
2236                 if (tape->nr_pending_stages >= tape->max_stages / 2)
2237                         tape->max_insert_speed = tape->pipeline_head_speed +
2238                                 (1100 - tape->pipeline_head_speed) * 2 * (tape->nr_pending_stages - tape->max_stages / 2) / tape->max_stages;
2239                 else
2240                         tape->max_insert_speed = 500 +
2241                                 (tape->pipeline_head_speed - 500) * 2 * tape->nr_pending_stages / tape->max_stages;
2242                 if (tape->nr_pending_stages >= tape->max_stages * 99 / 100)
2243                         tape->max_insert_speed = 5000;
2244         } else if (tape->speed_control == 2) {
2245                 tape->max_insert_speed = tape->pipeline_head_speed * empty / 100 +
2246                         (tape->pipeline_head_speed * full / 100 - tape->pipeline_head_speed * empty / 100) * tape->nr_pending_stages / tape->max_stages;
2247         } else
2248                 tape->max_insert_speed = tape->speed_control;
2249         tape->max_insert_speed = max(tape->max_insert_speed, 500);
2250 }
2251
2252 static ide_startstop_t idetape_media_access_finished (ide_drive_t *drive)
2253 {
2254         idetape_tape_t *tape = drive->driver_data;
2255         idetape_pc_t *pc = tape->pc;
2256         atapi_status_t status;
2257
2258         status.all = HWIF(drive)->INB(IDE_STATUS_REG);
2259         if (status.b.dsc) {
2260                 if (status.b.check) {
2261                         /* Error detected */
2262                         if (pc->c[0] != IDETAPE_TEST_UNIT_READY_CMD)
2263                                 printk(KERN_ERR "ide-tape: %s: I/O error, ",
2264                                                 tape->name);
2265                         /* Retry operation */
2266                         return idetape_retry_pc(drive);
2267                 }
2268                 pc->error = 0;
2269                 if (tape->failed_pc == pc)
2270                         tape->failed_pc = NULL;
2271         } else {
2272                 pc->error = IDETAPE_ERROR_GENERAL;
2273                 tape->failed_pc = NULL;
2274         }
2275         return pc->callback(drive);
2276 }
2277
2278 static ide_startstop_t idetape_rw_callback (ide_drive_t *drive)
2279 {
2280         idetape_tape_t *tape = drive->driver_data;
2281         struct request *rq = HWGROUP(drive)->rq;
2282         int blocks = tape->pc->actually_transferred / tape->tape_block_size;
2283
2284         tape->avg_size += blocks * tape->tape_block_size;
2285         tape->insert_size += blocks * tape->tape_block_size;
2286         if (tape->insert_size > 1024 * 1024)
2287                 tape->measure_insert_time = 1;
2288         if (tape->measure_insert_time) {
2289                 tape->measure_insert_time = 0;
2290                 tape->insert_time = jiffies;
2291                 tape->insert_size = 0;
2292         }
2293         if (time_after(jiffies, tape->insert_time))
2294                 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2295         if (jiffies - tape->avg_time >= HZ) {
2296                 tape->avg_speed = tape->avg_size * HZ / (jiffies - tape->avg_time) / 1024;
2297                 tape->avg_size = 0;
2298                 tape->avg_time = jiffies;
2299         }
2300
2301 #if IDETAPE_DEBUG_LOG   
2302         if (tape->debug_level >= 4)
2303                 printk(KERN_INFO "ide-tape: Reached idetape_rw_callback\n");
2304 #endif /* IDETAPE_DEBUG_LOG */
2305
2306         tape->first_frame_position += blocks;
2307         rq->current_nr_sectors -= blocks;
2308
2309         if (!tape->pc->error)
2310                 idetape_end_request(drive, 1, 0);
2311         else
2312                 idetape_end_request(drive, tape->pc->error, 0);
2313         return ide_stopped;
2314 }
2315
2316 static void idetape_create_read_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2317 {
2318         idetape_init_pc(pc);
2319         pc->c[0] = IDETAPE_READ_CMD;
2320         put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2321         pc->c[1] = 1;
2322         pc->callback = &idetape_rw_callback;
2323         pc->bh = bh;
2324         atomic_set(&bh->b_count, 0);
2325         pc->buffer = NULL;
2326         pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2327         if (pc->request_transfer == tape->stage_size)
2328                 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2329 }
2330
2331 static void idetape_create_read_buffer_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2332 {
2333         int size = 32768;
2334         struct idetape_bh *p = bh;
2335
2336         idetape_init_pc(pc);
2337         pc->c[0] = IDETAPE_READ_BUFFER_CMD;
2338         pc->c[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK;
2339         pc->c[7] = size >> 8;
2340         pc->c[8] = size & 0xff;
2341         pc->callback = &idetape_pc_callback;
2342         pc->bh = bh;
2343         atomic_set(&bh->b_count, 0);
2344         pc->buffer = NULL;
2345         while (p) {
2346                 atomic_set(&p->b_count, 0);
2347                 p = p->b_reqnext;
2348         }
2349         pc->request_transfer = pc->buffer_size = size;
2350 }
2351
2352 static void idetape_create_write_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2353 {
2354         idetape_init_pc(pc);
2355         pc->c[0] = IDETAPE_WRITE_CMD;
2356         put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2357         pc->c[1] = 1;
2358         pc->callback = &idetape_rw_callback;
2359         set_bit(PC_WRITING, &pc->flags);
2360         pc->bh = bh;
2361         pc->b_data = bh->b_data;
2362         pc->b_count = atomic_read(&bh->b_count);
2363         pc->buffer = NULL;
2364         pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2365         if (pc->request_transfer == tape->stage_size)
2366                 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2367 }
2368
2369 /*
2370  * idetape_do_request is our request handling function. 
2371  */
2372 static ide_startstop_t idetape_do_request(ide_drive_t *drive,
2373                                           struct request *rq, sector_t block)
2374 {
2375         idetape_tape_t *tape = drive->driver_data;
2376         idetape_pc_t *pc = NULL;
2377         struct request *postponed_rq = tape->postponed_rq;
2378         atapi_status_t status;
2379
2380 #if IDETAPE_DEBUG_LOG
2381 #if 0
2382         if (tape->debug_level >= 5)
2383                 printk(KERN_INFO "ide-tape: rq_status: %d, "
2384                         "dev: %s, cmd: %ld, errors: %d\n", rq->rq_status,
2385                          rq->rq_disk->disk_name, rq->cmd[0], rq->errors);
2386 #endif
2387         if (tape->debug_level >= 2)
2388                 printk(KERN_INFO "ide-tape: sector: %ld, "
2389                         "nr_sectors: %ld, current_nr_sectors: %d\n",
2390                         rq->sector, rq->nr_sectors, rq->current_nr_sectors);
2391 #endif /* IDETAPE_DEBUG_LOG */
2392
2393         if ((rq->flags & REQ_SPECIAL) == 0) {
2394                 /*
2395                  * We do not support buffer cache originated requests.
2396                  */
2397                 printk(KERN_NOTICE "ide-tape: %s: Unsupported request in "
2398                         "request queue (%ld)\n", drive->name, rq->flags);
2399                 ide_end_request(drive, 0, 0);
2400                 return ide_stopped;
2401         }
2402
2403         /*
2404          *      Retry a failed packet command
2405          */
2406         if (tape->failed_pc != NULL &&
2407             tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2408                 return idetape_issue_packet_command(drive, tape->failed_pc);
2409         }
2410 #if IDETAPE_DEBUG_BUGS
2411         if (postponed_rq != NULL)
2412                 if (rq != postponed_rq) {
2413                         printk(KERN_ERR "ide-tape: ide-tape.c bug - "
2414                                         "Two DSC requests were queued\n");
2415                         idetape_end_request(drive, 0, 0);
2416                         return ide_stopped;
2417                 }
2418 #endif /* IDETAPE_DEBUG_BUGS */
2419
2420         tape->postponed_rq = NULL;
2421
2422         /*
2423          * If the tape is still busy, postpone our request and service
2424          * the other device meanwhile.
2425          */
2426         status.all = HWIF(drive)->INB(IDE_STATUS_REG);
2427
2428         if (!drive->dsc_overlap && !(rq->cmd[0] & REQ_IDETAPE_PC2))
2429                 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2430
2431         if (tape->tape_still_time > 100 && tape->tape_still_time < 200)
2432                 tape->measure_insert_time = 1;
2433         if (time_after(jiffies, tape->insert_time))
2434                 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2435         calculate_speeds(drive);
2436         if (!test_and_clear_bit(IDETAPE_IGNORE_DSC, &tape->flags) &&
2437             !status.b.dsc) {
2438                 if (postponed_rq == NULL) {
2439                         tape->dsc_polling_start = jiffies;
2440                         tape->dsc_polling_frequency = tape->best_dsc_rw_frequency;
2441                         tape->dsc_timeout = jiffies + IDETAPE_DSC_RW_TIMEOUT;
2442                 } else if (time_after(jiffies, tape->dsc_timeout)) {
2443                         printk(KERN_ERR "ide-tape: %s: DSC timeout\n",
2444                                 tape->name);
2445                         if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2446                                 idetape_media_access_finished(drive);
2447                                 return ide_stopped;
2448                         } else {
2449                                 return ide_do_reset(drive);
2450                         }
2451                 } else if (jiffies - tape->dsc_polling_start > IDETAPE_DSC_MA_THRESHOLD)
2452                         tape->dsc_polling_frequency = IDETAPE_DSC_MA_SLOW;
2453                 idetape_postpone_request(drive);
2454                 return ide_stopped;
2455         }
2456         if (rq->cmd[0] & REQ_IDETAPE_READ) {
2457                 tape->buffer_head++;
2458 #if USE_IOTRACE
2459                 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
2460 #endif
2461                 tape->postpone_cnt = 0;
2462                 pc = idetape_next_pc_storage(drive);
2463                 idetape_create_read_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2464                 goto out;
2465         }
2466         if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
2467                 tape->buffer_head++;
2468 #if USE_IOTRACE
2469                 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
2470 #endif
2471                 tape->postpone_cnt = 0;
2472                 pc = idetape_next_pc_storage(drive);
2473                 idetape_create_write_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2474                 goto out;
2475         }
2476         if (rq->cmd[0] & REQ_IDETAPE_READ_BUFFER) {
2477                 tape->postpone_cnt = 0;
2478                 pc = idetape_next_pc_storage(drive);
2479                 idetape_create_read_buffer_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2480                 goto out;
2481         }
2482         if (rq->cmd[0] & REQ_IDETAPE_PC1) {
2483                 pc = (idetape_pc_t *) rq->buffer;
2484                 rq->cmd[0] &= ~(REQ_IDETAPE_PC1);
2485                 rq->cmd[0] |= REQ_IDETAPE_PC2;
2486                 goto out;
2487         }
2488         if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2489                 idetape_media_access_finished(drive);
2490                 return ide_stopped;
2491         }
2492         BUG();
2493 out:
2494         return idetape_issue_packet_command(drive, pc);
2495 }
2496
2497 /*
2498  *      Pipeline related functions
2499  */
2500 static inline int idetape_pipeline_active (idetape_tape_t *tape)
2501 {
2502         int rc1, rc2;
2503
2504         rc1 = test_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
2505         rc2 = (tape->active_data_request != NULL);
2506         return rc1;
2507 }
2508
2509 /*
2510  *      idetape_kmalloc_stage uses __get_free_page to allocate a pipeline
2511  *      stage, along with all the necessary small buffers which together make
2512  *      a buffer of size tape->stage_size (or a bit more). We attempt to
2513  *      combine sequential pages as much as possible.
2514  *
2515  *      Returns a pointer to the new allocated stage, or NULL if we
2516  *      can't (or don't want to) allocate a stage.
2517  *
2518  *      Pipeline stages are optional and are used to increase performance.
2519  *      If we can't allocate them, we'll manage without them.
