This commit was manufactured by cvs2svn to create tag
[linux-2.6.git] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /* This driver intends to support RFC 2734, which describes a method for
26  * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27  * will ultimately support that method, but currently falls short in
28  * several areas.
29  *
30  * TODO:
31  * RFC 2734 related:
32  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33  *
34  * Non-RFC 2734 related:
35  * - Handle fragmented skb's coming from the networking layer.
36  * - Move generic GASP reception to core 1394 code
37  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38  * - Stability improvements
39  * - Performance enhancements
40  * - Consider garbage collecting old partial datagrams after X amount of time
41  */
42
43
44 #include <linux/module.h>
45
46 #include <linux/sched.h>
47 #include <linux/kernel.h>
48 #include <linux/slab.h>
49 #include <linux/errno.h>
50 #include <linux/types.h>
51 #include <linux/delay.h>
52 #include <linux/init.h>
53
54 #include <linux/netdevice.h>
55 #include <linux/inetdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/if_arp.h>
58 #include <linux/if_ether.h>
59 #include <linux/ip.h>
60 #include <linux/in.h>
61 #include <linux/tcp.h>
62 #include <linux/skbuff.h>
63 #include <linux/bitops.h>
64 #include <linux/ethtool.h>
65 #include <asm/uaccess.h>
66 #include <asm/delay.h>
67 #include <asm/semaphore.h>
68 #include <net/arp.h>
69
70 #include "csr1212.h"
71 #include "ieee1394_types.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_transactions.h"
74 #include "ieee1394.h"
75 #include "highlevel.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78 #include "eth1394.h"
79 #include "config_roms.h"
80
81 #define ETH1394_PRINT_G(level, fmt, args...) \
82         printk(level "%s: " fmt, driver_name, ## args)
83
84 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
85         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
86
87 #define DEBUG(fmt, args...) \
88         printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
89 #define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
90
91 static char version[] __devinitdata =
92         "$Rev: 1224 $ Ben Collins <bcollins@debian.org>";
93
94 struct fragment_info {
95         struct list_head list;
96         int offset;
97         int len;
98 };
99
100 struct partial_datagram {
101         struct list_head list;
102         u16 dgl;
103         u16 dg_size;
104         u16 ether_type;
105         struct sk_buff *skb;
106         char *pbuf;
107         struct list_head frag_info;
108 };
109
110 struct pdg_list {
111         struct list_head list;          /* partial datagram list per node       */
112         unsigned int sz;                /* partial datagram list size per node  */
113         spinlock_t lock;                /* partial datagram lock                */
114 };
115
116 struct eth1394_host_info {
117         struct hpsb_host *host;
118         struct net_device *dev;
119 };
120
121 struct eth1394_node_ref {
122         struct unit_directory *ud;
123         struct list_head list;
124 };
125
126 struct eth1394_node_info {
127         u16 maxpayload;                 /* Max payload                  */
128         u8 sspd;                        /* Max speed                    */
129         u64 fifo;                       /* FIFO address                 */
130         struct pdg_list pdg;            /* partial RX datagram lists    */
131         int dgl;                        /* Outgoing datagram label      */
132 };
133
134 /* Our ieee1394 highlevel driver */
135 #define ETH1394_DRIVER_NAME "ip1394"
136 static const char driver_name[] = ETH1394_DRIVER_NAME;
137
138 static kmem_cache_t *packet_task_cache;
139
140 static struct hpsb_highlevel eth1394_highlevel;
141
142 /* Use common.lf to determine header len */
143 static const int hdr_type_len[] = {
144         sizeof (struct eth1394_uf_hdr),
145         sizeof (struct eth1394_ff_hdr),
146         sizeof (struct eth1394_sf_hdr),
147         sizeof (struct eth1394_sf_hdr)
148 };
149
150 /* Change this to IEEE1394_SPEED_S100 to make testing easier */
151 #define ETH1394_SPEED_DEF       IEEE1394_SPEED_MAX
152
153 /* For now, this needs to be 1500, so that XP works with us */
154 #define ETH1394_DATA_LEN        ETH_DATA_LEN
155
156 static const u16 eth1394_speedto_maxpayload[] = {
157 /*     S100, S200, S400, S800, S1600, S3200 */
158         512, 1024, 2048, 4096,  4096,  4096
159 };
160
161 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
162 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
163 MODULE_LICENSE("GPL");
164
165 /* The max_partial_datagrams parameter is the maximum number of fragmented
166  * datagrams per node that eth1394 will keep in memory.  Providing an upper
167  * bound allows us to limit the amount of memory that partial datagrams
168  * consume in the event that some partial datagrams are never completed.  This
169  * should probably change to a sysctl item or the like if possible.
170  */
171 MODULE_PARM(max_partial_datagrams, "i");
172 MODULE_PARM_DESC(max_partial_datagrams,
173                  "Maximum number of partially received fragmented datagrams "
174                  "(default = 25).");
175 static int max_partial_datagrams = 25;
176
177
178 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
179                             unsigned short type, void *daddr, void *saddr,
180                             unsigned len);
181 static int ether1394_rebuild_header(struct sk_buff *skb);
182 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
183 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
184 static void ether1394_header_cache_update(struct hh_cache *hh,
185                                           struct net_device *dev,
186                                           unsigned char * haddr);
187 static int ether1394_mac_addr(struct net_device *dev, void *p);
188
189 static inline void purge_partial_datagram(struct list_head *old);
190 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
191 static void ether1394_iso(struct hpsb_iso *iso);
192
193 static int ether1394_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
194 static int ether1394_ethtool_ioctl(struct net_device *dev, void __user *useraddr);
195
196 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
197                            quadlet_t *data, u64 addr, size_t len, u16 flags);
198 static void ether1394_add_host (struct hpsb_host *host);
199 static void ether1394_remove_host (struct hpsb_host *host);
200 static void ether1394_host_reset (struct hpsb_host *host);
201
202 /* Function for incoming 1394 packets */
203 static struct hpsb_address_ops addr_ops = {
204         .write =        ether1394_write,
205 };
206
207 /* Ieee1394 highlevel driver functions */
208 static struct hpsb_highlevel eth1394_highlevel = {
209         .name =         driver_name,
210         .add_host =     ether1394_add_host,
211         .remove_host =  ether1394_remove_host,
212         .host_reset =   ether1394_host_reset,
213 };
214
215
216 /* This is called after an "ifup" */
217 static int ether1394_open (struct net_device *dev)
218 {
219         struct eth1394_priv *priv = dev->priv;
220         int ret = 0;
221
222         /* Something bad happened, don't even try */
223         if (priv->bc_state == ETHER1394_BC_ERROR) {
224                 /* we'll try again */
225                 priv->iso = hpsb_iso_recv_init(priv->host,
226                                                ETHER1394_GASP_BUFFERS * 2 *
227                                                (1 << (priv->host->csr.max_rec +
228                                                       1)),
229                                                ETHER1394_GASP_BUFFERS,
230                                                priv->broadcast_channel,
231                                                HPSB_ISO_DMA_PACKET_PER_BUFFER,
232                                                1, ether1394_iso);
233                 if (priv->iso == NULL) {
234                         ETH1394_PRINT(KERN_ERR, dev->name,
235                                       "Could not allocate isochronous receive "
236                                       "context for the broadcast channel\n");
237                         priv->bc_state = ETHER1394_BC_ERROR;
238                         ret = -EAGAIN;
239                 } else {
240                         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
241                                 priv->bc_state = ETHER1394_BC_STOPPED;
242                         else
243                                 priv->bc_state = ETHER1394_BC_RUNNING;
244                 }
245         }
246
247         if (ret)
248                 return ret;
249
250         netif_start_queue (dev);
251         return 0;
