patch-2_6_7-vs1_9_1_12
[linux-2.6.git] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /* This driver intends to support RFC 2734, which describes a method for
26  * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27  * will ultimately support that method, but currently falls short in
28  * several areas.
29  *
30  * TODO:
31  * RFC 2734 related:
32  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33  *
34  * Non-RFC 2734 related:
35  * - Handle fragmented skb's coming from the networking layer.
36  * - Move generic GASP reception to core 1394 code
37  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38  * - Stability improvements
39  * - Performance enhancements
40  * - Consider garbage collecting old partial datagrams after X amount of time
41  */
42
43
44 #include <linux/module.h>
45
46 #include <linux/sched.h>
47 #include <linux/kernel.h>
48 #include <linux/slab.h>
49 #include <linux/errno.h>
50 #include <linux/types.h>
51 #include <linux/delay.h>
52 #include <linux/init.h>
53
54 #include <linux/netdevice.h>
55 #include <linux/inetdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/if_arp.h>
58 #include <linux/if_ether.h>
59 #include <linux/ip.h>
60 #include <linux/in.h>
61 #include <linux/tcp.h>
62 #include <linux/skbuff.h>
63 #include <linux/bitops.h>
64 #include <linux/ethtool.h>
65 #include <asm/uaccess.h>
66 #include <asm/delay.h>
67 #include <asm/semaphore.h>
68 #include <net/arp.h>
69
70 #include "csr1212.h"
71 #include "ieee1394_types.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_transactions.h"
74 #include "ieee1394.h"
75 #include "highlevel.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78 #include "eth1394.h"
79 #include "config_roms.h"
80
81 #define ETH1394_PRINT_G(level, fmt, args...) \
82         printk(level "%s: " fmt, driver_name, ## args)
83
84 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
85         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
86
87 #define DEBUG(fmt, args...) \
88         printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
89 #define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
90
91 static char version[] __devinitdata =
92         "$Rev: 1224 $ Ben Collins <bcollins@debian.org>";
93
94 struct fragment_info {
95         struct list_head list;
96         int offset;
97         int len;
98 };
99
100 struct partial_datagram {
101         struct list_head list;
102         u16 dgl;
103         u16 dg_size;
104         u16 ether_type;
105         struct sk_buff *skb;
106         char *pbuf;
107         struct list_head frag_info;
108 };
109
110 struct pdg_list {
111         struct list_head list;          /* partial datagram list per node       */
112         unsigned int sz;                /* partial datagram list size per node  */
113         spinlock_t lock;                /* partial datagram lock                */
114 };
115
116 struct eth1394_host_info {
117         struct hpsb_host *host;
118         struct net_device *dev;
119 };
120
121 struct eth1394_node_ref {
122         struct unit_directory *ud;
123         struct list_head list;
124 };
125
126 struct eth1394_node_info {
127         u16 maxpayload;                 /* Max payload                  */
128         u8 sspd;                        /* Max speed                    */
129         u64 fifo;                       /* FIFO address                 */
130         struct pdg_list pdg;            /* partial RX datagram lists    */
131         int dgl;                        /* Outgoing datagram label      */
132 };
133
134 /* Our ieee1394 highlevel driver */
135 #define ETH1394_DRIVER_NAME "ip1394"
136 static const char driver_name[] = ETH1394_DRIVER_NAME;
137
138 static kmem_cache_t *packet_task_cache;
139
140 static struct hpsb_highlevel eth1394_highlevel;
141
142 /* Use common.lf to determine header len */
143 static const int hdr_type_len[] = {
144         sizeof (struct eth1394_uf_hdr),
145         sizeof (struct eth1394_ff_hdr),
146         sizeof (struct eth1394_sf_hdr),
147         sizeof (struct eth1394_sf_hdr)
148 };
149
150 /* Change this to IEEE1394_SPEED_S100 to make testing easier */
151 #define ETH1394_SPEED_DEF       IEEE1394_SPEED_MAX
152
153 /* For now, this needs to be 1500, so that XP works with us */
154 #define ETH1394_DATA_LEN        ETH_DATA_LEN
155
156 static const u16 eth1394_speedto_maxpayload[] = {
157 /*     S100, S200, S400, S800, S1600, S3200 */
158         512, 1024, 2048, 4096,  4096,  4096
159 };
160
161 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
162 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
163 MODULE_LICENSE("GPL");
164
165 /* The max_partial_datagrams parameter is the maximum number of fragmented
166  * datagrams per node that eth1394 will keep in memory.  Providing an upper
167  * bound allows us to limit the amount of memory that partial datagrams
168  * consume in the event that some partial datagrams are never completed.  This
169  * should probably change to a sysctl item or the like if possible.
170  */
171 MODULE_PARM(max_partial_datagrams, "i");
172 MODULE_PARM_DESC(max_partial_datagrams,
173                  "Maximum number of partially received fragmented datagrams "
174                  "(default = 25).");
175 static int max_partial_datagrams = 25;
176
177
178 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
179                             unsigned short type, void *daddr, void *saddr,
180                             unsigned len);
181 static int ether1394_rebuild_header(struct sk_buff *skb);
182 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
183 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
184 static void ether1394_header_cache_update(struct hh_cache *hh,
185                                           struct net_device *dev,
186                                           unsigned char * haddr);
187 static int ether1394_mac_addr(struct net_device *dev, void *p);
188
189 static inline void purge_partial_datagram(struct list_head *old);
190 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
191 static void ether1394_iso(struct hpsb_iso *iso);
192
193 static int ether1394_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
194 static int ether1394_ethtool_ioctl(struct net_device *dev, void __user *useraddr);
195
196 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
197                            quadlet_t *data, u64 addr, size_t len, u16 flags);
198 static void ether1394_add_host (struct hpsb_host *host);
199 static void ether1394_remove_host (struct hpsb_host *host);
200 static void ether1394_host_reset (struct hpsb_host *host);
201
202 /* Function for incoming 1394 packets */
203 static struct hpsb_address_ops addr_ops = {
204         .write =        ether1394_write,
205 };
206
207 /* Ieee1394 highlevel driver functions */
208 static struct hpsb_highlevel eth1394_highlevel = {
209         .name =         driver_name,
210         .add_host =     ether1394_add_host,
211         .remove_host =  ether1394_remove_host,
212         .host_reset =   ether1394_host_reset,
213 };
214
215
216 /* This is called after an "ifup" */
217 static int ether1394_open (struct net_device *dev)
218 {
219         struct eth1394_priv *priv = dev->priv;
220         int ret = 0;
221
222         /* Something bad happened, don't even try */
223         if (priv->bc_state == ETHER1394_BC_ERROR) {
224                 /* we'll try again */
225                 priv->iso = hpsb_iso_recv_init(priv->host,
226                                                ETHER1394_GASP_BUFFERS * 2 *
227                                                (1 << (priv->host->csr.max_rec +
228                                                       1)),
229                                                ETHER1394_GASP_BUFFERS,
230                                                priv->broadcast_channel,
231                                                HPSB_ISO_DMA_PACKET_PER_BUFFER,
232                                                1, ether1394_iso);
233                 if (priv->iso == NULL) {
234                         ETH1394_PRINT(KERN_ERR, dev->name,
235                                       "Could not allocate isochronous receive "
236                                       "context for the broadcast channel\n");
237                         priv->bc_state = ETHER1394_BC_ERROR;
238                         ret = -EAGAIN;
239                 } else {
240                         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
241                                 priv->bc_state = ETHER1394_BC_STOPPED;
242                         else
243                                 priv->bc_state = ETHER1394_BC_RUNNING;
244                 }
245         }
246
247         if (ret)
248                 return ret;
249
250         netif_start_queue (dev);