2520  */
2521 static idetape_stage_t *__idetape_kmalloc_stage (idetape_tape_t *tape, int full, int clear)
2522 {
2523         idetape_stage_t *stage;
2524         struct idetape_bh *prev_bh, *bh;
2525         int pages = tape->pages_per_stage;
2526         char *b_data = NULL;
2527
2528         if ((stage = (idetape_stage_t *) kmalloc (sizeof (idetape_stage_t),GFP_KERNEL)) == NULL)
2529                 return NULL;
2530         stage->next = NULL;
2531
2532         bh = stage->bh = (struct idetape_bh *)kmalloc(sizeof(struct idetape_bh), GFP_KERNEL);
2533         if (bh == NULL)
2534                 goto abort;
2535         bh->b_reqnext = NULL;
2536         if ((bh->b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2537                 goto abort;
2538         if (clear)
2539                 memset(bh->b_data, 0, PAGE_SIZE);
2540         bh->b_size = PAGE_SIZE;
2541         atomic_set(&bh->b_count, full ? bh->b_size : 0);
2542
2543         while (--pages) {
2544                 if ((b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2545                         goto abort;
2546                 if (clear)
2547                         memset(b_data, 0, PAGE_SIZE);
2548                 if (bh->b_data == b_data + PAGE_SIZE) {
2549                         bh->b_size += PAGE_SIZE;
2550                         bh->b_data -= PAGE_SIZE;
2551                         if (full)
2552                                 atomic_add(PAGE_SIZE, &bh->b_count);
2553                         continue;
2554                 }
2555                 if (b_data == bh->b_data + bh->b_size) {
2556                         bh->b_size += PAGE_SIZE;
2557                         if (full)
2558                                 atomic_add(PAGE_SIZE, &bh->b_count);
2559                         continue;
2560                 }
2561                 prev_bh = bh;
2562                 if ((bh = (struct idetape_bh *)kmalloc(sizeof(struct idetape_bh), GFP_KERNEL)) == NULL) {
2563                         free_page((unsigned long) b_data);
2564                         goto abort;
2565                 }
2566                 bh->b_reqnext = NULL;
2567                 bh->b_data = b_data;
2568                 bh->b_size = PAGE_SIZE;
2569                 atomic_set(&bh->b_count, full ? bh->b_size : 0);
2570                 prev_bh->b_reqnext = bh;
2571         }
2572         bh->b_size -= tape->excess_bh_size;
2573         if (full)
2574                 atomic_sub(tape->excess_bh_size, &bh->b_count);
2575         return stage;
2576 abort:
2577         __idetape_kfree_stage(stage);
2578         return NULL;
2579 }
2580
2581 static idetape_stage_t *idetape_kmalloc_stage (idetape_tape_t *tape)
2582 {
2583         idetape_stage_t *cache_stage = tape->cache_stage;
2584
2585 #if IDETAPE_DEBUG_LOG
2586         if (tape->debug_level >= 4)
2587                 printk(KERN_INFO "ide-tape: Reached idetape_kmalloc_stage\n");
2588 #endif /* IDETAPE_DEBUG_LOG */
2589
2590         if (tape->nr_stages >= tape->max_stages)
2591                 return NULL;
2592         if (cache_stage != NULL) {
2593                 tape->cache_stage = NULL;
2594                 return cache_stage;
2595         }
2596         return __idetape_kmalloc_stage(tape, 0, 0);
2597 }
2598
2599 static void idetape_copy_stage_from_user (idetape_tape_t *tape, idetape_stage_t *stage, const char __user *buf, int n)
2600 {
2601         struct idetape_bh *bh = tape->bh;
2602         int count;
2603
2604         while (n) {
2605 #if IDETAPE_DEBUG_BUGS
2606                 if (bh == NULL) {
2607                         printk(KERN_ERR "ide-tape: bh == NULL in "
2608                                 "idetape_copy_stage_from_user\n");
2609                         return;
2610                 }
2611 #endif /* IDETAPE_DEBUG_BUGS */
2612                 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), (unsigned int)n);
2613                 copy_from_user(bh->b_data + atomic_read(&bh->b_count), buf, count);
2614                 n -= count;
2615                 atomic_add(count, &bh->b_count);
2616                 buf += count;
2617                 if (atomic_read(&bh->b_count) == bh->b_size) {
2618                         bh = bh->b_reqnext;
2619                         if (bh)
2620                                 atomic_set(&bh->b_count, 0);
2621                 }
2622         }
2623         tape->bh = bh;
2624 }
2625
2626 static void idetape_copy_stage_to_user (idetape_tape_t *tape, char __user *buf, idetape_stage_t *stage, int n)
2627 {
2628         struct idetape_bh *bh = tape->bh;
2629         int count;
2630
2631         while (n) {
2632 #if IDETAPE_DEBUG_BUGS
2633                 if (bh == NULL) {
2634                         printk(KERN_ERR "ide-tape: bh == NULL in "
2635                                 "idetape_copy_stage_to_user\n");
2636                         return;
2637                 }
2638 #endif /* IDETAPE_DEBUG_BUGS */
2639                 count = min(tape->b_count, n);
2640                 copy_to_user(buf, tape->b_data, count);
2641                 n -= count;
2642                 tape->b_data += count;
2643                 tape->b_count -= count;
2644                 buf += count;
2645                 if (!tape->b_count) {
2646                         tape->bh = bh = bh->b_reqnext;
2647                         if (bh) {
2648                                 tape->b_data = bh->b_data;
2649                                 tape->b_count = atomic_read(&bh->b_count);
2650                         }
2651                 }
2652         }
2653 }
2654
2655 static void idetape_init_merge_stage (idetape_tape_t *tape)
2656 {
2657         struct idetape_bh *bh = tape->merge_stage->bh;
2658         
2659         tape->bh = bh;
2660         if (tape->chrdev_direction == idetape_direction_write)
2661                 atomic_set(&bh->b_count, 0);
2662         else {
2663                 tape->b_data = bh->b_data;
2664                 tape->b_count = atomic_read(&bh->b_count);
2665         }
2666 }
2667
2668 static void idetape_switch_buffers (idetape_tape_t *tape, idetape_stage_t *stage)
2669 {
2670         struct idetape_bh *tmp;
2671
2672         tmp = stage->bh;
2673         stage->bh = tape->merge_stage->bh;
2674         tape->merge_stage->bh = tmp;
2675         idetape_init_merge_stage(tape);
2676 }
2677
2678 /*
2679  *      idetape_add_stage_tail adds a new stage at the end of the pipeline.
2680  */
2681 static void idetape_add_stage_tail (ide_drive_t *drive,idetape_stage_t *stage)
2682 {
2683         idetape_tape_t *tape = drive->driver_data;
2684         unsigned long flags;
2685         
2686 #if IDETAPE_DEBUG_LOG
2687         if (tape->debug_level >= 4)
2688                 printk (KERN_INFO "ide-tape: Reached idetape_add_stage_tail\n");
2689 #endif /* IDETAPE_DEBUG_LOG */
2690         spin_lock_irqsave(&tape->spinlock, flags);
2691         stage->next = NULL;
2692         if (tape->last_stage != NULL)
2693                 tape->last_stage->next=stage;
2694         else
2695                 tape->first_stage = tape->next_stage=stage;
2696         tape->last_stage = stage;
2697         if (tape->next_stage == NULL)
2698                 tape->next_stage = tape->last_stage;
2699         tape->nr_stages++;
2700         tape->nr_pending_stages++;
2701         spin_unlock_irqrestore(&tape->spinlock, flags);
2702 }
2703
2704 /*
2705  *      idetape_wait_for_request installs a completion in a pending request
2706  *      and sleeps until it is serviced.
2707  *
2708  *      The caller should ensure that the request will not be serviced
2709  *      before we install the completion (usually by disabling interrupts).
2710  */
2711 static void idetape_wait_for_request (ide_drive_t *drive, struct request *rq)
2712 {
2713         DECLARE_COMPLETION(wait);
2714         idetape_tape_t *tape = drive->driver_data;
2715
2716 #if IDETAPE_DEBUG_BUGS
2717         if (rq == NULL || (rq->flags & REQ_SPECIAL) == 0) {
2718                 printk (KERN_ERR "ide-tape: bug: Trying to sleep on non-valid request\n");
2719                 return;
2720         }
2721 #endif /* IDETAPE_DEBUG_BUGS */
2722         rq->waiting = &wait;
2723         spin_unlock_irq(&tape->spinlock);
2724         wait_for_completion(&wait);
2725         /* The stage and its struct request have been deallocated */
2726         spin_lock_irq(&tape->spinlock);
2727 }
2728
2729 static ide_startstop_t idetape_read_position_callback (ide_drive_t *drive)
2730 {
2731         idetape_tape_t *tape = drive->driver_data;
2732         idetape_read_position_result_t *result;
2733         
2734 #if IDETAPE_DEBUG_LOG
2735         if (tape->debug_level >= 4)
2736                 printk(KERN_INFO "ide-tape: Reached idetape_read_position_callback\n");
2737 #endif /* IDETAPE_DEBUG_LOG */
2738
2739         if (!tape->pc->error) {
2740                 result = (idetape_read_position_result_t *) tape->pc->buffer;
2741 #if IDETAPE_DEBUG_LOG
2742                 if (tape->debug_level >= 2)
2743                         printk(KERN_INFO "ide-tape: BOP - %s\n",result->bop ? "Yes":"No");
2744                 if (tape->debug_level >= 2)
2745                         printk(KERN_INFO "ide-tape: EOP - %s\n",result->eop ? "Yes":"No");
2746 #endif /* IDETAPE_DEBUG_LOG */
2747                 if (result->bpu) {
2748                         printk(KERN_INFO "ide-tape: Block location is unknown to the tape\n");
2749                         clear_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2750                         idetape_end_request(drive, 0, 0);
2751                 } else {
2752 #if IDETAPE_DEBUG_LOG
2753                         if (tape->debug_level >= 2)
2754                                 printk(KERN_INFO "ide-tape: Block Location - %u\n", ntohl(result->first_block));
2755 #endif /* IDETAPE_DEBUG_LOG */
2756                         tape->partition = result->partition;
2757                         tape->first_frame_position = ntohl(result->first_block);
2758                         tape->last_frame_position = ntohl(result->last_block);
2759                         tape->blocks_in_buffer = result->blocks_in_buffer[2];
2760                         set_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2761                         idetape_end_request(drive, 1, 0);
2762                 }
2763         } else {
2764                 idetape_end_request(drive, 0, 0);
2765         }
2766         return ide_stopped;
2767 }
2768
2769 /*
2770  *      idetape_create_write_filemark_cmd will:
2771  *
2772  *              1.      Write a filemark if write_filemark=1.
2773  *              2.      Flush the device buffers without writing a filemark
2774  *                      if write_filemark=0.
2775  *
2776  */
2777 static void idetape_create_write_filemark_cmd (ide_drive_t *drive, idetape_pc_t *pc,int write_filemark)
2778 {
2779         idetape_init_pc(pc);
2780         pc->c[0] = IDETAPE_WRITE_FILEMARK_CMD;
2781         pc->c[4] = write_filemark;
2782         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2783         pc->callback = &idetape_pc_callback;
2784 }
2785
2786 static void idetape_create_test_unit_ready_cmd(idetape_pc_t *pc)
2787 {
2788         idetape_init_pc(pc);
2789         pc->c[0] = IDETAPE_TEST_UNIT_READY_CMD;
2790         pc->callback = &idetape_pc_callback;
2791 }
2792
2793 /*
2794  *      idetape_queue_pc_tail is based on the following functions:
2795  *
2796  *      ide_do_drive_cmd from ide.c
2797  *      cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c
2798  *
2799  *      We add a special packet command request to the tail of the request
2800  *      queue, and wait for it to be serviced.
2801  *
2802  *      This is not to be called from within the request handling part
2803  *      of the driver ! We allocate here data in the stack, and it is valid
2804  *      until the request is finished. This is not the case for the bottom
2805  *      part of the driver, where we are always leaving the functions to wait
2806  *      for an interrupt or a timer event.
2807  *
2808  *      From the bottom part of the driver, we should allocate safe memory
2809  *      using idetape_next_pc_storage and idetape_next_rq_storage, and add
2810  *      the request to the request list without waiting for it to be serviced !
2811  *      In that case, we usually use idetape_queue_pc_head.
2812  */
2813 static int __idetape_queue_pc_tail (ide_drive_t *drive, idetape_pc_t *pc)
2814 {
2815         struct request rq;
2816
2817         idetape_init_rq(&rq, REQ_IDETAPE_PC1);
2818         rq.buffer = (char *) pc;
2819         return ide_do_drive_cmd(drive, &rq, ide_wait);
2820 }
2821
2822 static void idetape_create_load_unload_cmd (ide_drive_t *drive, idetape_pc_t *pc,int cmd)
2823 {
2824         idetape_init_pc(pc);
2825         pc->c[0] = IDETAPE_LOAD_UNLOAD_CMD;
2826         pc->c[4] = cmd;
2827         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2828         pc->callback = &idetape_pc_callback;
2829 }
2830
2831 static int idetape_wait_ready(ide_drive_t *drive, unsigned long timeout)
2832 {
2833         idetape_tape_t *tape = drive->driver_data;
2834         idetape_pc_t pc;
2835         int load_attempted = 0;
2836
2837         /*
2838          * Wait for the tape to become ready
2839          */
2840         set_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
2841         timeout += jiffies;
2842         while (time_before(jiffies, timeout)) {
2843                 idetape_create_test_unit_ready_cmd(&pc);
2844                 if (!__idetape_queue_pc_tail(drive, &pc))
2845                         return 0;
2846                 if ((tape->sense_key == 2 && tape->asc == 4 && tape->ascq == 2)
2847                     || (tape->asc == 0x3A)) {   /* no media */
2848                         if (load_attempted)
2849                                 return -ENOMEDIUM;
2850                         idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
2851                         __idetape_queue_pc_tail(drive, &pc);
2852                         load_attempted = 1;
2853                 /* not about to be ready */
2854                 } else if (!(tape->sense_key == 2 && tape->asc == 4 &&
2855                              (tape->ascq == 1 || tape->ascq == 8)))
2856                         return -EIO;
2857                 current->state = TASK_INTERRUPTIBLE;
2858                 schedule_timeout(HZ / 10);
2859         }
2860         return -EIO;
2861 }
2862
2863 static int idetape_queue_pc_tail (ide_drive_t *drive,idetape_pc_t *pc)
2864 {
2865         return __idetape_queue_pc_tail(drive, pc);
2866 }
2867
2868 static int idetape_flush_tape_buffers (ide_drive_t *drive)
2869 {
2870         idetape_pc_t pc;
2871         int rc;
2872
2873         idetape_create_write_filemark_cmd(drive, &pc, 0);
2874         if ((rc = idetape_queue_pc_tail(drive, &pc)))
2875                 return rc;
2876         idetape_wait_ready(drive, 60 * 5 * HZ);
2877         return 0;
2878 }
2879
2880 static void idetape_create_read_position_cmd (idetape_pc_t *pc)
2881 {
2882         idetape_init_pc(pc);
2883         pc->c[0] = IDETAPE_READ_POSITION_CMD;
2884         pc->request_transfer = 20;
2885         pc->callback = &idetape_read_position_callback;
2886 }
2887
2888 static int idetape_read_position (ide_drive_t *drive)
2889 {
2890         idetape_tape_t *tape = drive->driver_data;
2891         idetape_pc_t pc;
2892         int position;
2893
2894 #if IDETAPE_DEBUG_LOG
2895         if (tape->debug_level >= 4)
2896                 printk(KERN_INFO "ide-tape: Reached idetape_read_position\n");
2897 #endif /* IDETAPE_DEBUG_LOG */
2898
2899         idetape_create_read_position_cmd(&pc);
2900         if (idetape_queue_pc_tail(drive, &pc))
2901                 return -1;
2902         position = tape->first_frame_position;
2903         return position;
2904 }
2905
2906 static void idetape_create_locate_cmd (ide_drive_t *drive, idetape_pc_t *pc, unsigned int block, u8 partition, int skip)
2907 {
2908         idetape_init_pc(pc);
2909         pc->c[0] = IDETAPE_LOCATE_CMD;
2910         pc->c[1] = 2;
2911         put_unaligned(htonl(block), (unsigned int *) &pc->c[3]);
2912         pc->c[8] = partition;
2913         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2914         pc->callback = &idetape_pc_callback;
2915 }
2916
2917 static int idetape_create_prevent_cmd (ide_drive_t *drive, idetape_pc_t *pc, int prevent)
2918 {
2919         idetape_tape_t *tape = drive->driver_data;
2920
2921         if (!tape->capabilities.lock)
2922                 return 0;
2923
2924         idetape_init_pc(pc);
2925         pc->c[0] = IDETAPE_PREVENT_CMD;
2926         pc->c[4] = prevent;
2927         pc->callback = &idetape_pc_callback;
2928         return 1;
2929 }
2930
2931 static int __idetape_discard_read_pipeline (ide_drive_t *drive)
2932 {
2933         idetape_tape_t *tape = drive->driver_data;
2934         unsigned long flags;
2935         int cnt;
2936
2937         if (tape->chrdev_direction != idetape_direction_read)
2938                 return 0;
2939
2940         /* Remove merge stage. */
2941         cnt = tape->merge_stage_size / tape->tape_block_size;
2942         if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
2943                 ++cnt;          /* Filemarks count as 1 sector */
2944         tape->merge_stage_size = 0;
2945         if (tape->merge_stage != NULL) {
2946                 __idetape_kfree_stage(tape->merge_stage);
2947                 tape->merge_stage = NULL;
2948         }
2949
2950         /* Clear pipeline flags. */
2951         clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
2952         tape->chrdev_direction = idetape_direction_none;
2953
2954         /* Remove pipeline stages. */
2955         if (tape->first_stage == NULL)
2956                 return 0;
2957
2958         spin_lock_irqsave(&tape->spinlock, flags);
2959         tape->next_stage = NULL;
2960         if (idetape_pipeline_active(tape))
2961                 idetape_wait_for_request(drive, tape->active_data_request);
2962         spin_unlock_irqrestore(&tape->spinlock, flags);
2963
2964         while (tape->first_stage != NULL) {
2965                 struct request *rq_ptr = &tape->first_stage->rq;
2966
2967                 cnt += rq_ptr->nr_sectors - rq_ptr->current_nr_sectors; 
2968                 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
2969                         ++cnt;
2970                 idetape_remove_stage_head(drive);
2971         }
2972         tape->nr_pending_stages = 0;
2973         tape->max_stages = tape->min_pipeline;
2974         return cnt;
2975 }
2976
2977 /*
2978  *      idetape_position_tape positions the tape to the requested block
2979  *      using the LOCATE packet command. A READ POSITION command is then
2980  *      issued to check where we are positioned.