252 }
253
254 /* This is called after an "ifdown" */
255 static int ether1394_stop (struct net_device *dev)
256 {
257         netif_stop_queue (dev);
258         return 0;
259 }
260
261 /* Return statistics to the caller */
262 static struct net_device_stats *ether1394_stats (struct net_device *dev)
263 {
264         return &(((struct eth1394_priv *)dev->priv)->stats);
265 }
266
267 /* What to do if we timeout. I think a host reset is probably in order, so
268  * that's what we do. Should we increment the stat counters too?  */
269 static void ether1394_tx_timeout (struct net_device *dev)
270 {
271         ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
272                        ((struct eth1394_priv *)(dev->priv))->host->driver->name);
273
274         highlevel_host_reset (((struct eth1394_priv *)(dev->priv))->host);
275
276         netif_wake_queue (dev);
277 }
278
279 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
280 {
281         struct eth1394_priv *priv = dev->priv;
282
283         if ((new_mtu < 68) ||
284             (new_mtu > min(ETH1394_DATA_LEN,
285                            (int)((1 << (priv->host->csr.max_rec + 1)) -
286                                  (sizeof(union eth1394_hdr) +
287                                   ETHER1394_GASP_OVERHEAD)))))
288                 return -EINVAL;
289         dev->mtu = new_mtu;
290         return 0;
291 }
292
293
294 /******************************************
295  * 1394 bus activity functions
296  ******************************************/
297
298 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
299                                                   struct unit_directory *ud)
300 {
301         struct eth1394_node_ref *node;
302
303         list_for_each_entry(node, inl, list)
304                 if (node->ud == ud)
305                         return node;
306
307         return NULL;
308 }
309
310 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
311                                                        u64 guid)
312 {
313         struct eth1394_node_ref *node;
314
315         list_for_each_entry(node, inl, list)
316                 if (node->ud->ne->guid == guid)
317                         return node;
318
319         return NULL;
320 }
321
322 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
323                                                          nodeid_t nodeid)
324 {
325         struct eth1394_node_ref *node;
326         list_for_each_entry(node, inl, list) {
327                 if (node->ud->ne->nodeid == nodeid)
328                         return node;
329         }
330
331         return NULL;
332 }
333
334 static int eth1394_probe(struct device *dev)
335 {
336         struct unit_directory *ud;
337         struct eth1394_host_info *hi;
338         struct eth1394_priv *priv;
339         struct eth1394_node_ref *new_node;
340         struct eth1394_node_info *node_info;
341
342         ud = container_of(dev, struct unit_directory, device);
343
344         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
345         if (!hi)
346                 return -ENOENT;
347
348         new_node = kmalloc(sizeof(struct eth1394_node_ref),
349                            in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
350         if (!new_node)
351                 return -ENOMEM;
352
353         node_info = kmalloc(sizeof(struct eth1394_node_info),
354                             in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
355         if (!node_info) {
356                 kfree(new_node);
357                 return -ENOMEM;
358         }
359
360         spin_lock_init(&node_info->pdg.lock);
361         INIT_LIST_HEAD(&node_info->pdg.list);
362         node_info->pdg.sz = 0;
363         node_info->fifo = ETHER1394_INVALID_ADDR;
364
365         ud->device.driver_data = node_info;
366         new_node->ud = ud;
367
368         priv = (struct eth1394_priv *)hi->dev->priv;
369         list_add_tail(&new_node->list, &priv->ip_node_list);
370
371         return 0;
372 }
373
374 static int eth1394_remove(struct device *dev)
375 {
376         struct unit_directory *ud;
377         struct eth1394_host_info *hi;
378         struct eth1394_priv *priv;
379         struct eth1394_node_ref *old_node;
380         struct eth1394_node_info *node_info;
381         struct list_head *lh, *n;
382         unsigned long flags;
383
384         ud = container_of(dev, struct unit_directory, device);
385         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
386         if (!hi)
387                 return -ENOENT;
388
389         priv = (struct eth1394_priv *)hi->dev->priv;
390
391         old_node = eth1394_find_node(&priv->ip_node_list, ud);
392
393         if (old_node) {
394                 list_del(&old_node->list);
395                 kfree(old_node);
396
397                 node_info = (struct eth1394_node_info*)ud->device.driver_data;
398
399                 spin_lock_irqsave(&node_info->pdg.lock, flags);
400                 /* The partial datagram list should be empty, but we'll just
401                  * make sure anyway... */
402                 list_for_each_safe(lh, n, &node_info->pdg.list) {
403                         purge_partial_datagram(lh);
404                 }
405                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
406
407                 kfree(node_info);
408                 ud->device.driver_data = NULL;
409         }
410         return 0;
411 }
412
413 static int eth1394_update(struct unit_directory *ud)
414 {
415         struct eth1394_host_info *hi;
416         struct eth1394_priv *priv;
417         struct eth1394_node_ref *node;
418         struct eth1394_node_info *node_info;
419
420         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
421         if (!hi)
422                 return -ENOENT;
423
424         priv = (struct eth1394_priv *)hi->dev->priv;
425
426         node = eth1394_find_node(&priv->ip_node_list, ud);
427
428         if (!node) {
429                 node = kmalloc(sizeof(struct eth1394_node_ref),
430                                in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
431                 if (!node)
432                         return -ENOMEM;
433
434                 node_info = kmalloc(sizeof(struct eth1394_node_info),
435                                     in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
436                 if (!node_info) {
437                         kfree(node);
438                         return -ENOMEM;
439                 }
440
441                 spin_lock_init(&node_info->pdg.lock);
442                 INIT_LIST_HEAD(&node_info->pdg.list);
443                 node_info->pdg.sz = 0;
444
445                 ud->device.driver_data = node_info;
446                 node->ud = ud;
447
448                 priv = (struct eth1394_priv *)hi->dev->priv;
449                 list_add_tail(&node->list, &priv->ip_node_list);
450         }
451
452         return 0;
453 }
454
455
456 static struct ieee1394_device_id eth1394_id_table[] = {
457         {
458                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
459                                 IEEE1394_MATCH_VERSION),
460                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
461                 .version = ETHER1394_GASP_VERSION,
462         },
463         {}
464 };
465
466 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
467
468 static struct hpsb_protocol_driver eth1394_proto_driver = {
469         .name           = "IPv4 over 1394 Driver",
470         .id_table       = eth1394_id_table,
471         .update         = eth1394_update,
472         .driver         = {
473                 .name           = ETH1394_DRIVER_NAME,
474                 .bus            = &ieee1394_bus_type,
475                 .probe          = eth1394_probe,
476                 .remove         = eth1394_remove,
477         },
478 };
479
480
481 static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
482 {
483         unsigned long flags;
484         int i;
485         struct eth1394_priv *priv = dev->priv;
486         struct hpsb_host *host = priv->host;
487         u64 guid = *((u64*)&(host->csr.rom->bus_info_data[3]));
488         u16 maxpayload = 1 << (host->csr.max_rec + 1);
489         int max_speed = IEEE1394_SPEED_MAX;
490
491         spin_lock_irqsave (&priv->lock, flags);
492
493         memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
494         priv->bc_maxpayload = 512;
495
496         /* Determine speed limit */
497         for (i = 0; i < host->node_count; i++)
498                 if (max_speed > host->speed_map[NODEID_TO_NODE(host->node_id) *
499                                                 64 + i])
500                         max_speed = host->speed_map[NODEID_TO_NODE(host->node_id) *