251         return 0;
252 }
253
254 /* This is called after an "ifdown" */
255 static int ether1394_stop (struct net_device *dev)
256 {
257         netif_stop_queue (dev);
258         return 0;
259 }
260
261 /* Return statistics to the caller */
262 static struct net_device_stats *ether1394_stats (struct net_device *dev)
263 {
264         return &(((struct eth1394_priv *)dev->priv)->stats);
265 }
266
267 /* What to do if we timeout. I think a host reset is probably in order, so
268  * that's what we do. Should we increment the stat counters too?  */
269 static void ether1394_tx_timeout (struct net_device *dev)
270 {
271         ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
272                        ((struct eth1394_priv *)(dev->priv))->host->driver->name);
273
274         highlevel_host_reset (((struct eth1394_priv *)(dev->priv))->host);
275
276         netif_wake_queue (dev);
277 }
278
279 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
280 {
281         struct eth1394_priv *priv = dev->priv;
282
283         if ((new_mtu < 68) ||
284             (new_mtu > min(ETH1394_DATA_LEN,
285                            (int)((1 << (priv->host->csr.max_rec + 1)) -
286                                  (sizeof(union eth1394_hdr) +
287                                   ETHER1394_GASP_OVERHEAD)))))
288                 return -EINVAL;
289         dev->mtu = new_mtu;
290         return 0;
291 }
292
293
294 /******************************************
295  * 1394 bus activity functions
296  ******************************************/
297
298 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
299                                                   struct unit_directory *ud)
300 {
301         struct eth1394_node_ref *node;
302
303         list_for_each_entry(node, inl, list)
304                 if (node->ud == ud)
305                         return node;
306
307         return NULL;
308 }
309
310 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
311                                                        u64 guid)
312 {
313         struct eth1394_node_ref *node;
314
315         list_for_each_entry(node, inl, list)
316                 if (node->ud->ne->guid == guid)
317                         return node;
318
319         return NULL;
320 }
321
322 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
323                                                          nodeid_t nodeid)
324 {
325         struct eth1394_node_ref *node;
326         list_for_each_entry(node, inl, list) {
327                 if (node->ud->ne->nodeid == nodeid)
328                         return node;
329         }
330
331         return NULL;
332 }
333
334 static int eth1394_probe(struct device *dev)
335 {
336         struct unit_directory *ud;
337         struct eth1394_host_info *hi;
338         struct eth1394_priv *priv;
339         struct eth1394_node_ref *new_node;
340         struct eth1394_node_info *node_info;
341
342         ud = container_of(dev, struct unit_directory, device);
343
344         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
345         if (!hi)
346                 return -ENOENT;
347
348         new_node = kmalloc(sizeof(struct eth1394_node_ref),
349                            in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
350         if (!new_node)
351                 return -ENOMEM;
352
353         node_info = kmalloc(sizeof(struct eth1394_node_info),
354                             in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
355         if (!node_info) {
356                 kfree(new_node);
357                 return -ENOMEM;
358         }
359
360         spin_lock_init(&node_info->pdg.lock);
361         INIT_LIST_HEAD(&node_info->pdg.list);
362         node_info->pdg.sz = 0;
363         node_info->fifo = ETHER1394_INVALID_ADDR;
364
365         ud->device.driver_data = node_info;
366         new_node->ud = ud;
367
368         priv = (struct eth1394_priv *)hi->dev->priv;
369         list_add_tail(&new_node->list, &priv->ip_node_list);
370
371         return 0;
372 }
373
374 static int eth1394_remove(struct device *dev)
375 {
376         struct unit_directory *ud;
377         struct eth1394_host_info *hi;
378         struct eth1394_priv *priv;
379         struct eth1394_node_ref *old_node;
380         struct eth1394_node_info *node_info;
381         struct list_head *lh, *n;
382         unsigned long flags;
383
384         ud = container_of(dev, struct unit_directory, device);
385         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
386         if (!hi)
387                 return -ENOENT;
388
389         priv = (struct eth1394_priv *)hi->dev->priv;
390
391         old_node = eth1394_find_node(&priv->ip_node_list, ud);
392
393         if (old_node) {
394                 list_del(&old_node->list);
395                 kfree(old_node);
396
397                 node_info = (struct eth1394_node_info*)ud->device.driver_data;
398
399                 spin_lock_irqsave(&node_info->pdg.lock, flags);
400                 /* The partial datagram list should be empty, but we'll just
401                  * make sure anyway... */
402                 list_for_each_safe(lh, n, &node_info->pdg.list) {
403                         purge_partial_datagram(lh);
404                 }
405                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
406
407                 kfree(node_info);
408                 ud->device.driver_data = NULL;
409         }
410         return 0;
411 }
412
413 static int eth1394_update(struct unit_directory *ud)
414 {
415         struct eth1394_host_info *hi;
416         struct eth1394_priv *priv;
417         struct eth1394_node_ref *node;
418         struct eth1394_node_info *node_info;
419
420         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
421         if (!hi)
422                 return -ENOENT;
423
424         priv = (struct eth1394_priv *)hi->dev->priv;
425
426         node = eth1394_find_node(&priv->ip_node_list, ud);
427
428         if (!node) {
429                 node = kmalloc(sizeof(struct eth1394_node_ref),
430                                in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
431                 if (!node)
432                         return -ENOMEM;
433
434
435                 node_info = kmalloc(sizeof(struct eth1394_node_info),
436                                     in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
437
438                 spin_lock_init(&node_info->pdg.lock);
439                 INIT_LIST_HEAD(&node_info->pdg.list);
440                 node_info->pdg.sz = 0;
441
442                 ud->device.driver_data = node_info;
443                 node->ud = ud;
444
445                 priv = (struct eth1394_priv *)hi->dev->priv;
446                 list_add_tail(&node->list, &priv->ip_node_list);
447         }
448
449         return 0;
450 }
451
452
453 static struct ieee1394_device_id eth1394_id_table[] = {
454         {
455                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
456                                 IEEE1394_MATCH_VERSION),
457                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
458                 .version = ETHER1394_GASP_VERSION,
459         },
460         {}
461 };
462
463 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
464
465 static struct hpsb_protocol_driver eth1394_proto_driver = {
466         .name           = "IPv4 over 1394 Driver",
467         .id_table       = eth1394_id_table,
468         .update         = eth1394_update,
469         .driver         = {
470                 .name           = ETH1394_DRIVER_NAME,
471                 .bus            = &ieee1394_bus_type,
472                 .probe          = eth1394_probe,
473                 .remove         = eth1394_remove,
474         },
475 };
476
477
478 static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
479 {
480         unsigned long flags;
481         int i;
482         struct eth1394_priv *priv = dev->priv;
483         struct hpsb_host *host = priv->host;
484         u64 guid = *((u64*)&(host->csr.rom->bus_info_data[3]));
485         u16 maxpayload = 1 << (host->csr.max_rec + 1);
486         int max_speed = IEEE1394_SPEED_MAX;
487
488         spin_lock_irqsave (&priv->lock, flags);
489
490         memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
491         priv->bc_maxpayload = 512;
492
493         /* Determine speed limit */
494         for (i = 0; i < host->node_count; i++)
495                 if (max_speed > host->speed_map[NODEID_TO_NODE(host->node_id) *
496                                                 64 + i])
497                         max_speed = host->speed_map[NODEID_TO_NODE(host->node_id) *
498                                                     64 + i];