2981  *
2982  *      Like all higher level operations, we queue the commands at the tail
2983  *      of the request queue and wait for their completion.
2984  *      
2985  */
2986 static int idetape_position_tape (ide_drive_t *drive, unsigned int block, u8 partition, int skip)
2987 {
2988         idetape_tape_t *tape = drive->driver_data;
2989         int retval;
2990         idetape_pc_t pc;
2991
2992         if (tape->chrdev_direction == idetape_direction_read)
2993                 __idetape_discard_read_pipeline(drive);
2994         idetape_wait_ready(drive, 60 * 5 * HZ);
2995         idetape_create_locate_cmd(drive, &pc, block, partition, skip);
2996         retval = idetape_queue_pc_tail(drive, &pc);
2997         if (retval)
2998                 return (retval);
2999
3000         idetape_create_read_position_cmd(&pc);
3001         return (idetape_queue_pc_tail(drive, &pc));
3002 }
3003
3004 static void idetape_discard_read_pipeline (ide_drive_t *drive, int restore_position)
3005 {
3006         idetape_tape_t *tape = drive->driver_data;
3007         int cnt;
3008         int seek, position;
3009
3010         cnt = __idetape_discard_read_pipeline(drive);
3011         if (restore_position) {
3012                 position = idetape_read_position(drive);
3013                 seek = position > cnt ? position - cnt : 0;
3014                 if (idetape_position_tape(drive, seek, 0, 0)) {
3015                         printk(KERN_INFO "ide-tape: %s: position_tape failed in discard_pipeline()\n", tape->name);
3016                         return;
3017                 }
3018         }
3019 }
3020
3021 /*
3022  * idetape_queue_rw_tail generates a read/write request for the block
3023  * device interface and wait for it to be serviced.
3024  */
3025 static int idetape_queue_rw_tail(ide_drive_t *drive, int cmd, int blocks, struct idetape_bh *bh)
3026 {
3027         idetape_tape_t *tape = drive->driver_data;
3028         struct request rq;
3029
3030 #if IDETAPE_DEBUG_LOG
3031         if (tape->debug_level >= 2)
3032                 printk(KERN_INFO "ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd);
3033 #endif /* IDETAPE_DEBUG_LOG */
3034 #if IDETAPE_DEBUG_BUGS
3035         if (idetape_pipeline_active(tape)) {
3036                 printk(KERN_ERR "ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n");
3037                 return (0);
3038         }
3039 #endif /* IDETAPE_DEBUG_BUGS */ 
3040
3041         idetape_init_rq(&rq, cmd);
3042         rq.special = (void *)bh;
3043         rq.sector = tape->first_frame_position;
3044         rq.nr_sectors = rq.current_nr_sectors = blocks;
3045         (void) ide_do_drive_cmd(drive, &rq, ide_wait);
3046
3047         if ((cmd & (REQ_IDETAPE_READ | REQ_IDETAPE_WRITE)) == 0)
3048                 return 0;
3049
3050         if (tape->merge_stage)
3051                 idetape_init_merge_stage(tape);
3052         if (rq.errors == IDETAPE_ERROR_GENERAL)
3053                 return -EIO;
3054         return (tape->tape_block_size * (blocks-rq.current_nr_sectors));
3055 }
3056
3057 /*
3058  *      idetape_insert_pipeline_into_queue is used to start servicing the
3059  *      pipeline stages, starting from tape->next_stage.
3060  */
3061 static void idetape_insert_pipeline_into_queue (ide_drive_t *drive)
3062 {
3063         idetape_tape_t *tape = drive->driver_data;
3064
3065         if (tape->next_stage == NULL)
3066                 return;
3067         if (!idetape_pipeline_active(tape)) {
3068                 set_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
3069                 idetape_active_next_stage(drive);
3070                 (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
3071         }
3072 }
3073
3074 static void idetape_create_inquiry_cmd (idetape_pc_t *pc)
3075 {
3076         idetape_init_pc(pc);
3077         pc->c[0] = IDETAPE_INQUIRY_CMD;
3078         pc->c[4] = pc->request_transfer = 254;
3079         pc->callback = &idetape_pc_callback;
3080 }
3081
3082 static void idetape_create_rewind_cmd (ide_drive_t *drive, idetape_pc_t *pc)
3083 {
3084         idetape_init_pc(pc);
3085         pc->c[0] = IDETAPE_REWIND_CMD;
3086         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3087         pc->callback = &idetape_pc_callback;
3088 }
3089
3090 #if 0
3091 static void idetape_create_mode_select_cmd (idetape_pc_t *pc, int length)
3092 {
3093         idetape_init_pc(pc);
3094         set_bit(PC_WRITING, &pc->flags);
3095         pc->c[0] = IDETAPE_MODE_SELECT_CMD;
3096         pc->c[1] = 0x10;
3097         put_unaligned(htons(length), (unsigned short *) &pc->c[3]);
3098         pc->request_transfer = 255;
3099         pc->callback = &idetape_pc_callback;
3100 }
3101 #endif
3102
3103 static void idetape_create_erase_cmd (idetape_pc_t *pc)
3104 {
3105         idetape_init_pc(pc);
3106         pc->c[0] = IDETAPE_ERASE_CMD;
3107         pc->c[1] = 1;
3108         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3109         pc->callback = &idetape_pc_callback;
3110 }
3111
3112 static void idetape_create_space_cmd (idetape_pc_t *pc,int count, u8 cmd)
3113 {
3114         idetape_init_pc(pc);
3115         pc->c[0] = IDETAPE_SPACE_CMD;
3116         put_unaligned(htonl(count), (unsigned int *) &pc->c[1]);
3117         pc->c[1] = cmd;
3118         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3119         pc->callback = &idetape_pc_callback;
3120 }
3121
3122 static void idetape_wait_first_stage (ide_drive_t *drive)
3123 {
3124         idetape_tape_t *tape = drive->driver_data;
3125         unsigned long flags;
3126
3127         if (tape->first_stage == NULL)
3128                 return;
3129         spin_lock_irqsave(&tape->spinlock, flags);
3130         if (tape->active_stage == tape->first_stage)
3131                 idetape_wait_for_request(drive, tape->active_data_request);
3132         spin_unlock_irqrestore(&tape->spinlock, flags);
3133 }
3134
3135 /*
3136  *      idetape_add_chrdev_write_request tries to add a character device
3137  *      originated write request to our pipeline. In case we don't succeed,
3138  *      we revert to non-pipelined operation mode for this request.
3139  *
3140  *      1.      Try to allocate a new pipeline stage.
3141  *      2.      If we can't, wait for more and more requests to be serviced
3142  *              and try again each time.
3143  *      3.      If we still can't allocate a stage, fallback to
3144  *              non-pipelined operation mode for this request.
3145  */
3146 static int idetape_add_chrdev_write_request (ide_drive_t *drive, int blocks)
3147 {
3148         idetape_tape_t *tape = drive->driver_data;
3149         idetape_stage_t *new_stage;
3150         unsigned long flags;
3151         struct request *rq;
3152
3153 #if IDETAPE_DEBUG_LOG
3154         if (tape->debug_level >= 3)
3155                 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_write_request\n");
3156 #endif /* IDETAPE_DEBUG_LOG */
3157
3158         /*
3159          *      Attempt to allocate a new stage.
3160          *      Pay special attention to possible race conditions.
3161          */
3162         while ((new_stage = idetape_kmalloc_stage(tape)) == NULL) {
3163                 spin_lock_irqsave(&tape->spinlock, flags);
3164                 if (idetape_pipeline_active(tape)) {
3165                         idetape_wait_for_request(drive, tape->active_data_request);
3166                         spin_unlock_irqrestore(&tape->spinlock, flags);
3167                 } else {
3168                         spin_unlock_irqrestore(&tape->spinlock, flags);
3169                         idetape_insert_pipeline_into_queue(drive);
3170                         if (idetape_pipeline_active(tape))
3171                                 continue;
3172                         /*
3173                          *      Linux is short on memory. Fallback to
3174                          *      non-pipelined operation mode for this request.
3175                          */
3176                         return idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3177                 }
3178         }
3179         rq = &new_stage->rq;
3180         idetape_init_rq(rq, REQ_IDETAPE_WRITE);
3181         /* Doesn't actually matter - We always assume sequential access */
3182         rq->sector = tape->first_frame_position;
3183         rq->nr_sectors = rq->current_nr_sectors = blocks;
3184
3185         idetape_switch_buffers(tape, new_stage);
3186         idetape_add_stage_tail(drive, new_stage);
3187         tape->pipeline_head++;
3188 #if USE_IOTRACE
3189         IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
3190 #endif
3191         calculate_speeds(drive);
3192
3193         /*
3194          *      Estimate whether the tape has stopped writing by checking
3195          *      if our write pipeline is currently empty. If we are not
3196          *      writing anymore, wait for the pipeline to be full enough
3197          *      (90%) before starting to service requests, so that we will
3198          *      be able to keep up with the higher speeds of the tape.
3199          */
3200         if (!idetape_pipeline_active(tape)) {
3201                 if (tape->nr_stages >= tape->max_stages * 9 / 10 ||
3202                     tape->nr_stages >= tape->max_stages - tape->uncontrolled_pipeline_head_speed * 3 * 1024 / tape->tape_block_size) {
3203                         tape->measure_insert_time = 1;
3204                         tape->insert_time = jiffies;
3205                         tape->insert_size = 0;
3206                         tape->insert_speed = 0;
3207                         idetape_insert_pipeline_into_queue(drive);
3208                 }
3209         }
3210         if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3211                 /* Return a deferred error */
3212                 return -EIO;
3213         return blocks;
3214 }
3215
3216 /*
3217  *      idetape_wait_for_pipeline will wait until all pending pipeline
3218  *      requests are serviced. Typically called on device close.
3219  */
3220 static void idetape_wait_for_pipeline (ide_drive_t *drive)
3221 {
3222         idetape_tape_t *tape = drive->driver_data;
3223         unsigned long flags;
3224
3225         while (tape->next_stage || idetape_pipeline_active(tape)) {
3226                 idetape_insert_pipeline_into_queue(drive);
3227                 spin_lock_irqsave(&tape->spinlock, flags);
3228                 if (idetape_pipeline_active(tape))
3229                         idetape_wait_for_request(drive, tape->active_data_request);
3230                 spin_unlock_irqrestore(&tape->spinlock, flags);
3231         }
3232 }
3233
3234 static void idetape_empty_write_pipeline (ide_drive_t *drive)
3235 {
3236         idetape_tape_t *tape = drive->driver_data;
3237         int blocks, min;
3238         struct idetape_bh *bh;
3239         
3240 #if IDETAPE_DEBUG_BUGS
3241         if (tape->chrdev_direction != idetape_direction_write) {
3242                 printk(KERN_ERR "ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n");
3243                 return;
3244         }
3245         if (tape->merge_stage_size > tape->stage_size) {
3246                 printk(KERN_ERR "ide-tape: bug: merge_buffer too big\n");
3247                 tape->merge_stage_size = tape->stage_size;
3248         }
3249 #endif /* IDETAPE_DEBUG_BUGS */
3250         if (tape->merge_stage_size) {
3251                 blocks = tape->merge_stage_size / tape->tape_block_size;
3252                 if (tape->merge_stage_size % tape->tape_block_size) {
3253                         unsigned int i;
3254
3255                         blocks++;
3256                         i = tape->tape_block_size - tape->merge_stage_size % tape->tape_block_size;
3257                         bh = tape->bh->b_reqnext;
3258                         while (bh) {
3259                                 atomic_set(&bh->b_count, 0);
3260                                 bh = bh->b_reqnext;
3261                         }
3262                         bh = tape->bh;
3263                         while (i) {
3264                                 if (bh == NULL) {
3265
3266                                         printk(KERN_INFO "ide-tape: bug, bh NULL\n");
3267                                         break;
3268                                 }
3269                                 min = min(i, (unsigned int)(bh->b_size - atomic_read(&bh->b_count)));
3270                                 memset(bh->b_data + atomic_read(&bh->b_count), 0, min);
3271                                 atomic_add(min, &bh->b_count);
3272                                 i -= min;
3273                                 bh = bh->b_reqnext;
3274                         }
3275                 }
3276                 (void) idetape_add_chrdev_write_request(drive, blocks);
3277                 tape->merge_stage_size = 0;
3278         }
3279         idetape_wait_for_pipeline(drive);
3280         if (tape->merge_stage != NULL) {
3281                 __idetape_kfree_stage(tape->merge_stage);
3282                 tape->merge_stage = NULL;
3283         }
3284         clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3285         tape->chrdev_direction = idetape_direction_none;
3286
3287         /*
3288          *      On the next backup, perform the feedback loop again.