501                                                     64 + i];
502         priv->bc_sspd = max_speed;
503
504         /* We'll use our maxpayload as the default mtu */
505         if (set_mtu) {
506                 dev->mtu = min(ETH1394_DATA_LEN,
507                                (int)(maxpayload -
508                                      (sizeof(union eth1394_hdr) +
509                                       ETHER1394_GASP_OVERHEAD)));
510
511                 /* Set our hardware address while we're at it */
512                 *(u64*)dev->dev_addr = guid;
513                 *(u64*)dev->broadcast = ~0x0ULL;
514         }
515
516         spin_unlock_irqrestore (&priv->lock, flags);
517 }
518
519 /* This function is called right before register_netdev */
520 static void ether1394_init_dev (struct net_device *dev)
521 {
522         /* Our functions */
523         dev->open               = ether1394_open;
524         dev->stop               = ether1394_stop;
525         dev->hard_start_xmit    = ether1394_tx;
526         dev->get_stats          = ether1394_stats;
527         dev->tx_timeout         = ether1394_tx_timeout;
528         dev->change_mtu         = ether1394_change_mtu;
529
530         dev->hard_header        = ether1394_header;
531         dev->rebuild_header     = ether1394_rebuild_header;
532         dev->hard_header_cache  = ether1394_header_cache;
533         dev->header_cache_update= ether1394_header_cache_update;
534         dev->hard_header_parse  = ether1394_header_parse;
535         dev->set_mac_address    = ether1394_mac_addr;
536         dev->do_ioctl           = ether1394_do_ioctl;
537
538         /* Some constants */
539         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
540         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
541         dev->features           = NETIF_F_HIGHDMA;
542         dev->addr_len           = ETH1394_ALEN;
543         dev->hard_header_len    = ETH1394_HLEN;
544         dev->type               = ARPHRD_IEEE1394;
545
546         ether1394_reset_priv (dev, 1);
547 }
548
549 /*
550  * This function is called every time a card is found. It is generally called
551  * when the module is installed. This is where we add all of our ethernet
552  * devices. One for each host.
553  */
554 static void ether1394_add_host (struct hpsb_host *host)
555 {
556         struct eth1394_host_info *hi = NULL;
557         struct net_device *dev = NULL;
558         struct eth1394_priv *priv;
559         static int version_printed = 0;
560         u64 fifo_addr;
561
562         if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
563                 return;
564
565         fifo_addr = hpsb_allocate_and_register_addrspace(&eth1394_highlevel,
566                                                          host,
567                                                          &addr_ops,
568                                                          ETHER1394_REGION_ADDR_LEN,
569                                                          ETHER1394_REGION_ADDR_LEN,
570                                                          -1, -1);
571         if (fifo_addr == ~0ULL)
572                 goto out;
573
574         if (version_printed++ == 0)
575                 ETH1394_PRINT_G (KERN_INFO, "%s\n", version);
576
577         /* We should really have our own alloc_hpsbdev() function in
578          * net_init.c instead of calling the one for ethernet then hijacking
579          * it for ourselves.  That way we'd be a real networking device. */
580         dev = alloc_etherdev(sizeof (struct eth1394_priv));
581
582         if (dev == NULL) {
583                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
584                                  "etherdevice for IEEE 1394 device %s-%d\n",
585                                  host->driver->name, host->id);
586                 goto out;
587         }
588
589         SET_MODULE_OWNER(dev);
590
591         priv = (struct eth1394_priv *)dev->priv;
592
593         INIT_LIST_HEAD(&priv->ip_node_list);
594
595         spin_lock_init(&priv->lock);
596         priv->host = host;
597         priv->local_fifo = fifo_addr;
598
599         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
600
601         if (hi == NULL) {
602                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
603                                  "hostinfo for IEEE 1394 device %s-%d\n",
604                                  host->driver->name, host->id);
605                 goto out;
606         }
607
608         ether1394_init_dev(dev);
609
610         if (register_netdev (dev)) {
611                 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
612                 goto out;
613         }
614
615         ETH1394_PRINT (KERN_ERR, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
616                        host->id);
617
618         hi->host = host;
619         hi->dev = dev;
620
621         /* Ignore validity in hopes that it will be set in the future.  It'll
622          * be checked when the eth device is opened. */
623         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
624
625         priv->iso = hpsb_iso_recv_init(host, (ETHER1394_GASP_BUFFERS * 2 *
626                                               (1 << (host->csr.max_rec + 1))),
627                                        ETHER1394_GASP_BUFFERS,
628                                        priv->broadcast_channel,
629                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
630                                        1, ether1394_iso);
631         if (priv->iso == NULL) {
632                 ETH1394_PRINT(KERN_ERR, dev->name,
633                               "Could not allocate isochronous receive context "
634                               "for the broadcast channel\n");
635                 priv->bc_state = ETHER1394_BC_ERROR;
636         } else {
637                 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
638                         priv->bc_state = ETHER1394_BC_STOPPED;
639                 else
640                         priv->bc_state = ETHER1394_BC_RUNNING;
641         }
642
643         return;
644
645 out:
646         if (dev != NULL)
647                 free_netdev(dev);
648         if (hi)
649                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
650
651         return;
652 }
653
654 /* Remove a card from our list */
655 static void ether1394_remove_host (struct hpsb_host *host)
656 {
657         struct eth1394_host_info *hi;
658
659         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
660         if (hi != NULL) {
661                 struct eth1394_priv *priv = (struct eth1394_priv *)hi->dev->priv;
662
663                 hpsb_unregister_addrspace(&eth1394_highlevel, host,
664                                           priv->local_fifo);
665
666                 if (priv->iso != NULL)
667                         hpsb_iso_shutdown(priv->iso);
668
669                 if (hi->dev) {
670                         unregister_netdev (hi->dev);
671                         free_netdev(hi->dev);
672                 }
673         }
674
675         return;
676 }
677
678 /* A reset has just arisen */
679 static void ether1394_host_reset (struct hpsb_host *host)
680 {
681         struct eth1394_host_info *hi;
682         struct eth1394_priv *priv;
683         struct net_device *dev;
684         struct list_head *lh, *n;
685         struct eth1394_node_ref *node;
686         struct eth1394_node_info *node_info;
687         unsigned long flags;
688
689         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
690
691         /* This can happen for hosts that we don't use */
692         if (hi == NULL)
693                 return;
694
695         dev = hi->dev;
696         priv = (struct eth1394_priv *)dev->priv;
697
698         /* Reset our private host data, but not our mtu */
699         netif_stop_queue (dev);
700         ether1394_reset_priv (dev, 0);
701
702         list_for_each_entry(node, &priv->ip_node_list, list) {
703                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
704
705                 spin_lock_irqsave(&node_info->pdg.lock, flags);
706
707                 list_for_each_safe(lh, n, &node_info->pdg.list) {
708                         purge_partial_datagram(lh);
709                 }
710
711                 INIT_LIST_HEAD(&(node_info->pdg.list));
712                 node_info->pdg.sz = 0;
713
714                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
715         }
716
717         netif_wake_queue (dev);
718 }
719
720 /******************************************
721  * HW Header net device functions
722  ******************************************/
723 /* These functions have been adapted from net/ethernet/eth.c */
724
725
726 /* Create a fake MAC header for an arbitrary protocol layer.