499         priv->bc_sspd = max_speed;
500
501         /* We'll use our maxpayload as the default mtu */
502         if (set_mtu) {
503                 dev->mtu = min(ETH1394_DATA_LEN,
504                                (int)(maxpayload -
505                                      (sizeof(union eth1394_hdr) +
506                                       ETHER1394_GASP_OVERHEAD)));
507
508                 /* Set our hardware address while we're at it */
509                 *(u64*)dev->dev_addr = guid;
510                 *(u64*)dev->broadcast = ~0x0ULL;
511         }
512
513         spin_unlock_irqrestore (&priv->lock, flags);
514 }
515
516 /* This function is called right before register_netdev */
517 static void ether1394_init_dev (struct net_device *dev)
518 {
519         /* Our functions */
520         dev->open               = ether1394_open;
521         dev->stop               = ether1394_stop;
522         dev->hard_start_xmit    = ether1394_tx;
523         dev->get_stats          = ether1394_stats;
524         dev->tx_timeout         = ether1394_tx_timeout;
525         dev->change_mtu         = ether1394_change_mtu;
526
527         dev->hard_header        = ether1394_header;
528         dev->rebuild_header     = ether1394_rebuild_header;
529         dev->hard_header_cache  = ether1394_header_cache;
530         dev->header_cache_update= ether1394_header_cache_update;
531         dev->hard_header_parse  = ether1394_header_parse;
532         dev->set_mac_address    = ether1394_mac_addr;
533         dev->do_ioctl           = ether1394_do_ioctl;
534
535         /* Some constants */
536         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
537         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
538         dev->features           = NETIF_F_HIGHDMA;
539         dev->addr_len           = ETH1394_ALEN;
540         dev->hard_header_len    = ETH1394_HLEN;
541         dev->type               = ARPHRD_IEEE1394;
542
543         ether1394_reset_priv (dev, 1);
544 }
545
546 /*
547  * This function is called every time a card is found. It is generally called
548  * when the module is installed. This is where we add all of our ethernet
549  * devices. One for each host.
550  */
551 static void ether1394_add_host (struct hpsb_host *host)
552 {
553         struct eth1394_host_info *hi = NULL;
554         struct net_device *dev = NULL;
555         struct eth1394_priv *priv;
556         static int version_printed = 0;
557         u64 fifo_addr;
558
559         if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
560                 return;
561
562         fifo_addr = hpsb_allocate_and_register_addrspace(&eth1394_highlevel,
563                                                          host,
564                                                          &addr_ops,
565                                                          ETHER1394_REGION_ADDR_LEN,
566                                                          ETHER1394_REGION_ADDR_LEN,
567                                                          -1, -1);
568         if (fifo_addr == ~0ULL)
569                 goto out;
570
571         if (version_printed++ == 0)
572                 ETH1394_PRINT_G (KERN_INFO, "%s\n", version);
573
574         /* We should really have our own alloc_hpsbdev() function in
575          * net_init.c instead of calling the one for ethernet then hijacking
576          * it for ourselves.  That way we'd be a real networking device. */
577         dev = alloc_etherdev(sizeof (struct eth1394_priv));
578
579         if (dev == NULL) {
580                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
581                                  "etherdevice for IEEE 1394 device %s-%d\n",
582                                  host->driver->name, host->id);
583                 goto out;
584         }
585
586         SET_MODULE_OWNER(dev);
587
588         priv = (struct eth1394_priv *)dev->priv;
589
590         INIT_LIST_HEAD(&priv->ip_node_list);
591
592         spin_lock_init(&priv->lock);
593         priv->host = host;
594         priv->local_fifo = fifo_addr;
595
596         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
597
598         if (hi == NULL) {
599                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
600                                  "hostinfo for IEEE 1394 device %s-%d\n",
601                                  host->driver->name, host->id);
602                 goto out;
603         }
604
605         ether1394_init_dev(dev);
606
607         if (register_netdev (dev)) {
608                 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
609                 goto out;
610         }
611
612         ETH1394_PRINT (KERN_ERR, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
613                        host->id);
614
615         hi->host = host;
616         hi->dev = dev;
617
618         /* Ignore validity in hopes that it will be set in the future.  It'll
619          * be checked when the eth device is opened. */
620         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
621
622         priv->iso = hpsb_iso_recv_init(host, (ETHER1394_GASP_BUFFERS * 2 *
623                                               (1 << (host->csr.max_rec + 1))),
624                                        ETHER1394_GASP_BUFFERS,
625                                        priv->broadcast_channel,
626                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
627                                        1, ether1394_iso);
628         if (priv->iso == NULL) {
629                 ETH1394_PRINT(KERN_ERR, dev->name,
630                               "Could not allocate isochronous receive context "
631                               "for the broadcast channel\n");
632                 priv->bc_state = ETHER1394_BC_ERROR;
633         } else {
634                 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
635                         priv->bc_state = ETHER1394_BC_STOPPED;
636                 else
637                         priv->bc_state = ETHER1394_BC_RUNNING;
638         }
639
640         return;
641
642 out:
643         if (dev != NULL)
644                 free_netdev(dev);
645         if (hi)
646                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
647
648         return;
649 }
650
651 /* Remove a card from our list */
652 static void ether1394_remove_host (struct hpsb_host *host)
653 {
654         struct eth1394_host_info *hi;
655
656         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
657         if (hi != NULL) {
658                 struct eth1394_priv *priv = (struct eth1394_priv *)hi->dev->priv;
659
660                 hpsb_unregister_addrspace(&eth1394_highlevel, host,
661                                           priv->local_fifo);
662
663                 if (priv->iso != NULL)
664                         hpsb_iso_shutdown(priv->iso);
665
666                 if (hi->dev) {
667                         unregister_netdev (hi->dev);
668                         free_netdev(hi->dev);
669                 }
670         }
671
672         return;
673 }
674
675 /* A reset has just arisen */
676 static void ether1394_host_reset (struct hpsb_host *host)
677 {
678         struct eth1394_host_info *hi;
679         struct eth1394_priv *priv;
680         struct net_device *dev;
681         struct list_head *lh, *n;
682         struct eth1394_node_ref *node;
683         struct eth1394_node_info *node_info;
684         unsigned long flags;
685
686         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
687
688         /* This can happen for hosts that we don't use */
689         if (hi == NULL)
690                 return;
691
692         dev = hi->dev;
693         priv = (struct eth1394_priv *)dev->priv;
694
695         /* Reset our private host data, but not our mtu */
696         netif_stop_queue (dev);
697         ether1394_reset_priv (dev, 0);
698
699         list_for_each_entry(node, &priv->ip_node_list, list) {
700                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
701
702                 spin_lock_irqsave(&node_info->pdg.lock, flags);
703
704                 list_for_each_safe(lh, n, &node_info->pdg.list) {
705                         purge_partial_datagram(lh);
706                 }
707
708                 INIT_LIST_HEAD(&(node_info->pdg.list));
709                 node_info->pdg.sz = 0;
710
711                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
712         }
713
714         netif_wake_queue (dev);
715 }
716
717 /******************************************
718  * HW Header net device functions
719  ******************************************/
720 /* These functions have been adapted from net/ethernet/eth.c */
721
722
723 /* Create a fake MAC header for an arbitrary protocol layer.