3289          *      (I don't want to keep sense information between backups,
3290          *       as some systems are constantly on, and the system load
3291          *       can be totally different on the next backup).
3292          */
3293         tape->max_stages = tape->min_pipeline;
3294 #if IDETAPE_DEBUG_BUGS
3295         if (tape->first_stage != NULL ||
3296             tape->next_stage != NULL ||
3297             tape->last_stage != NULL ||
3298             tape->nr_stages != 0) {
3299                 printk(KERN_ERR "ide-tape: ide-tape pipeline bug, "
3300                         "first_stage %p, next_stage %p, "
3301                         "last_stage %p, nr_stages %d\n",
3302                         tape->first_stage, tape->next_stage,
3303                         tape->last_stage, tape->nr_stages);
3304         }
3305 #endif /* IDETAPE_DEBUG_BUGS */
3306 }
3307
3308 static void idetape_restart_speed_control (ide_drive_t *drive)
3309 {
3310         idetape_tape_t *tape = drive->driver_data;
3311
3312         tape->restart_speed_control_req = 0;
3313         tape->pipeline_head = 0;
3314         tape->controlled_last_pipeline_head = tape->uncontrolled_last_pipeline_head = 0;
3315         tape->controlled_previous_pipeline_head = tape->uncontrolled_previous_pipeline_head = 0;
3316         tape->pipeline_head_speed = tape->controlled_pipeline_head_speed = 5000;
3317         tape->uncontrolled_pipeline_head_speed = 0;
3318         tape->controlled_pipeline_head_time = tape->uncontrolled_pipeline_head_time = jiffies;
3319         tape->controlled_previous_head_time = tape->uncontrolled_previous_head_time = jiffies;
3320 }
3321
3322 static int idetape_initiate_read (ide_drive_t *drive, int max_stages)
3323 {
3324         idetape_tape_t *tape = drive->driver_data;
3325         idetape_stage_t *new_stage;
3326         struct request rq;
3327         int bytes_read;
3328         int blocks = tape->capabilities.ctl;
3329
3330         /* Initialize read operation */
3331         if (tape->chrdev_direction != idetape_direction_read) {
3332                 if (tape->chrdev_direction == idetape_direction_write) {
3333                         idetape_empty_write_pipeline(drive);
3334                         idetape_flush_tape_buffers(drive);
3335                 }
3336 #if IDETAPE_DEBUG_BUGS
3337                 if (tape->merge_stage || tape->merge_stage_size) {
3338                         printk (KERN_ERR "ide-tape: merge_stage_size should be 0 now\n");
3339                         tape->merge_stage_size = 0;
3340                 }
3341 #endif /* IDETAPE_DEBUG_BUGS */
3342                 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3343                         return -ENOMEM;
3344                 tape->chrdev_direction = idetape_direction_read;
3345
3346                 /*
3347                  *      Issue a read 0 command to ensure that DSC handshake
3348                  *      is switched from completion mode to buffer available
3349                  *      mode.
3350                  *      No point in issuing this if DSC overlap isn't supported,
3351                  *      some drives (Seagate STT3401A) will return an error.
3352                  */
3353                 if (drive->dsc_overlap) {
3354                         bytes_read = idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, 0, tape->merge_stage->bh);
3355                         if (bytes_read < 0) {
3356                                 __idetape_kfree_stage(tape->merge_stage);
3357                                 tape->merge_stage = NULL;
3358                                 tape->chrdev_direction = idetape_direction_none;
3359                                 return bytes_read;
3360                         }
3361                 }
3362         }
3363         if (tape->restart_speed_control_req)
3364                 idetape_restart_speed_control(drive);
3365         idetape_init_rq(&rq, REQ_IDETAPE_READ);
3366         rq.sector = tape->first_frame_position;
3367         rq.nr_sectors = rq.current_nr_sectors = blocks;
3368         if (!test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags) &&
3369             tape->nr_stages < max_stages) {
3370                 new_stage = idetape_kmalloc_stage(tape);
3371                 while (new_stage != NULL) {
3372                         new_stage->rq = rq;
3373                         idetape_add_stage_tail(drive, new_stage);
3374                         if (tape->nr_stages >= max_stages)
3375                                 break;
3376                         new_stage = idetape_kmalloc_stage(tape);
3377                 }
3378         }
3379         if (!idetape_pipeline_active(tape)) {
3380                 if (tape->nr_pending_stages >= 3 * max_stages / 4) {
3381                         tape->measure_insert_time = 1;
3382                         tape->insert_time = jiffies;
3383                         tape->insert_size = 0;
3384                         tape->insert_speed = 0;
3385                         idetape_insert_pipeline_into_queue(drive);
3386                 }
3387         }
3388         return 0;
3389 }
3390
3391 /*
3392  *      idetape_add_chrdev_read_request is called from idetape_chrdev_read
3393  *      to service a character device read request and add read-ahead
3394  *      requests to our pipeline.
3395  */
3396 static int idetape_add_chrdev_read_request (ide_drive_t *drive,int blocks)
3397 {
3398         idetape_tape_t *tape = drive->driver_data;
3399         unsigned long flags;
3400         struct request *rq_ptr;
3401         int bytes_read;
3402
3403 #if IDETAPE_DEBUG_LOG
3404         if (tape->debug_level >= 4)
3405                 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks);
3406 #endif /* IDETAPE_DEBUG_LOG */
3407
3408         /*
3409          * If we are at a filemark, return a read length of 0
3410          */
3411         if (test_bit(IDETAPE_FILEMARK, &tape->flags))
3412                 return 0;
3413
3414         /*
3415          * Wait for the next block to be available at the head
3416          * of the pipeline
3417          */
3418         idetape_initiate_read(drive, tape->max_stages);
3419         if (tape->first_stage == NULL) {
3420                 if (test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3421                         return 0;
3422                 return idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, blocks, tape->merge_stage->bh);
3423         }
3424         idetape_wait_first_stage(drive);
3425         rq_ptr = &tape->first_stage->rq;
3426         bytes_read = tape->tape_block_size * (rq_ptr->nr_sectors - rq_ptr->current_nr_sectors);
3427         rq_ptr->nr_sectors = rq_ptr->current_nr_sectors = 0;
3428
3429
3430         if (rq_ptr->errors == IDETAPE_ERROR_EOD)
3431                 return 0;
3432         else {
3433                 idetape_switch_buffers(tape, tape->first_stage);
3434                 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3435                         set_bit(IDETAPE_FILEMARK, &tape->flags);
3436                 spin_lock_irqsave(&tape->spinlock, flags);
3437                 idetape_remove_stage_head(drive);
3438                 spin_unlock_irqrestore(&tape->spinlock, flags);
3439                 tape->pipeline_head++;
3440 #if USE_IOTRACE
3441                 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
3442 #endif
3443                 calculate_speeds(drive);
3444         }
3445 #if IDETAPE_DEBUG_BUGS
3446         if (bytes_read > blocks * tape->tape_block_size) {
3447                 printk(KERN_ERR "ide-tape: bug: trying to return more bytes than requested\n");
3448                 bytes_read = blocks * tape->tape_block_size;
3449         }
3450 #endif /* IDETAPE_DEBUG_BUGS */
3451         return (bytes_read);
3452 }
3453
3454 static void idetape_pad_zeros (ide_drive_t *drive, int bcount)
3455 {
3456         idetape_tape_t *tape = drive->driver_data;
3457         struct idetape_bh *bh;
3458         int blocks;
3459         
3460         while (bcount) {
3461                 unsigned int count;
3462
3463                 bh = tape->merge_stage->bh;
3464                 count = min(tape->stage_size, bcount);
3465                 bcount -= count;
3466                 blocks = count / tape->tape_block_size;
3467                 while (count) {
3468                         atomic_set(&bh->b_count, min(count, (unsigned int)bh->b_size));
3469                         memset(bh->b_data, 0, atomic_read(&bh->b_count));
3470                         count -= atomic_read(&bh->b_count);
3471                         bh = bh->b_reqnext;
3472                 }
3473                 idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3474         }
3475 }
3476
3477 static int idetape_pipeline_size (ide_drive_t *drive)
3478 {
3479         idetape_tape_t *tape = drive->driver_data;
3480         idetape_stage_t *stage;
3481         struct request *rq;
3482         int size = 0;
3483
3484         idetape_wait_for_pipeline(drive);
3485         stage = tape->first_stage;
3486         while (stage != NULL) {
3487                 rq = &stage->rq;
3488                 size += tape->tape_block_size * (rq->nr_sectors-rq->current_nr_sectors);
3489                 if (rq->errors == IDETAPE_ERROR_FILEMARK)
3490                         size += tape->tape_block_size;
3491                 stage = stage->next;
3492         }
3493         size += tape->merge_stage_size;
3494         return size;
3495 }
3496
3497 /*
3498  *      Rewinds the tape to the Beginning Of the current Partition (BOP).
3499  *
3500  *      We currently support only one partition.
3501  */ 
3502 static int idetape_rewind_tape (ide_drive_t *drive)
3503 {
3504         int retval;
3505         idetape_pc_t pc;
3506 #if IDETAPE_DEBUG_LOG
3507         idetape_tape_t *tape = drive->driver_data;
3508         if (tape->debug_level >= 2)
3509                 printk(KERN_INFO "ide-tape: Reached idetape_rewind_tape\n");
3510 #endif /* IDETAPE_DEBUG_LOG */  
3511         
3512         idetape_create_rewind_cmd(drive, &pc);
3513         retval = idetape_queue_pc_tail(drive, &pc);
3514         if (retval)
3515                 return retval;
3516
3517         idetape_create_read_position_cmd(&pc);
3518         retval = idetape_queue_pc_tail(drive, &pc);
3519         if (retval)
3520                 return retval;
3521         return 0;
3522 }
3523
3524 /*
3525  *      Our special ide-tape ioctl's.
3526  *
3527  *      Currently there aren't any ioctl's.
3528  *      mtio.h compatible commands should be issued to the character device
3529  *      interface.
3530  */
3531 static int idetape_blkdev_ioctl(ide_drive_t *drive, unsigned int cmd, unsigned long arg)
3532 {
3533         idetape_tape_t *tape = drive->driver_data;
3534         idetape_config_t config;
3535         void __user *argp = (void __user *)arg;
3536
3537 #if IDETAPE_DEBUG_LOG   
3538         if (tape->debug_level >= 4)
3539                 printk(KERN_INFO "ide-tape: Reached idetape_blkdev_ioctl\n");
3540 #endif /* IDETAPE_DEBUG_LOG */
3541         switch (cmd) {
3542                 case 0x0340:
3543                         if (copy_from_user(&config, argp, sizeof (idetape_config_t)))
3544                                 return -EFAULT;
3545                         tape->best_dsc_rw_frequency = config.dsc_rw_frequency;
3546                         tape->max_stages = config.nr_stages;
3547                         break;
3548                 case 0x0350:
3549                         config.dsc_rw_frequency = (int) tape->best_dsc_rw_frequency;
3550                         config.nr_stages = tape->max_stages; 
3551                         if (copy_to_user(argp, &config, sizeof (idetape_config_t)))
3552                                 return -EFAULT;
3553                         break;
3554                 default:
3555                         return -EIO;
3556         }
3557         return 0;
3558 }
3559
3560 /*
3561  *      idetape_pre_reset is called before an ATAPI/ATA software reset.
3562  */
3563 static void idetape_pre_reset (ide_drive_t *drive)
3564 {
3565         idetape_tape_t *tape = drive->driver_data;
3566         if (tape != NULL)
3567                 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
3568 }
3569
3570 /*
3571  *      idetape_space_over_filemarks is now a bit more complicated than just
3572  *      passing the command to the tape since we may have crossed some
3573  *      filemarks during our pipelined read-ahead mode.
3574  *
3575  *      As a minor side effect, the pipeline enables us to support MTFSFM when
3576  *      the filemark is in our internal pipeline even if the tape doesn't
3577  *      support spacing over filemarks in the reverse direction.
3578  */
3579 static int idetape_space_over_filemarks (ide_drive_t *drive,short mt_op,int mt_count)
3580 {
3581         idetape_tape_t *tape = drive->driver_data;
3582         idetape_pc_t pc;
3583         unsigned long flags;
3584         int retval,count=0;
3585
3586         if (mt_count == 0)
3587                 return 0;
3588         if (MTBSF == mt_op || MTBSFM == mt_op) {
3589                 if (!tape->capabilities.sprev)
3590                         return -EIO;
3591                 mt_count = - mt_count;
3592         }
3593
3594         if (tape->chrdev_direction == idetape_direction_read) {
3595                 /*
3596                  *      We have a read-ahead buffer. Scan it for crossed
3597                  *      filemarks.
3598                  */
3599                 tape->merge_stage_size = 0;
3600                 if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
3601                         ++count;
3602                 while (tape->first_stage != NULL) {
3603                         if (count == mt_count) {
3604                                 if (mt_op == MTFSFM)
3605                                         set_bit(IDETAPE_FILEMARK, &tape->flags);
3606                                 return 0;
3607                         }
3608                         spin_lock_irqsave(&tape->spinlock, flags);
3609                         if (tape->first_stage == tape->active_stage) {
3610                                 /*
3611                                  *      We have reached the active stage in the read pipeline.
3612                                  *      There is no point in allowing the drive to continue
3613                                  *      reading any farther, so we stop the pipeline.
3614                                  *
3615                                  *      This section should be moved to a separate subroutine,
3616                                  *      because a similar function is performed in
3617                                  *      __idetape_discard_read_pipeline(), for example.
3618                                  */
3619                                 tape->next_stage = NULL;
3620                                 spin_unlock_irqrestore(&tape->spinlock, flags);
3621                                 idetape_wait_first_stage(drive);
3622                                 tape->next_stage = tape->first_stage->next;
3623                         } else
3624                                 spin_unlock_irqrestore(&tape->spinlock, flags);
3625                         if (tape->first_stage->rq.errors == IDETAPE_ERROR_FILEMARK)
3626                                 ++count;
3627                         idetape_remove_stage_head(drive);
3628                 }
3629                 idetape_discard_read_pipeline(drive, 0);
3630         }
3631
3632         /*
3633          *      The filemark was not found in our internal pipeline.