727  * saddr=NULL means use device source address
728  * daddr=NULL means leave destination address (eg unresolved arp). */
729 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
730                             unsigned short type, void *daddr, void *saddr,
731                             unsigned len)
732 {
733         struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
734
735         eth->h_proto = htons(type);
736
737         if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
738                 memset(eth->h_dest, 0, dev->addr_len);
739                 return(dev->hard_header_len);
740         }
741
742         if (daddr) {
743                 memcpy(eth->h_dest,daddr,dev->addr_len);
744                 return dev->hard_header_len;
745         }
746
747         return -dev->hard_header_len;
748
749 }
750
751
752 /* Rebuild the faked MAC header. This is called after an ARP
753  * (or in future other address resolution) has completed on this
754  * sk_buff. We now let ARP fill in the other fields.
755  *
756  * This routine CANNOT use cached dst->neigh!
757  * Really, it is used only when dst->neigh is wrong.
758  */
759 static int ether1394_rebuild_header(struct sk_buff *skb)
760 {
761         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
762         struct net_device *dev = skb->dev;
763
764         switch (eth->h_proto) {
765
766 #ifdef CONFIG_INET
767         case __constant_htons(ETH_P_IP):
768                 return arp_find((unsigned char*)&eth->h_dest, skb);
769 #endif
770         default:
771                 ETH1394_PRINT(KERN_DEBUG, dev->name,
772                               "unable to resolve type %04x addresses.\n",
773                               eth->h_proto);
774                 break;
775         }
776
777         return 0;
778 }
779
780 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
781 {
782         struct net_device *dev = skb->dev;
783         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
784         return ETH1394_ALEN;
785 }
786
787
788 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
789 {
790         unsigned short type = hh->hh_type;
791         struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
792                                                       (16 - ETH1394_HLEN));
793         struct net_device *dev = neigh->dev;
794
795         if (type == __constant_htons(ETH_P_802_3)) {
796                 return -1;
797         }
798
799         eth->h_proto = type;
800         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
801
802         hh->hh_len = ETH1394_HLEN;
803         return 0;
804 }
805
806 /* Called by Address Resolution module to notify changes in address. */
807 static void ether1394_header_cache_update(struct hh_cache *hh,
808                                           struct net_device *dev,
809                                           unsigned char * haddr)
810 {
811         memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
812 }
813
814 static int ether1394_mac_addr(struct net_device *dev, void *p)
815 {
816         if (netif_running(dev))
817                 return -EBUSY;
818
819         /* Not going to allow setting the MAC address, we really need to use
820          * the real one supplied by the hardware */
821          return -EINVAL;
822  }
823
824
825
826 /******************************************
827  * Datagram reception code
828  ******************************************/
829
830 /* Copied from net/ethernet/eth.c */
831 static inline u16 ether1394_type_trans(struct sk_buff *skb,
832                                        struct net_device *dev)
833 {
834         struct eth1394hdr *eth;
835         unsigned char *rawp;
836
837         skb->mac.raw = skb->data;
838         skb_pull (skb, ETH1394_HLEN);
839         eth = (struct eth1394hdr*)skb->mac.raw;
840
841         if (*eth->h_dest & 1) {
842                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
843                         skb->pkt_type = PACKET_BROADCAST;
844 #if 0
845                 else
846                         skb->pkt_type = PACKET_MULTICAST;
847 #endif
848         } else {
849                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
850                         skb->pkt_type = PACKET_OTHERHOST;
851         }
852
853         if (ntohs (eth->h_proto) >= 1536)
854                 return eth->h_proto;
855
856         rawp = skb->data;
857
858         if (*(unsigned short *)rawp == 0xFFFF)
859                 return htons (ETH_P_802_3);
860
861         return htons (ETH_P_802_2);
862 }
863
864 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
865  * We also perform ARP translation here, if need be.  */
866 static inline u16 ether1394_parse_encap(struct sk_buff *skb,
867                                         struct net_device *dev,
868                                         nodeid_t srcid, nodeid_t destid,
869                                         u16 ether_type)
870 {
871         struct eth1394_priv *priv = dev->priv;
872         u64 dest_hw;
873         unsigned short ret = 0;
874
875         /* Setup our hw addresses. We use these to build the
876          * ethernet header.  */
877         if (destid == (LOCAL_BUS | ALL_NODES))
878                 dest_hw = ~0ULL;  /* broadcast */
879         else
880                 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
881                                       priv->host->csr.guid_lo);
882
883         /* If this is an ARP packet, convert it. First, we want to make
884          * use of some of the fields, since they tell us a little bit
885          * about the sending machine.  */
886         if (ether_type == __constant_htons (ETH_P_ARP)) {
887                 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
888                 struct arphdr *arp = (struct arphdr *)skb->data;
889                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
890                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
891                         ntohl(arp1394->fifo_lo);
892                 u8 max_rec = min(priv->host->csr.max_rec,
893                                  (u8)(arp1394->max_rec));
894                 int sspd = arp1394->sspd;
895                 u16 maxpayload;
896                 struct eth1394_node_ref *node;
897                 struct eth1394_node_info *node_info;
898
899                 /* Sanity check. MacOSX seems to be sending us 131 in this
900                  * field (atleast on my Panther G5). Not sure why. */
901                 if (sspd > 5 || sspd < 0)
902                         sspd = 0;
903
904                 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
905
906                 node = eth1394_find_node_guid(&priv->ip_node_list,
907                                               be64_to_cpu(arp1394->s_uniq_id));
908                 if (!node) {
909                         return 0;
910                 }
911
912                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
913
914                 /* Update our speed/payload/fifo_offset table */
915                 node_info->maxpayload = maxpayload;
916                 node_info->sspd =       sspd;
917                 node_info->fifo =       fifo_addr;
918
919                 /* Now that we're done with the 1394 specific stuff, we'll
920                  * need to alter some of the data.  Believe it or not, all
921                  * that needs to be done is sender_IP_address needs to be
922                  * moved, the destination hardware address get stuffed
923                  * in and the hardware address length set to 8.