724  * saddr=NULL means use device source address
725  * daddr=NULL means leave destination address (eg unresolved arp). */
726 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
727                             unsigned short type, void *daddr, void *saddr,
728                             unsigned len)
729 {
730         struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
731
732         eth->h_proto = htons(type);
733
734         if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
735                 memset(eth->h_dest, 0, dev->addr_len);
736                 return(dev->hard_header_len);
737         }
738
739         if (daddr) {
740                 memcpy(eth->h_dest,daddr,dev->addr_len);
741                 return dev->hard_header_len;
742         }
743
744         return -dev->hard_header_len;
745
746 }
747
748
749 /* Rebuild the faked MAC header. This is called after an ARP
750  * (or in future other address resolution) has completed on this
751  * sk_buff. We now let ARP fill in the other fields.
752  *
753  * This routine CANNOT use cached dst->neigh!
754  * Really, it is used only when dst->neigh is wrong.
755  */
756 static int ether1394_rebuild_header(struct sk_buff *skb)
757 {
758         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
759         struct net_device *dev = skb->dev;
760
761         switch (eth->h_proto) {
762
763 #ifdef CONFIG_INET
764         case __constant_htons(ETH_P_IP):
765                 return arp_find((unsigned char*)&eth->h_dest, skb);
766 #endif
767         default:
768                 ETH1394_PRINT(KERN_DEBUG, dev->name,
769                               "unable to resolve type %04x addresses.\n",
770                               eth->h_proto);
771                 break;
772         }
773
774         return 0;
775 }
776
777 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
778 {
779         struct net_device *dev = skb->dev;
780         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
781         return ETH1394_ALEN;
782 }
783
784
785 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
786 {
787         unsigned short type = hh->hh_type;
788         struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
789                                                       (16 - ETH1394_HLEN));
790         struct net_device *dev = neigh->dev;
791
792         if (type == __constant_htons(ETH_P_802_3)) {
793                 return -1;
794         }
795
796         eth->h_proto = type;
797         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
798
799         hh->hh_len = ETH1394_HLEN;
800         return 0;
801 }
802
803 /* Called by Address Resolution module to notify changes in address. */
804 static void ether1394_header_cache_update(struct hh_cache *hh,
805                                           struct net_device *dev,
806                                           unsigned char * haddr)
807 {
808         memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
809 }
810
811 static int ether1394_mac_addr(struct net_device *dev, void *p)
812 {
813         if (netif_running(dev))
814                 return -EBUSY;
815
816         /* Not going to allow setting the MAC address, we really need to use
817          * the real one supplied by the hardware */
818          return -EINVAL;
819  }
820
821
822
823 /******************************************
824  * Datagram reception code
825  ******************************************/
826
827 /* Copied from net/ethernet/eth.c */
828 static inline u16 ether1394_type_trans(struct sk_buff *skb,
829                                        struct net_device *dev)
830 {
831         struct eth1394hdr *eth;
832         unsigned char *rawp;
833
834         skb->mac.raw = skb->data;
835         skb_pull (skb, ETH1394_HLEN);
836         eth = (struct eth1394hdr*)skb->mac.raw;
837
838         if (*eth->h_dest & 1) {
839                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
840                         skb->pkt_type = PACKET_BROADCAST;
841 #if 0
842                 else
843                         skb->pkt_type = PACKET_MULTICAST;
844 #endif
845         } else {
846                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
847                         skb->pkt_type = PACKET_OTHERHOST;
848         }
849
850         if (ntohs (eth->h_proto) >= 1536)
851                 return eth->h_proto;
852
853         rawp = skb->data;
854
855         if (*(unsigned short *)rawp == 0xFFFF)
856                 return htons (ETH_P_802_3);
857
858         return htons (ETH_P_802_2);
859 }
860
861 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
862  * We also perform ARP translation here, if need be.  */
863 static inline u16 ether1394_parse_encap(struct sk_buff *skb,
864                                         struct net_device *dev,
865                                         nodeid_t srcid, nodeid_t destid,
866                                         u16 ether_type)
867 {
868         struct eth1394_priv *priv = dev->priv;
869         u64 dest_hw;
870         unsigned short ret = 0;
871
872         /* Setup our hw addresses. We use these to build the
873          * ethernet header.  */
874         if (destid == (LOCAL_BUS | ALL_NODES))
875                 dest_hw = ~0ULL;  /* broadcast */
876         else
877                 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
878                                       priv->host->csr.guid_lo);
879
880         /* If this is an ARP packet, convert it. First, we want to make
881          * use of some of the fields, since they tell us a little bit
882          * about the sending machine.  */
883         if (ether_type == __constant_htons (ETH_P_ARP)) {
884                 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
885                 struct arphdr *arp = (struct arphdr *)skb->data;
886                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
887                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
888                         ntohl(arp1394->fifo_lo);
889                 u8 max_rec = min(priv->host->csr.max_rec,
890                                  (u8)(arp1394->max_rec));
891                 int sspd = arp1394->sspd;
892                 u16 maxpayload;
893                 struct eth1394_node_ref *node;
894                 struct eth1394_node_info *node_info;
895
896                 /* Sanity check. MacOSX seems to be sending us 131 in this
897                  * field (atleast on my Panther G5). Not sure why. */
898                 if (sspd > 5 || sspd < 0)
899                         sspd = 0;
900
901                 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
902
903                 node = eth1394_find_node_guid(&priv->ip_node_list,
904                                               be64_to_cpu(arp1394->s_uniq_id));
905                 if (!node) {
906                         return 0;
907                 }
908
909                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
910
911                 /* Update our speed/payload/fifo_offset table */
912                 node_info->maxpayload = maxpayload;
913                 node_info->sspd =       sspd;
914                 node_info->fifo =       fifo_addr;
915
916                 /* Now that we're done with the 1394 specific stuff, we'll
917                  * need to alter some of the data.  Believe it or not, all
918                  * that needs to be done is sender_IP_address needs to be
919                  * moved, the destination hardware address get stuffed
920                  * in and the hardware address length set to 8.