3634          *      Now we can issue the space command.
3635          */
3636         switch (mt_op) {
3637                 case MTFSF:
3638                 case MTBSF:
3639                         idetape_create_space_cmd(&pc,mt_count-count,IDETAPE_SPACE_OVER_FILEMARK);
3640                         return (idetape_queue_pc_tail(drive, &pc));
3641                 case MTFSFM:
3642                 case MTBSFM:
3643                         if (!tape->capabilities.sprev)
3644                                 return (-EIO);
3645                         retval = idetape_space_over_filemarks(drive, MTFSF, mt_count-count);
3646                         if (retval) return (retval);
3647                         count = (MTBSFM == mt_op ? 1 : -1);
3648                         return (idetape_space_over_filemarks(drive, MTFSF, count));
3649                 default:
3650                         printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",mt_op);
3651                         return (-EIO);
3652         }
3653 }
3654
3655
3656 /*
3657  *      Our character device read / write functions.
3658  *
3659  *      The tape is optimized to maximize throughput when it is transferring
3660  *      an integral number of the "continuous transfer limit", which is
3661  *      a parameter of the specific tape (26 KB on my particular tape).
3662  *      (32 kB for Onstream)
3663  *
3664  *      As of version 1.3 of the driver, the character device provides an
3665  *      abstract continuous view of the media - any mix of block sizes (even 1
3666  *      byte) on the same backup/restore procedure is supported. The driver
3667  *      will internally convert the requests to the recommended transfer unit,
3668  *      so that an unmatch between the user's block size to the recommended
3669  *      size will only result in a (slightly) increased driver overhead, but
3670  *      will no longer hit performance.
3671  *      This is not applicable to Onstream.
3672  */
3673 static ssize_t idetape_chrdev_read (struct file *file, char __user *buf,
3674                                     size_t count, loff_t *ppos)
3675 {
3676         ide_drive_t *drive = file->private_data;
3677         idetape_tape_t *tape = drive->driver_data;
3678         ssize_t bytes_read,temp, actually_read = 0, rc;
3679
3680 #if IDETAPE_DEBUG_LOG
3681         if (tape->debug_level >= 3)
3682                 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_read, count %Zd\n", count);
3683 #endif /* IDETAPE_DEBUG_LOG */
3684
3685         if (tape->chrdev_direction != idetape_direction_read) {
3686                 if (test_bit(IDETAPE_DETECT_BS, &tape->flags))
3687                         if (count > tape->tape_block_size &&
3688                             (count % tape->tape_block_size) == 0)
3689                                 tape->user_bs_factor = count / tape->tape_block_size;
3690         }
3691         if ((rc = idetape_initiate_read(drive, tape->max_stages)) < 0)
3692                 return rc;
3693         if (count == 0)
3694                 return (0);
3695         if (tape->merge_stage_size) {
3696                 actually_read = min((unsigned int)(tape->merge_stage_size), (unsigned int)count);
3697                 idetape_copy_stage_to_user(tape, buf, tape->merge_stage, actually_read);
3698                 buf += actually_read;
3699                 tape->merge_stage_size -= actually_read;
3700                 count -= actually_read;
3701         }
3702         while (count >= tape->stage_size) {
3703                 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3704                 if (bytes_read <= 0)
3705                         goto finish;
3706                 idetape_copy_stage_to_user(tape, buf, tape->merge_stage, bytes_read);
3707                 buf += bytes_read;
3708                 count -= bytes_read;
3709                 actually_read += bytes_read;
3710         }
3711         if (count) {
3712                 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3713                 if (bytes_read <= 0)
3714                         goto finish;
3715                 temp = min((unsigned long)count, (unsigned long)bytes_read);
3716                 idetape_copy_stage_to_user(tape, buf, tape->merge_stage, temp);
3717                 actually_read += temp;
3718                 tape->merge_stage_size = bytes_read-temp;
3719         }
3720 finish:
3721         if (!actually_read && test_bit(IDETAPE_FILEMARK, &tape->flags)) {
3722 #if IDETAPE_DEBUG_LOG
3723                 if (tape->debug_level >= 2)
3724                         printk(KERN_INFO "ide-tape: %s: spacing over filemark\n", tape->name);
3725 #endif
3726                 idetape_space_over_filemarks(drive, MTFSF, 1);
3727                 return 0;
3728         }
3729         return actually_read;
3730 }
3731
3732 static ssize_t idetape_chrdev_write (struct file *file, const char __user *buf,
3733                                      size_t count, loff_t *ppos)
3734 {
3735         ide_drive_t *drive = file->private_data;
3736         idetape_tape_t *tape = drive->driver_data;
3737         ssize_t retval, actually_written = 0;
3738
3739         /* The drive is write protected. */
3740         if (tape->write_prot)
3741                 return -EACCES;
3742
3743 #if IDETAPE_DEBUG_LOG
3744         if (tape->debug_level >= 3)
3745                 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_write, "
3746                         "count %Zd\n", count);
3747 #endif /* IDETAPE_DEBUG_LOG */
3748
3749         /* Initialize write operation */
3750         if (tape->chrdev_direction != idetape_direction_write) {
3751                 if (tape->chrdev_direction == idetape_direction_read)
3752                         idetape_discard_read_pipeline(drive, 1);
3753 #if IDETAPE_DEBUG_BUGS
3754                 if (tape->merge_stage || tape->merge_stage_size) {
3755                         printk(KERN_ERR "ide-tape: merge_stage_size "
3756                                 "should be 0 now\n");
3757                         tape->merge_stage_size = 0;
3758                 }
3759 #endif /* IDETAPE_DEBUG_BUGS */
3760                 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3761                         return -ENOMEM;
3762                 tape->chrdev_direction = idetape_direction_write;
3763                 idetape_init_merge_stage(tape);
3764
3765                 /*
3766                  *      Issue a write 0 command to ensure that DSC handshake
3767                  *      is switched from completion mode to buffer available
3768                  *      mode.
3769                  *      No point in issuing this if DSC overlap isn't supported,
3770                  *      some drives (Seagate STT3401A) will return an error.
3771                  */
3772                 if (drive->dsc_overlap) {
3773                         retval = idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, 0, tape->merge_stage->bh);
3774                         if (retval < 0) {
3775                                 __idetape_kfree_stage(tape->merge_stage);
3776                                 tape->merge_stage = NULL;
3777                                 tape->chrdev_direction = idetape_direction_none;
3778                                 return retval;
3779                         }
3780                 }
3781         }
3782         if (count == 0)
3783                 return (0);
3784         if (tape->restart_speed_control_req)
3785                 idetape_restart_speed_control(drive);
3786         if (tape->merge_stage_size) {
3787 #if IDETAPE_DEBUG_BUGS
3788                 if (tape->merge_stage_size >= tape->stage_size) {
3789                         printk(KERN_ERR "ide-tape: bug: merge buffer too big\n");
3790                         tape->merge_stage_size = 0;
3791                 }
3792 #endif /* IDETAPE_DEBUG_BUGS */
3793                 actually_written = min((unsigned int)(tape->stage_size - tape->merge_stage_size), (unsigned int)count);
3794                 idetape_copy_stage_from_user(tape, tape->merge_stage, buf, actually_written);
3795                 buf += actually_written;
3796                 tape->merge_stage_size += actually_written;
3797                 count -= actually_written;
3798
3799                 if (tape->merge_stage_size == tape->stage_size) {
3800                         tape->merge_stage_size = 0;
3801                         retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3802                         if (retval <= 0)
3803                                 return (retval);
3804                 }
3805         }
3806         while (count >= tape->stage_size) {
3807                 idetape_copy_stage_from_user(tape, tape->merge_stage, buf, tape->stage_size);
3808                 buf += tape->stage_size;
3809                 count -= tape->stage_size;
3810                 retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3811                 actually_written += tape->stage_size;
3812                 if (retval <= 0)
3813                         return (retval);
3814         }
3815         if (count) {
3816                 actually_written += count;
3817                 idetape_copy_stage_from_user(tape, tape->merge_stage, buf, count);
3818                 tape->merge_stage_size += count;
3819         }
3820         return (actually_written);
3821 }
3822
3823 static int idetape_write_filemark (ide_drive_t *drive)
3824 {
3825         idetape_pc_t pc;
3826
3827         /* Write a filemark */
3828         idetape_create_write_filemark_cmd(drive, &pc, 1);
3829         if (idetape_queue_pc_tail(drive, &pc)) {
3830                 printk(KERN_ERR "ide-tape: Couldn't write a filemark\n");
3831                 return -EIO;
3832         }
3833         return 0;
3834 }
3835
3836 /*
3837  *      idetape_mtioctop is called from idetape_chrdev_ioctl when
3838  *      the general mtio MTIOCTOP ioctl is requested.
3839  *
3840  *      We currently support the following mtio.h operations:
3841  *
3842  *      MTFSF   -       Space over mt_count filemarks in the positive direction.
3843  *                      The tape is positioned after the last spaced filemark.
3844  *
3845  *      MTFSFM  -       Same as MTFSF, but the tape is positioned before the
3846  *                      last filemark.
3847  *
3848  *      MTBSF   -       Steps background over mt_count filemarks, tape is
3849  *                      positioned before the last filemark.
3850  *
3851  *      MTBSFM  -       Like MTBSF, only tape is positioned after the last filemark.
3852  *
3853  *      Note:
3854  *
3855  *              MTBSF and MTBSFM are not supported when the tape doesn't
3856  *              support spacing over filemarks in the reverse direction.
3857  *              In this case, MTFSFM is also usually not supported (it is
3858  *              supported in the rare case in which we crossed the filemark
3859  *              during our read-ahead pipelined operation mode).
3860  *              
3861  *      MTWEOF  -       Writes mt_count filemarks. Tape is positioned after
3862  *                      the last written filemark.
3863  *
3864  *      MTREW   -       Rewinds tape.
3865  *
3866  *      MTLOAD  -       Loads the tape.
3867  *
3868  *      MTOFFL  -       Puts the tape drive "Offline": Rewinds the tape and
3869  *      MTUNLOAD        prevents further access until the media is replaced.
3870  *
3871  *      MTNOP   -       Flushes tape buffers.
3872  *
3873  *      MTRETEN -       Retension media. This typically consists of one end
3874  *                      to end pass on the media.
3875  *
3876  *      MTEOM   -       Moves to the end of recorded data.
3877  *
3878  *      MTERASE -       Erases tape.
3879  *
3880  *      MTSETBLK -      Sets the user block size to mt_count bytes. If
3881  *                      mt_count is 0, we will attempt to autodetect
3882  *                      the block size.
3883  *
3884  *      MTSEEK  -       Positions the tape in a specific block number, where
3885  *                      each block is assumed to contain which user_block_size
3886  *                      bytes.
3887  *
3888  *      MTSETPART -     Switches to another tape partition.
3889  *
3890  *      MTLOCK -        Locks the tape door.
3891  *
3892  *      MTUNLOCK -      Unlocks the tape door.
3893  *
3894  *      The following commands are currently not supported:
3895  *
3896  *      MTFSS, MTBSS, MTWSM, MTSETDENSITY,
3897  *      MTSETDRVBUFFER, MT_ST_BOOLEANS, MT_ST_WRITE_THRESHOLD.
3898  */
3899 static int idetape_mtioctop (ide_drive_t *drive,short mt_op,int mt_count)
3900 {
3901         idetape_tape_t *tape = drive->driver_data;
3902         idetape_pc_t pc;
3903         int i,retval;
3904
3905 #if IDETAPE_DEBUG_LOG
3906         if (tape->debug_level >= 1)
3907                 printk(KERN_INFO "ide-tape: Handling MTIOCTOP ioctl: "
3908                         "mt_op=%d, mt_count=%d\n", mt_op, mt_count);
3909 #endif /* IDETAPE_DEBUG_LOG */
3910         /*
3911          *      Commands which need our pipelined read-ahead stages.
3912          */
3913         switch (mt_op) {
3914                 case MTFSF:
3915                 case MTFSFM:
3916                 case MTBSF:
3917                 case MTBSFM:
3918                         if (!mt_count)
3919                                 return (0);
3920                         return (idetape_space_over_filemarks(drive,mt_op,mt_count));
3921                 default:
3922                         break;
3923         }
3924         switch (mt_op) {
3925                 case MTWEOF:
3926                         if (tape->write_prot)
3927                                 return -EACCES;
3928                         idetape_discard_read_pipeline(drive, 1);
3929                         for (i = 0; i < mt_count; i++) {
3930                                 retval = idetape_write_filemark(drive);
3931                                 if (retval)
3932                                         return retval;
3933                         }
3934                         return (0);
3935                 case MTREW:
3936                         idetape_discard_read_pipeline(drive, 0);
3937                         if (idetape_rewind_tape(drive))
3938                                 return -EIO;
3939                         return 0;
3940                 case MTLOAD:
3941                         idetape_discard_read_pipeline(drive, 0);
3942                         idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
3943                         return (idetape_queue_pc_tail(drive, &pc));
3944                 case MTUNLOAD:
3945                 case MTOFFL:
3946                         /*
3947                          * If door is locked, attempt to unlock before
3948                          * attempting to eject.