924                  *
925                  * IMPORTANT: The code below overwrites 1394 specific data
926                  * needed above so keep the munging of the data for the
927                  * higher level IP stack last. */
928
929                 arp->ar_hln = 8;
930                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
931                 *(u32*)arp_ptr = arp1394->sip;  /* move sender IP addr */
932                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
933
934                 if (arp->ar_op == 1)
935                         /* just set ARP req target unique ID to 0 */
936                         *((u64*)arp_ptr) = 0;
937                 else
938                         *((u64*)arp_ptr) = *((u64*)dev->dev_addr);
939         }
940
941         /* Now add the ethernet header. */
942         if (dev->hard_header (skb, dev, __constant_ntohs (ether_type),
943                               &dest_hw, NULL, skb->len) >= 0)
944                 ret = ether1394_type_trans(skb, dev);
945
946         return ret;
947 }
948
949 static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
950 {
951         struct fragment_info *fi;
952
953         list_for_each_entry(fi, frag_list, list) {
954                 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
955                        ((offset + len - 1) < fi->offset)))
956                         return 1;
957         }
958         return 0;
959 }
960
961 static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
962 {
963         struct partial_datagram *pd;
964
965         list_for_each_entry(pd, pdgl, list) {
966                 if (pd->dgl == dgl)
967                         return &pd->list;
968         }
969         return NULL;
970 }
971
972 /* Assumes that new fragment does not overlap any existing fragments */
973 static inline int new_fragment(struct list_head *frag_info, int offset, int len)
974 {
975         struct list_head *lh;
976         struct fragment_info *fi, *fi2, *new;
977
978         list_for_each(lh, frag_info) {
979                 fi = list_entry(lh, struct fragment_info, list);
980                 if ((fi->offset + fi->len) == offset) {
981                         /* The new fragment can be tacked on to the end */
982                         fi->len += len;
983                         /* Did the new fragment plug a hole? */
984                         fi2 = list_entry(lh->next, struct fragment_info, list);
985                         if ((fi->offset + fi->len) == fi2->offset) {
986                                 /* glue fragments together */
987                                 fi->len += fi2->len;
988                                 list_del(lh->next);
989                                 kfree(fi2);
990                         }
991                         return 0;
992                 } else if ((offset + len) == fi->offset) {
993                         /* The new fragment can be tacked on to the beginning */
994                         fi->offset = offset;
995                         fi->len += len;
996                         /* Did the new fragment plug a hole? */
997                         fi2 = list_entry(lh->prev, struct fragment_info, list);
998                         if ((fi2->offset + fi2->len) == fi->offset) {
999                                 /* glue fragments together */
1000                                 fi2->len += fi->len;
1001                                 list_del(lh);
1002                                 kfree(fi);
1003                         }
1004                         return 0;
1005                 } else if (offset > (fi->offset + fi->len)) {
1006                         break;
1007                 } else if ((offset + len) < fi->offset) {
1008                         lh = lh->prev;
1009                         break;
1010                 }
1011         }
1012
1013         new = kmalloc(sizeof(struct fragment_info), GFP_ATOMIC);
1014         if (!new)
1015                 return -ENOMEM;
1016
1017         new->offset = offset;
1018         new->len = len;
1019
1020         list_add(&new->list, lh);
1021
1022         return 0;
1023 }
1024
1025 static inline int new_partial_datagram(struct net_device *dev,
1026                                        struct list_head *pdgl, int dgl,
1027                                        int dg_size, char *frag_buf,
1028                                        int frag_off, int frag_len)
1029 {
1030         struct partial_datagram *new;
1031
1032         new = kmalloc(sizeof(struct partial_datagram), GFP_ATOMIC);
1033         if (!new)
1034                 return -ENOMEM;
1035
1036         INIT_LIST_HEAD(&new->frag_info);
1037
1038         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1039                 kfree(new);
1040                 return -ENOMEM;
1041         }
1042
1043         new->dgl = dgl;
1044         new->dg_size = dg_size;
1045
1046         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1047         if (!new->skb) {
1048                 struct fragment_info *fi = list_entry(new->frag_info.next,
1049                                                       struct fragment_info,
1050                                                       list);
1051                 kfree(fi);
1052                 kfree(new);
1053                 return -ENOMEM;
1054         }
1055
1056         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1057         new->pbuf = skb_put(new->skb, dg_size);
1058         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1059
1060         list_add(&new->list, pdgl);
1061
1062         return 0;
1063 }
1064
1065 static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1066                                           char *frag_buf, int frag_off, int frag_len)
1067 {
1068         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1069
1070         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1071                 return -ENOMEM;
1072         }
1073
1074         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1075
1076         /* Move list entry to beginnig of list so that oldest partial
1077          * datagrams percolate to the end of the list */
1078         list_del(lh);
1079         list_add(lh, pdgl);
1080
1081         return 0;
1082 }
1083
1084 static inline void purge_partial_datagram(struct list_head *old)
1085 {
1086         struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
1087         struct list_head *lh, *n;
1088
1089         list_for_each_safe(lh, n, &pd->frag_info) {
1090                 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
1091                 list_del(lh);
1092                 kfree(fi);
1093         }
1094         list_del(old);
1095         kfree_skb(pd->skb);
1096         kfree(pd);
1097 }
1098
1099 static inline int is_datagram_complete(struct list_head *lh, int dg_size)
1100 {
1101         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1102         struct fragment_info *fi = list_entry(pd->frag_info.next,
1103                                               struct fragment_info, list);
1104
1105         return (fi->len == dg_size);
1106 }
1107
1108 /* Packet reception. We convert the IP1394 encapsulation header to an
1109  * ethernet header, and fill it with some of our other fields. This is
1110  * an incoming packet from the 1394 bus.  */
1111 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1112                                   char *buf, int len)
1113 {
1114         struct sk_buff *skb;
1115         unsigned long flags;
1116         struct eth1394_priv *priv = (struct eth1394_priv *)dev->priv;
1117         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1118         u16 ether_type = 0;  /* initialized to clear warning */
1119         int hdr_len;
1120         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1121         struct eth1394_node_info *node_info;
1122
1123         if (!ud) {
1124                 struct eth1394_node_ref *node;
1125                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1126                 if (!node) {
1127                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1128                                    "lookup failure: " NODE_BUS_FMT,
1129                                    NODE_BUS_ARGS(priv->host, srcid));
1130                         priv->stats.rx_dropped++;
1131                         return -1;
1132                 }
1133                 ud = node->ud;
1134
1135                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1136         }
1137
1138         node_info = (struct eth1394_node_info*)ud->device.driver_data;
1139
1140         /* First, did we receive a fragmented or unfragmented datagram? */
1141         hdr->words.word1 = ntohs(hdr->words.word1);
1142
1143         hdr_len = hdr_type_len[hdr->common.lf];
1144
1145         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1146                 /* An unfragmented datagram has been received by the ieee1394
1147                  * bus. Build an skbuff around it so we can pass it to the
1148                  * high level network layer. */
1149
1150                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1151                 if (!skb) {
1152                         HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1153                         priv->stats.rx_dropped++;
1154                         return -1;
1155                 }
1156                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1157                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1158                 ether_type = hdr->uf.ether_type;
1159         } else {
1160                 /* A datagram fragment has been received, now the fun begins. */
1161
1162                 struct list_head *pdgl, *lh;