921                  *
922                  * IMPORTANT: The code below overwrites 1394 specific data
923                  * needed above so keep the munging of the data for the
924                  * higher level IP stack last. */
925
926                 arp->ar_hln = 8;
927                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
928                 *(u32*)arp_ptr = arp1394->sip;  /* move sender IP addr */
929                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
930
931                 if (arp->ar_op == 1)
932                         /* just set ARP req target unique ID to 0 */
933                         *((u64*)arp_ptr) = 0;
934                 else
935                         *((u64*)arp_ptr) = *((u64*)dev->dev_addr);
936         }
937
938         /* Now add the ethernet header. */
939         if (dev->hard_header (skb, dev, __constant_ntohs (ether_type),
940                               &dest_hw, NULL, skb->len) >= 0)
941                 ret = ether1394_type_trans(skb, dev);
942
943         return ret;
944 }
945
946 static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
947 {
948         struct fragment_info *fi;
949
950         list_for_each_entry(fi, frag_list, list) {
951                 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
952                        ((offset + len - 1) < fi->offset)))
953                         return 1;
954         }
955         return 0;
956 }
957
958 static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
959 {
960         struct partial_datagram *pd;
961
962         list_for_each_entry(pd, pdgl, list) {
963                 if (pd->dgl == dgl)
964                         return &pd->list;
965         }
966         return NULL;
967 }
968
969 /* Assumes that new fragment does not overlap any existing fragments */
970 static inline int new_fragment(struct list_head *frag_info, int offset, int len)
971 {
972         struct list_head *lh;
973         struct fragment_info *fi, *fi2, *new;
974
975         list_for_each(lh, frag_info) {
976                 fi = list_entry(lh, struct fragment_info, list);
977                 if ((fi->offset + fi->len) == offset) {
978                         /* The new fragment can be tacked on to the end */
979                         fi->len += len;
980                         /* Did the new fragment plug a hole? */
981                         fi2 = list_entry(lh->next, struct fragment_info, list);
982                         if ((fi->offset + fi->len) == fi2->offset) {
983                                 /* glue fragments together */
984                                 fi->len += fi2->len;
985                                 list_del(lh->next);
986                                 kfree(fi2);
987                         }
988                         return 0;
989                 } else if ((offset + len) == fi->offset) {
990                         /* The new fragment can be tacked on to the beginning */
991                         fi->offset = offset;
992                         fi->len += len;
993                         /* Did the new fragment plug a hole? */
994                         fi2 = list_entry(lh->prev, struct fragment_info, list);
995                         if ((fi2->offset + fi2->len) == fi->offset) {
996                                 /* glue fragments together */
997                                 fi2->len += fi->len;
998                                 list_del(lh);
999                                 kfree(fi);
1000                         }
1001                         return 0;
1002                 } else if (offset > (fi->offset + fi->len)) {
1003                         break;
1004                 } else if ((offset + len) < fi->offset) {
1005                         lh = lh->prev;
1006                         break;
1007                 }
1008         }
1009
1010         new = kmalloc(sizeof(struct fragment_info), GFP_ATOMIC);
1011         if (!new)
1012                 return -ENOMEM;
1013
1014         new->offset = offset;
1015         new->len = len;
1016
1017         list_add(&new->list, lh);
1018
1019         return 0;
1020 }
1021
1022 static inline int new_partial_datagram(struct net_device *dev,
1023                                        struct list_head *pdgl, int dgl,
1024                                        int dg_size, char *frag_buf,
1025                                        int frag_off, int frag_len)
1026 {
1027         struct partial_datagram *new;
1028
1029         new = kmalloc(sizeof(struct partial_datagram), GFP_ATOMIC);
1030         if (!new)
1031                 return -ENOMEM;
1032
1033         INIT_LIST_HEAD(&new->frag_info);
1034
1035         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1036                 kfree(new);
1037                 return -ENOMEM;
1038         }
1039
1040         new->dgl = dgl;
1041         new->dg_size = dg_size;
1042
1043         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1044         if (!new->skb) {
1045                 struct fragment_info *fi = list_entry(new->frag_info.next,
1046                                                       struct fragment_info,
1047                                                       list);
1048                 kfree(fi);
1049                 kfree(new);
1050                 return -ENOMEM;
1051         }
1052
1053         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1054         new->pbuf = skb_put(new->skb, dg_size);
1055         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1056
1057         list_add(&new->list, pdgl);
1058
1059         return 0;
1060 }
1061
1062 static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1063                                           char *frag_buf, int frag_off, int frag_len)
1064 {
1065         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1066
1067         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1068                 return -ENOMEM;
1069         }
1070
1071         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1072
1073         /* Move list entry to beginnig of list so that oldest partial
1074          * datagrams percolate to the end of the list */
1075         list_del(lh);
1076         list_add(lh, pdgl);
1077
1078         return 0;
1079 }
1080
1081 static inline void purge_partial_datagram(struct list_head *old)
1082 {
1083         struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
1084         struct list_head *lh, *n;
1085
1086         list_for_each_safe(lh, n, &pd->frag_info) {
1087                 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
1088                 list_del(lh);
1089                 kfree(fi);
1090         }
1091         list_del(old);
1092         kfree_skb(pd->skb);
1093         kfree(pd);
1094 }
1095
1096 static inline int is_datagram_complete(struct list_head *lh, int dg_size)
1097 {
1098         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1099         struct fragment_info *fi = list_entry(pd->frag_info.next,
1100                                               struct fragment_info, list);
1101
1102         return (fi->len == dg_size);
1103 }
1104
1105 /* Packet reception. We convert the IP1394 encapsulation header to an
1106  * ethernet header, and fill it with some of our other fields. This is
1107  * an incoming packet from the 1394 bus.  */
1108 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1109                                   char *buf, int len)
1110 {
1111         struct sk_buff *skb;
1112         unsigned long flags;
1113         struct eth1394_priv *priv = (struct eth1394_priv *)dev->priv;
1114         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1115         u16 ether_type = 0;  /* initialized to clear warning */
1116         int hdr_len;
1117         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1118         struct eth1394_node_info *node_info;
1119
1120         if (!ud) {
1121                 struct eth1394_node_ref *node;
1122                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1123                 if (!node) {
1124                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1125                                    "lookup failure: " NODE_BUS_FMT,
1126                                    NODE_BUS_ARGS(priv->host, srcid));
1127                         priv->stats.rx_dropped++;
1128                         return -1;
1129                 }
1130                 ud = node->ud;
1131
1132                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1133         }
1134
1135         node_info = (struct eth1394_node_info*)ud->device.driver_data;
1136
1137         /* First, did we receive a fragmented or unfragmented datagram? */
1138         hdr->words.word1 = ntohs(hdr->words.word1);
1139
1140         hdr_len = hdr_type_len[hdr->common.lf];
1141
1142         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1143                 /* An unfragmented datagram has been received by the ieee1394
1144                  * bus. Build an skbuff around it so we can pass it to the
1145                  * high level network layer. */
1146
1147                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1148                 if (!skb) {
1149                         HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1150                         priv->stats.rx_dropped++;
1151                         return -1;
1152                 }
1153                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1154                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1155                 ether_type = hdr->uf.ether_type;
1156         } else {
1157                 /* A datagram fragment has been received, now the fun begins. */
1158
1159                 struct list_head *pdgl, *lh;