3949                          */
3950                         if (tape->door_locked) {
3951                                 if (idetape_create_prevent_cmd(drive, &pc, 0))
3952                                         if (!idetape_queue_pc_tail(drive, &pc))
3953                                                 tape->door_locked = DOOR_UNLOCKED;
3954                         }
3955                         idetape_discard_read_pipeline(drive, 0);
3956                         idetape_create_load_unload_cmd(drive, &pc,!IDETAPE_LU_LOAD_MASK);
3957                         retval = idetape_queue_pc_tail(drive, &pc);
3958                         if (!retval)
3959                                 clear_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
3960                         return retval;
3961                 case MTNOP:
3962                         idetape_discard_read_pipeline(drive, 0);
3963                         return (idetape_flush_tape_buffers(drive));
3964                 case MTRETEN:
3965                         idetape_discard_read_pipeline(drive, 0);
3966                         idetape_create_load_unload_cmd(drive, &pc,IDETAPE_LU_RETENSION_MASK | IDETAPE_LU_LOAD_MASK);
3967                         return (idetape_queue_pc_tail(drive, &pc));
3968                 case MTEOM:
3969                         idetape_create_space_cmd(&pc, 0, IDETAPE_SPACE_TO_EOD);
3970                         return (idetape_queue_pc_tail(drive, &pc));
3971                 case MTERASE:
3972                         (void) idetape_rewind_tape(drive);
3973                         idetape_create_erase_cmd(&pc);
3974                         return (idetape_queue_pc_tail(drive, &pc));
3975                 case MTSETBLK:
3976                         if (mt_count) {
3977                                 if (mt_count < tape->tape_block_size || mt_count % tape->tape_block_size)
3978                                         return -EIO;
3979                                 tape->user_bs_factor = mt_count / tape->tape_block_size;
3980                                 clear_bit(IDETAPE_DETECT_BS, &tape->flags);
3981                         } else
3982                                 set_bit(IDETAPE_DETECT_BS, &tape->flags);
3983                         return 0;
3984                 case MTSEEK:
3985                         idetape_discard_read_pipeline(drive, 0);
3986                         return idetape_position_tape(drive, mt_count * tape->user_bs_factor, tape->partition, 0);
3987                 case MTSETPART:
3988                         idetape_discard_read_pipeline(drive, 0);
3989                         return (idetape_position_tape(drive, 0, mt_count, 0));
3990                 case MTFSR:
3991                 case MTBSR:
3992                 case MTLOCK:
3993                         if (!idetape_create_prevent_cmd(drive, &pc, 1))
3994                                 return 0;
3995                         retval = idetape_queue_pc_tail(drive, &pc);
3996                         if (retval) return retval;
3997                         tape->door_locked = DOOR_EXPLICITLY_LOCKED;
3998                         return 0;
3999                 case MTUNLOCK:
4000                         if (!idetape_create_prevent_cmd(drive, &pc, 0))
4001                                 return 0;
4002                         retval = idetape_queue_pc_tail(drive, &pc);
4003                         if (retval) return retval;
4004                         tape->door_locked = DOOR_UNLOCKED;
4005                         return 0;
4006                 default:
4007                         printk(KERN_ERR "ide-tape: MTIO operation %d not "
4008                                 "supported\n", mt_op);
4009                         return (-EIO);
4010         }
4011 }
4012
4013 /*
4014  *      Our character device ioctls.
4015  *
4016  *      General mtio.h magnetic io commands are supported here, and not in
4017  *      the corresponding block interface.
4018  *
4019  *      The following ioctls are supported:
4020  *
4021  *      MTIOCTOP -      Refer to idetape_mtioctop for detailed description.
4022  *
4023  *      MTIOCGET -      The mt_dsreg field in the returned mtget structure
4024  *                      will be set to (user block size in bytes <<
4025  *                      MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK.
4026  *
4027  *                      The mt_blkno is set to the current user block number.
4028  *                      The other mtget fields are not supported.
4029  *
4030  *      MTIOCPOS -      The current tape "block position" is returned. We
4031  *                      assume that each block contains user_block_size
4032  *                      bytes.
4033  *
4034  *      Our own ide-tape ioctls are supported on both interfaces.
4035  */
4036 static int idetape_chrdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
4037 {
4038         ide_drive_t *drive = file->private_data;
4039         idetape_tape_t *tape = drive->driver_data;
4040         struct mtop mtop;
4041         struct mtget mtget;
4042         struct mtpos mtpos;
4043         int block_offset = 0, position = tape->first_frame_position;
4044         void __user *argp = (void __user *)arg;
4045
4046 #if IDETAPE_DEBUG_LOG
4047         if (tape->debug_level >= 3)
4048                 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_ioctl, "
4049                         "cmd=%u\n", cmd);
4050 #endif /* IDETAPE_DEBUG_LOG */
4051
4052         tape->restart_speed_control_req = 1;
4053         if (tape->chrdev_direction == idetape_direction_write) {
4054                 idetape_empty_write_pipeline(drive);
4055                 idetape_flush_tape_buffers(drive);
4056         }
4057         if (cmd == MTIOCGET || cmd == MTIOCPOS) {
4058                 block_offset = idetape_pipeline_size(drive) / (tape->tape_block_size * tape->user_bs_factor);
4059                 if ((position = idetape_read_position(drive)) < 0)
4060                         return -EIO;
4061         }
4062         switch (cmd) {
4063                 case MTIOCTOP:
4064                         if (copy_from_user(&mtop, argp, sizeof (struct mtop)))
4065                                 return -EFAULT;
4066                         return (idetape_mtioctop(drive,mtop.mt_op,mtop.mt_count));
4067                 case MTIOCGET:
4068                         memset(&mtget, 0, sizeof (struct mtget));
4069                         mtget.mt_type = MT_ISSCSI2;
4070                         mtget.mt_blkno = position / tape->user_bs_factor - block_offset;
4071                         mtget.mt_dsreg = ((tape->tape_block_size * tape->user_bs_factor) << MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK;
4072                         if (tape->drv_write_prot) {
4073                                 mtget.mt_gstat |= GMT_WR_PROT(0xffffffff);
4074                         }
4075                         if (copy_to_user(argp, &mtget, sizeof(struct mtget)))
4076                                 return -EFAULT;
4077                         return 0;
4078                 case MTIOCPOS:
4079                         mtpos.mt_blkno = position / tape->user_bs_factor - block_offset;
4080                         if (copy_to_user(argp, &mtpos, sizeof(struct mtpos)))
4081                                 return -EFAULT;
4082                         return 0;
4083                 default:
4084                         if (tape->chrdev_direction == idetape_direction_read)
4085                                 idetape_discard_read_pipeline(drive, 1);
4086                         return idetape_blkdev_ioctl(drive, cmd, arg);
4087         }
4088 }
4089
4090 static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive);
4091
4092 /*
4093  *      Our character device open function.
4094  */
4095 static int idetape_chrdev_open (struct inode *inode, struct file *filp)
4096 {
4097         unsigned int minor = iminor(inode), i = minor & ~0xc0;
4098         ide_drive_t *drive;
4099         idetape_tape_t *tape;
4100         idetape_pc_t pc;
4101         int retval;
4102
4103         nonseekable_open(inode, filp);
4104 #if IDETAPE_DEBUG_LOG
4105         printk(KERN_INFO "ide-tape: Reached idetape_chrdev_open\n");
4106 #endif /* IDETAPE_DEBUG_LOG */
4107         
4108         if (i >= MAX_HWIFS * MAX_DRIVES)
4109                 return -ENXIO;
4110         drive = idetape_chrdevs[i].drive;
4111         tape = drive->driver_data;
4112         filp->private_data = drive;
4113
4114         if (test_and_set_bit(IDETAPE_BUSY, &tape->flags))
4115                 return -EBUSY;
4116         retval = idetape_wait_ready(drive, 60 * HZ);
4117         if (retval) {
4118                 clear_bit(IDETAPE_BUSY, &tape->flags);
4119                 printk(KERN_ERR "ide-tape: %s: drive not ready\n", tape->name);
4120                 return retval;
4121         }
4122
4123         idetape_read_position(drive);
4124         if (!test_bit(IDETAPE_ADDRESS_VALID, &tape->flags))
4125                 (void)idetape_rewind_tape(drive);
4126
4127         if (tape->chrdev_direction != idetape_direction_read)
4128                 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
4129
4130         /* Read block size and write protect status from drive. */
4131         idetape_get_blocksize_from_block_descriptor(drive);
4132
4133         /* Set write protect flag if device is opened as read-only. */
4134         if ((filp->f_flags & O_ACCMODE) == O_RDONLY)
4135                 tape->write_prot = 1;
4136         else
4137                 tape->write_prot = tape->drv_write_prot;
4138
4139         /* Make sure drive isn't write protected if user wants to write. */
4140         if (tape->write_prot) {
4141                 if ((filp->f_flags & O_ACCMODE) == O_WRONLY ||
4142                     (filp->f_flags & O_ACCMODE) == O_RDWR) {
4143                         clear_bit(IDETAPE_BUSY, &tape->flags);
4144                         return -EROFS;
4145                 }
4146         }
4147
4148         /*
4149          * Lock the tape drive door so user can't eject.
4150          */
4151         if (tape->chrdev_direction == idetape_direction_none) {
4152                 if (idetape_create_prevent_cmd(drive, &pc, 1)) {
4153                         if (!idetape_queue_pc_tail(drive, &pc)) {
4154                                 if (tape->door_locked != DOOR_EXPLICITLY_LOCKED)
4155                                         tape->door_locked = DOOR_LOCKED;
4156                         }
4157                 }
4158         }
4159         idetape_restart_speed_control(drive);
4160         tape->restart_speed_control_req = 0;
4161         return 0;
4162 }
4163
4164 static void idetape_write_release (ide_drive_t *drive, unsigned int minor)
4165 {
4166         idetape_tape_t *tape = drive->driver_data;
4167
4168         idetape_empty_write_pipeline(drive);
4169         tape->merge_stage = __idetape_kmalloc_stage(tape, 1, 0);
4170         if (tape->merge_stage != NULL) {
4171                 idetape_pad_zeros(drive, tape->tape_block_size * (tape->user_bs_factor - 1));
4172                 __idetape_kfree_stage(tape->merge_stage);
4173                 tape->merge_stage = NULL;
4174         }
4175         idetape_write_filemark(drive);
4176         idetape_flush_tape_buffers(drive);
4177         idetape_flush_tape_buffers(drive);
4178 }
4179
4180 /*
4181  *      Our character device release function.
4182  */
4183 static int idetape_chrdev_release (struct inode *inode, struct file *filp)
4184 {
4185         ide_drive_t *drive = filp->private_data;
4186         idetape_tape_t *tape;
4187         idetape_pc_t pc;
4188         unsigned int minor = iminor(inode);
4189
4190         lock_kernel();
4191         tape = drive->driver_data;
4192 #if IDETAPE_DEBUG_LOG
4193         if (tape->debug_level >= 3)
4194                 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_release\n");
4195 #endif /* IDETAPE_DEBUG_LOG */
4196
4197         if (tape->chrdev_direction == idetape_direction_write)
4198                 idetape_write_release(drive, minor);
4199         if (tape->chrdev_direction == idetape_direction_read) {
4200                 if (minor < 128)
4201                         idetape_discard_read_pipeline(drive, 1);
4202                 else
4203                         idetape_wait_for_pipeline(drive);
4204         }
4205         if (tape->cache_stage != NULL) {
4206                 __idetape_kfree_stage(tape->cache_stage);
4207                 tape->cache_stage = NULL;
4208         }
4209         if (minor < 128 && test_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags))
4210                 (void) idetape_rewind_tape(drive);
4211         if (tape->chrdev_direction == idetape_direction_none) {
4212                 if (tape->door_locked == DOOR_LOCKED) {
4213                         if (idetape_create_prevent_cmd(drive, &pc, 0)) {
4214                                 if (!idetape_queue_pc_tail(drive, &pc))
4215                                         tape->door_locked = DOOR_UNLOCKED;
4216                         }
4217                 }
4218         }
4219         clear_bit(IDETAPE_BUSY, &tape->flags);
4220         unlock_kernel();
4221         return 0;
4222 }
4223
4224 /*
4225  *      idetape_identify_device is called to check the contents of the
4226  *      ATAPI IDENTIFY command results. We return:
4227  *
4228  *      1       If the tape can be supported by us, based on the information
4229  *              we have so far.
4230  *
4231  *      0       If this tape driver is not currently supported by us.