1163                 struct partial_datagram *pd;
1164                 int fg_off;
1165                 int fg_len = len - hdr_len;
1166                 int dg_size;
1167                 int dgl;
1168                 int retval;
1169                 struct pdg_list *pdg = &(node_info->pdg);
1170
1171                 hdr->words.word3 = ntohs(hdr->words.word3);
1172                 /* The 4th header word is reserved so no need to do ntohs() */
1173
1174                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1175                         ether_type = hdr->ff.ether_type;
1176                         dgl = hdr->ff.dgl;
1177                         dg_size = hdr->ff.dg_size + 1;
1178                         fg_off = 0;
1179                 } else {
1180                         hdr->words.word2 = ntohs(hdr->words.word2);
1181                         dgl = hdr->sf.dgl;
1182                         dg_size = hdr->sf.dg_size + 1;
1183                         fg_off = hdr->sf.fg_off;
1184                 }
1185                 spin_lock_irqsave(&pdg->lock, flags);
1186
1187                 pdgl = &(pdg->list);
1188                 lh = find_partial_datagram(pdgl, dgl);
1189
1190                 if (lh == NULL) {
1191                         if (pdg->sz == max_partial_datagrams) {
1192                                 /* remove the oldest */
1193                                 purge_partial_datagram(pdgl->prev);
1194                                 pdg->sz--;
1195                         }
1196
1197                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1198                                                       buf + hdr_len, fg_off,
1199                                                       fg_len);
1200                         if (retval < 0) {
1201                                 spin_unlock_irqrestore(&pdg->lock, flags);
1202                                 goto bad_proto;
1203                         }
1204                         pdg->sz++;
1205                         lh = find_partial_datagram(pdgl, dgl);
1206                 } else {
1207                         struct partial_datagram *pd;
1208
1209                         pd = list_entry(lh, struct partial_datagram, list);
1210
1211                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1212                                 /* Overlapping fragments, obliterate old
1213                                  * datagram and start new one. */
1214                                 purge_partial_datagram(lh);
1215                                 retval = new_partial_datagram(dev, pdgl, dgl,
1216                                                               dg_size,
1217                                                               buf + hdr_len,
1218                                                               fg_off, fg_len);
1219                                 if (retval < 0) {
1220                                         pdg->sz--;
1221                                         spin_unlock_irqrestore(&pdg->lock, flags);
1222                                         goto bad_proto;
1223                                 }
1224                         } else {
1225                                 retval = update_partial_datagram(pdgl, lh,
1226                                                                  buf + hdr_len,
1227                                                                  fg_off, fg_len);
1228                                 if (retval < 0) {
1229                                         /* Couldn't save off fragment anyway
1230                                          * so might as well obliterate the
1231                                          * datagram now. */
1232                                         purge_partial_datagram(lh);
1233                                         pdg->sz--;
1234                                         spin_unlock_irqrestore(&pdg->lock, flags);
1235                                         goto bad_proto;
1236                                 }
1237                         } /* fragment overlap */
1238                 } /* new datagram or add to existing one */
1239
1240                 pd = list_entry(lh, struct partial_datagram, list);
1241
1242                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1243                         pd->ether_type = ether_type;
1244                 }
1245
1246                 if (is_datagram_complete(lh, dg_size)) {
1247                         ether_type = pd->ether_type;
1248                         pdg->sz--;
1249                         skb = skb_get(pd->skb);
1250                         purge_partial_datagram(lh);
1251                         spin_unlock_irqrestore(&pdg->lock, flags);
1252                 } else {
1253                         /* Datagram is not complete, we're done for the
1254                          * moment. */
1255                         spin_unlock_irqrestore(&pdg->lock, flags);
1256                         return 0;
1257                 }
1258         } /* unframgented datagram or fragmented one */
1259
1260         /* Write metadata, and then pass to the receive level */
1261         skb->dev = dev;
1262         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1263
1264         /* Parse the encapsulation header. This actually does the job of
1265          * converting to an ethernet frame header, aswell as arp
1266          * conversion if needed. ARP conversion is easier in this
1267          * direction, since we are using ethernet as our backend.  */
1268         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1269                                               ether_type);
1270
1271
1272         spin_lock_irqsave(&priv->lock, flags);
1273         if (!skb->protocol) {
1274                 priv->stats.rx_errors++;
1275                 priv->stats.rx_dropped++;
1276                 dev_kfree_skb_any(skb);
1277                 goto bad_proto;
1278         }
1279
1280         if (netif_rx(skb) == NET_RX_DROP) {
1281                 priv->stats.rx_errors++;
1282                 priv->stats.rx_dropped++;
1283                 goto bad_proto;
1284         }
1285
1286         /* Statistics */
1287         priv->stats.rx_packets++;
1288         priv->stats.rx_bytes += skb->len;
1289
1290 bad_proto:
1291         if (netif_queue_stopped(dev))
1292                 netif_wake_queue(dev);
1293         spin_unlock_irqrestore(&priv->lock, flags);
1294
1295         dev->last_rx = jiffies;
1296
1297         return 0;
1298 }
1299
1300 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1301                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1302 {
1303         struct eth1394_host_info *hi;
1304
1305         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1306         if (hi == NULL) {
1307                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1308                                 host->driver->name);
1309                 return RCODE_ADDRESS_ERROR;
1310         }
1311
1312         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1313                 return RCODE_ADDRESS_ERROR;
1314         else
1315                 return RCODE_COMPLETE;
1316 }
1317
1318 static void ether1394_iso(struct hpsb_iso *iso)
1319 {
1320         quadlet_t *data;
1321         char *buf;
1322         struct eth1394_host_info *hi;
1323         struct net_device *dev;
1324         struct eth1394_priv *priv;
1325         unsigned int len;
1326         u32 specifier_id;
1327         u16 source_id;
1328         int i;
1329         int nready;
1330
1331         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1332         if (hi == NULL) {
1333                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1334                                 iso->host->driver->name);
1335                 return;
1336         }
1337
1338         dev = hi->dev;
1339
1340         nready = hpsb_iso_n_ready(iso);
1341         for (i = 0; i < nready; i++) {
1342                 struct hpsb_iso_packet_info *info =
1343                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1344                 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1345
1346                 /* skip over GASP header */
1347                 buf = (char *)data + 8;
1348                 len = info->len - 8;
1349
1350                 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1351                                 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1352                 source_id = be32_to_cpu(data[0]) >> 16;
1353
1354                 priv = (struct eth1394_priv *)dev->priv;
1355
1356                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1357                    specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1358                         /* This packet is not for us */
1359                         continue;
1360                 }
1361                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1362                                        buf, len);
1363         }
1364
1365         hpsb_iso_recv_release_packets(iso, i);
1366
1367         dev->last_rx = jiffies;
1368 }
1369
1370 /******************************************
1371  * Datagram transmission code
1372  ******************************************/
1373
1374 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1375  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1376  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1377  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1378  * judge.
1379  *
1380  * Now that the EUI is used for the hardware address all we need to do to make
1381  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1382  * speed, and unicast FIFO address information between the sender_unique_id
1383  * and the IP addresses.