1160                 struct partial_datagram *pd;
1161                 int fg_off;
1162                 int fg_len = len - hdr_len;
1163                 int dg_size;
1164                 int dgl;
1165                 int retval;
1166                 struct pdg_list *pdg = &(node_info->pdg);
1167
1168                 hdr->words.word3 = ntohs(hdr->words.word3);
1169                 /* The 4th header word is reserved so no need to do ntohs() */
1170
1171                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1172                         ether_type = hdr->ff.ether_type;
1173                         dgl = hdr->ff.dgl;
1174                         dg_size = hdr->ff.dg_size + 1;
1175                         fg_off = 0;
1176                 } else {
1177                         hdr->words.word2 = ntohs(hdr->words.word2);
1178                         dgl = hdr->sf.dgl;
1179                         dg_size = hdr->sf.dg_size + 1;
1180                         fg_off = hdr->sf.fg_off;
1181                 }
1182                 spin_lock_irqsave(&pdg->lock, flags);
1183
1184                 pdgl = &(pdg->list);
1185                 lh = find_partial_datagram(pdgl, dgl);
1186
1187                 if (lh == NULL) {
1188                         if (pdg->sz == max_partial_datagrams) {
1189                                 /* remove the oldest */
1190                                 purge_partial_datagram(pdgl->prev);
1191                                 pdg->sz--;
1192                         }
1193
1194                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1195                                                       buf + hdr_len, fg_off,
1196                                                       fg_len);
1197                         if (retval < 0) {
1198                                 spin_unlock_irqrestore(&pdg->lock, flags);
1199                                 goto bad_proto;
1200                         }
1201                         pdg->sz++;
1202                         lh = find_partial_datagram(pdgl, dgl);
1203                 } else {
1204                         struct partial_datagram *pd;
1205
1206                         pd = list_entry(lh, struct partial_datagram, list);
1207
1208                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1209                                 /* Overlapping fragments, obliterate old
1210                                  * datagram and start new one. */
1211                                 purge_partial_datagram(lh);
1212                                 retval = new_partial_datagram(dev, pdgl, dgl,
1213                                                               dg_size,
1214                                                               buf + hdr_len,
1215                                                               fg_off, fg_len);
1216                                 if (retval < 0) {
1217                                         pdg->sz--;
1218                                         spin_unlock_irqrestore(&pdg->lock, flags);
1219                                         goto bad_proto;
1220                                 }
1221                         } else {
1222                                 retval = update_partial_datagram(pdgl, lh,
1223                                                                  buf + hdr_len,
1224                                                                  fg_off, fg_len);
1225                                 if (retval < 0) {
1226                                         /* Couldn't save off fragment anyway
1227                                          * so might as well obliterate the
1228                                          * datagram now. */
1229                                         purge_partial_datagram(lh);
1230                                         pdg->sz--;
1231                                         spin_unlock_irqrestore(&pdg->lock, flags);
1232                                         goto bad_proto;
1233                                 }
1234                         } /* fragment overlap */
1235                 } /* new datagram or add to existing one */
1236
1237                 pd = list_entry(lh, struct partial_datagram, list);
1238
1239                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1240                         pd->ether_type = ether_type;
1241                 }
1242
1243                 if (is_datagram_complete(lh, dg_size)) {
1244                         ether_type = pd->ether_type;
1245                         pdg->sz--;
1246                         skb = skb_get(pd->skb);
1247                         purge_partial_datagram(lh);
1248                         spin_unlock_irqrestore(&pdg->lock, flags);
1249                 } else {
1250                         /* Datagram is not complete, we're done for the
1251                          * moment. */
1252                         spin_unlock_irqrestore(&pdg->lock, flags);
1253                         return 0;
1254                 }
1255         } /* unframgented datagram or fragmented one */
1256
1257         /* Write metadata, and then pass to the receive level */
1258         skb->dev = dev;
1259         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1260
1261         /* Parse the encapsulation header. This actually does the job of
1262          * converting to an ethernet frame header, aswell as arp
1263          * conversion if needed. ARP conversion is easier in this
1264          * direction, since we are using ethernet as our backend.  */
1265         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1266                                               ether_type);
1267
1268
1269         spin_lock_irqsave(&priv->lock, flags);
1270         if (!skb->protocol) {
1271                 priv->stats.rx_errors++;
1272                 priv->stats.rx_dropped++;
1273                 dev_kfree_skb_any(skb);
1274                 goto bad_proto;
1275         }
1276
1277         if (netif_rx(skb) == NET_RX_DROP) {
1278                 priv->stats.rx_errors++;
1279                 priv->stats.rx_dropped++;
1280                 goto bad_proto;
1281         }
1282
1283         /* Statistics */
1284         priv->stats.rx_packets++;
1285         priv->stats.rx_bytes += skb->len;
1286
1287 bad_proto:
1288         if (netif_queue_stopped(dev))
1289                 netif_wake_queue(dev);
1290         spin_unlock_irqrestore(&priv->lock, flags);
1291
1292         dev->last_rx = jiffies;
1293
1294         return 0;
1295 }
1296
1297 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1298                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1299 {
1300         struct eth1394_host_info *hi;
1301
1302         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1303         if (hi == NULL) {
1304                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1305                                 host->driver->name);
1306                 return RCODE_ADDRESS_ERROR;
1307         }
1308
1309         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1310                 return RCODE_ADDRESS_ERROR;
1311         else
1312                 return RCODE_COMPLETE;
1313 }
1314
1315 static void ether1394_iso(struct hpsb_iso *iso)
1316 {
1317         quadlet_t *data;
1318         char *buf;
1319         struct eth1394_host_info *hi;
1320         struct net_device *dev;
1321         struct eth1394_priv *priv;
1322         unsigned int len;
1323         u32 specifier_id;
1324         u16 source_id;
1325         int i;
1326         int nready;
1327
1328         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1329         if (hi == NULL) {
1330                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1331                                 iso->host->driver->name);
1332                 return;
1333         }
1334
1335         dev = hi->dev;
1336
1337         nready = hpsb_iso_n_ready(iso);
1338         for (i = 0; i < nready; i++) {
1339                 struct hpsb_iso_packet_info *info =
1340                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1341                 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1342
1343                 /* skip over GASP header */
1344                 buf = (char *)data + 8;
1345                 len = info->len - 8;
1346
1347                 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1348                                 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1349                 source_id = be32_to_cpu(data[0]) >> 16;
1350
1351                 priv = (struct eth1394_priv *)dev->priv;
1352
1353                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1354                    specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1355                         /* This packet is not for us */
1356                         continue;
1357                 }
1358                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1359                                        buf, len);
1360         }
1361
1362         hpsb_iso_recv_release_packets(iso, i);
1363
1364         dev->last_rx = jiffies;
1365 }
1366
1367 /******************************************
1368  * Datagram transmission code
1369  ******************************************/
1370
1371 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1372  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1373  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1374  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1375  * judge.
1376  *
1377  * Now that the EUI is used for the hardware address all we need to do to make
1378  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1379  * speed, and unicast FIFO address information between the sender_unique_id
1380  * and the IP addresses.