4232  */
4233 static int idetape_identify_device (ide_drive_t *drive)
4234 {
4235         struct idetape_id_gcw gcw;
4236         struct hd_driveid *id = drive->id;
4237 #if IDETAPE_DEBUG_INFO
4238         unsigned short mask,i;
4239 #endif /* IDETAPE_DEBUG_INFO */
4240
4241         if (drive->id_read == 0)
4242                 return 1;
4243
4244         *((unsigned short *) &gcw) = id->config;
4245
4246 #if IDETAPE_DEBUG_INFO
4247         printk(KERN_INFO "ide-tape: Dumping ATAPI Identify Device tape parameters\n");
4248         printk(KERN_INFO "ide-tape: Protocol Type: ");
4249         switch (gcw.protocol) {
4250                 case 0: case 1: printk("ATA\n");break;
4251                 case 2: printk("ATAPI\n");break;
4252                 case 3: printk("Reserved (Unknown to ide-tape)\n");break;
4253         }
4254         printk(KERN_INFO "ide-tape: Device Type: %x - ",gcw.device_type);       
4255         switch (gcw.device_type) {
4256                 case 0: printk("Direct-access Device\n");break;
4257                 case 1: printk("Streaming Tape Device\n");break;
4258                 case 2: case 3: case 4: printk("Reserved\n");break;
4259                 case 5: printk("CD-ROM Device\n");break;
4260                 case 6: printk("Reserved\n");
4261                 case 7: printk("Optical memory Device\n");break;
4262                 case 0x1f: printk("Unknown or no Device type\n");break;
4263                 default: printk("Reserved\n");
4264         }
4265         printk(KERN_INFO "ide-tape: Removable: %s",gcw.removable ? "Yes\n":"No\n");     
4266         printk(KERN_INFO "ide-tape: Command Packet DRQ Type: ");
4267         switch (gcw.drq_type) {
4268                 case 0: printk("Microprocessor DRQ\n");break;
4269                 case 1: printk("Interrupt DRQ\n");break;
4270                 case 2: printk("Accelerated DRQ\n");break;
4271                 case 3: printk("Reserved\n");break;
4272         }
4273         printk(KERN_INFO "ide-tape: Command Packet Size: ");
4274         switch (gcw.packet_size) {
4275                 case 0: printk("12 bytes\n");break;
4276                 case 1: printk("16 bytes\n");break;
4277                 default: printk("Reserved\n");break;
4278         }
4279         printk(KERN_INFO "ide-tape: Model: %.40s\n",id->model);
4280         printk(KERN_INFO "ide-tape: Firmware Revision: %.8s\n",id->fw_rev);
4281         printk(KERN_INFO "ide-tape: Serial Number: %.20s\n",id->serial_no);
4282         printk(KERN_INFO "ide-tape: Write buffer size: %d bytes\n",id->buf_size*512);
4283         printk(KERN_INFO "ide-tape: DMA: %s",id->capability & 0x01 ? "Yes\n":"No\n");
4284         printk(KERN_INFO "ide-tape: LBA: %s",id->capability & 0x02 ? "Yes\n":"No\n");
4285         printk(KERN_INFO "ide-tape: IORDY can be disabled: %s",id->capability & 0x04 ? "Yes\n":"No\n");
4286         printk(KERN_INFO "ide-tape: IORDY supported: %s",id->capability & 0x08 ? "Yes\n":"Unknown\n");
4287         printk(KERN_INFO "ide-tape: ATAPI overlap supported: %s",id->capability & 0x20 ? "Yes\n":"No\n");
4288         printk(KERN_INFO "ide-tape: PIO Cycle Timing Category: %d\n",id->tPIO);
4289         printk(KERN_INFO "ide-tape: DMA Cycle Timing Category: %d\n",id->tDMA);
4290         printk(KERN_INFO "ide-tape: Single Word DMA supported modes: ");
4291         for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4292                 if (id->dma_1word & mask)
4293                         printk("%d ",i);
4294                 if (id->dma_1word & (mask << 8))
4295                         printk("(active) ");
4296         }
4297         printk("\n");
4298         printk(KERN_INFO "ide-tape: Multi Word DMA supported modes: ");
4299         for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4300                 if (id->dma_mword & mask)
4301                         printk("%d ",i);
4302                 if (id->dma_mword & (mask << 8))
4303                         printk("(active) ");
4304         }
4305         printk("\n");
4306         if (id->field_valid & 0x0002) {
4307                 printk(KERN_INFO "ide-tape: Enhanced PIO Modes: %s\n",
4308                         id->eide_pio_modes & 1 ? "Mode 3":"None");
4309                 printk(KERN_INFO "ide-tape: Minimum Multi-word DMA cycle per word: ");
4310                 if (id->eide_dma_min == 0)
4311                         printk("Not supported\n");
4312                 else
4313                         printk("%d ns\n",id->eide_dma_min);
4314
4315                 printk(KERN_INFO "ide-tape: Manufacturer\'s Recommended Multi-word cycle: ");
4316                 if (id->eide_dma_time == 0)
4317                         printk("Not supported\n");
4318                 else
4319                         printk("%d ns\n",id->eide_dma_time);
4320
4321                 printk(KERN_INFO "ide-tape: Minimum PIO cycle without IORDY: ");
4322                 if (id->eide_pio == 0)
4323                         printk("Not supported\n");
4324                 else
4325                         printk("%d ns\n",id->eide_pio);
4326
4327                 printk(KERN_INFO "ide-tape: Minimum PIO cycle with IORDY: ");
4328                 if (id->eide_pio_iordy == 0)
4329                         printk("Not supported\n");
4330                 else
4331                         printk("%d ns\n",id->eide_pio_iordy);
4332                 
4333         } else
4334                 printk(KERN_INFO "ide-tape: According to the device, fields 64-70 are not valid.\n");
4335 #endif /* IDETAPE_DEBUG_INFO */
4336
4337         /* Check that we can support this device */
4338
4339         if (gcw.protocol !=2 )
4340                 printk(KERN_ERR "ide-tape: Protocol is not ATAPI\n");
4341         else if (gcw.device_type != 1)
4342                 printk(KERN_ERR "ide-tape: Device type is not set to tape\n");
4343         else if (!gcw.removable)
4344                 printk(KERN_ERR "ide-tape: The removable flag is not set\n");
4345         else if (gcw.packet_size != 0) {
4346                 printk(KERN_ERR "ide-tape: Packet size is not 12 bytes long\n");
4347                 if (gcw.packet_size == 1)
4348                         printk(KERN_ERR "ide-tape: Sorry, padding to 16 bytes is still not supported\n");
4349         } else
4350                 return 1;
4351         return 0;
4352 }
4353
4354 /*
4355  * Use INQUIRY to get the firmware revision
4356  */
4357 static void idetape_get_inquiry_results (ide_drive_t *drive)
4358 {
4359         char *r;
4360         idetape_tape_t *tape = drive->driver_data;
4361         idetape_pc_t pc;
4362         idetape_inquiry_result_t *inquiry;
4363         
4364         idetape_create_inquiry_cmd(&pc);
4365         if (idetape_queue_pc_tail(drive, &pc)) {
4366                 printk(KERN_ERR "ide-tape: %s: can't get INQUIRY results\n", tape->name);
4367                 return;
4368         }
4369         inquiry = (idetape_inquiry_result_t *) pc.buffer;
4370         memcpy(tape->vendor_id, inquiry->vendor_id, 8);
4371         memcpy(tape->product_id, inquiry->product_id, 16);
4372         memcpy(tape->firmware_revision, inquiry->revision_level, 4);
4373         ide_fixstring(tape->vendor_id, 10, 0);
4374         ide_fixstring(tape->product_id, 18, 0);
4375         ide_fixstring(tape->firmware_revision, 6, 0);
4376         r = tape->firmware_revision;
4377         if (*(r + 1) == '.')
4378                 tape->firmware_revision_num = (*r - '0') * 100 + (*(r + 2) - '0') * 10 + *(r + 3) - '0';
4379         printk(KERN_INFO "ide-tape: %s <-> %s: %s %s rev %s\n", drive->name, tape->name, tape->vendor_id, tape->product_id, tape->firmware_revision);
4380 }
4381
4382 /*
4383  *      idetape_get_mode_sense_results asks the tape about its various
4384  *      parameters. In particular, we will adjust our data transfer buffer
4385  *      size to the recommended value as returned by the tape.
4386  */
4387 static void idetape_get_mode_sense_results (ide_drive_t *drive)
4388 {
4389         idetape_tape_t *tape = drive->driver_data;
4390         idetape_pc_t pc;
4391         idetape_mode_parameter_header_t *header;
4392         idetape_capabilities_page_t *capabilities;
4393         
4394         idetape_create_mode_sense_cmd(&pc, IDETAPE_CAPABILITIES_PAGE);
4395         if (idetape_queue_pc_tail(drive, &pc)) {
4396                 printk(KERN_ERR "ide-tape: Can't get tape parameters - assuming some default values\n");
4397                 tape->tape_block_size = 512;
4398                 tape->capabilities.ctl = 52;
4399                 tape->capabilities.speed = 450;
4400                 tape->capabilities.buffer_size = 6 * 52;
4401                 return;
4402         }
4403         header = (idetape_mode_parameter_header_t *) pc.buffer;
4404         capabilities = (idetape_capabilities_page_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t) + header->bdl);
4405
4406         capabilities->max_speed = ntohs(capabilities->max_speed);
4407         capabilities->ctl = ntohs(capabilities->ctl);
4408         capabilities->speed = ntohs(capabilities->speed);
4409         capabilities->buffer_size = ntohs(capabilities->buffer_size);
4410
4411         if (!capabilities->speed) {
4412                 printk(KERN_INFO "ide-tape: %s: overriding capabilities->speed (assuming 650KB/sec)\n", drive->name);
4413                 capabilities->speed = 650;
4414         }
4415         if (!capabilities->max_speed) {
4416                 printk(KERN_INFO "ide-tape: %s: overriding capabilities->max_speed (assuming 650KB/sec)\n", drive->name);
4417                 capabilities->max_speed = 650;
4418         }
4419
4420         tape->capabilities = *capabilities;             /* Save us a copy */
4421         if (capabilities->blk512)
4422                 tape->tape_block_size = 512;
4423         else if (capabilities->blk1024)
4424                 tape->tape_block_size = 1024;
4425
4426 #if IDETAPE_DEBUG_INFO
4427         printk(KERN_INFO "ide-tape: Dumping the results of the MODE SENSE packet command\n");
4428         printk(KERN_INFO "ide-tape: Mode Parameter Header:\n");
4429         printk(KERN_INFO "ide-tape: Mode Data Length - %d\n",header->mode_data_length);
4430         printk(KERN_INFO "ide-tape: Medium Type - %d\n",header->medium_type);
4431         printk(KERN_INFO "ide-tape: Device Specific Parameter - %d\n",header->dsp);
4432         printk(KERN_INFO "ide-tape: Block Descriptor Length - %d\n",header->bdl);
4433         
4434         printk(KERN_INFO "ide-tape: Capabilities and Mechanical Status Page:\n");
4435         printk(KERN_INFO "ide-tape: Page code - %d\n",capabilities->page_code);
4436         printk(KERN_INFO "ide-tape: Page length - %d\n",capabilities->page_length);
4437         printk(KERN_INFO "ide-tape: Read only - %s\n",capabilities->ro ? "Yes":"No");
4438         printk(KERN_INFO "ide-tape: Supports reverse space - %s\n",capabilities->sprev ? "Yes":"No");
4439         printk(KERN_INFO "ide-tape: Supports erase initiated formatting - %s\n",capabilities->efmt ? "Yes":"No");
4440         printk(KERN_INFO "ide-tape: Supports QFA two Partition format - %s\n",capabilities->qfa ? "Yes":"No");
4441         printk(KERN_INFO "ide-tape: Supports locking the medium - %s\n",capabilities->lock ? "Yes":"No");
4442         printk(KERN_INFO "ide-tape: The volume is currently locked - %s\n",capabilities->locked ? "Yes":"No");
4443         printk(KERN_INFO "ide-tape: The device defaults in the prevent state - %s\n",capabilities->prevent ? "Yes":"No");
4444         printk(KERN_INFO "ide-tape: Supports ejecting the medium - %s\n",capabilities->eject ? "Yes":"No");
4445         printk(KERN_INFO "ide-tape: Supports error correction - %s\n",capabilities->ecc ? "Yes":"No");
4446         printk(KERN_INFO "ide-tape: Supports data compression - %s\n",capabilities->cmprs ? "Yes":"No");
4447         printk(KERN_INFO "ide-tape: Supports 512 bytes block size - %s\n",capabilities->blk512 ? "Yes":"No");
4448         printk(KERN_INFO "ide-tape: Supports 1024 bytes block size - %s\n",capabilities->blk1024 ? "Yes":"No");
4449         printk(KERN_INFO "ide-tape: Supports 32768 bytes block size / Restricted byte count for PIO transfers - %s\n",capabilities->blk32768 ? "Yes":"No");
4450         printk(KERN_INFO "ide-tape: Maximum supported speed in KBps - %d\n",capabilities->max_speed);
4451         printk(KERN_INFO "ide-tape: Continuous transfer limits in blocks - %d\n",capabilities->ctl);
4452         printk(KERN_INFO "ide-tape: Current speed in KBps - %d\n",capabilities->speed); 
4453         printk(KERN_INFO "ide-tape: Buffer size - %d\n",capabilities->buffer_size*512);
4454 #endif /* IDETAPE_DEBUG_INFO */
4455 }
4456
4457 /*
4458  *      ide_get_blocksize_from_block_descriptor does a mode sense page 0 with block descriptor
4459  *      and if it succeeds sets the tape block size with the reported value
4460  */
4461 static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive)
4462 {
4463
4464         idetape_tape_t *tape = drive->driver_data;
4465         idetape_pc_t pc;
4466         idetape_mode_parameter_header_t *header;
4467         idetape_parameter_block_descriptor_t *block_descrp;
4468         
4469         idetape_create_mode_sense_cmd(&pc, IDETAPE_BLOCK_DESCRIPTOR);
4470         if (idetape_queue_pc_tail(drive, &pc)) {
4471                 printk(KERN_ERR "ide-tape: Can't get block descriptor\n");
4472                 if (tape->tape_block_size == 0) {
4473                         printk(KERN_WARNING "ide-tape: Cannot deal with zero block size, assume 32k\n");
4474                         tape->tape_block_size =  32768;
4475                 }
4476                 return;
4477         }
4478         header = (idetape_mode_parameter_header_t *) pc.buffer;
4479         block_descrp = (idetape_parameter_block_descriptor_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t));
4480         tape->tape_block_size =( block_descrp->length[0]<<16) + (block_descrp->length[1]<<8) + block_descrp->length[2];
4481         tape->drv_write_prot = (header->dsp & 0x80) >> 7;
4482
4483 #if IDETAPE_DEBUG_INFO
4484         printk(KERN_INFO "ide-tape: Adjusted block size - %d\n", tape->tape_block_size);
4485 #endif /* IDETAPE_DEBUG_INFO */
4486 }
4487 static void idetape_add_settings (ide_drive_t *drive)
4488 {
4489         idetape_tape_t *tape = drive->driver_data;
4490
4491 /*
4492  *                      drive   setting name    read/write      ioctl   ioctl           data type       min                     max                     mul_factor                      div_factor                      data pointer                            set function
4493  */
4494         ide_add_setting(drive,  "buffer",       SETTING_READ,   -1,     -1,             TYPE_SHORT,     0,                      0xffff,                 1,                              2,                              &tape->capabilities.buffer_size,        NULL);
4495         ide_add_setting(drive,  "pipeline_min", SETTING_RW,     -1,     -1,             TYPE_INT,       1,                      0xffff,                 tape->stage_size / 1024,        1,                              &tape->min_pipeline,                    NULL);
4496         ide_add_setting(drive,  "pipeline",     SETTING_RW,     -1,     -1,             TYPE_INT,       1,                      0xffff,                 tape->stage_size / 1024,        1,                              &tape->max_stages,                      NULL);
4497         ide_add_setting(drive,  "pipeline_max", SETTING_RW,     -1,     -1,             TYPE_INT,       1,                      0xffff,                 tape->stage_size / 1024,        1,                              &tape->max_pipeline,                    NULL);
4498         ide_add_setting(drive,  "pipeline_used",SETTING_READ,   -1,     -1,             TYPE_INT,       0,                      0xffff,                 tape->stage_size / 1024,        1,                              &tape->nr_stages,                       NULL);
4499         ide_add_setting(drive,  "pipeline_pending",SETTING_READ,-1,     -1,             TYPE_INT,       0,                      0xffff,                 tape->stage_size / 1024,        1,                              &tape->nr_pending_stages,               NULL);
4500         ide_add_setting(drive,  "speed",        SETTING_READ,   -1,     -1,             TYPE_SHORT,     0,                      0xffff,                 1,                              1,                              &tape->capabilities.speed,              NULL);
4501         ide_add_setting(drive,  "stage",        SETTING_READ,   -1,     -1,             TYPE_INT,       0,                      0xffff,                 1,                              1024,                           &tape->stage_size,                      NULL);
4502         ide_add_setting(drive,  "tdsc",         SETTING_RW,     -1,     -1,             TYPE_INT,       IDETAPE_DSC_RW_MIN,     IDETAPE_DSC_RW_MAX,     1000,                           HZ,                             &tape->best_dsc_rw_frequency,           NULL);
4503         ide_add_setting(drive,  "dsc_overlap",  SETTING_RW,     -1,     -1,             TYPE_BYTE,      0,                      1,                      1,                              1,                              &drive->dsc_overlap,                    NULL);
4504         ide_add_setting(drive,  "pipeline_head_speed_c",SETTING_READ,   -1,     -1,     TYPE_INT,       0,                      0xffff,                 1,                              1,                              &tape->controlled_pipeline_head_speed,  NULL);
4505         ide_add_setting(drive,  "pipeline_head_speed_u",SETTING_READ,   -1,     -1,     TYPE_INT,       0,                      0xffff,                 1,                              1,                              &tape->uncontrolled_pipeline_head_speed,        NULL);
4506         ide_add_setting(drive,  "avg_speed",    SETTING_READ,   -1,     -1,             TYPE_INT,       0,                      0xffff,                 1,                              1,                              &tape->avg_speed,               NULL);
4507         ide_add_setting(drive,  "debug_level",SETTING_RW,       -1,     -1,             TYPE_INT,       0,                      0xffff,                 1,                              1,                              &tape->debug_level,             NULL);
4508 }
4509
4510 /*
4511  *      ide_setup is called to:
4512  *
4513  *              1.      Initialize our various state variables.