1384  */
1385 static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
1386                                             struct net_device *dev)
1387 {
1388         struct eth1394_priv *priv = (struct eth1394_priv *)(dev->priv);
1389
1390         struct arphdr *arp = (struct arphdr *)skb->data;
1391         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1392         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1393
1394         /* Believe it or not, all that need to happen is sender IP get moved
1395          * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo.  */
1396         arp1394->hw_addr_len    = 16;
1397         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1398         arp1394->max_rec        = priv->host->csr.max_rec;
1399         arp1394->sspd           = priv->host->csr.lnk_spd;
1400         arp1394->fifo_hi        = htons (priv->local_fifo >> 32);
1401         arp1394->fifo_lo        = htonl (priv->local_fifo & ~0x0);
1402
1403         return;
1404 }
1405
1406 /* We need to encapsulate the standard header with our own. We use the
1407  * ethernet header's proto for our own. */
1408 static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1409                                                       int proto,
1410                                                       union eth1394_hdr *hdr,
1411                                                       u16 dg_size, u16 dgl)
1412 {
1413         unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1414
1415         /* Does it all fit in one packet? */
1416         if (dg_size <= adj_max_payload) {
1417                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1418                 hdr->uf.ether_type = proto;
1419         } else {
1420                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1421                 hdr->ff.ether_type = proto;
1422                 hdr->ff.dg_size = dg_size - 1;
1423                 hdr->ff.dgl = dgl;
1424                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1425         }
1426         return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1427 }
1428
1429 static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
1430                                                  unsigned int max_payload,
1431                                                  union eth1394_hdr *hdr)
1432 {
1433         union eth1394_hdr *bufhdr;
1434         int ftype = hdr->common.lf;
1435         int hdrsz = hdr_type_len[ftype];
1436         unsigned int adj_max_payload = max_payload - hdrsz;
1437
1438         switch(ftype) {
1439         case ETH1394_HDR_LF_UF:
1440                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1441                 bufhdr->words.word1 = htons(hdr->words.word1);
1442                 bufhdr->words.word2 = hdr->words.word2;
1443                 break;
1444
1445         case ETH1394_HDR_LF_FF:
1446                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1447                 bufhdr->words.word1 = htons(hdr->words.word1);
1448                 bufhdr->words.word2 = hdr->words.word2;
1449                 bufhdr->words.word3 = htons(hdr->words.word3);
1450                 bufhdr->words.word4 = 0;
1451
1452                 /* Set frag type here for future interior fragments */
1453                 hdr->common.lf = ETH1394_HDR_LF_IF;
1454                 hdr->sf.fg_off = 0;
1455                 break;
1456
1457         default:
1458                 hdr->sf.fg_off += adj_max_payload;
1459                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1460                 if (max_payload >= skb->len)
1461                         hdr->common.lf = ETH1394_HDR_LF_LF;
1462                 bufhdr->words.word1 = htons(hdr->words.word1);
1463                 bufhdr->words.word2 = htons(hdr->words.word2);
1464                 bufhdr->words.word3 = htons(hdr->words.word3);
1465                 bufhdr->words.word4 = 0;
1466         }
1467
1468         return min(max_payload, skb->len);
1469 }
1470
1471 static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1472 {
1473         struct hpsb_packet *p;
1474
1475         p = hpsb_alloc_packet(0);
1476         if (p) {
1477                 p->host = host;
1478                 p->generation = get_hpsb_generation(host);
1479                 p->type = hpsb_async;
1480         }
1481         return p;
1482 }
1483
1484 static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
1485                                               struct hpsb_host *host,
1486                                               nodeid_t node, u64 addr,
1487                                               void * data, int tx_len)
1488 {
1489         p->node_id = node;
1490         p->data = NULL;
1491
1492         p->tcode = TCODE_WRITEB;
1493         p->header[1] = (host->node_id << 16) | (addr >> 32);
1494         p->header[2] = addr & 0xffffffff;
1495
1496         p->header_size = 16;
1497         p->expect_response = 1;
1498
1499         if (hpsb_get_tlabel(p)) {
1500                 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1501                                 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1502                 return -1;
1503         }
1504         p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1505                 | (1 << 8) | (TCODE_WRITEB << 4);
1506
1507         p->header[3] = tx_len << 16;
1508         p->data_size = (tx_len + 3) & ~3;
1509         p->data = (quadlet_t*)data;
1510
1511         return 0;
1512 }
1513
1514 static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1515                                               struct eth1394_priv *priv,
1516                                               struct sk_buff *skb, int length)
1517 {
1518         p->header_size = 4;
1519         p->tcode = TCODE_STREAM_DATA;
1520
1521         p->header[0] = (length << 16) | (3 << 14)
1522                 | ((priv->broadcast_channel) << 8)
1523                 | (TCODE_STREAM_DATA << 4);
1524         p->data_size = length;
1525         p->data = ((quadlet_t*)skb->data) - 2;
1526         p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1527                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1528         p->data[1] = __constant_cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1529                                             ETHER1394_GASP_VERSION);
1530
1531         /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1532          * prevents hpsb_send_packet() from setting the speed to an arbitrary
1533          * value based on packet->node_id if packet->node_id is not set. */
1534         p->node_id = ALL_NODES;
1535         p->speed_code = priv->bc_sspd;
1536 }
1537
1538 static inline void ether1394_free_packet(struct hpsb_packet *packet)
1539 {
1540         if (packet->tcode != TCODE_STREAM_DATA)
1541                 hpsb_free_tlabel(packet);
1542         hpsb_free_packet(packet);
1543 }
1544
1545 static void ether1394_complete_cb(void *__ptask);
1546
1547 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1548 {
1549         struct eth1394_priv *priv = ptask->priv;
1550         struct hpsb_packet *packet = NULL;
1551
1552         packet = ether1394_alloc_common_packet(priv->host);
1553         if (!packet)
1554                 return -1;
1555
1556         if (ptask->tx_type == ETH1394_GASP) {
1557                 int length = tx_len + (2 * sizeof(quadlet_t));
1558
1559                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1560         } else if (ether1394_prep_write_packet(packet, priv->host,
1561                                                ptask->dest_node,
1562                                                ptask->addr, ptask->skb->data,
1563                                                tx_len)) {
1564                 hpsb_free_packet(packet);
1565                 return -1;
1566         }
1567
1568         ptask->packet = packet;
1569         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1570                                       ptask);
1571
1572         if (hpsb_send_packet(packet) < 0) {
1573                 ether1394_free_packet(packet);
1574                 return -1;
1575         }
1576
1577         return 0;
1578 }
1579
1580
1581 /* Task function to be run when a datagram transmission is completed */
1582 static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
1583 {
1584         struct sk_buff *skb = ptask->skb;
1585         struct net_device *dev = skb->dev;
1586         struct eth1394_priv *priv = dev->priv;
1587         unsigned long flags;
1588
1589         /* Statistics */
1590         spin_lock_irqsave(&priv->lock, flags);
1591         if (fail) {
1592                 priv->stats.tx_dropped++;
1593                 priv->stats.tx_errors++;
1594         } else {
1595                 priv->stats.tx_bytes += skb->len;
1596                 priv->stats.tx_packets++;
1597         }
1598         spin_unlock_irqrestore(&priv->lock, flags);
1599
1600         dev_kfree_skb_any(skb);
1601         kmem_cache_free(packet_task_cache, ptask);
1602 }
1603
1604
1605 /* Callback for when a packet has been sent and the status of that packet is
1606  * known */
1607 static void ether1394_complete_cb(void *__ptask)
1608 {
1609         struct packet_task *ptask = (struct packet_task *)__ptask;
1610         struct hpsb_packet *packet = ptask->packet;
1611         int fail = 0;
1612
1613         if (packet->tcode != TCODE_STREAM_DATA)
1614                 fail = hpsb_packet_success(packet);
1615
1616         ether1394_free_packet(packet);
1617
1618         ptask->outstanding_pkts--;
1619         if (ptask->outstanding_pkts > 0 && !fail) {
1620                 int tx_len;
1621
1622                 /* Add the encapsulation header to the fragment */
1623                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1624                                                &ptask->hdr);
1625                 if (ether1394_send_packet(ptask, tx_len))
1626                         ether1394_dg_complete(ptask, 1);
1627         } else {
1628                 ether1394_dg_complete(ptask, fail);
1629         }
1630 }
1631
1632
1633
1634 /* Transmit a packet (called by kernel) */
1635 static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1636 {
1637         int kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1638         struct eth1394hdr *eth;
1639         struct eth1394_priv *priv = dev->priv;
1640         int proto;
1641         unsigned long flags;
1642         nodeid_t dest_node;
1643         eth1394_tx_type tx_type;
1644         int ret = 0;
1645         unsigned int tx_len;
1646         unsigned int max_payload;
1647         u16 dg_size;
1648         u16 dgl;
1649         struct packet_task *ptask;
1650         struct eth1394_node_ref *node;
1651         struct eth1394_node_info *node_info = NULL;
1652
1653         ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1654         if (ptask == NULL) {
1655                 ret = -ENOMEM;
1656                 goto fail;
1657         }
1658
1659         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1660          * it does not set our validity bit. We need to compensate for
1661          * that somewhere else, but not in eth1394. */
1662 #if 0
1663         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1664                 ret = -EAGAIN;
1665                 goto fail;
1666         }
1667 #endif
1668
1669         if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1670                 ret = -ENOMEM;
1671                 goto fail;
1672         }
1673
1674         /* Get rid of the fake eth1394 header, but save a pointer */
1675         eth = (struct eth1394hdr*)skb->data;
1676         skb_pull(skb, ETH1394_HLEN);
1677
1678         proto = eth->h_proto;
1679         dg_size = skb->len;
1680
1681         /* Set the transmission type for the packet.  ARP packets and IP
1682          * broadcast packets are sent via GASP. */
1683         if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1684             proto == __constant_htons(ETH_P_ARP) ||
1685             (proto == __constant_htons(ETH_P_IP) &&
1686              IN_MULTICAST(__constant_ntohl(skb->nh.iph->daddr)))) {
1687                 tx_type = ETH1394_GASP;
1688                 dest_node = LOCAL_BUS | ALL_NODES;
1689                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1690                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1691                 dgl = priv->bc_dgl;
1692                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1693                         priv->bc_dgl++;
1694         } else {
1695                 node = eth1394_find_node_guid(&priv->ip_node_list,
1696                                               be64_to_cpu(*(u64*)eth->h_dest));
1697                 if (!node) {
1698                         ret = -EAGAIN;
1699                         goto fail;
1700                 }
1701                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1702                 if (node_info->fifo == ETHER1394_INVALID_ADDR) {
1703                         ret = -EAGAIN;
1704                         goto fail;
1705                 }
1706
1707                 dest_node = node->ud->ne->nodeid;
1708                 max_payload = node_info->maxpayload;
1709                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1710
1711                 dgl = node_info->dgl;
1712                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1713                         node_info->dgl++;
1714                 tx_type = ETH1394_WRREQ;
1715         }
1716
1717         /* If this is an ARP packet, convert it */
1718         if (proto == __constant_htons (ETH_P_ARP))
1719                 ether1394_arp_to_1394arp (skb, dev);
1720
1721         ptask->hdr.words.word1 = 0;
1722         ptask->hdr.words.word2 = 0;
1723         ptask->hdr.words.word3 = 0;
1724         ptask->hdr.words.word4 = 0;
1725         ptask->skb = skb;
1726         ptask->priv = priv;
1727         ptask->tx_type = tx_type;
1728
1729         if (tx_type != ETH1394_GASP) {
1730                 u64 addr;
1731
1732                 spin_lock_irqsave(&priv->lock, flags);
1733                 addr = node_info->fifo;
1734                 spin_unlock_irqrestore(&priv->lock, flags);
1735
1736                 ptask->addr = addr;
1737                 ptask->dest_node = dest_node;
1738         }
1739
1740         ptask->tx_type = tx_type;
1741         ptask->max_payload = max_payload;
1742         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1743                                                              &ptask->hdr, dg_size,
1744                                                              dgl);
1745
1746         /* Add the encapsulation header to the fragment */
1747         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1748         dev->trans_start = jiffies;
1749         if (ether1394_send_packet(ptask, tx_len))
1750                 goto fail;
1751
1752         netif_wake_queue(dev);
1753         return 0;
1754 fail:
1755         if (ptask)
1756                 kmem_cache_free(packet_task_cache, ptask);
1757
1758         if (skb != NULL)
1759                 dev_kfree_skb(skb);
1760
1761         spin_lock_irqsave (&priv->lock, flags);
1762         priv->stats.tx_dropped++;
1763         priv->stats.tx_errors++;
1764         spin_unlock_irqrestore (&priv->lock, flags);
1765
1766         if (netif_queue_stopped(dev))
1767                 netif_wake_queue(dev);
1768
1769         return 0;  /* returning non-zero causes serious problems */
1770 }
1771
1772 static int ether1394_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1773 {
1774         switch(cmd) {
1775                 case SIOCETHTOOL:
1776                         return ether1394_ethtool_ioctl(dev, ifr->ifr_data);
1777
1778                 case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
1779                 case SIOCGMIIREG:               /* Read MII PHY register. */
1780                 case SIOCSMIIREG:               /* Write MII PHY register. */
1781                 default:
1782                         return -EOPNOTSUPP;
1783         }
1784
1785         return 0;
1786 }
1787
1788 static int ether1394_ethtool_ioctl(struct net_device *dev, void __user *useraddr)
1789 {
1790         u32 ethcmd;
1791
1792         if (get_user(ethcmd, (u32 __user *)useraddr))
1793                 return -EFAULT;
1794
1795         switch (ethcmd) {
1796                 case ETHTOOL_GDRVINFO: {
1797                         struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO };
1798                         strcpy (info.driver, driver_name);
1799                         strcpy (info.version, "$Rev: 1224 $");
1800                         /* FIXME XXX provide sane businfo */
1801                         strcpy (info.bus_info, "ieee1394");
1802                         if (copy_to_user (useraddr, &info, sizeof (info)))
1803                                 return -EFAULT;
1804                         break;
1805                 }
1806                 case ETHTOOL_GSET:
1807                 case ETHTOOL_SSET:
1808                 case ETHTOOL_NWAY_RST:
1809                 case ETHTOOL_GLINK:
1810                 case ETHTOOL_GMSGLVL:
1811                 case ETHTOOL_SMSGLVL:
1812                 default:
1813                         return -EOPNOTSUPP;
1814         }
1815
1816         return 0;
1817 }
1818
1819
1820 static int __init ether1394_init_module (void)
1821 {
1822         packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1823                                               0, 0, NULL, NULL);
1824
1825         /* Register ourselves as a highlevel driver */
1826         hpsb_register_highlevel(&eth1394_highlevel);
1827
1828         return hpsb_register_protocol(&eth1394_proto_driver);
1829 }
1830
1831 static void __exit ether1394_exit_module (void)
1832 {
1833         hpsb_unregister_protocol(&eth1394_proto_driver);
1834         hpsb_unregister_highlevel(&eth1394_highlevel);
1835         kmem_cache_destroy(packet_task_cache);
1836 }
1837
1838 module_init(ether1394_init_module);
1839 module_exit(ether1394_exit_module);