1381  */
1382 static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
1383                                             struct net_device *dev)
1384 {
1385         struct eth1394_priv *priv = (struct eth1394_priv *)(dev->priv);
1386
1387         struct arphdr *arp = (struct arphdr *)skb->data;
1388         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1389         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1390
1391         /* Believe it or not, all that need to happen is sender IP get moved
1392          * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo.  */
1393         arp1394->hw_addr_len    = 16;
1394         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1395         arp1394->max_rec        = priv->host->csr.max_rec;
1396         arp1394->sspd           = priv->host->csr.lnk_spd;
1397         arp1394->fifo_hi        = htons (priv->local_fifo >> 32);
1398         arp1394->fifo_lo        = htonl (priv->local_fifo & ~0x0);
1399
1400         return;
1401 }
1402
1403 /* We need to encapsulate the standard header with our own. We use the
1404  * ethernet header's proto for our own. */
1405 static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1406                                                       int proto,
1407                                                       union eth1394_hdr *hdr,
1408                                                       u16 dg_size, u16 dgl)
1409 {
1410         unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1411
1412         /* Does it all fit in one packet? */
1413         if (dg_size <= adj_max_payload) {
1414                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1415                 hdr->uf.ether_type = proto;
1416         } else {
1417                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1418                 hdr->ff.ether_type = proto;
1419                 hdr->ff.dg_size = dg_size - 1;
1420                 hdr->ff.dgl = dgl;
1421                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1422         }
1423         return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1424 }
1425
1426 static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
1427                                                  unsigned int max_payload,
1428                                                  union eth1394_hdr *hdr)
1429 {
1430         union eth1394_hdr *bufhdr;
1431         int ftype = hdr->common.lf;
1432         int hdrsz = hdr_type_len[ftype];
1433         unsigned int adj_max_payload = max_payload - hdrsz;
1434
1435         switch(ftype) {
1436         case ETH1394_HDR_LF_UF:
1437                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1438                 bufhdr->words.word1 = htons(hdr->words.word1);
1439                 bufhdr->words.word2 = hdr->words.word2;
1440                 break;
1441
1442         case ETH1394_HDR_LF_FF:
1443                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1444                 bufhdr->words.word1 = htons(hdr->words.word1);
1445                 bufhdr->words.word2 = hdr->words.word2;
1446                 bufhdr->words.word3 = htons(hdr->words.word3);
1447                 bufhdr->words.word4 = 0;
1448
1449                 /* Set frag type here for future interior fragments */
1450                 hdr->common.lf = ETH1394_HDR_LF_IF;
1451                 hdr->sf.fg_off = 0;
1452                 break;
1453
1454         default:
1455                 hdr->sf.fg_off += adj_max_payload;
1456                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1457                 if (max_payload >= skb->len)
1458                         hdr->common.lf = ETH1394_HDR_LF_LF;
1459                 bufhdr->words.word1 = htons(hdr->words.word1);
1460                 bufhdr->words.word2 = htons(hdr->words.word2);
1461                 bufhdr->words.word3 = htons(hdr->words.word3);
1462                 bufhdr->words.word4 = 0;
1463         }
1464
1465         return min(max_payload, skb->len);
1466 }
1467
1468 static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1469 {
1470         struct hpsb_packet *p;
1471
1472         p = hpsb_alloc_packet(0);
1473         if (p) {
1474                 p->host = host;
1475                 p->generation = get_hpsb_generation(host);
1476                 p->type = hpsb_async;
1477         }
1478         return p;
1479 }
1480
1481 static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
1482                                               struct hpsb_host *host,
1483                                               nodeid_t node, u64 addr,
1484                                               void * data, int tx_len)
1485 {
1486         p->node_id = node;
1487         p->data = NULL;
1488
1489         p->tcode = TCODE_WRITEB;
1490         p->header[1] = (host->node_id << 16) | (addr >> 32);
1491         p->header[2] = addr & 0xffffffff;
1492
1493         p->header_size = 16;
1494         p->expect_response = 1;
1495
1496         if (hpsb_get_tlabel(p)) {
1497                 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1498                                 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1499                 return -1;
1500         }
1501         p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1502                 | (1 << 8) | (TCODE_WRITEB << 4);
1503
1504         p->header[3] = tx_len << 16;
1505         p->data_size = (tx_len + 3) & ~3;
1506         p->data = (quadlet_t*)data;
1507
1508         return 0;
1509 }
1510
1511 static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1512                                               struct eth1394_priv *priv,
1513                                               struct sk_buff *skb, int length)
1514 {
1515         p->header_size = 4;
1516         p->tcode = TCODE_STREAM_DATA;
1517
1518         p->header[0] = (length << 16) | (3 << 14)
1519                 | ((priv->broadcast_channel) << 8)
1520                 | (TCODE_STREAM_DATA << 4);
1521         p->data_size = length;
1522         p->data = ((quadlet_t*)skb->data) - 2;
1523         p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1524                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1525         p->data[1] = __constant_cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1526                                             ETHER1394_GASP_VERSION);
1527
1528         /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1529          * prevents hpsb_send_packet() from setting the speed to an arbitrary
1530          * value based on packet->node_id if packet->node_id is not set. */
1531         p->node_id = ALL_NODES;
1532         p->speed_code = priv->bc_sspd;
1533 }
1534
1535 static inline void ether1394_free_packet(struct hpsb_packet *packet)
1536 {
1537         if (packet->tcode != TCODE_STREAM_DATA)
1538                 hpsb_free_tlabel(packet);
1539         hpsb_free_packet(packet);
1540 }
1541
1542 static void ether1394_complete_cb(void *__ptask);
1543
1544 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1545 {
1546         struct eth1394_priv *priv = ptask->priv;
1547         struct hpsb_packet *packet = NULL;
1548
1549         packet = ether1394_alloc_common_packet(priv->host);
1550         if (!packet)
1551                 return -1;
1552
1553         if (ptask->tx_type == ETH1394_GASP) {
1554                 int length = tx_len + (2 * sizeof(quadlet_t));
1555
1556                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1557         } else if (ether1394_prep_write_packet(packet, priv->host,
1558                                                ptask->dest_node,
1559                                                ptask->addr, ptask->skb->data,
1560                                                tx_len)) {
1561                 hpsb_free_packet(packet);
1562                 return -1;
1563         }
1564
1565         ptask->packet = packet;
1566         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1567                                       ptask);
1568
1569         if (hpsb_send_packet(packet) < 0) {
1570                 ether1394_free_packet(packet);
1571                 return -1;
1572         }
1573
1574         return 0;
1575 }
1576
1577
1578 /* Task function to be run when a datagram transmission is completed */
1579 static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
1580 {
1581         struct sk_buff *skb = ptask->skb;
1582         struct net_device *dev = skb->dev;
1583         struct eth1394_priv *priv = dev->priv;
1584         unsigned long flags;
1585
1586         /* Statistics */
1587         spin_lock_irqsave(&priv->lock, flags);
1588         if (fail) {
1589                 priv->stats.tx_dropped++;
1590                 priv->stats.tx_errors++;
1591         } else {
1592                 priv->stats.tx_bytes += skb->len;
1593                 priv->stats.tx_packets++;
1594         }
1595         spin_unlock_irqrestore(&priv->lock, flags);
1596
1597         dev_kfree_skb_any(skb);
1598         kmem_cache_free(packet_task_cache, ptask);
1599 }
1600
1601
1602 /* Callback for when a packet has been sent and the status of that packet is
1603  * known */
1604 static void ether1394_complete_cb(void *__ptask)
1605 {
1606         struct packet_task *ptask = (struct packet_task *)__ptask;
1607         struct hpsb_packet *packet = ptask->packet;
1608         int fail = 0;
1609
1610         if (packet->tcode != TCODE_STREAM_DATA)
1611                 fail = hpsb_packet_success(packet);
1612
1613         ether1394_free_packet(packet);
1614
1615         ptask->outstanding_pkts--;
1616         if (ptask->outstanding_pkts > 0 && !fail) {
1617                 int tx_len;
1618
1619                 /* Add the encapsulation header to the fragment */
1620                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1621                                                &ptask->hdr);
1622                 if (ether1394_send_packet(ptask, tx_len))
1623                         ether1394_dg_complete(ptask, 1);
1624         } else {
1625                 ether1394_dg_complete(ptask, fail);
1626         }
1627 }
1628
1629
1630
1631 /* Transmit a packet (called by kernel) */
1632 static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1633 {
1634         int kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1635         struct eth1394hdr *eth;
1636         struct eth1394_priv *priv = dev->priv;
1637         int proto;
1638         unsigned long flags;
1639         nodeid_t dest_node;
1640         eth1394_tx_type tx_type;
1641         int ret = 0;
1642         unsigned int tx_len;
1643         unsigned int max_payload;
1644         u16 dg_size;
1645         u16 dgl;
1646         struct packet_task *ptask;
1647         struct eth1394_node_ref *node;
1648         struct eth1394_node_info *node_info = NULL;
1649
1650         ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1651         if (ptask == NULL) {
1652                 ret = -ENOMEM;
1653                 goto fail;
1654         }
1655
1656         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1657          * it does not set our validity bit. We need to compensate for
1658          * that somewhere else, but not in eth1394. */
1659 #if 0
1660         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1661                 ret = -EAGAIN;
1662                 goto fail;
1663         }
1664 #endif
1665
1666         if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1667                 ret = -ENOMEM;
1668                 goto fail;
1669         }
1670
1671         /* Get rid of the fake eth1394 header, but save a pointer */
1672         eth = (struct eth1394hdr*)skb->data;
1673         skb_pull(skb, ETH1394_HLEN);
1674
1675         proto = eth->h_proto;
1676         dg_size = skb->len;
1677
1678         /* Set the transmission type for the packet.  ARP packets and IP
1679          * broadcast packets are sent via GASP. */
1680         if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1681             proto == __constant_htons(ETH_P_ARP) ||
1682             (proto == __constant_htons(ETH_P_IP) &&
1683              IN_MULTICAST(__constant_ntohl(skb->nh.iph->daddr)))) {
1684                 tx_type = ETH1394_GASP;
1685                 dest_node = LOCAL_BUS | ALL_NODES;
1686                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1687                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1688                 dgl = priv->bc_dgl;
1689                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1690                         priv->bc_dgl++;
1691         } else {
1692                 node = eth1394_find_node_guid(&priv->ip_node_list,
1693                                               be64_to_cpu(*(u64*)eth->h_dest));
1694                 if (!node) {
1695                         ret = -EAGAIN;
1696                         goto fail;
1697                 }
1698                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1699                 if (node_info->fifo == ETHER1394_INVALID_ADDR) {
1700                         ret = -EAGAIN;
1701                         goto fail;
1702                 }
1703
1704                 dest_node = node->ud->ne->nodeid;
1705                 max_payload = node_info->maxpayload;
1706                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1707
1708                 dgl = node_info->dgl;
1709                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1710                         node_info->dgl++;
1711                 tx_type = ETH1394_WRREQ;
1712         }
1713
1714         /* If this is an ARP packet, convert it */
1715         if (proto == __constant_htons (ETH_P_ARP))
1716                 ether1394_arp_to_1394arp (skb, dev);
1717
1718         ptask->hdr.words.word1 = 0;
1719         ptask->hdr.words.word2 = 0;
1720         ptask->hdr.words.word3 = 0;
1721         ptask->hdr.words.word4 = 0;
1722         ptask->skb = skb;
1723         ptask->priv = priv;
1724         ptask->tx_type = tx_type;
1725
1726         if (tx_type != ETH1394_GASP) {
1727                 u64 addr;
1728
1729                 spin_lock_irqsave(&priv->lock, flags);
1730                 addr = node_info->fifo;
1731                 spin_unlock_irqrestore(&priv->lock, flags);
1732
1733                 ptask->addr = addr;
1734                 ptask->dest_node = dest_node;
1735         }
1736
1737         ptask->tx_type = tx_type;
1738         ptask->max_payload = max_payload;
1739         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1740                                                              &ptask->hdr, dg_size,
1741                                                              dgl);
1742
1743         /* Add the encapsulation header to the fragment */
1744         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1745         dev->trans_start = jiffies;
1746         if (ether1394_send_packet(ptask, tx_len))
1747                 goto fail;
1748
1749         netif_wake_queue(dev);
1750         return 0;
1751 fail:
1752         if (ptask)
1753                 kmem_cache_free(packet_task_cache, ptask);
1754
1755         if (skb != NULL)
1756                 dev_kfree_skb(skb);
1757
1758         spin_lock_irqsave (&priv->lock, flags);
1759         priv->stats.tx_dropped++;
1760         priv->stats.tx_errors++;
1761         spin_unlock_irqrestore (&priv->lock, flags);
1762
1763         if (netif_queue_stopped(dev))
1764                 netif_wake_queue(dev);
1765
1766         return 0;  /* returning non-zero causes serious problems */
1767 }
1768
1769 static int ether1394_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1770 {
1771         switch(cmd) {
1772                 case SIOCETHTOOL:
1773                         return ether1394_ethtool_ioctl(dev, ifr->ifr_data);
1774
1775                 case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
1776                 case SIOCGMIIREG:               /* Read MII PHY register. */
1777                 case SIOCSMIIREG:               /* Write MII PHY register. */
1778                 default:
1779                         return -EOPNOTSUPP;
1780         }
1781
1782         return 0;
1783 }
1784
1785 static int ether1394_ethtool_ioctl(struct net_device *dev, void __user *useraddr)
1786 {
1787         u32 ethcmd;
1788
1789         if (get_user(ethcmd, (u32 __user *)useraddr))
1790                 return -EFAULT;
1791
1792         switch (ethcmd) {
1793                 case ETHTOOL_GDRVINFO: {
1794                         struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO };
1795                         strcpy (info.driver, driver_name);
1796                         strcpy (info.version, "$Rev: 1224 $");
1797                         /* FIXME XXX provide sane businfo */
1798                         strcpy (info.bus_info, "ieee1394");
1799                         if (copy_to_user (useraddr, &info, sizeof (info)))
1800                                 return -EFAULT;
1801                         break;
1802                 }
1803                 case ETHTOOL_GSET:
1804                 case ETHTOOL_SSET:
1805                 case ETHTOOL_NWAY_RST:
1806                 case ETHTOOL_GLINK:
1807                 case ETHTOOL_GMSGLVL:
1808                 case ETHTOOL_SMSGLVL:
1809                 default:
1810                         return -EOPNOTSUPP;
1811         }
1812
1813         return 0;
1814 }
1815
1816
1817 static int __init ether1394_init_module (void)
1818 {
1819         packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1820                                               0, 0, NULL, NULL);
1821
1822         /* Register ourselves as a highlevel driver */
1823         hpsb_register_highlevel(&eth1394_highlevel);
1824
1825         return hpsb_register_protocol(&eth1394_proto_driver);
1826 }
1827
1828 static void __exit ether1394_exit_module (void)
1829 {
1830         hpsb_unregister_protocol(&eth1394_proto_driver);
1831         hpsb_unregister_highlevel(&eth1394_highlevel);
1832         kmem_cache_destroy(packet_task_cache);
1833 }
1834
1835 module_init(ether1394_init_module);
1836 module_exit(ether1394_exit_module);