4514  *              2.      Ask the tape for its capabilities.
4515  *              3.      Allocate a buffer which will be used for data
4516  *                      transfer. The buffer size is chosen based on
4517  *                      the recommendation which we received in step (2).
4518  *
4519  *      Note that at this point ide.c already assigned us an irq, so that
4520  *      we can queue requests here and wait for their completion.
4521  */
4522 static void idetape_setup (ide_drive_t *drive, idetape_tape_t *tape, int minor)
4523 {
4524         unsigned long t1, tmid, tn, t;
4525         int speed;
4526         struct idetape_id_gcw gcw;
4527         int stage_size;
4528         struct sysinfo si;
4529
4530         memset(tape, 0, sizeof (idetape_tape_t));
4531         spin_lock_init(&tape->spinlock);
4532         drive->driver_data = tape;
4533         /* An ATAPI device ignores DRDY */
4534         drive->ready_stat = 0;
4535         drive->dsc_overlap = 1;
4536 #ifdef CONFIG_BLK_DEV_IDEPCI
4537         if (HWIF(drive)->pci_dev != NULL) {
4538                 /*
4539                  * These two ide-pci host adapters appear to need DSC overlap disabled.
4540                  * This probably needs further analysis.
4541                  */
4542                 if ((HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_ARTOP_ATP850UF) ||
4543                     (HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_TTI_HPT343)) {
4544                         printk(KERN_INFO "ide-tape: %s: disabling DSC overlap\n", tape->name);
4545                         drive->dsc_overlap = 0;
4546                 }
4547         }
4548 #endif /* CONFIG_BLK_DEV_IDEPCI */
4549         /* Seagate Travan drives do not support DSC overlap. */
4550         if (strstr(drive->id->model, "Seagate STT3401"))
4551                 drive->dsc_overlap = 0;
4552         tape->drive = drive;
4553         tape->minor = minor;
4554         tape->name[0] = 'h';
4555         tape->name[1] = 't';
4556         tape->name[2] = '0' + minor;
4557         tape->chrdev_direction = idetape_direction_none;
4558         tape->pc = tape->pc_stack;
4559         tape->max_insert_speed = 10000;
4560         tape->speed_control = 1;
4561         *((unsigned short *) &gcw) = drive->id->config;
4562         if (gcw.drq_type == 1)
4563                 set_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags);
4564
4565         tape->min_pipeline = tape->max_pipeline = tape->max_stages = 10;
4566         
4567         idetape_get_inquiry_results(drive);
4568         idetape_get_mode_sense_results(drive);
4569         idetape_get_blocksize_from_block_descriptor(drive);
4570         tape->user_bs_factor = 1;
4571         tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4572         while (tape->stage_size > 0xffff) {
4573                 printk(KERN_NOTICE "ide-tape: decreasing stage size\n");
4574                 tape->capabilities.ctl /= 2;
4575                 tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4576         }
4577         stage_size = tape->stage_size;
4578         tape->pages_per_stage = stage_size / PAGE_SIZE;
4579         if (stage_size % PAGE_SIZE) {
4580                 tape->pages_per_stage++;
4581                 tape->excess_bh_size = PAGE_SIZE - stage_size % PAGE_SIZE;
4582         }
4583
4584         /*
4585          *      Select the "best" DSC read/write polling frequency
4586          *      and pipeline size.
4587          */
4588         speed = max(tape->capabilities.speed, tape->capabilities.max_speed);
4589
4590         tape->max_stages = speed * 1000 * 10 / tape->stage_size;
4591
4592         /*
4593          *      Limit memory use for pipeline to 10% of physical memory
4594          */
4595         si_meminfo(&si);
4596         if (tape->max_stages * tape->stage_size > si.totalram * si.mem_unit / 10)
4597                 tape->max_stages = si.totalram * si.mem_unit / (10 * tape->stage_size);
4598         tape->max_stages   = min(tape->max_stages, IDETAPE_MAX_PIPELINE_STAGES);
4599         tape->min_pipeline = min(tape->max_stages, IDETAPE_MIN_PIPELINE_STAGES);
4600         tape->max_pipeline = min(tape->max_stages * 2, IDETAPE_MAX_PIPELINE_STAGES);
4601         if (tape->max_stages == 0)
4602                 tape->max_stages = tape->min_pipeline = tape->max_pipeline = 1;
4603
4604         t1 = (tape->stage_size * HZ) / (speed * 1000);
4605         tmid = (tape->capabilities.buffer_size * 32 * HZ) / (speed * 125);
4606         tn = (IDETAPE_FIFO_THRESHOLD * tape->stage_size * HZ) / (speed * 1000);
4607
4608         if (tape->max_stages)
4609                 t = tn;
4610         else
4611                 t = t1;
4612
4613         /*
4614          *      Ensure that the number we got makes sense; limit
4615          *      it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
4616          */
4617         tape->best_dsc_rw_frequency = max_t(unsigned long, min_t(unsigned long, t, IDETAPE_DSC_RW_MAX), IDETAPE_DSC_RW_MIN);
4618         printk(KERN_INFO "ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
4619                 "%dkB pipeline, %lums tDSC%s\n",
4620                 drive->name, tape->name, tape->capabilities.speed,
4621                 (tape->capabilities.buffer_size * 512) / tape->stage_size,
4622                 tape->stage_size / 1024,
4623                 tape->max_stages * tape->stage_size / 1024,
4624                 tape->best_dsc_rw_frequency * 1000 / HZ,
4625                 drive->using_dma ? ", DMA":"");
4626
4627         idetape_add_settings(drive);
4628 }
4629
4630 static int idetape_cleanup (ide_drive_t *drive)
4631 {
4632         idetape_tape_t *tape = drive->driver_data;
4633         int minor = tape->minor;
4634         unsigned long flags;
4635
4636         spin_lock_irqsave(&ide_lock, flags);
4637         if (test_bit(IDETAPE_BUSY, &tape->flags) || drive->usage ||
4638             tape->first_stage != NULL || tape->merge_stage_size) {
4639                 spin_unlock_irqrestore(&ide_lock, flags);
4640                 return 1;
4641         }
4642         idetape_chrdevs[minor].drive = NULL;
4643         spin_unlock_irqrestore(&ide_lock, flags);
4644         DRIVER(drive)->busy = 0;
4645         (void) ide_unregister_subdriver(drive);
4646         drive->driver_data = NULL;
4647         devfs_remove("%s/mt", drive->devfs_name);
4648         devfs_remove("%s/mtn", drive->devfs_name);
4649         devfs_unregister_tape(drive->disk->number);
4650         kfree (tape);
4651         drive->disk->fops = ide_fops;
4652         return 0;
4653 }
4654
4655 #ifdef CONFIG_PROC_FS
4656
4657 static int proc_idetape_read_name
4658         (char *page, char **start, off_t off, int count, int *eof, void *data)
4659 {
4660         ide_drive_t     *drive = (ide_drive_t *) data;
4661         idetape_tape_t  *tape = drive->driver_data;
4662         char            *out = page;
4663         int             len;
4664
4665         len = sprintf(out, "%s\n", tape->name);
4666         PROC_IDE_READ_RETURN(page, start, off, count, eof, len);
4667 }
4668
4669 static ide_proc_entry_t idetape_proc[] = {
4670         { "name",       S_IFREG|S_IRUGO,        proc_idetape_read_name, NULL },
4671         { NULL, 0, NULL, NULL }
4672 };
4673
4674 #else
4675
4676 #define idetape_proc    NULL
4677
4678 #endif
4679
4680 static int idetape_attach(ide_drive_t *drive);
4681
4682 /*
4683  *      IDE subdriver functions, registered with ide.c
4684  */
4685 static ide_driver_t idetape_driver = {
4686         .owner                  = THIS_MODULE,
4687         .name                   = "ide-tape",
4688         .version                = IDETAPE_VERSION,
4689         .media                  = ide_tape,
4690         .busy                   = 1,
4691         .supports_dsc_overlap   = 1,
4692         .cleanup                = idetape_cleanup,
4693         .do_request             = idetape_do_request,
4694         .end_request            = idetape_end_request,
4695         .pre_reset              = idetape_pre_reset,
4696         .proc                   = idetape_proc,
4697         .attach                 = idetape_attach,
4698         .drives                 = LIST_HEAD_INIT(idetape_driver.drives),
4699 };
4700
4701 /*
4702  *      Our character device supporting functions, passed to register_chrdev.
4703  */
4704 static struct file_operations idetape_fops = {
4705         .owner          = THIS_MODULE,
4706         .read           = idetape_chrdev_read,
4707         .write          = idetape_chrdev_write,
4708         .ioctl          = idetape_chrdev_ioctl,
4709         .open           = idetape_chrdev_open,
4710         .release        = idetape_chrdev_release,
4711 };
4712
4713 static int idetape_open(struct inode *inode, struct file *filp)
4714 {
4715         ide_drive_t *drive = inode->i_bdev->bd_disk->private_data;
4716         drive->usage++;
4717         return 0;
4718 }
4719
4720 static int idetape_release(struct inode *inode, struct file *filp)
4721 {
4722         ide_drive_t *drive = inode->i_bdev->bd_disk->private_data;
4723         drive->usage--;
4724         return 0;
4725 }
4726
4727 static int idetape_ioctl(struct inode *inode, struct file *file,
4728                         unsigned int cmd, unsigned long arg)
4729 {
4730         struct block_device *bdev = inode->i_bdev;
4731         ide_drive_t *drive = bdev->bd_disk->private_data;
4732         int err = generic_ide_ioctl(file, bdev, cmd, arg);
4733         if (err == -EINVAL)
4734                 err = idetape_blkdev_ioctl(drive, cmd, arg);
4735         return err;
4736 }
4737
4738 static struct block_device_operations idetape_block_ops = {
4739         .owner          = THIS_MODULE,
4740         .open           = idetape_open,
4741         .release        = idetape_release,
4742         .ioctl          = idetape_ioctl,
4743 };
4744
4745 static int idetape_attach (ide_drive_t *drive)
4746 {
4747         idetape_tape_t *tape;
4748         int minor;
4749
4750         if (!strstr("ide-tape", drive->driver_req))
4751                 goto failed;
4752         if (!drive->present)
4753                 goto failed;
4754         if (drive->media != ide_tape)
4755                 goto failed;
4756         if (!idetape_identify_device (drive)) {
4757                 printk(KERN_ERR "ide-tape: %s: not supported by this version of ide-tape\n", drive->name);
4758                 goto failed;
4759         }
4760         if (drive->scsi) {
4761                 printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive->name);
4762                 goto failed;
4763         }
4764         if (strstr(drive->id->model, "OnStream DI-")) {
4765                 printk(KERN_WARNING "ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive->name);
4766                 printk(KERN_WARNING "ide-tape: OnStream support will be removed soon from ide-tape!\n");
4767         }
4768         tape = (idetape_tape_t *) kmalloc (sizeof (idetape_tape_t), GFP_KERNEL);
4769         if (tape == NULL) {
4770                 printk(KERN_ERR "ide-tape: %s: Can't allocate a tape structure\n", drive->name);
4771                 goto failed;
4772         }
4773         if (ide_register_subdriver(drive, &idetape_driver)) {
4774                 printk(KERN_ERR "ide-tape: %s: Failed to register the driver with ide.c\n", drive->name);
4775                 kfree(tape);
4776                 goto failed;
4777         }
4778         for (minor = 0; idetape_chrdevs[minor].drive != NULL; minor++)
4779                 ;
4780         idetape_setup(drive, tape, minor);
4781         idetape_chrdevs[minor].drive = drive;
4782
4783         devfs_mk_cdev(MKDEV(HWIF(drive)->major, minor),
4784                         S_IFCHR | S_IRUGO | S_IWUGO,
4785                         "%s/mt", drive->devfs_name);
4786         devfs_mk_cdev(MKDEV(HWIF(drive)->major, minor + 128),
4787                         S_IFCHR | S_IRUGO | S_IWUGO,
4788                         "%s/mtn", drive->devfs_name);
4789
4790         drive->disk->number = devfs_register_tape(drive->devfs_name);
4791         drive->disk->fops = &idetape_block_ops;
4792         return 0;
4793 failed:
4794         return 1;
4795 }
4796
4797 MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
4798 MODULE_LICENSE("GPL");
4799
4800 static void __exit idetape_exit (void)
4801 {
4802         ide_unregister_driver(&idetape_driver);
4803         unregister_chrdev(IDETAPE_MAJOR, "ht");
4804 }
4805
4806 /*
4807  *      idetape_init will register the driver for each tape.
4808  */
4809 static int idetape_init (void)
4810 {
4811         if (register_chrdev(IDETAPE_MAJOR, "ht", &idetape_fops)) {
4812                 printk(KERN_ERR "ide-tape: Failed to register character device interface\n");
4813                 return -EBUSY;
4814         }
4815         ide_register_driver(&idetape_driver);
4816         return 0;
4817 }
4818
4819 module_init(idetape_init);
4820 module_exit(idetape_exit);
4821 MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR);